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ON LINNIK’S THEOREM ON GOLDBACH NUMBERS
IN SHORT INTERVALS AND RELATED PROBLEMS

by A. LANGUASCO and A. PERELLI

1. Introduction.

Define a Goldbach number (G-number) to be an even number rep-
resentable as a sum of two primes, and write L = log N. The first result
concerning the existence of G-numbers in short intervals is due to Lin-
nik [6] who proved, assuming the Riemann Hypothesis (RH), that for any
e > 0 and N sufficiently large, the interval [N, N + L3*¢] contains a G-
number. Linnik’s result was improved by K4tai [4] and, independently, by
Montgomery-Vaughan [7] who showed that the interval [N, N + C'L?] con-
tains a G-number provided C' and N are sufficiently large.

Linnik used the circle method in the proof of his result, while Katai
and Montgomery-Vaughan exploited the connection between G-numbers
and primes in short intervals. Indeed, Katai and Montgomery-Vaughan’s

result follows easily from the following estimate, due to Selberg [9] under
RH,

(1) J(N,H) = /lN lW(z + H) — (z) — H|*de < NHL2.

Estimate (1) has been proved by other methods by Saffari-Vaughan [8] and
Gallagher [1]. We remark that the slightly weaker estimate, still under RH,

(2) J(N,H) < NHL®

may be obtained in a straightforward way using the explicit formula for
¥ (z). Estimate (2) corresponds, in a sense, to Linnik’s result. The method
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of Saffari-Vaughan for the proof of (1) is based on a preliminary ingenious
averaging technique which makes more efficient the use of the explicit
formula.

In 1990, Goldston [2] pointed out that the result of Kdtai and
Montgomery-Vaughan can also be obtained by the circle method and hence,
in a way, closer to Linnik’s approach. However, Linnik’s argument needs no
use of (1) as opposed to Goldston who reduces the problem to this estimate,
via an application of Gallagher’s lemma.

The principal aim of this paper is to show that a variation of Linnik’s
original approach is capable of proving the result of Kitai and Montgomery-
Vaughan without the use of estimate (1). This is obtained first by inserting
the Saffari-Vaughan technique into the machinery of the circle method and
then by avoiding the use of Parseval’s identity in a critical part of the unit
interval.

Throughout this paper, we will formulate our arguments in terms of
the infinite exponential sum

S(a) = i A(n)e~™Ne(na),
n=1

as Linnik himself did. However, completely analogous results may be
obtained by using, instead, the finite exponential sum

S(a) = Z A(n)e(na).

n<N

The modifications required in using S(a) in place of S(c) are based on the
explicit formula for ¢(z).

1
THEOREM 1. — Assume RH and let z = N 2mia. For N sufficiently

1
large and 0 < £ < 3 we have
/€
-£
We remark that the estimate in Theorem 1 appears to be in contrast

with Goldston’s statement at the beginning of sect. 4 of [2]. In fact, the
loss of a factor L in Linnik’s work is due to his treatment of the explicit

= 1
S(a)? - —|da< NEL? + NEY2L,
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formula for g(a), which does not use the smoothing technique of Saffari-
Vaughan, and not to the fact that S(c) does not truncate at N. The above
loss corresponds to the loss of a factor L in (2), compared with (1).

From Theorem 1 we deduce the following

CoROLLARY 1. — Assume RH. There exists a constants C > 0 such
that, for N > 2, the interval [N, N + CL?] contains a G-number.

Essentially, our method can be used to obtain G-numbers in intervals
[N, N + H] for those H for which an estimate of the form

1

/

L
H

~ 1
,S'(oz)2 - ;’ da <cN

holds, where ¢ > 0 is a suitable constant. A simple consequence of Theorem
1 is the following

COROLLARY 2. — Assume RH. For N sufficiently large and 0 < £ <
we have

N

€.
/ ’S(a)12da = E arctan27rN§+0(N§L2) +O(N§1/2L)_
—& ™

Corollary 2 should be compared with the result provided by the
Parseval identity, i.e.

V2,2 NL
(3) / ’S(a)‘ do ~ —=..
-1/2 2
Hence Corollary 2 may be regarded as a conditional truncated version of
1
(3). However, note that taking £ = 3 in Corollary 2 only gives the weaker
result
2 2
/ 15(01)’ da < NL?.
—1/2
A sharper version of Theorem 1, and hence of Corollary 1 and 2, may

be obtained by assuming the Montgomery pair correlation conjecture in
addition to RH.

In 1959, Lavrik [5] proved that

’

~ 2 —
S(a)’ PO NI+ O(N10g? L)

do =
“=
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if 0 < b—a < 1. An unconditional result concerning truncations of
Parseval’s identity, which improves Lavrik’s result, is the following

THEOREM 2. — Let 0 < b—a <1 and N be sufficiently large. Then
b ~
AN

We remark that Theorem 2 is essentially best possible, in the sense
that one cannot replace the term O(N) by o(N).

a)’zda= b-a

(N(L(b ~ a))'/?) + O(N).

An application of Theorem 2 can lead, under suitable circumstances,
to a sharpening of results which involve the use of Parseval’s identity. For
example, the use of Theorem 2 instead of Parseval’s identity in Linnik’s
original arguments allows one to remove the e in Linnik’s result. This
should be compared with Goldston’s comments on the Fourier polynomial
V(a) in sect. 4 of [2]. In the same way, Theorem 2 may replace the partial
integration argument in the proof of Corollary 1.

We finally remark that Theorem 2 enables one to deduce the order
€ 2 1
of magnitude of / 'S(a)' da in the whole range 0 < & < 3 Writing
f(z) < g(z) for g(z) < f(z) < g(x), we have

CoroLLARY 3. — Let N be sufficiently large. Then

N% if0<E< —
£ 1 N1
3

1 1
— <L -,
NEL if 7 SE< 3

Corollary 3 may be regarded as a truncated version of Parseval’s
identity.

2. Proof of Theorem 1.

We use the following explicit formula

== —Zz“’f‘ )+ O(L3)
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1 1
where z = — — 27ia and p = 5 + iy runs over the non-trivial zeros of
¢(s), see [6]. Hence

2 .
~ 1
3(0)2— 2 < +

> 27T (p)

23 ene)
p

1 ~ ~
(4) +L3Zz*f’r(p) + L3 ;[+L6=R1+...+R5,
p
say. Since
l < min (N, l)
z e
we have
€ _
(5) / Rsda < €LS,
3
€ L
(6) / Ryda < NY/261/2[3
-£

e e 1/2
(7) / Rsda < €Y/2L3 ( / Rlda>

3 -£
and

¢ ¢ 1/2

(8) / Rada < N2 (/ Rlda> .

=3 £

Since z7? = |z| P exp(—iparctan2rNa), by Stirling’s formula we

have that

Zz—pp(p) < Z |z~ 2 exp ('yarctan27TNOt - %I’Yl)-
P P

1
If ya <0or|a| < — we get
N
Zz"”l"(p) < N2,
p

where, in the first case, p runs over the zeros with ya < 0.
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Hence
&
9) / Rida < N¢
£

ifOSﬁS%,and

€ -1/N 2
(10) / Rida < / \Zz-ﬂr p)\ da+ / ’Zz_”l“(p)‘ do+N¢
=€ 3 ~v<0

¥>0

1
if &€ > N We will treat only the first integral on the right hand side of
(10), the second being completely similar.

Clearly

(11) ‘ Z 27PT(p) 2doz = i 7 Z 27PT(p) 2doz +0(1)
1/N " y>0 k=177 430

£ 1 3
S <<
2% N =T=73

" ™
K = O(L). Writing arctan2rNa = 3~ arctan mNa

where n = 1 = and K is a suitable integer satisfying

and using the
Saffari-Vaughan technique we have

/:n ’;Z‘Pr(p)r da < /12 (/2267] ’ Zz PTY( p)} da) dé

(12) =3 3 M) e om0 g

Y1>0v2>0

where

2

2 26m .
J= J(N’ 77771772) = /1 < o0 fl(a)fQ(Oé) da) db,

) 1
_ (-1 —m) _ _ .
fi(@) = |2] and  fo(a) exp( (71 + 72) arctan Wa)

Now we proceed to the estimation of J. Integrating twice by parts
and denoting by F} a primitive of f; and by G; a primitive of F}, we get

J= 5177 (G1(4n) f2(4n) — Ga(20) f2(2m))
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—% (Grnnm -6(2)n(2))

—2/12 G1(26n)f§(26n)d6+2/12 Gl(%”)fg(%”)da

2 26m
(13) +/ ( Gl(a)fé'(a)da> dé.
1 \J %
If ! h
a> 5 we have
i) < = (22 s

2
() < % {(’71];'(1’72) " (’Yl]\';'a’h) }fg(a),

hence from (13) we get

1 m+7) M+ 72
14) J< - max |Gi(a 1+<—> ex (—c(————)),
= 7 adtin O )l{ Ny } P N7

where ¢ > 0 is a suitable constant.
In order to estimate G1(a) we use the substitution
1 1/2
(15) u=u(a) = (m + 47r2a2> ,
thus getting

1 - du
F - —i(n-y2) T
1(c) 27r/u (u2 — ﬁ1§)1/2

By partial integration we have
(16)

1 ul_i('Yl*’h) . u du
F _ 1—i(y1—72) kel _}_
M) = =it =) { W= 7)1 + [ (W= )

From (15) and (16) we get

(13) Gr(a) = L {A(a) 4 / B(a)da} ,

2m(1 = i(y1 — 72))
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where
1 w2~ im—r2)
Ala)= — [ ———— d
(@) 2 _/ u?— 5 Y

and

u2—i('71—”72)
Ba= [ 2" g
(

u? — 132

Again by partial integration we obtain

1 3—i(v1—72) )
Afe) = (S0 e furminom

23 —i(n—) | - 5= (u? — §z)?
and
1 ud—ir—72) . du
B — 3 d—i(vi—v2) ____ T _.} .
@ = i g 2 W= )"
Hence by (15) we have for a € [3,477] that
u a
18 Alo) < < )
(18) (@) 1+ =l — 1+m -l
19 Bla) €« ——,
(19) (@) 1+ — el
where A(a) and B(a) satisfy A (g) =B (g) = 0, and from (17) - (19)
we obtain
(20) Gi(a) < <

L+ |1 = 7el?
n ] |
for a € [2,417.
From (14) and (20) we get
2
1+ (1)
Mt
Jg —" 1 ex (—c(——-))
T+ —7P % )]’

hence from (12) and Stirling’s formula we have
(21)

2
n _ 2 1+(le+772) Y+ 72
/n |§z pI‘(p)’ da DD T+ m -l P (_c( Nn ))

71>0v2>0
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n+1\ M+ c v
1 nrr e AT -
{+( Nn )}eXp( c( Nn )><<exp( 2Nn>’

hence (21) becomes

(22) < Z exp( ) Z 5 < NnL?,
=6 2 N S lt |’71 72|

But

since the number of zeros py = % +ivpwithn < |y1 —7| <n+1lis
O(log(n + |m))-
From (9)-(11) and (22) we get

&
(23) / Rdo < NEL?,
—£

and Theorem 1 follows from (4)-(8) and (23).

3. Proof of Corollaries 1 and 2.

Assume that H,N € N, H < N, and define

H

L(a) = ‘ i_ e(—ma)l2 = 3 am)e(-ma),

m=—H

where a(m) = H — |m),

S ARA®K) and E(a) =5()? - =,

h+k=n

1
where z = — — 2mia. We have

N

N+H % _

> a(n—-N)e™NR(n) = / 1 S(a)?L(e)e(—Na)da
n=N—-H -2

(20) = /_ : LS‘) e(-NaYda+ | B(a)L(@)e(~Na)da = I + I,

1 -1
2 2

say.
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We evaluate I; using the residue theorem. We have

ghsy 3 e(—na)
(25) L= Z a(n-N)/_L Tda
n=N-—-H 2
1
IftT > 3 we get
T2 T\ da T da 1
T, W<</ 2 <5
hence
1
3 ef—
(26) / -ei’;‘—a)da:/ el "a)d +0(1)
_% z -T Z
. 1
uniformly for 7" > oh But
(27) /T e(_na) oo — e—n/.N /ﬁ+21riT S)ip_(n_ﬂds
_r 22 2 J1 _omir 52

Let T denote the left half of the circle

theorem we get

—n/N # +2miT —n/N
e / exp(ns) ds — ne=n/N 4 / exp(ns) ds
r

1
s — 7\/'—’ = 27T. By the residue

27 317 —2riT 32 271 52
(28) =ne™™N 40 1
T )
Letting T — oo, from (26)-(28) we get
i e(-na)
(29) / e—z—;""‘—da =ne™"N 4 0(1)

uniformly for n < 2N. Hence from (25) and (29) we obtain that

N+H
L= Z a(n — N)ne™™N + O(H?)
n=N-H
N s, H2N s
(30) == z%: a(n — N) 4+ O(H®) = + O(H?).
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We have

(31) L< / " |B(e)|L(e)da+ / |B(0)|L(a)da.
- H H

Since

(32) L(a) < min <H2, #)

from Theorem 1 we get

-2
(33) / |R(a)|L(a)da < HNL? + H¥?NL.

1
H

From (32) we obtain

LI L. da
(34) | IR@IL(@de < [ |R@) 5,
" b4
and by partial integration and Theorem 1 we get
3 .
(35) / |R(a)| i—‘j < HNL?+ H®2NL.
"

Hence from (31) and (33)-(35) we have
(36) I, « HNL? + H3?NL,

and from (24), (30) and (36) we finally get

N+H
(37 > a(n—N)eNR(n) =
n=N-H

H?N
e

+0 (H3 +HNL? + H3/2NL).

Choosing H = CL?, C > 0 sufficiently large, from (37) we have that

N+H
> a(n-N)e™NR(n) > H’N
n=N-—-H

and Corollary 1 follows.
In order to prove Corollary 2 we observe that
~ 2 1 ~ ~
ls(a)‘ = E +0(R1+...+R5),
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see (4), and
3
/ _d_az = ]—V— arctan 2w N¢.
—& IZI us
Corollary 2 follows then from (5)-(8) and (23).

4. Proof of Theorem 2 and Corollary 3.

We recall the properties of Vinogradov’s auxiliary function, see [10]
p. 196. Let r be any non-negative integer and u,n, A be such that

(38) 0<A<i and A<n—u<1l-A.

There exists a function ¥(a) = ¥, , () periodic of period 1 such that

i) ¥(a)=1 if,u+%§a§n—%

A A A A
if) 0<\Il(a)<1if/,t——<.a<u+—,n——<a<n+—2-

2 2 2
A A
iil) ¥(a) =0 ifn+—2—<a<1+u—-5
iv) ¥(a)=n—p+ Z m)e(ma), where
mn:;€°
1 (r+1Y)
< .
(39) a(m)] < min (n -, = (1))
Define
7“) "7, / ‘S \Pp,n,A(a)da

We need the following

LeMMA. — Let p,7, A satisfy (38). Then

(N, iy, A) = (0 — ) (%5 +O(N)> +0 (N (%)1/2)
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Proof. — By iv) we have

(40)
oo +o00
I(N,p,m, A) = (n— ) ) A2 (m)e™® N + 3~ a(m)¥(N,m),
n=1 m=—00
m7#0

where

U(N,m) = i A(R)A(k)e~(BFRI/N,

h,k=1
h—k=m

From the prime number theorem with remainder term we get

(41) iA2(n)e‘2"/N = %—L- + O(N),

n=1

and from Theorem 3.11 of [3] and partial summation we get

(42) (N, m) < N&(|m|)
uniformly for m # 0, where
otm =11 (- g ) 1 (4 525)
plim| plim|
Hence from (40)-(42) we obtain
(43)

+o0
10 8) = =) (55 +000) +0 | N 3 lam)is(m

m#0

Now we use the estimate

(44) Z 6(n) Kz,

n<z

see e.g. [2]. From (39) and the choice 7 = 1 we have that

(45)

amy < 177" if Im| < (A(n — p)™?
—x ifml> (Am-p) 7
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hence from (44), (45) and partial summation we obtain

+00 _ 1/2
(46) > latmyis(mp < (154

m=—00

m#0
and the lemma follows from (43) and (46).
Suppose first that

47 0<A<;11— and 0<b—-a<1-2A,

and choose p = a — % and n=>b+ % Hence (38) is satisfied and we have

/b
¢ a - 2 b+A 2

- [ |5 vnat@ida— [ @] wunaleda
(48) =I(N,N,’7»A)—11—I2,

~ 2
8(c)| da=I(N,pn,A)

say. By i) and ii) we have
(49) Il S I(N,H’,UI,A)

' 3 / A : : [ :
where ¢/ = a— EA and ' = a+ oh It is easy to verify that u/, 7', A satisfy
(38). An analogous upper bound holds for I, too.

Choosing
b—a 1/3
from (48), (49) and the lemma we obtain

6y | b

provided that (47) holds.
If

b—a

~ 2
S(a)‘ do =

NL+ O(N(L(b — a))*/3) + O(N),

(52) 1-2A<b—a<1,

then

(53) / b

g(a)‘2da=/01‘g(a)rda—/lyg(a)rda



GOLDBACH NUMBERS IN SHORT INTERVALS 321

~ 2
with |I| < 2A. Hence we may treat [, ’S(a)‘ do in a way similar to the
treatment of I;, thus getting

~ 2
(54) / ’S(a)} da < ANL + N.
I

Since b —a =14 O(A) we have

1. 2 —
(55) / 18()[ dx = b ~2NL+O(ANL) +O(N),
0
hence from (50) and (53)-(55) we obtain (51) under condition (52), and
Theorem 2 follows.
1

The proof of Corollary 3 runs as follows. If 0 < £ < N by Stirling’s

formula and the zero-free region of {(s) we have

-p -8y [P} ~ T =
;z F(p)<<zp:|z| |v|°~ 2 exp ('yarctan27rNa 2|'y|) o(N),

where p = 3 + iy runs over the non-trivial zeros of {(s). Hence, arguing as
in the proof of Corollary 2, we get

1. 2
/ ’S(a)’ da < N%¢.
=3
1. 2
Since / ‘S’ (a)' da is an increasing function of &, from the previous result
-£

we have that
€ 2
/ lS(a)‘ doa> N
3

1
for % <€< I The corresponding upper bound follows from Theorem 2.

1 1
Corollary 3 follows then arguing in a similar way in the range I <¢€< 3
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