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DISTANCE FORMULAE AND INVARIANT SUBSPACES,
WITH AN APPLICATION TO LOCALIZATION OF

ZEROS OF THE RIEMANN C-FUNCTION

by Nikolai NIKOLSKI

We consider two distance functions which can be used to describe and
to explore z-invariant subspaces of Banach spaces of analytic functions. In
the case of Hilbert spaces a unicity theorem is proved and some remarks
are made about the localization of zeros of Beurling inner functions in
terms of the distance functions. As an example (and an improvement of
a theorem by Beurling and Nyman from the 1950's) we consider a series
of ^-invariant subspaces related to the Riemann ^-function. The following
theorem is proved.

0.1. THEOREM. — Let s € C, Res > 0 and 7 > 0. Let further
a-] rli
- -a -
x\ \-x\-^Qi,7

where 0 < a < 1 , and

E^)=^([^-a[^), 0< .<1,

/.I __ 2 j

d^{s) = inf / Xs - V 0^,7 -x-
^ a x

the inf being taken over all finite linear combinations of E^^ for 0 < a < 1.
Then the disc

i2
=7+I^==7+^: -z—s- <l-2d^(s)<2Res\

V. Z —— Syk )

Ds,7 — / i J - 's — ' 1 ————— — ^u^^\
^ I Z — Sy^ I

is free of zeros of the Riemann (^-function

^-S^
n>l n

Here s^ stands for the point symmetric to s with respect to the imaginary
axis.

For commentary see Sections 3 and 4 below.

Key words: Invariant subspaces - Distance formulae - Reproducing kernels - The
Riemann zeta-function.
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1. Introduction. Problem of z- invariant subspaces.

Let X be a Banach space of holomorphic functions continuously
imbedded into the space Hol(D) of all such functions in the unit disc

D= {z^C:\z\ < 1},

and stable with respect to multiplication by the independent variable z:

fex => zfex.

The problem (very far from being solved) is to describe all (closed) ^-inva-
riant subspaces of X:

(1.1) E c X , E = E , z E c E .

Solutions are known for very rare cases related to the Hardy Hp spaces;
they are always based on the techniques of the canonical Riesz-Nevanlinna-
Smirnov factorization. The case of the Hardy spaces H1^^ where 1 < p < oo,

H? = fflW = {/ € Hol(D): sup / | / (rC)rdm(C)= ||/||^ < 00}
1 0<r<l JT ^ )

is classical with the following Beurling description of ^-invariant subspaces
EC HP:

(1.2) E = OH?,

where 0 stands for an inner function in the disc D (this means that 9 is
analytic and bounded in D (i.e., 9 € H°°) and unimodular on the unit
circle T = <9D:

19(^)|=1 a.e.onT

(boundary values)). Similar but more complicated descriptions hold true
for some spaces of analytic functions smooth up to the boundary (like the
disc algebra CA, the spaces

C^ ={fC Hol(D): f^ e CA} and H^ = [f e Hol(D): f^ C H^)

and sometimes for their dual spaces (usually in a Frechet, not Banach space
setting). For these results see [Ho], [K], [Ko], [Sh].
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Unfortunately, factorization theory is not yet available for the majority
of Banach spaces of analytic functions, even for such popular ones as the
Bergman and weighted Bergman spaces (despite the recent breakthrough
due to H. Hedenmalm, [H]). Moreover, even though a description of
type (1.2) is known, it is not a remedy for all purposes related to invariant
subspaces. For instance, it does not always help in the study of cyclic
vectors of the adjoint operator z * ; another difficulty is to find an explicit
formula for the canonical function 9 if, say, an invariant subspace E is given
in terms of its Fourier transform. In this last case, it is usually a problem to
localize zeros and singular masses of 9; the standard formula, see [Ho], [N],
saying « 9 is the greatest common inner divisor of all functions f from E »
is not always efficient. We hope the distance functions defined in Section 2
below can be useful for these purposes.

The paper is organized as follows. In Section 2 we introduce distance
functions for handling invariant subspaces and, in particular, establish a
one-to-one correspondence between subspaces and distance functions. In
Section 3 we show how it is possible to use distance functions to localize zeros
of a subspace of the Hardy space Hp. As an illustration, a theorem on zeros
of the Riemann ^-function (generalizing a result due to B. Nyman, [Ny]) is
proved in Section 4. We finish with some unsolved problems on invariant
subspaces, Section 5.

Acknowledgements. — The author is indebted to the referee for a
careful reading of the manuscript and for an example illuminating a long
standing problem (see Addendum to Section 5 below). He is also grateful
to V.I. Vasyunin for interesting conversations and for a possibility to refer
to his numerical experiments with distance functions.

2. Distance functions.

Let X be a Banach space of analytic functions continuously imbedded
into the space Hol(D). And let (p\, X e D be the point evaluation functional
onX:

^(/) = /(A), /ex.
For a subspace E C X we set

QEW = VX\E\\. A CD,
and call QE a distance function of E. This wording is justified by the
following property of QE-
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2.1. We have

QE=dist(cp^E1-),

where «dist» stands for the distance in the dual Banach space X* and

E ± = { ^ e x ' - : ^E=O}

for the annihilator of E. This is a well-known corollary of the Hahn-Banach
theorem.

2.2. The function QE is logarithmically subharmonic: in fact,

loge^(A)=sup{log|/(A)|: f e E ^ 11/H <!}

and so log6^ is subharmonic as the least upper bound of a family of
subharmonic functions.

2.3. Let H be a Hilbert space of analytic functions in D, and let A i-̂  k\
be the reproducing kernel of H, i.e., the unique H- valued function in D
such that

(2.1) ^(/) = /(A) = (/, k^ f e H, \ e D.

Clearly, we have

QEW=\\PEkx\\=dlst(k^E±),

where PE stands for the orthogonal projection on the subspace E, and E1-
is the orthogonal complement of E. Moreover,

I I^^IF+IIP^^II^H^II2 , A CD,

and so the distance functions QE and 9^j-(A) = dist(k\,E) completely
determine each other. In what follows, when using O^-L instead of QE, we
put

(2.2) dE(\) = OE± (A) = dist(fcA, J^), A G ©.

The following uniqueness theorem is an important property of OE (and so,
ofdE).
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2.4. THEOREM. — Let £'i,£'2 be two (as always, closed) subspaces
ofH, and let 6^ (A) == 6^ (A), A e D. Then £'1 = ^2.

The theorem is an almost immediate corollary of the following lemma.

2.5. LEMMA. — Let F and G be analytic Hilbert space valued
functions on a connected domain fl. C C. If

(2.3) ||F(A)||=||G(A)||, \e^

there exists an isometry V from the closed linear hull span(F(A) : A € ^)
onto span(G(A) : A G ^) such that

VF(\) = G(A), A e 0

Proof. — Fix a point ^ e ̂  and consider the following scalar valued
functions / and g\

/(A)=(F(A),F(/.)), A e Q ;

p(A)=(G(A),G(/ . ) ) , A e ^ .

For all n >_ 0, we have

/<n)(^)=(^n)(/^),F(/.)) and

^(^-(G^^)^^)).
On the other hand, let

1 ( 9 .9\ „ 1 / 9 , 9 \
^^Qx-^ 9=2(^+^)

be the usual differential operators of complex analysis; then

a\\FW\\2=9(F(\),F(\))
=(9F(A),F(A))+(F(A),9F(A))
=(9F(\),F(X)),

and hence, for n > 0,
|29"||F(A)||2 = (9"F(A),F(A)) = (F(»)(A),F(A)).

me is true for G:The same is true for G:
f\n. I I ̂ / ^ \ 1|2^"llG^f^G^A),^)), n^O.
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Using (2.3) we obtain that fW(^) = <^)(^ n > 0, and therefore
/(A) E= ^(A), A e ̂ . So, we get the identity

(F(A),F(/.))=(G(A), (?(/.)), A,/ .e^.
It implies that

(2-4) llE^wll^llE^A)!2

whatever a finite family {ax} of complex numbers is. Identity (2.4) shows
that the operator V,

y(^a,F(A))=^a,G(A),

is well defined, linear and isometric. The lemma follows.

2.6. Proof of Theorem 2.4. — Let

F(X) = PE^ G(A) == PE^ A € D.

Then, F and G are ^-valued conjugate analytic functions (the weak
co-analyticity is immediate from the definition (see (2.1)) and — as is
well-known — implies the strong co-analyticity).

Since ||F(A)|| = \\G{\)\\, A e D, one can apply Lemma 2.5 which
produces an isometry V from the subspace span(F(A): A € D) = E^ onto
span(G(A): A C D) = E^ such that

(2-5) yPE^=PE^ A CD.

Due to remarks from Section 2.3 the same arguments are valid for
the functions F,(A) = PE^, G,(A) = P^A-A, A C D. So, we get another
isometry £7,

U'.E^- —^
such that

(2-6) UP^kx=PE^k^ A CD.

Hence, V C U is a unitary operator on H and

(V © U)kx = VPE.kx C UPE^kx = PE^X C P^ = ̂

for all A C D. This means that V C E/ = J, and therefore E^ = E^. The
proof is finished.
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2.7. Example. — Now, we shall show that for non-Hilbert spaces X,
' X C Hol(D) the above unicity property is, in general, no longer true.
Let X be the disc algebra,

X = CA = Hol(D) H G(closD)

endowed with the usual sup-norm and a -^ 0 be a closed subset of T of
Lebesgue measure zero (say, a is a singleton a = {A}, |A| = 1). Let E = Ey
be a subspace Ey C CA,

^={/eGA:/ i .=o}.

Then Ea are proper subspaces of CA and Ea- 7^ Eyi if a 7^ a ' . Let
us show that we always have QE^W = 1̂  (= ^- Indeed, there exists
a function / e E^ such that ||/HCA ^ 1 and /(^) 7^ ° for all ^ e D
(for instance, see [Ho] for a construction; for a singleton a = {X} one can
simply take f(z) = j (1 — \z)). Hence, /a is well defined in D, belongs to E
and I I / ^UCA < 1 whenever a > 0. It implies that

l=^ imJr (A) |<6^(A)< l

and hence QE (A) = 1 for all A € D.

Remark. — Lemma 2.5 also turns out to be false for (7-type spaces:
the simplest (counter) example is an exponential function F : A i—^ e~xx

taking values in the space G[0,1] for A € ^ = {A € C: Re A > 0}.

On the other hand, the lemma is probably still true for uniformly
convex Banach spaces X (or at least for L^-spaces with 1 < p < oo).

3. Example: Hardy spaces H13 and localization of zeros.

Now, in the classical setting of the Hardy spaces Tf23, we show how one
can use distance functions to localize the zeros of an invariant subspace E,
E C Hp. To this end we compare the canonical Beurling description of
^-invariant subspaces (see (1.2) above) with the distance functions.

3.1. Let E C Hp be an invariant subspace and E = QH? its canonical
representation, 6 being an inner function. Then

e^A^^Kl-IAI2)"1^, A CD.
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Indeed, Q is an isometric multiplier of H13 and

M^c = (1 - lAlT17"' A e D -

3.2. Let E C H2 be an invariant subspace, E = ©.ff2 and <IE its
distance function (see (2.2) for definition). Then

,2 ̂  i-ie(A)|2
d p i A l = ——————7,—> A 6 1U).

1-|A|

In fact,

4(A) = \\PE^

=||(i-e(A)9)(i-Az)-1^
^i-^A^i-iAi2)-1.

3.3. Let F be a subspace of H2 (not necessarily invariant), A G © and

€FW = ̂ ^) = eFW{l ~ IA12)1/2-
Let further /^, [i € D be a zero of I7' (i.e. /(/^) = 0 whenever / € F). Then

6^(A)<|^(A)|,

where ^(^) = (/^ — ^)(1 — A^)"1 stands for a Blaschke factor. For A ^ p,
the equality holds if and only if 6^(1 — \z)~1 € F\ and — supposing F' to
be ^-invariant — if and only if F = b^H2.

Indeed, if / € F we have / = b^g, where \\g\\^ = \\f\\2, and hence

|/(A)| < \b,{\)\ • \g(X)\ < \b,W\ • ||^||2 • (1 - lAl2)-172

for all A G D, and the inequality follows.

The equality means that there exists a function / = b^g € F such
that

/(A) = 9^(A) = \b,{\)\ (1 - lA]2)-172, ||/||2 = 1

and so

^(^(i-lAl2)-172, [?=1.
Hence, g = a(l - \z)-1 with |a| = (1 - |A|2)1/2.

Moreover, an invariant subspace containing a reproducing kernel
g == (1 — \z)~1 coincides with the whole space H2 (obviously, g is an outer
function).
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3.4. COROLLARY. — Let F be a subspace ofH2 and X € D. Then the
disc

(3.1) [z C D : \b^z)\ <6^(A)},

where e^(A) = 1 - d^(A)(l - |A|2), is free of zeros of the subspace F.

This is an immediate consequence of 3.3.

3.5. Remark. — It is clear that we always have e^(A) > 0 and

dpW = dist(A^F) < ||̂ ||2 = (1 - IA12)-172.

The equality holds (and the disc (3.1) is therefore empty) if and only if A is
a zero of the subspace F. So, given a subspace F C H2, F -^ {0}, the set
{A € D: e^(A) = 0} is at most a sequence {\n}n^i satisfying the Blaschke
condition

^(l-|A»|)<oo.
n>l

4. Invariant subspaces related to the Riemann ^-function and
localization of zeros.

First, we state two corollaries of Theorem 0.1 (see Introduction); the
first one is an improvement of B. Nyman's theorem [Ny] (see also [B]).

4.1. COROLLARY. — The Riemann (^-function has no zeros in the
half-plane {Re z > 7 > 0} if and only if there exists a point 5, Re s > 0 such
that d^(s) = 0 (where, as well as in the theorem, d^(s) = dlst{xs,K^) and

(4.1) K^ = span^o^cLr/aQG^ : 0 < a < 1);

the «dist» stands for the distance in the space ^(0,1; d x / x ) ) .

4.2. COROLLARY. — Let F be any subspace ofK^. Then the disc

z - s -2

z - s,
7 + { ^ : -2—s- <l-c2Res'd2F(s)}

v Z — S-jf. )

is free of zeros of the (^-function', here dp(s) = dist^5, F).
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The last corollary is an immediate consequence of the theorem and
remarks from Section 3; Corollary 4.1 will be justified a little bit later. For
other remarks see Section 4.5 below.

4.3. Proof of theorem 0.1. — Let us consider the standard imbedding
of the space L^O, 1'^dx/x) into L2(0,oo•,dx/x) putting f{x) = 0 for x > 1
for a function / € L2(0,l•,dx/x)^ and let JCy be the subspace defined
in (4.1).

The Mellin transform ̂  (i.e., the Fourier transform on the multi-
plicative group R+ = (0, oo)),

^g{z) = —— I g^x^, Rez > 0,
V27TJO x

maps isometrically the space L2(0^1^dx/x) onto the Hardy space
H2(Rez>0) endowed with the usual norm sup (J^ \f(a + it)\2 dt) .

(7>0

For the ^-image of the functions Eoc^ we have

(4.2) ^E^(z) = —— ^^([^-a^dx
V27r.7o V L r c J L.z'J/

= —— {a^ - a) [00 [t] t-^-1 dt
V27T' Ul L J

__(^_^+^.
\/27T ^+7

The last equality is a well-known integral representation of the Riemann (,-
function: for an integer n > 1 one has

/*n+l n pk-\-l n

s / [t] t-8-1 dt==s^k t-8-1 dt = ̂  A;-8 - n(n + I)-8

171 k=i Jk k=i

which tends to ^ k~8 = (^(s) for Re s > 1.
k^i

Let E = E^ = ̂ K^ be the corresponding subspace of the Hardy
space H2(Res > 0); our goal is to distinguish zeros of this subspace.
By definition, these are common zeros of functions (4.2). As to the latter,
they vanish for z with Rez > 0, C,{z + 7) = 0 and for all z solving the
following system of equations:

(z + 7 - 1) log a == 2mk, k e Z\{0}.



DISTANCE FORMULAE AND THE ZETA-FUNCTION 153

Note that the zero z corresponding to k = 0, i.e. z + 7 = 1, is killed by the
pole of ({z + 7) which is easily visible from another classical identity,

c(5) = H ]̂ - x)x-8-1 dx 4- -L-.
s h s - 1

which can be verified in a similar way. Thus, the common zeros of the
family ̂ E^, 0 < a < 1 are {z: Rez > 0, C(z + 7) = 0}.

On the other hand, the reproducing kernel of the space H^^tmz > 0)
is k\ = (27^^)-1(A—^)-1 (for a moment, we change the half-plane {Re s > 0}
to {Im z > 0} to deal with the commonly used Hardy spaces of the upper
half-plane related to the usual Fourier transform, see [Ho], [N], [Ni]). The
Fourier transform F takes k\ to

^x = -/—= e-^X(o,oo)(^) = -r— ^X(o,i)(^)
V^TT \ ZTT

with x = e"*, s = i\. Hence,

d^(s) = distL2(o,i;d:r/;E)(^^-7) = ^/27^dist^2(A;A,.?*^)
=^d^x,(A),

\\kx\\ = (47rImA)-1/2 = (47rRes)-1/2,

^y002 = 4^(A) = 1 - 4^(A)||M~2 = 1 - 2Re5 . d2^).

The theorem now follows from proposition 3.4.

4.4. Verifying Corollary 4.1.
We observe first that if d^{s) = 0 the theorem implies (^(z) ^ 0 for

Re z > 7.

The « only if » part of the Corollary depends on the Beurling invariant
subspace theorem. Defining the multiplicative shifts r^,

(W)(^=/Q), 0 < / 3 < 1

we get r^Eo,^ = (3~a(Eap^ — 0^/3,7) and hence

r^K^ C ̂ , 0 < /3 < 1.



154 NIKOLAI NIKOLSKI

It means the Mellin transform E = ̂ K^ is an invariant subspace of
the semi-group J^T^r-i, 0 < (3 < 1 which coincides with the multiplication
semi-group

A^——e-^), A=log(-),

f eHt2(Rez>0). Hence, due to Beurling's theorem, there exists an inner
function Q such that E = QH2(Rez > 0). Moreover, 9 = BS where B
stands for the Blaschke product for the zero set of E (already identified
with zeros of C(^ + 7), Rez > 0) and 5' for a singular inner function. It is
clear that S is an inner divisor of all the functions from E and, in particular,
of all the functions T^E^ generating E.

Since -1 < [a/x] - a[l/x] ̂  afov 0 < a < 1,0 < x < 1 formula (4.2)
shows the functions ^E^ to be analytic and bounded for Rez > 0. It
follows then (see, for instance, [N], [Ni]) that the function S is analytic at
all points of %M, and hence has to be of the form 6' = e"^, a > 0.

On the other hand, having <-(cr) = ̂  n-^ for a- > 1, we get
n>l

limsupllog c(a+7) =0a—f-oo cr a + 7

and hence

limsup - log \^Ea^(a)\ = 0.
a—>oo <7 '

Since S is an inner divisor of F^E^ we obtain a = 0.

Now, we finish the proof simply mentioning that if B = 1 one has
E = H2(^z> 0) and K^ = L^O, l',dx/x), and consequently d^{s) = 0
for every s.Res > 0.

4.5. Concluding remarks.

4.5.1. Picture of 7 + Ds,

Ds = [ z : ^——^ < 6^)}^ 6^) = ^1-21^5.^(5).

Let s = o- + it. Then [x^ + it, x^ + it} is the diameter of the disc 7 + Ds,
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where x^ = 7 + o-(l - e(s))/(l + e(s)), x^ = 7 + a(l + e(s))/(l - e(s)).

^ t •

4.5.2. Estimation of number of zeros. — One can improve a little bit
the final conclusion of Section 3 (see 3.4) estimating the number of zeros in
a larger disc. Namely, it is easy to see that the same arguments imply that
the disc

{z^B:\b^z)\<eEWl/n}

contains no more than (n — 1) zeros of a subspace E (n = 1,2,...). And
hence, a similar claim is true for the ^-function: the disc

7+^:
z — s
z — s+

6(.)1/-}< e {s

contains fewer than n zeros of the ^-function (n = 1,2,...).

4.5.3. Simplifying approximation. — The functions x~^Ea^ are step
functions taking values in the interval [—1,0;], periodic in 1/x if a = p / q
is rational. To get a rough approximation of d^(s) one can simplify the
integrals to deal with periodic functions only: taking a finite set A of
rationals a, let us consider a finite family of rational translates r^£'c^,
f3 € B and form a subspace

^A,B,7 = span(r^Q,7 : a € A, (3 € B).

Then, defining dA,B^{s) = dist(x8, KA.B^)-, we conclude that the disc

z:
z — s
z- s,

2 N

< l-^Res'd^B,^)}

is free of zeros of the function C,{z + 7), Re z > 0 and of common points of
the sequences

Imk
logo

z=1-7+ k € Z\{0}, a € A.
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The functions X'^T^EQ^, a € A, /3 € B will be periodic in 1/x with a period
not exceeding the least common divisor of denominators of fractions a{3.
There are no excessive zeros if the set log A is rationally independent.
Otherwise, to get an information on zeros of the ^-function one has to put
a test point s into the critical strip 0 < Re s < 1.

In particular, we obtain a periodic approximation taking A = {^} ;
then x~^E\^^ is simply the characteristic function of a union of intervals,
namely,

l i f i , i i
U[2n'2r^^-lj'
n>l

and for the Mellin transform we get

^*^1/2,7^)=/(^+7),

where f(z) = 2-l(l - 21-^)C(^).

One can obtain some other step functions approximations with entire
steps considering products

Q^a^-8)^)
k>l

with ^ akk~1 = 1 as well as corresponding combinations ^ a^E'i/^.
k>l k>l

4.5.4. Numerical experiments. — One can make use of non-invariant
finite dimensional approximations to JCy: F C K^ and dp(s) = dist^^F)
(see Corollary 4.2). For instance, for a one dimensional F = Cin{Eo,^) we
have

e%{s) = 1 - 2Resd^(s) = 2ReJ(y^)l^
11^,711

where, say, for s = 1 + it and a == - we have

(Xs ,^) = -i I^^+l+zt)-^^^^^^ - (2^2yy+i+^

Ip-y-r^^^riiirn
" ''7" ~^hf^ L2J 2LJ-2a;J 2La:J I .r^O^n-^

=\-J-f—l_-_L_)If 1 -__1
87\(2n+l)^ (2n+2)^.z^ 8-Y\ (2n + 1)^ f2n + 2^ /

n>0

! const X7-l.
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Some more sophisticated numerical experiments related to the
distance formulae are presented in [V].

5. Some open problems.

The problems concern the metric approach to invariant subspaces.

5.1. Characterize in terms of QE th^ property of a subspace E C X
to be invariant.

Since

|/(A)|^OB(A) 1 1 / 1 1
for every A € D and / € £', one can suppose that for ^-invariant subspaces
the converse is also true. Unfortunately, this is not the case even for
X = H2: to see this, let us consider an invariant subspace E in its canonical
Beurling form, E = OH2, where Q stands for an inner function. What we
mean by the converse is the following property: the inequality

|/(A)|<|e(A)|(l-|A|2)- l /2 | | / | |2

should imply / G OH2. This is surely true for Blaschke products 6 and for
n j.

e=n9^ Qc=exp(-ac^——),
k=l J

where |^| = 1, a^ > 0. But it fails to be true in general: for an arbitrarily
small e, e > 0, there exist non-constant inner functions 0 with

|e(A)|^(i- |A|2)6

for all A € D, and hence with

^^Ki-iAir^x),
see [DSS]; if the inverse conjectured above were true, this would imply
z^ e QH2 for n large enough, and hence 0=1 (contradiction).

It is curious to note that a description of the mentioned type of a
growth limitation was obtained in [KR] for a class of singular inner functions
not for subspaces OH2 but for the orthogonal complements H2 0 OH2. To
describe ^-invariant subspaces one probably needs some deeper relations
between E and OE'
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5.2. Characterize finite co-dimensional z-invariant subspaces E in
terms of QE-

As this is the case for X = H1^, is it true that the requested
characterization is

lnn§"§>0?
|AHI ̂ xW

5.3. Is it true, or under what conditions is it true, that the convergence
©^ (A) —> Q£;(A), A € D implies a convergence of subspaces En to E (say,
in the sense E = hm^ = [f e X: limdist(/, ̂ ) = 0}) ?

n n

Is it true that for any ^-invariant subspace E there exist finite co-
dimensional ^-invariant subspaces En such that 6^ (A) —^ 9^ (A), A e D?
For a discussion of such an approximative spectral synthesis property
see [Nik].

Addendum. — The referee provided the author with an interesting
example showing that there exist spaces X of holomorphic functions, for
which at least one of the questions raised in Section 5.3 has a negative
answer. Namely, in the Bergman space ^(D) = Hol(D) D L^D) there
exist z-invariant subspaces E which cannot be represented as lower limits
lim En = E of invariant subspaces of finite co-dimension.

The key observation is that every invariant subspace of finite co-
dimension meets the property dim(^ Q zE) = 1 and that this property
is stable with respect to lower limits. Indeed, let lim En = E and
dim{En 0 zEn) = 1, n > 1; to prove that dim(E Q zE) = 1 it is enough to
check that any function /, / e E, having an excessive zero at the point 0
(i.e., a zero of multiplicity exceeding the zero multiplicity of E at 0) is of
the form / = zg, g e E. Taking fn C En such that lim \\fn - f\\ = 0 one

n
can see that fn have excessive zeros at some points \n tending to 0. Hence,
due to the hypothesis (see also [He]), we get {z - \n)~1 fn ^ En. It is clear
that there exists a limit lim^z — \n)~1 fn ~= g ^ E and that zg = f.

On the other hand, it is known (see [He]) that there exist invariant
subspaces E c ̂ (B) with dim(£' Q zE) > 1.
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