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THE SUBJECTIVITY OF A CONSTANT COEFFICIENT
HOMOGENEOUS DIFFERENTIAL OPERATOR

ON THE REAL ANALYTIC FUNCTIONS
AND THE GEOMETRY OF ITS SYMBOL

by Rudiger W. BRAUN

Introduction.

De Giorgi and Cattabriga [10] have conjectured, and Piccinini [20]
has shown that the heat operator 92/9x2 + 92/9y2 — 9/9t is not surjective
on A(M3), the space of all real analytic functions on R3 with values in C.
Hormander [11] has then characterized the surjective constant coefficient
partial differential operators P(D) on A(f2), ^2 C R^ a convex domain. To
evaluate Hormander's criterion, one has to decide whether a certain pair of
inequalities for plurisubharmonic functions on the variety V = P^^O) of
the principal part Pm of P implies a third one. Because of the analogy to
a classical theorem, he calls this condition Phragmen-Lindelof condition.
The same phenomenon appears in a more general setting, namely if A(RN)
is replaced by a Gevrey class P^M^), d > 1; recall that F^R^) = AQR^)
and that F^M^) contains test functions if d > 1. The surjectivity of
constant coefficient partial differential operators on Gevrey classes has been
investigated by Cattabriga [8], [9], Zampieri [22], and Braun, Meise, and
Vogt [7], who gave, for 1 (̂1 )̂, the analogous theorem to Hormander's.
For arbitrary convex domains, this result was proved in [4].

Key words : Partial differential operator - Singularities - Phragmen-Lindelof condition.
Math. classification : 35A30 - 35E10 - 31C10.
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If P is a homogeneous polynomial, there is reason to conjecture
that the surjectivity of P(D) on A(R^) and on P^R^), any d > 1, are
equivalent. It is known by Braun, Meise, and Vogt [7] that, for homogeneous
P, surjectivity on F^IR^) does not depend on d > 1 and is implied by
surjectivity on A^^). So, for homogeneous operators, it is natural to state
necessary conditions in the setting of Gevrey classes.

We present here two geometric conditions which, for homogeneous P,
are necessary for the surjectivity of P{D) on P^R^) and hence on A(RN).
We call them "distance condition" and "carry over to the tangent cone".
We also extend Hormander's dimension condition to the case of Gevrey
classes.

The dimension condition says that for 0 € V real, 0 7^ O, we have
pdim^ V D R^ = N — 1 if P(D) is surjective. Thus the intersection of V
with R^ has maximal dimension.

An example of an operator that satisfies the dimension condition,
but not the distance condition is the one with P ( x , y , z ) = x^y — z3. The
distance condition says roughly that, if P{D) is surjective, then, for all
6 € y, the distance "taken inside V" to the next real point in V is of the
same order as |Im^|. We replace the notion "taken inside V'1 by a more
practical concept, though. It is clear from Hormander's work (see 1.4) that
it is enough to investigate real, locally irreducible singularities 0 of V only.
We show in Theorem 3.8 that the existence of a generic locally irreducible
singular plane curve in V through some 6 € V D R^, 0 ̂  0, is already an
obstruction to the surjectivity of P(D). Note that in contrast to this, the
operator P{D) with P(rc, y , z, w) = x2 + y2 — z2 is surjective, although its
variety has real irreducible singularities off the origin.

In the case of three variables, these two conditions completely describe
the situation. This leads to a characterization of the surjective operators
P{D): P^M3) —>• P^(M3), P a homogeneous polynomial, using the language
of algebraic geometry.

In four variables, there are operators like the one with P(;r, 2/, z, w) =
x2w-^-y2w-^z3 that satisfy both dimension and distance condition, but are
not surjective. The criterion in these cases is that if a Phragmen-Lindelof
condition holds on a cone V, then it holds on all tangent cones to real
points in V, too. This is similar to results of Hormander [11] and Meise,
Taylor, and Vogt [16] about carrying over of Phragmen-Lindelof conditions
from inhomogeneous varieties to their tangent cones at infinity.
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To support our impression that we have found all the relevant
obstacles to the surjectivity of a constant coefficient partial differential
operator on Af^M^) or on F^M^), we end the paper with a discussion of
all operators of the form

Qn gn Qn
P(D) = A—.——, + B.—,——— + G——,A,B ,Ge C,Z,m,n e No,Qx'Qw^1 Qy^Qw^^ Qz71 5 5 5 u?

Z,m <: n.
It turns out that there are only very few choices of the parameters for
which P(D) is surjective. In all but one of these cases, the polynomial is
locally hyperbolic at every real characteristic, thus Hormanders's sufficient
condition [II], 6.5, applies. The remaining case is solved by an ad hoc
argument.

Besides in surjectivity problems, Phragmen-Lindelof conditions also
arise in the investigations of Meise, Taylor, and Vogt [14], [15], concerning
the existence of continuous linear right inverses for constant coefficient
partial differential operators. Since, for homogeneous varieties, all these
conditions are closely related, there are obvious analoga of our theorems
in these settings. The dimension condition was already known for them.
The existence of continuous linear right inverses for systems has been
studied by Palamodov [19]. There, Phragmen-Lindelof conditions arise also
for varieties of codimension higher than 1. Although our methods can be
applied to them, too, we do not investigate these problems here.

The contents of this paper form a part of the author's Habilitation-
sschrift.

1. Phragmen-Lindelof conditions.

After fixing some notations, we recall the characterization of the
surjective partial differential operators with constant coefficients on the
space of all real analytic functions on a convex domain in R^, which was
given by Hormander [11]. There is a version of this theorem for the case of
ultradifferentiable functions, due to Braun, Meise, and Vogt [6], [7], which
will also be quoted here.

1.1. Notation. — The natural numbers are denoted by N={1,2, . . .} ,
K. is either M or C. The e-neighborhood of x € K^ is denoted by
Ue(x) := {y e 'KN | \y—x\ < e}, where |-| is the euclidean norm. Sometimes,
the elements of K1^ are written as z = (z^ ZN) with z ' e K^"1.
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By A(f^), n a convex domain in M^, we denote the space of all
real analytic, complex valued functions on Q.. For a polynomial P €
C[Zi,... ,ZTV], P(z) = ^do;^0', the partial differential operator P(D) is

defined by P(D)(f) = ̂ i-^a^.
en

Concerning notions from complex analytic geometry, we refer to the
books of Whitney [21] and Narasimhan [17]. For a point 0 in a variety V
we denote by y0e the set of all germs in 0 of holomorphic functions on V.
In the case V = C^, we omit the subscript V. We write the elements of
y0e as fe and the set germ of V in 0 as VQ. In Whitney [21], 3.8S, it is
shown that a set germ Ve is irreducible if and only if any sufficiently small
analytic set W with We = Ve is irreducible. So we may think of a germ
Ve as being given by one fixed representative V. The dimension of a real
or complex analytic set germ Ve is denoted by ^dim^ V, with K = R or
K = C, respectively.

A function (p: V —> [—oo,oo[ona (complex) analytic set V is plurisub-
harmonic if it is upper semicontinuous everywhere and plurisubharmonic in
all regular points, i.e., the compositions with all charts in all regular points
are plurisubharmonic (see Hormander [13]). The set of all plurisubharmonic
functions on V is denoted by PSH(V).

1.2. THEOREM (Hormander [II], 1.1-1.3). — Let PeC[Zi,... ,Z^v]
be a polynomial of degree m, and denote by V == P^^O) the variety of its
principal part Pm. The differential operator P(D):A(RN) -^ A^) is
surjective if and only if the following Phragmen-Lindelof condition holds

(HPL) There is A > 0 such that every ̂  e PSI^C^) with (a) and (/3) also
satisfies (7) :

(a) For all 0 e C^ : (^((9) < |(9|,

(13) for alieeVn^ : tp{0) ̂  0,

(7) for all 0 C V : ^p(0) < A| Im(9|.

Remark. — For most of this paper, we need the case n = R^ only.
Therefore, we have stated Hormander's result only for this case. We wish
to point out, however, that he has given a characterization for the case of
arbitrary convex sets.

1.3. DEFINITION (Andersson [1]). — Let P C R[ZI, ... ,ZN\ be
homogeneous, let ^o be a real characteristic, and denote by q the lowest



SUBJECTIVITY OF A DIFFERENTIAL OPERATOR 227

homogeneous part of^\—> P(^o + $)• Then P is called locally hyperbolic at
$o if there are a vector 0 C R^ with q{0) ̂  0 and a number e > 0, such that,
for all ^ in a suitable real neighborhood of^o, all roots ofr \—> P(^+r0) = 0
with IT | < e are real.

1.4. THEOREM (Hormander [II], 6.5). — IfPrn is locally hyperbolic
at every real characteristic, then P(D): A(RN) —^ Af^R^) is surjective. The
converse holds if and only if N = 3.

1.5. Examples. — Using 1.4, it is easy to see that the following
operators P(D):A(RN) -^ AQR^) are surjective :

(1) every elliptic operator, since Pm does not have any real characteristics,

(2) every operator P(D) whose tangential cone at infinity V := P^^O) is
regular outside the origin, provided that, for every real characteristic
$, the following equality holds

Rdim^ynR^ = 7 v - l ,

(3)P^=^-^-£:A(R4^A^•
We recall the definition of a Roumieu class of ultradifferentiable functions
given by Braun, Meise, and Taylor [5]. The most prominent examples are
the Gevrey classes.

1.6. DEFINITION. — A continuous function uj: C^ —^ [0, oo[ depend-
ing only on z\ is called a weight function if it satisfies

-- ^(t)
z\ is called a weight function if it satisfies

^(2t) = 0(^)), {(3) f°° ̂ ^dt < oo,(a)

(7) logt = o(ci;(t)), (S) y: 11-^ ^(e*) is convex on M.
We define the Legendre transform - also called Young conjugate - of

(p by
(/?*Q/) =supxy -y{x).

x>o

1.7. DEFINITION. — For a given convex domain f^ C M^ fix a
convex compact exhaustion K\ C K\ C • • • C ^l. Then define for n G N

^^1 sup l/^^lexpf—^-^dalm)) < oo
xeKrz \ m f^},n = [f € 0°°^) sup |/(<-)(a;)|exp(-^*(|a|m)) < oo

^€N^

for some m € N ^.
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Endow £{a/},n with the inductive limit topology, and set

^}W =projf{^.
•<—7l

The elements of <?{o/}(^) are called ultradifferentiable functions of
type cj. The classes £^ are called Roumieu classes. In Braun, Meise, and
Taylor [5] it is shown that they contain sufficiently many test functions.
That paper also contains a discussion of several theories of ultradifferen-
tiable functions.

1.8. Example. — For uj(z) = \z\1^, d > 1, the space 8^ is the
classical Gevrey class F^ of order d.

^ 1.9. THEOREM ([4], 5.1.7). — IfP(D):£^W -. f^(^) is sur-
jective for some convex domain 0, then it is surjective for ^ = M^.

1.10. THEOREM (Braun, Meise, Vogt [6], 3.9, [7], 3.3). — Let P be
a homogeneous polynomial in N variables with variety V = P-^O). The
differential operator P(D):£^(RN) -^ <?^}(R^) is surjective if and only
if the following Phragmen-Lindelof condition holds :

(plh) There is k > 0 such that, for every L, 6 > 0, there is CQ > 0
such that, for every e < eo and every 0 € V with \0\ = 1, every
^ e PSH(V n Ue{0)) with (a) and (/?) also satisfes (7) :

(a) For all z € V D U^6) : <p(z) < e,

((3)forallz^VnUe(0): y(z)<L\lmz,
(7) ^((9)<A;|Im(9|+^e.

1.11. THEOREM (Braun, Meise, and Vogt [7], 3.5 and 3.6). — Let
P be a homogeneous polynomial.

(1) JfP^)^]^) -^ A(RN) is surjective, then, for every weight
function u;, the operator P^D):^^) -^ ^(R^) is surjective, too.

(2) JfP^):^^) ̂  ̂ }(^) is surjective for some weight ^,
then it is surjective for all weights.
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2. The dimension condition.

The dimension condition is due to Hormander [11]. We give it here
for the case of ultradifferentiable functions. The construction in the proof
is similar, but estimates have to be more precise. This is accomplished by
an application of the Tarski-Seidenberg theorem. For the theory of semi-
algebraic sets, see the book of Bochnak, Coste, and Roy [2] or the appendix
of Hormander [12].

2.1. The dimension condition. — Let V C C1^ be a homogeneous
algebraic set. We say that V satisfies the dimension condition if

pdime W H R^ = cdim^ W

for all irreducible components We of all germs Ve with 0 € V D R^, 0 -^ 0.

2.2. THEOREM. — If for a homogeneous polynomial P, some weight
uj, and some convex domain Q, the operator P(D):£^(^) —^ £^(^) is
surjective, then the variety V = P"1^) satisfies the dimension condition.

The first step in the proof of this theorem is the following lemma.

2.3. LEMMA. — Let P e C[Zi,..., ZN\ be a homogeneous polyno-
mial, let V = P'^O), let 0 (E V D M^ \ {0}, and let We be an irreducible
component of Ve. Assume furthermore that 0 is a regular point of W D R^
with Rdim<9 W D R^ < N — 1. Then there are a germ he € y0e with
he\V H R^ = 0 as well as p.r^T^r^ > 0 and 0 < b < B such that
\h(z)\ ^ B^mz^ for all z € V H L^((9) and such that for all r with
0 < r < TI there is z C V D Ur^{0) with \ 1m z\ = r and \h(z)\ > b\ Im z^.

Proof. — We may assume that the germ We is represented by
a compact semi-algebraic set. We may also assume the existence of a
polycylinder U and a semi-algebraic holomorphic function G on U such
that the zero set of G consists of those irreducible components of Ve that
are distinct from We. We let X = W H R^ and k = pdim^ X. X is regular
in 0. Therefore, by a suitable complex linear change of coordinates that
maps R^ onto itself, we may assume

(1) Xe = [{(^ A+i(0,.. . , /N(O) ^ € R^ |̂  - (0i , . . . . 0k)\ small}]^,

where /j, k < j < TV, are holomorphic functions taking real values in
real points. We claim that f^-i is semi-algebraic. To see this, note that
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by Whitney [21], 3.8T, there is a representative Z, which may be chosen
semi-algebraic, of the germ Ve such that the irreducible components of the
algebraic set Z correspond to the irreducible components of the set germ
Ve. By Whitney [21], 3.2B, the closures of the connected components of the
set of regular points of Z are the irreducible components of Z. By Bochnak,
Coste, and Roy [2], 2.4.5, connected components of semi-algebraic sets are
again semi-algebraic. Thus the graph of fN-ii which is the intersection of
one of these components with some linear subspace, is semi-algebraic.

By Whitney [21], 3.3D, the change of coordinates that led to (1) can
also be arranged in such a way that

We = ^ )(^l, . . . ,^Jv-l,^(^l, . . . ,^^-l)) V -Q'\ small*-

for a holomorphic multivalued function g ^ . We let

h{z) = G(z) (^-1(^1,..., Zk) - Z N - I ) , z C C^, \z - 0\ < r3,

where we choose the constant r^ so small that all germs that have turned
up so far have a representative that is defined for z G V with \z — 6\ < 27*3.
Then h vanishes identically on V H M^ U U^{0\ but not on W H ^((9).
It is easy to see that the set M = {(r, y , z) C R2 x C^ | z G W, \z - 0\ <
rs, | Im^|2 = r~2,y = \h{z)\2} is semi-algebraic. By Hormander [12], A.2.4,
this implies that the function

g{r) = snp{\h{z)\2 \zeW,\lmz = r~1}

is semi-algebraic. By [12], A.2.5, we have for suitable a and A

g(r) = Ar^l + o(l)), r -^ oo.

Since h does not vanish identically on TV, the constant A is positive. To
show that a is negative, note that W is compact and choose a sequence
(zn)n in W with \Zn - 0\ <, 7-3, | Im Zn = 1/n, and g(n) = |/i(z^)|2. A
subsequence of {zn)n converges to some z € W D M^. Then h(z) = 0
implies a < 0. This yields the claim with p = —a. D

Proof of Theorem 2.2. — We may assume \0\ = 1 and that 0 is a
regular point of the real analytic set W D R^. Let g € v^e be a germ that
vanishes identically on all irreducible components of Ve except We. Let /i,
&, 5, p, ri, r2, and r3 be as in Lemma 2.3. In view of 1.9, it suffices to
disprove (hpl) of 1.10. For given k > 0 choose A < 1/4 with

—f^)4
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Let L = exp(l/A) and 6 = 1/4. Let a sufficiently small e > 0 be given.
Choose $ € V H U^/^O) with
(2) | Im$| = e\/k and |/i($)| > b\ 1m ̂ p.
Define, for sufficiently small ^ > 0,

y^) = 6 (l + ^ log ̂ ^ ) + /Hog |̂ )|, ^ G V n [/^).

Then Im^| ^ |Im^| + e < 2e for z € Vn^(0, thus |/i(z)| ^S|Imz|P ^
jE^e)1' and y?(z) < e. Furthermore, for all z,

, , / A , 5|Imz|P\ / ,, |Imz|\
^^^l+^log-^^^l+Alog^.

In particular, (p(z) <: 0 provided | Im z <^ 2e exp(—l/A). On the other hand,
L\lmz\ > 2eLexp(-l/A) = 2e > (^(^) for all z with 11m z\ ^ 2eexp(-l/A).
This shows that the inequalities (a) and (/?) of (plh) are satisfied. However,
the following two estimates show that (7) of (plh) does not hold :

( A! ^|Im^ / A , fbfeXY^v(o£e(l+,;•OEi(^)=e(l+,;•og(B(^)))
=<(1^^(^))>1.

k\ Im^| + 6e = eX + 6e < e/2.
D

2.4. Examples.

(1) Let P G C[Zi,. . . , ZN\ be a homogeneous elliptic polynomial. If,
for M > N y we consider P as a polynomial in M variables, then its variety
V = {z € CM | P(^) = 0} does not satisfy the dimension condition. Thus,
for every convex domain ^2 C M^, the operator P(D):£f^\(fl) —> <?j^-i(Q)
is not surjective. For the case f2 = R^ this has been shown by Braun,
Meise, and Vogt [6], 3.3, using linear-topological invariants directly.

This class of examples contains the first non-surjective operator on
Gevrey-classes, found by Cattabriga [9], 2.1, namely the Laplace operator
in two variables considered as an operator in three variables. Note also
that by Hormander [II], 6.5 (see 1.5), every elliptic homogeneous operator
is surjective.

(2) The operator

p^ = Qx^Qw2 ~ (^w^ ± ~Q^
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is not surjective.

2.5. COROLLARY. — Assume that P € C[Zi,. . . , ZN\ is a homoge-
neous polynomial for which, for some weight uj and some convex domain
^ C M^, the operator P(D):£^}(^) -^ f{o;}(^) is surjective. Then there
is a decomposition P = QR, where R C M[Zi, . . . , ZN\ and Q is an elliptic
polynomial or a complex constant.

Proof. — Let S be an irreducible polynomial factor of P. Then S
is again homogeneous. Set W = S'"1^), and assume X := W D R^ ^ 0.
We have to show that W coincides with its complex conjugate W. Choose
6 C X, 6 ^ 0. From Theorem 2.2 we know pdim^X = N - 1. We may
assume that 6 is a regular point of X. Thus there is a parametrization
(p: {x € R^"1 | |a;| < 1} —> X of some real neighborhood of 0. We extend
it to a complex neighborhood and call the extension y?, too. For z G C^"1

sufficiently small, we have (p(~z) = (p(z). Note that W = S (0) is algebraic,
so W H W is an algebraic subvariety of the irreducible variety W having
the same dimension. Thus W D W = W.

3. The distance condition.

If P is a homogeneous polynomial such that P(D):£^(M.N) —>•
^^(M^) is surjective, we show that the distance of any point 0 € V to
V H R^ is bounded above by C\ lm0\ for some C. The precise formulation
is somewhat involved because we want to separate branches. The essence
of the proof is the application of Theorem 1.10 to constant functions. That
these can be chosen in a uniform way is shown using the Tarski-Seidenberg
theorem.

3.1. LEMMA. — Let P e C[Zi,. . . , ZN\ be a homogeneous polyno-
mial whose variety V = P'^O) has the following property : There is a
sequence (6n}n m V \ M^, satisfying \0n\ •= 1 for all n, such that

^inf^JIm.l^
n€N |Im0j

where Vn denotes an irreducible component ofVr\Un\ im<9j(^n) containing
On.

Then there is no convex domain Q C M^ and no weight uj for which
P(D):A(^) -^ A(^) or P(D):£^}(^) -^ £{^}W are surjective.
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Proof. — We have to show that (plh) is not satisfied. For fixed k^
we choose L > 2 k / r ] and 6 = 1/2. Let eo be given. Note that n\ Im^yj < 1
for all n, since otherwise the origin were a real point in Vn. Thus there is
n > rjL with e := r]L\l~m6n\ < €Q. We let (p{z) = e for all z G Vn- There
may be other irreducible components of V Fl ^n|im0n|(^n) apart from Vn.
We set ip = 0 there. Then it is clear that (a) holds, and (/3) follows from
the definition of 77 by

(p(z) <r]L\lm0n\ < L\lmz\.
On the other hand, the following estimate shows that (7) does not hold :

^{6n) = T]L\ lm0n\ > k\ lm0n\ + ̂ | lm0n\ = k\ lm0n\ + 6e.

D

3.2. The distance condition. — We say that a homogeneous variety
V in CN satisfies the distance condition if, for each positively homogeneous
semi-algebraic set H C V, there is a constant C with

dist(^, (R^ n H) U 9H) < C\ Im z for all z € H,
where 9H denotes the boundary of H relative to V.

3.3. LEMMA. —
a , & ^ 0 .

a/|a| - b/\b\ < 2|a - b\/\a\ for a,b e CN with

Proof.

\a — b\ = \a\ >\a\
b
N \b\

= a
b

w\ \a\ - \b\

D

3.4. PROPOSITION. — If, for a convex domain Q C R^ and a
homogeneous polynomial P € C[Zi,. . . , Zpf], the operator P(D): A(f^) —>
A(f^) or, for some weight (j, the operator P{D):8^{fl) —^ £^{fl) is
surjective, then the variety V of P satisfies the distance condition.

Proof. — We argue by contradiction and assume the existence of a
positively homogeneous semi-algebraic set H C V and a sequence (zn)n m
H with
(3) 4n| lmzn\ < dist(^, (R^ nH)U 9H).
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The set (R^ D H) U 9H remains unchanged if H is replaced by its closure.
Thus we can assume that H is closed. We abbreviate dist(^, (R^ D H) U
9H) =: d(0). Since H and the inequality (3) are positively homogeneous
in Zn, we may assume \Zn\ = 1 for all n. By Bochnak, Coste, and Roy [2],
2.2.8, the function d is semi-algebraic and continuous. Thus the set

M:=[^y,0)eR2xH \0\ = 1, d(0) = 1/r, y = |Im^|2}

is semi-algebraic. This implies by Hormander [12], A.2.4, that, for large R^
the function

(4) /:].R,oo[-^M, r^inf{ | Im(9| 2 0 e H, |(9| = 1, d(0) = 1/r I

is semi-algebraic. By [12], A.2.5, this implies the existence of a, A e M with

f{r)=Ara{l-^o{l)), r^oo.

Since H is closed, the infimum in (4) is really a minimum. This implies
A ^ 0. Obviously, f(r) < r~2, thus a < 0. We let Tn = ^/d{zn) and
choose 0n C H with \0n\ = 1, ^(6>n) = l/7n, and /(rn) = |Im(9n|2. Then
|Im^| < |Im^n|, and (3) implies

(5) 4n|Im(9n| < d(0n).

To apply 3.1, we define Vn, to be an irreducible component of V D
Un\im0rt\^n) containing On- Because of (5), Vn is disjoint to OH. It is an
irreducible analytic set, thus connected, thus 0n € Vn implies Vn C H.
If z € Vn, then (5) implies 1/2 < |2;| < 3/2. Since H is positively
homogeneous, z/\z\ € H and thus because of (4) and (5)

'•^^(^N/GSM) fo'aa^eva•
Lemma 3.3 implies \z/\z\ — 0n\ < 2|^ — 0n\ < 2n| Im^l and thus

d(z/\z\) = dist(z/\z , (R^ n H) U 9H)
> dist((9n, (M^ n H) U 9H) - \z/\z\ - 0n\
^ dist(^, (M^ n H) U aFf) - 2n| Im 0n\

> ldlst(0n,(RNnH)u9H),

where the last inequality follows from (5). Hence, for sufficiently large n
and z e Vn,'Imz'2 ̂ (̂ M) ̂ <Nr ̂ w"

^ 1 / 1 Mlm^|2

- 24-o•'Vd(6'")7 24-a '
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This verifies the hypotheses of Lemma 3.1, which yields the claim. D

Remark. — The semi-algebraic set H in Theorem 3.4 is meant to
separate branches of V. Often, H will be the intersection of V with a half
space. Note that finite intersections of half spaces are always semi-algebraic.

3.5. Notation. — We recall z = { Z ' . Z N ) € CN~1 x C. Let TT be the
projection Tr(^) = z ' . Following Whitney [21], 2.10D, for a variety W and
6 € W for which 9 is an isolated point of W H /JT~l(0f), we define the
branching locus Z ' of the covering TT: W —^ C^"1 as the set of all w' G C^"1

for which the cardinality of {z € V \ 7r{z) = w'} is not maximal. For a C1-
path 7, we denote its derivative by 7 to avoid confusion.

For 0 € W, W a variety, the tangent cone TeW is defined as in
Whitney [21], 7.1G :

TeW ={v^CN \\/e>03qeW,aeC: \q - 6\ < e, \a{q - 0) - v < e}.

Note that tangent cones have their vertices in the origin.

3.6. THEOREM. — Let P € C[Zi,... , ZN\ be a homogeneous poly-
nomial, let V = P'^O), set TT: z = { z ' , Z N ) ̂  z ' , and let 0 e V H R^ with
Tr(^) ^ 0 be given. If there are a component We ofVe with representative
W and a C^path 7: [0,1[ -^ W with

(1) 7(0) = 0, 7(0) e M^

(2) for all t > 0: -f(t) i M^ but TT o 7(1) e R^-1,

(3) 0 is an isolated point ofW^TT'1^) and 7r(7(0)) is transversal to
the branching locus of the covering TT: W —> C^"1,

then there is no convex domain fl, C M^ and no weight uj for which
P(D):A(^) ̂  A(^) or P(D):£{^) -^ £{a;}W are surjectiye.

Proof. — We may assume that V satisfies the dimension condition,
since otherwise we apply Theorem 2.2. The dimension condition and
hypothesis (2) cannot both hold in a regular point, thus TT: W —^ CN~1

is branched in 6 ' . We let x := 7(0). Note that hypothesis (3) implies
x ' = TT{x) ^ 0. We have 7(1) = 0 4- tx + a(t) with TT o a(t) C M^-1 and
| Im7(t)| <, \a(t}\ = o(t). Hypothesis (3) implies the existence of ^i, S^ > 0
such that the translated truncated cone

C'^+L'eC^-1 o<w' |^ i , ^--^- <^l
I P I F I J
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is disjoint to the branching locus Z ' of TT. There is 63 > 0 such that
(6) dist(7r o 7^), QC1) > 6^t for small t.
Let C be the connected component of TVnTr""1^') that contains the path
7. C is semi-algebraic, since 7^~l(Cf) is obviously semi-algebraic and since
by Bochnak, Coste, and Roy [2], 2.4.5, connected components of semi-
algebraic sets are again semi-algebraic. As the covering TT is unbranched
over the contractible set C", its restriction TT: C —> C ' is biholomorphic.

We claim C H R^ = 0. To see this, note first that the assumption
that V satisfies the dimension condition implies that the hypervariety W
can be written as the zero set of a function with real coefficients. Hence,
the complex conjugate TV of TV is equal to TV, and C C W. Because of
7r((7) = C", the set C is a connected component of Tr"1^'). Since TT\C is
biholomorphic, TT o 7 = TT o 7, but 7 7^ 7^, the sets C and C are disjoint. In
particular, Cn^ =CnC =9.

Since TT is branched and P is homogeneous, C6' C Z ' . In particular,
rr and 9 are linearly independent. Hence there is a complex linear form
A: C^ —^ C with real coefficients satisfying A(0) = 1 and A(.r) == 0. Set

H := [z e CN I z (E A(^)G}.
This set is semi-algebraic and positively homogeneous. It suffices to disprove
the distance condition for H. We have just shown H D R^ = {0}, hence
dist (7(^,^0^) > |(9|/2. We have to estimate dist{^(t),9H) next. We
assume for contradiction that, for sufficiently small ^, there is z 6 9H with
k ~ 7(^)1 < e^ where e is chosen so small that

\A{z)-l\ = \A(z-^t))+A^{t)-0)\ < \A\\z- 7(^)| +|A(a(^))| < ——^.

Note that, if t is small enough, then \z\ < 2|^|, |A(^)| > 1/2, and

-/ ̂  - A^)) | ̂  l^l^l-1^) - ̂  ̂ l^ = ̂
IfzC 9H, then ^'/^(/z) € 9C'. Thus (6) leads to the following contradiction
to \z-^(t)\ < et

j -^.(^^\ zl -^,/J j ( ^ 1 M ̂ 6^\z - 7^)1 > I.'-- 7(^)1 > Ad)- '0^-'^1-^!^^

D

3.7. Example. — Let ; e N, I > 2, let a,^ = ±1, but (a,6,Q ^
(—1,—1,2) (which was investigated in 1.5(3)). Then the operator

^21 yi ^21
p^) =9M+a8y-+ ̂ :^^R4) - ̂ R4)
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is not surjective.

Proof. — Set 0 = (0,0,0,1) in (a*, y , z, w)-space. The hypotheses
imply that at least one of the numbers —a and —b admits a non-real Zth
root A. Without restriction we assume X1 = —a, A ^ R, and we set, for
sufficiently small t > 0,

7(1) = (At2,1,0,1).
We verify hypotheses (1) to (3) of Theorem 3.6 for the covering

7r:(x,y,z,w) ̂  (y,z,w).
The first two of them are clearly satisfied. To see (3), note that the
branching locus is equal to Z ' = {(y.z.w) ay21 + bz21 = 0}. This is
transversal to 7r(7(0)) = (1,0,0). D

Let P be again a homogeneous polynomial. If its variety has only
regular points outside the origin, then the dimension condition is neccessary
and sufficient by Hormander [II], 6.5, (1.4 in this paper). On the other
hand, examples like 1.5(3) show that the mere presence of an irreducible
singularity does not exclude surjectivity. Thus the singularities have to be
investigated. Theorem 3.8 is a result in this direction. Notations are like
in 3.5.

3.8. THEOREM. — Let P € C[Zi,.... ZN\ be a homogeneous poly-
nomial, and let V = P"1^) be its variety. If, in some point 6 € V H R^,
0 ^ 0, there is an irreducible component We ofVe with the following prop-
erties (1), (2), and (3), then there is no convex domain f2 C M^ and no
weight uj for which P(D):A(^) -^ A(^) or P(D):£^}(^) -^ £{^}W are
surjective :

(1) ff + 0,

(2) the Nth standard basis vector e^ is not in TeW,

(3) there is a two dimensional vector space X C R^ with e^ e X
and 0 ^ X such that the curve [W D (0 + (X C iX))}e has an irreducible
component KQ with

(a) K is singular in 0,

(b) pdim^ X H TeK = 1,

(c) ^ ( T e K ) ^ T e ' Z ' = {0}.

Proof. — We may assume that V satisfies the dimension condition;
otherwise, the claim follows from 2.2. X is spanned by CAT and some other
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vector x. The expansion of KQ into its Puiseux series has the form

(7) Ke=[{6^t^x^f(t)eN\\t\<6^.

Since e^ is not tangential to W', let alone to K, the vanishing order of /
in the origin is at least q. Furthermore, q is strictly larger than 1, since
otherwise K would be regular in 0. It is easily seen from (7) that

f(9)f0)
TeK = CT, T = x + '——^e^.

9'
Hypothesis (3)(b) implies /^(O) G M. If / has non-real Taylor coefficients,
then define a = 1. If all Taylor coefficients of / are real, then let a be a
primitive 2^th root of unity. Then a is not real because q is greater than
1. Some of the Taylor coefficients of t »—>• f{crt) are not real, then, since
otherwise / would be a Taylor series in tq, and K would be regular. So in
both cases we have for sufficiently small ^2 > 0 and sufficiently large C\ :

for 0 < t < ̂ 2 : Im/(o-t) + 0 and | lmf{at)\ < dt94-1.

Define
7(t) =e-{- a^x + f(a^t)eN, 0 < t < ^>.

This is a C^-path in K, which is easily seen to satisfy hypotheses (1) and
(2) of Theorem 3.6. Hypothesis (2) implies that 0 is an isolated point of
W H Tr"1^'), and (3)(c) that 7r(7(0)) = T ' is transversal to the branching
locus Z ' . D

3.9. Examples. — We wish to study the operator
an an nn

(8) W = ̂ ^ +<^^ +^M(K4) - WK4),

with a, & = =L1, 1 < ( < m < n.

(1) If m is not a multiple of ^ then P(D) is not surjective.

Proof.— Choose 0 := (0,0,0,1) in (a;, z/, ^, w)-space. The tan-
gent cone there is the hyperplane {x = 0}, thus we may use the map
TT: (re, y , z^ w) ^-> (^/, z, w) as covering in Theorem 3.8. Let X = {z = w = 0},
let A,/^ be relatively prime satisfying X/ji = l/m. Then A 7^ 1, since m is
not a multiple of L Choose c, rf € C \ {0} with c1 + ad^ = 0. Then

^ = v n (<9 + (x e z'x)) = {(c^, dtx, 0,1) \te C}.
KQ is irreducible and singular in ^, and TeK = {(0,z/ ,0,0) | y 6 C}. Near
0, the covering TT is branched only where x = 0, thus Z ' = {(^ / ,^ ,w) |
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ay7nwn-rn+bzn = 0}. I f m < n , then TQ.Z' = {(0 ,^w) | z,w e C}, and if
m = n, then T^Z' = {{y, z, w) \ ay71 + bz" = 0, w C C}. In both cases, the
hypotheses of 3.8 are satisfied. D

(2) If n > I -\- 2 and n is not a multiple of n — I , then P(D) is not
surjective.

Proof. — Choose 0 := (1,0,0,0). Since TeV = {w = 0}, the map
TT: (a;, y^ z^ w) »-> (a;, ^/, 2;) can serve as covering. To calculate the branching
locus Z ' , let (x,y,z,w) with P{x,y,z,w) = (9P/9w)(x,y,z,w) = 0 be
given. Then (n - ̂ w71-1-1 + a(n - m^w71-171-1 = 0. We solve for w
and insert into P(x^ y^ z^ w) = 0 to get

/ n—Z n—m \

y^x-^a^t^}^^^}^}^^^^
^\ n - l ) \ n - l ) )

If m < n, then TQ.Z' = [z = 0}, otherwise TQ.Z' = {cy" + ^n = 0}
for some c 7^ 0. In both cases, if we define X := {x = y = 0}, then
7r(X) n T^Z' = {0}. This shows that hypothesis (3)(c) of Theorem 3.8 is
satisfied for

K = V n {6 + (X © iX)) = {(1,0, z, w) | w^ + ̂ n = 0}.

Since n is not a multiple of n — I , this curve has a singular irreducible
component satisfying the hypotheses of 3.8. D

4. Carry over to the tangent cone.

We show that if P(D):£^{RN) -^ ^^(R^), P a homogeneous
polynomial, is surjective, then, for all 6 C V = P'^O) H M^, 0 ^ 0 ,
also the tangent cone in 6 satisfies the Phragmen-Lindelof condition (plh).
This is a useful necessary condition, because the tangent cones are, after a
suitable change of coordinates, of the form C x V, where V is a cone in
CN~1. Thus the new problem has fewer variables (see 5.2).

The proof uses techniques from Hormander [11] and Meise, Taylor,
and Vogt [16], who investigated carrying over to and from the tangent cone
at infinity, i.e., the variety of the principal part of the operator.

4.1. THEOREM. — Let P e C[Zi,... , ZN\ be a homogeneous poly-
nomial with variety V == P"1^). If V satisfies the Phragmen-Lindelof
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condition (plh), then so does the tangent cone T^V for every 5 e V D M^,
S^O.

Proof. — We may assume |5| = 1. We choose coordinates with the
following property : except for the elements of an analytic subset, all points
of V admit a neighborhood and holomorphic functions ai, . . . ,a^ and
^i5. • • ? An/ on this neighborhood such that

V = {(^ a,(^)) + 5 | z ' e U^ (0),j = 1,. . . , m},

T^V = {(^/^')) | ̂ ' € 1^(0), j = l,...,m'}.

We may choose the coordinates in such a way that (0, . . . ,0,1) ^ T^V.
Then there is C > 0 with

^(z^^C^^z^^W.

Let D be the discriminant of the (3j, i.e., D(z') = b n(A(^) - A-OO),
W

where b ̂  0 is chosen so small that 1^(^)1 <. 1 for all z ' with \z'\ < 1.
Let d := degjD. By a homogeneity argument there is, for sufficiently small
X > 0, a constant c(A) > 0 with

(9) |A(^') - ftj(z')\ > c(\)\z'\ provided i ̂  j and \D{z')\ > A]^.

On the other hand, 5 + T^V approaches V faster than linearly, thus there
is T] > 0 such that, for \z'\ < (^i,
(10)

max min l^^')-^^')!^!^!14-77 and max min |^-(^)-a,(^)| < |^|1^.

The entities k, L, 6, etc. appearing in (plh) will carry a prime if they refer
to V and will be plain if referring to T^V. We set k := 2A/ and let L and
6 be given. Then L' := L / 2 and 6 ' := 6/3. There exists CQ as in (plh). Let
eo := 1/2. Fix e < eo and 0 € T^V with |(9| = 1. Let ^ E PSH^V H^W)
with (a) and (/^) be given. It suffices to prove (7) only for 0 with D^) 7^ 0.
Choose A < 1 so small that

-±<__L_
log A - 3 log |P(^/2) | •

Choose r > 0 so small that

r < 6^ 8r77 < c(A), and (2L + 1)̂  < e6/3.

Set e' := re/2. By (10), there is z = 2 + (r^.a^r^)) in V satisfying
|^(^^) - r0N\ < r^, and for w with 2 + w e V H ?7e/(^) there is j with
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\f3j(w') - WN\ < IM/Î  ^ 2rl+r^. Then
W f3,(w'Y
. r ' r

-6» ^ -
r

; + (M/, l3j(w')) - z\ + |2 - 5 - r<9|)

^ ^ (|S + w - z\ + |/3,(0 - w^v| + \ai(r0') - r0N\

< ̂ (e'+Sr^) ^e.

Thus we can define a function value ^>(5 + w) as follows

^(S+w^max^maxL^^,^^1^ \\/3j(w') - WN\ < 2^}

€r ^J^^)!er
'logA

log
W

We show that ^ is plurisubharmonic. Consider first the case [^(w')! <
Ajw' l^ . Then we have for j with \l3j{w') - WN < 2rl+77

(^w
\ r r

er
logA

log D(w')
(2rY

<: re —
er , Alw'l^

}ogXlog~W=o'
In the other case |^(w')| > Alw'^, choose j with |/3j(w') - WN\ < 2rl+7?

and let I -^ j. Then (9) implies
lA(w') - w^v| > lA(w') - ̂ (wQl - [^-(w') - WN\ > c(A)|w'| - 2r1^

^ c(A)r/2 - 2rl+77 = r(c(A)/2 - 2r77) > 2rl+77.
Thus branches are separated and ^ is plurisubharmonic, being the maxi-
mum of finitely many plurisubharmonic functions. The estimates (a)' and
(/?)' will be derived from the following

w /3,(wr^(5 + w) < r max (p <re= 2e'
\/^j{w/)-WN\<<2rl+1^ \ r

^(5+w) < L max | Im^^^w'))! - 6r log ̂
|^•(w/)-w^i<2rl+^ l v ' ' J v / / 1 logA 6 {2rY

< L\ Imw| + L\13j(w') - WN\ ̂  L\ Imw| + 2Lrl+?7.
Now (plh) is applied to -0/2 - Lr1"^. This gives

^(z) < 2kf\ Im z| + 2^'e' + 2Lrl+77

and

^)^^)+^log
^(r^)
(2r)«

^ - (2^(1 lmr0\+\ai(r0')-r0N\)+26'€'+2Lrl+r')+——— log
logA

^(^)
2^

< 2^1 Im6»| + r" + e6' + ILr^ + eS/3

<k\'lm0\+e6.
D
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Theorem 4.1 about carrying over and the dimension condition 2.2
imply the following statement.

4.2. COROLLARY. — Pe C[Zi,..., ZN\ be homogeneous, let V =
P'^O). If there is 5 C V H M^ such that the tang-ent cone T^Y contains
6 -^ 0 and an irreducible component We of [T-sV]e satisfying Rdim^i W D
M^ < TV — 1, then there is no convex domain ̂  C R^ and no weight Ct; for
which P(D):A(0) -^ A(^) or P(D):£^}(^) -> <?{o;}(^) are surjective.

4.3. Example. — Corollary 4.2 shows that the following operators
are not surjective. The point 2 in which the tangent cone is investigated is
x = y = z = 0, w = 1 in both cases :

Qn Qn Q71

(1) P(JD) = Qx^w-2 + Qy^w-2 ±9znJn>2'
gn gn gn

^ p^=M^±^,w^±^'3^<Tl•

5. Applications.

The following result is an immediate corollary to Theorem 3.8 and
Hormander [II], 6.5 (see 1.4). It generalizes [3], 12, to the case of<?{^}(R3),
thus showing that, for a homogeneous partial differential operator in three
variables, surjectivity on A(M3) and on f^}(R3), uj any weight function,
are equivalent. In three variables, we look upon the homogeneous variety
V as a curve in complex projective space P2. The real projective space MP2

is embedded canonically into P2.

5.1. THEOREM. — Let P € C[Zi,Z2^3] be a homogeneous poly-
nomial, and let V = P'^O). The following are equivalent :

(1) P(D):A(M3) -^ A(R3) is surjective,

(2) P{D): £^ (M3) —> £^ (M3) is surjective for every (some) weight ̂ ,

(3) for every 0 G YDR?2 and every irreducible component We ofVe :

Rdime W H RP2 = 1 and We is regular in 6.

Theorem 4.1 about carrying over of Phragmen-Lindelof conditions to
tangent cones gives us operators in N — 1 variables acting on R^. For these,
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results of Meise, Taylor, and Vogt show that surjectivity already implies
the existence of a continuous linear right inverse.

5.2. THEOREM. — Let ujbea weight function, let P € C[Zi,.. . , ZN\
be a homogeneous polynomial, and let M € N (recall 0 ^ N^). If M^ is
regarded as a subspace ofM^"1"^ then the operator P(D) acts on both
spaces. Equivalent are

(1) P^DY.S^^) -^ f^OR^) admits a continuous linear right
inverse,

(2) P(D): AQR^) -^ A(RN) is surjective, and P has no elliptic factor,

(3) P(D):S^{RN^M) -^ S^^^) is surjective,

(4) P(D):A(RN+M) -^ A(RN+M) is surjective.

Proof. — The equivalence of (1) and (2) has been shown by Meise,
Taylor, and Vogt [16], 3.14, [15], 4.5.

To show that (1) implies (3) and (4), note that by Braun, Meise, and
Taylor [5], 8.1, the operator in (3) is the tensor product of the operator
in (1) with the identity map of ^{^(M^. Thus the operator in N + M
variables admits a right inverse, namely the tensor product of the right
inverse for N variables with the identity map in M variables. Now the
arguments that show the equivalence of (1) and (2) yield that (4) is a
consequence of the existence of a right inverse for the operator in (3).

(4) implies (3) because of Theorem 1.11.

To show that (3) implies (1), we verify the Phragmen-Lindelof condi-
tion HPI^R^, loc) of Meise, Taylor, and Vogt [16], 3.2, at zero. By Meise,
Taylor, and Vogt [16], 3.3, [15], 4.5, HPI^R^, loc) at zero is equivalent to
the existence of a right inverse for P{D):£^(RN) —> ^^(R^). To write
down this condition, set V = {z (E CN \ P(z) = 0}. Then HPI^R^, loc)
means that there are bounded open sets U\ C U^, C U^ C C^ with 0 G U\,
such that, for each K > 0, there are Q > 0 and 77 > 0 such that each
(p C PSH(V n Us) satisfying (a7) and (/^/) also satisfy (7'), where

(oQ ^P{z) ̂  K\ Im z\ + r j , z € V H £/3,

(/?Q y(x) < o, x e v n R^ n u-z,
(Y) ^) <Q|im^, zevnu-i.

We show that (plh) for the operator in N + M variables implies
HPI^R^, loc) for the operator in N variables. Let K > 0 be given, let
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k be as in (plh), set Q = k{K + 1), Ui = ?7i(0) C C^ and Us = U^ =
E/3(0). Let y € PSH(V H U^ satisfy (a7) and (/37) of HPLQR^, loc). Let
rj > 0 be arbitrary, set 6 = rj/(K + 2). Since (p is upper semicontinuous,
{z € £/2 | <^(^) < ^} is an open neighborhood of V D ^5/2 (0) H R^. Let
L be so large that, for z € U^(0) outside this set, L\ Im z\ > K + 1. Then
y(z) —6<L\ lmz\ for all z € YUL^O). For ^ and L there is eo as in (plh).
Set e = eo/2. Fix w e YD^/i. Denote by e^v+M the TV+Mth standard basis
vector and set ___

0 = ew + \/1 - ̂ e^v+M-

Then P(<9) = 0. Denote by TT the projection TT: ]RJ?V+M ̂  R^ which forgets
the last M components. For z e Ue(0) C R^"^ we have \7r(z)/e\ < 1.
Thus

^^) := ̂ Tl (^ °7r (9 " <5) 5 ^ e CN+M5 p(^ =^\z-e\< ̂

is a plurisubharmonic function satisfying (a) and (/?). Thus it also satisfies
(7), hence

^(w) = K-^-l.^(0) + 6 < ̂ ^(A;! Im(9| + 6e) + <^ = (^ + l)/c| Imw| + 77.

D

Remark. — There is a way to prove the equivalence of (3) and (4)
without recurrence to continuous linear right inverses. The main tool there
is a Sibony-Wong inequality for homogeneous varieties. But this is also one
main ingredient of the proof of Meise, Taylor, and Vogt [16], 3.14.

5.3. Example. — The following partial differential operator is surjec-
five :

n3 ^3 ^3
P(D) = ——— - ——— ± ——:A(R4) ̂  A(R4).9x29w 9y29w 9z3

Remember that by 1.11 surjectivity for A(R4) implies surjectivity for
^}(M4).

Proof. — It is no restriction to assume that "±" stands for "+". We
claim that for each 6 G V := P'^O) with \0\ = 1 there are a neighborhood
Ue of 6 and some AQ > 0 with (/?(€) < A6>|ImC| for all C ^ Ue provided
(p G PSH^) satisfies (a) and (/?) of (HPL) (see 1.2). Once this claim
is established, (HPL) is easily proved by a compactness argument since
because of the homogeneity of all data it suffices to consider 0 C V with\e\ = i.
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For 0 e V^, \0\ = 1, choose Ae = 3/\lm0\ and Ue = U\^e\/M.
To handle the case that V is regular in 6 € V D R^, \0\ = 1, set
D = {t e C | |^| < 1, Imt > 0} and recall that a standard estimate of
the harmonic measure of the half disk (see Nevanlinna [18], 38) implies
that for all functions p, subharmonic in a neighborhood of D, we have

(11) p(it)<^t for all ^ e [0,1[,

provided

p{t) < 1 for all t G D and p(t) < 0 for all t e] - 1,1[.
This is applied to a suitable parametrization for V near 0. For the
investigation of the singular points, introduce for a moment the variables
a = x + y and b = x — y . In these coordinates, P has the form abw + z3.
So the singularities of V are where z and at least two of the variables a,
6, and w vanish. From this we see that all singularities are isomorphic. To
actually investigate them, it is better to use x and y again. It is enough to
consider, in {x, y , z, w)-space, 0 := (0,0,0,1) only. We set Ue = ̂ 1/4 {0) and
Ae = 24. Start with z,w real, i.e., fix z e [-1/2,1/2] and w € [1/2,3/2].
Consider the case z < 0 first. For given y with \y\ < 1/2 and y ^ R, define
the subharmonic function

-0: {t € C | \t\ < 1/2, Imt > 0} -^ R

t-max^ ±./fRe,+^) _^Re,+ ,^ .^
± I V V l1111^!/ ^ |Im2/|

Because of z < 0, the radicand is positive and thus ^(t) < 0 for
t € ] - 1/2,1/2[, and ^(t] <, 5 for all t with \t\ < 1/2. By (11) this
implies ip(t) < (40/7r)|Imt| provided Ret = 0, in particular (p{x, y , z, w) <
(40/7r)|Im^/| for both values of x for which (x,y,z,w) e V. In the case
z > 0, the argument is somewhat more interesting. Set r = z3/2^"1/2.
Define

M = ( ] - 2 , 2 [ + ] - l , l [ z ) \ ( ] - 2 , - r ] U [ r , 2 [ ) .

M is simply connected, and y2 — z ^ / w -^ 0 for all y C M, thus over M
there are two distinct branches of ^ / y 1 — z3 / w . Denote one of them by
g(y). Then lmg(y) ̂  0 for all y C M, so it has the same sign everywhere.
In particular, | lmg(y)\ is harmonic on M. We show first

(12) \lmy\ <4|Im^)| for all y € QM.

If y € 9M and Imy ^ 0, then \g(y)\2 = \y2 - r<2\ ̂  1 - r2 > 3/4, thus at
least one of | Reg(y)\ and | Img(y)\ is greater than y^^/8. If this is | Im^(z/)|
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then (12) is clear. In the other case, (12) follows from lmg(y)2 = lmy'2 and
thus i '̂i'Sf^4^
We want to estimate (p on the vertical parts of 9M next. To this end, define

^: D -^ M, t ̂  ^p(g{t + 2),t + 2, z, w).

The hypotheses imply -0(^) < 0 for t e] - 1,1[ and ^(t) < 4 for all t with
|^| < 1 . Thus it follows from (11) that

1 ^
(13) ^{it) ̂  —t for all t e [0,1[.

7T

On the horizontal parts of 9M, i.e., for y = ±% +1, —2 < ^ < 2, we have
^{y)^^^) < ^/5= v^llm^/l. Thus
(14) ^p(g{y),y,z,w) < 6\lmy\ ̂  24|Im^)| for all y e 9M.

Since | Im^(^/)| is harmonic, (14) holds on all of M. Repeating the argument
for —(7, we conclude

y?(rr, y , z, w) < 24|Ima:|
if(^,2/ ,^,w)ey,^e]-l /2, l /2[,we]l/2,3/2[,2/e]-2,2[+]-l , l[z.

If now z, w with \z\ < 1/4 and \w — 1| < 1/4 are given arbitrarily, consider

^:D^R

4. / < I 2 (Rez^- 4|Im^w)|)3 „ , t 1m Z
t^max^ ±.h/2-————, imJ , ^Re^+- -

.VT Rew+iTIte)T "——^llm^.)

_ ^ ImwRe w + - -4 | Im(^,w)

Then, for t c] — 1,1[, (15) implies ^(t) < 24|Im.r|, where x denotes
the first entry above. Now (11) implies i^(i\ lm(z, w)\) < (32/7r)| Im(^, w)\-\-
241 Imo'1. This completes the proof. D

The homogeneous partial differential operators in three variables are
dealt with in 5.1. In four variables, a series of non trivial operators is given
by

gn gn gn
P{D)=A—-r-——r+B-—-——+C'——, A,5,CeC, ^,m,neNo,/ 9xl9wn~l 9ym9wn~m 9zn

l^m < n.

By 2.5, we can restrict our attention to the case of real A, B^ and C. If one
of them is zero, then the situation is governed by 5.1 and 5.2. The same
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argument applies to the cases I = 0, m = 0, or I = m = n. Since we can
scale the problem, we may assume A = 1, B,C = d=l. The assumption
I <^ m is without restriction.

5.4. PROPOSITION. — The operator
gn gn gn

p(D)=^W^+a^^-^+^Q'b=±l'^'m'neN)

I < m < n, I -^ n,

is surjective on A(R4) if and only if one of the following cases is fulfilled :

(1) l=l,n=2,

(2) l=m=2, n=3, a= -1,

(3) I = 2, m = n = 4, a = b == -1.

These are also exactly the cases for which P(D) is surjective on F^R4)
for some (every) d > 1.

Proof. — Case (1) satisfies the hypothesis of 1.5(2) if m == 2. If
m = 1, then, after introducing the coordinates ^ = x - { - y ^ r ] = x — y^ the
polynomial is independent of either ^ or 77, so the result follows from 5.1
and 5.2. Case (3) is treated in 1.5(3) and case (2) in 5.3.

If I = 1 and n > 3, then n — I > 2 and n is not a multiple of n — l'^
so the claim follows from 3.9(2). If m is not a multiple of Z, then the claim
follows from 3.9(1).

For the remainder of the proof, m is a multiple of I and I > 2.

If m = Z, then 4.3 or case (2) applies, or I = m = 2 and n > 3 and a =
-1. If (Z, m, n, a) = (2,2,4, -1), then 2.4(2) applies. If (I, m, a) = (2,2, -1)
and n > 4, then 3.9(2) can be used.

If m = 2^, then either n is not a multiple of n — I , and 3.9(2) applies,
or n = m = 21. This is either the operator of case (3) or it has been
investigated in 3.7. If m is strictly greater than 2Z, then n is not a multiple
of n — I > m — I . D
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