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REFINED THEOREMS OF THE BIRCH AND
SWINNERTON-DYER TYPE

by Ki-Seng TAN

Introduction.

In their paper [MT2], B. Mazur and J. Tate propose conjectures
which are analogues of the classical Birch and Swinnerton-Dyer conjecture
for each Well curve E defined over Q. In this paper we will generalize the
context of their conjectures by replacing Q by any global field, even of
finite characteristic, and sharpen, in a certain way, the statement of their
conjectures. Our main result, then, will be to establish the truth of a part
of these new sharpened conjectures, provided that one assume the truth of
the classical Birch and Swinnerton-Dyer conjectures. This is particularly
striking in the function field case, where these results can be viewed as
being a refinement of the earlier work of Tate and Milne (see [T2] , [Mil]),
who establish the classical Birch and Swinnerton-Dyer conjecture in that
context, subject only to the hypothesis that some ^-primary component of
the Shafarevitch-Tate group is finite (for any £).

As in the classical Birch and Swinnerton-Dyer conjecture, the main
part of the Mazur-Tate conjectures also contains two parts: one is about
the «order of vanishing)) and the other, the «leading term)) (the refined
formula). In the Mazur-Tate conjectures, the analogue of the classical
L- function is the theta element. For each positive integer -D, the theta
element QD is defined via the modular form associated to E. It is an
element of the group ring ZIM"1]^/ =L DZ)*], where M is an integer
which depends only on E. The theta element interpolates the special values
of the L-series attached to the characters of the group (Z/ =L DZ)*, and is
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in fact characterized by this property. This theta element can be viewed as
a «-D-adic L- function », in the sense that if we take D = p"' for a prime p,
and n > 1, and take the projective limit of Qpn, then essentially the p-adic
L-function studied in [MTT] is obtained.

The «order of vanishing» conjecture says that for D admissible
(see Section 3.1) QD should be in the r-th power of the augmentation
ideal I . Here r is the rank of the associated extended Mordell- Weil group
(see 2.2).

In the refined formula (see conjecture 1 in Section 3.1), the analogue
of the elliptic regulator is called the corrected discriminant. It is defined via
the Mazur-Tate global pairing which depends on D. There is a canonical
mapping sending the corrected discriminant into an element of J7'//7^1. The
right-hand side of the refined formula is a product of this element and other
arithmetic data of the elliptic curve such as the orders of III, E(Q)tor? etc.
The left-hand side is just the image of QD in I 7 ' / ! 7 ' ^ ' 1 . The conjecture can
be viewed as the finite « exponentiation » of the conjecture raised by Mazur,
Tate and Teitbaum in [MTT] (see also [MT2] ). An interesting feature of
these conjectures is the possibility of the « extra order of vanishing », which
occurs when r > rfc(E(Q)). In this case, the extra rank of the extended
Mordell-Weil group comes from the number of split-multiplicative primes
dividing -D, and the local Tate period is involved in the conjecture. For
result about the case r = 1 and rfc(E(Q)) = 0, see [GSt].

To generalize the conjecture to each elliptic curve E/j<- over a global
field K, we need to define the theta element and the corrected discriminant
in the general context. The Mazur-Tate pairing and the associated corrected
discriminant are actually defined for every global field as long as D is
admissible [MT2]. Over the function field, Deligne has shown [D] that every
non-constant elliptic curve is modular. Using this, in [M], Mazur defines an
associated theta element. In [Tn2] the theta element for any elliptic curve is
studied. It is shown that the theta element is in the group ring Z^^lYo],
where p is the characteristic of the field. The coefficients of QD have
bounded denominators. For certain cases, a bound can be obtained as a
function of the genus of the field and the arithmetic conductor of the
elliptic curve.

Over number fields, not much about the theta elements is known
except for the case discussed in [MT2] .

In this paper, for each extended divisor D of K (see 1.1), we define
the theta element QD as an element of the group ring of the Weil group WD



REFINED THEOREMS OF THE BIRCH AND SWINNERTON-DYER TYPE 319

characterizing the abelian extensions of K with the conductors dividing D,
provided that the analytic continuations of some L-series exist. It is defined
to interpolate special values of the L-series attached to characters of WD'
Notice that this definition makes sense for the number field case as well.

For each quotient group G of WD^ we define, via the quotient map,
the theta element QG' Assuming that there is an integer M such that
QG € ZtM"1]!^] (this is true in the Mazur-Tate case and in the function
field case) and that D is admissible, we then propose the conjecture
(conjecture 1), which generalizes the main part of Mazur-Tate conjecture.
Over the function field, this conjecture generalizes the classical Birch and
Swinnerton-Dyer conjecture (see 3.2).

Conjecture 1 depends on the chosen integer M. If r > 0 and G is killed
by M, then it is easy to show that QG e P for every i > 0 and conjecture 1
is trivially true (see 3.3). It is then natural to multiply QG by an integer z
such that z ' QG €: Z[G] and to try to sharpen the conjecture using z ' OG-
In this paper, we treat the case where G is of the type ( £ , . . . , £) for some
prime number £ (the horizontal case). The reason for choosing this type of
group is that the augmentation quotient P/P~^1 (I being the augmentation
ideal of Z[G]) is well studied. A theorem of Passi and Vermani (see [PV],
restated as Proposition 3.8 in this paper) identifies this F^-space with the
space of F^-valued zth degree homogeneous polynomial functions on the
space G' = Hom^(G,F^). Using this, we are led to believe that z ' OG
should be in J6, for some e >_ r defined in 3.4, and hence, the sharpened
conjecture, conjecture 2, is of a refined formula of two elements of f/I^1.
We have e > r if and only if t divides z. If this is the case, then conjecture 1,
which deals with P / P ^ ~ 1 , is trivial while conjecture 2 usually is not.

The main results proved in this paper concern conjecture 2. Assume
that G is horizontal. Let L / K be the field extension with Galois group
equal to G. To obtain our main theorems, we need to assume that
the Birch and Swinnerton-Dyer conjecture is true for E/^-, and in the
number field case, it is also true for E/i/ for every intermediate field
extension L ' / K . As our conjectures relate the analytic and the arithmetic
feature of an elliptic curve, this kind of assumption seems inevitable unless
we are expecting to prove some result about the Birch and Swinnerton-
Dyer conjecture. To simplify the argument and to avoid certain difficulties,
we also assume that t is outside a finite set of primes which depends only
on E/K (see Definition 3.13). Under these assumptions, we have z ' QG € /e

(Theorem 3.12) and the eth degree homogeneous polynomial functions
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corresponding to both sides of the formula in conjecture 2 have the same
zero set (Theorem 3.14). These are the main theorems of this paper. They
imply that if either G is cyclic or e = 1, then conjecture 2 is true up to a
non-zero constant in Fj" (Theorem 3.16). Theorem 3.21 says conjecture 2
is true, if K is a function field with characteristic ^, rk(E(J^)) = 0 and
QD ^ ^^[G]. For the examples of elliptic curves satisfying these additional
conditions, see [Tn2].

This paper is organized in the following way. In Section 1, we discuss
the definition of the theta element. In Section 2, we recall briefly the
Mazur-Tate pairing, and the associated corrected discriminant. We also
derive some related results to be used in the proofs contained in Section 4.

In Section 3, we discuss the conjectures and state the main results
of this paper. Conjecture 1 is proposed in 3.1. In 3.2, we show that in the
function field case it generalizes the classical Birch and Swinnerton-Dyer
conjecture. In 3.4, we propose conjecture 2 and show that in some special
case we can use the main theorems to deduce the truth of conjecture 2.

The proofs of the main theorems, Theorem 3.12 and 3.14, required
some preliminary developments. The necessary technical tools are given in
Section 4 and 5 and the proofs of the main theorems then follow easily, and
thus are postponed until Section 5. The proofs of the main theorems rely on
the thorough understanding of the possible degeneracies of the Mazur-Tate
pairing. This is the main content of Section 4.

Section 5 then concludes the paper by using the results of Section 4,
the Birch and Swinnerton-Dyer Formula, and a product formula for the
L-functions (in 5.2) to complete the proofs of the main theorems.

We should remark that some of our main results and their method
of proof are analogous to those used by Gross [G], in his formulation of a
conjectured refined class number formula, which itself is an analogue of the
Mazur-Tate conjecture. In this conjecture, the theta element interpolates
the special values of the abelian L-functions and the counterpart of the
corrected discriminant is the G-regulator. Gross also uses the product
formula of the L- function, the classical class number formula, and the
genus theory to obtain a result for the horizontal case. As the Birch
and Swinnerton-Dyer formula is an analogue of the class number formula,
our theory in Section 4 can be viewed as «the genus theory for elliptic
curves)). Recently in [Tn4], new results about the Gross conjecture for the
«vertical case)) (e.g. G c^ Z^) have been obtained. We hope to discuss the
vertical case for the Mazur-Tate conjecture in a forthcoming paper.
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1. The theta element.

In this section, we define the theta element associated to an elliptic
curve over a global field and discuss some of its basic properties. To
make such a definition, we need to assume the existence of the analytic
continuations to s = 1 of certain associated L-functions. When the global
field is a function field or the elliptic curve is a Weil curve over Q, the theta
element will have good rational and integral properties.

1.1. Notations and assumptions.

Let K be a global field. We use the usual notations A = Aj<,
A* = A^- for the adele ring and the idele group of K. For each place ^,
use respectively the notations Ky^ 0-y, ky, g^, for the completion of K at v^
the v-integers of Kv, the residue field (for non-archimedean v) and its order.
The notation 5oo will denote the set of all archimedean places of K.

An extended divisor is a formal sum

D=^av'v, o^eZ,
v

with the restriction that ord-u(-D): = Oy is 0 for complex v and either 0 or 1
for real v. The finite (non-archimedean) part and the infinite (archimedean)
part of D will be denoted by -Do and Doo respectively. The support of D,
denoted Supp(D), is the set consisting of places v such that ord^(-D) 7^ 0.

Throughout, whenever we refer to a quasi-character, we assume that
it has the following property.

ASSUMPTION 1. — Each quasi-character \ of the idele class group
K* \ A^- is assumed to be trivial on the connected component of K^ for
each archimedean v.
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Thus for real v, the component ̂  depends only on its value at —1.
This is either 1 or —1, in which case we write c^v(x) = 0 or 1, and call \
even or odd at v, respectively. For each finite v, use dv{x) ' v ^° denote
the conductor of the ^-component \y. From this we define the extended
conductor of \ as the extended divisor

DX=^a^X)'V.

v

For a non-archimedean place v ^ Supp(D^), the value Xv{^v) for a prime
element Tr-y of Oy is independent of the choice of Try. Thus define

x{v) = x(^v)'

Analogously, we also define the extended conductor of an abelian
extension L / K in the obvious way.

For an extended divisor Z), let

^o = n ^ n (i+c^-a),
v^Supp(-Do) v€Supp(Do)

u^ =( n ^ ) - ( n^) '
v^Supp(Doo) ^eSupp(Doo)

where only the non-archimedean (resp. archimedean) v are taken in the first
(resp. second) formula. Let UD = ^Doo x ^o- Then UD can be embedded
into A* in the obvious way. The (discrete) Well group is defined as

WD=K^\^/UD.

The Weil group is finite in the number field case. In the function field case,
it is an extension of Z by a finite group. For a place v ^ Supp(^) the prime
element TT^ determines an element [v] € WD called the Frobenius element.
This is independent of the choice of TT-y.

A quasi-character \ of the Weil group WD can be pulled back to
a quasi-character (also denoted by ^) of the idele class group K* \ A*.
The quasi-characters obtained from WD are those whose extended
conductors divide D. A quasi-character \ of WD is called primitive
if D^ = D.

Let R be a subring of C. A quasi-character \ of WD can be extended
uniquely to an JP-algebra homomorphism from the group ring ^[TVo] to C.
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All the ^-algebra homomorphisms from JR[WD] to C can be obtained in
this way.

Let E be an elliptic curve denned over K. For each non-archimedean
place 'y, let E/<^ be the Neron model of E/j^ and let E/j^ be the special
fibre of E/(^ at v. Denote by Eo/^ the connected component of E/^,
Eo(^) the part of 'E(Ky) whose reduction at v is in Eo/^, and E^(Ky)
the part of Eo(Kv) with trivial reduction. The number of ^-rational
components of E/j^ will be denoted by my. The arithmetic conductor
of E/j< will be denoted by N.

For a real place v, let my denote the number of components of E(JCy)
regarded as a topological group. Then my is either 1 or 2. Denote the
identity component ofE(JCy) by Eo(jFCu)-

For a non-archimedean place v, let \y be the integer defined by

(1) A,
1 + Qv — |Eo(A^)| for good reduction,

Qv — |Eo(fcu)| for bad reduction.

For each quasi-character \ and each non-archimedean v not in
Supp(^), let

f 1 - A, . xW • ̂ s + XW2 • ̂ -2S it v 1 Supp(TV),
(2) L^s)={

[ l - X v x(v) • q^8 live Supp(TV).

For other v, let Ly{^ s) = 1. The associated L-series

LOc,s)=LE/^(x,5)
is defined as

£(x,s)=n£,(x,s).
V

If ^o ls the trivial character, we denote

L(5)=LE/^(s)=L(^o,5).

In this paper, a field extension L / K is always abelian, with its Galois
group usually denoted by G. For a place v of K, we will fix a place w
of L, which is sitting over v. Denote Gy = Gal(Liu/JC^). Sometimes we
denote Ly = Lyj when the choice of w is not important.
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1.2. The global period.

In this section we define the relative global period 0^ ofE/j^ associated
to a character \ of A*/Jf*. The basic idea comes from Tate^s paper [T2].

Let [i = (f^v)i where for each place v of K, fJ,y is the Haar measure
such that

( /^y(O-y) =1 [fv non-archimedean,

liv = Lebesgue measure if v archimedean.

Let dj<, r2 and QK denote respectively, the absolute discriminant, the
number of complex places and, in the function field case, the genus of K.
Recall (c/. [Wl]) that the measure \^\ of the compact quotient A/K can be
evaluated as

f ll^fc ||-1/2 2~r:2 in the number field case,/r»\ 1 1 1 " 1 1

(3) |/^| = <
t q91^ - in the function field case.

For x € Ky, let \x\y denote the normalized absolute value, i.e.,

p,v(xU) = \x\y ' p,v(U) for U C Ky.

Choose a nonzero JC-rational first degree invariant differential form a; on E.
Then u) and fly determine a Haar measure [o;|^^ on the compact analytic
group E(JCy) in a well-known way (c/. [W2]).

For archimedean v, define the local period

(4) ^= / M .̂
^E(^)

For non-archimedean v, let a;o,u be a local Neron differential, i.e. a first
degree invariant differential form on the Neron minimal model E/<^ such
that the restriction o)o,v of UJQ^ on the special fibre E^ is nonzero. On the
generic fibre, we have U J / U J Q ^ 6 K^ and define the local period ̂  as

UJ
(5) 0; =

I Cc/0,1; Iv

We put these local data together to define the global period.
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DEFINITION 1.1. — With the notation of (4) and (5), the global period
is defined as

(6) ^ = ^ E / K = ^ ^ = I I ^ -
v

By the multiplication formula of the norms, Y[ \x\y = 1, for all x € K*
v

and we see that the definition of fl, is independent of the choice of u.

Consider a Weierstrass equation of E over K,

y2 + a\xy + a^y = x3 + a^x2 + a^x + OG,

and the differential a; (see [T3]),

uj = drc/2z/ + a^x + 03 = d^//3a;2 + 2a2^c + 04 - oi2/-

Let <$ be the discriminant associated to this equation. For each non-
archimedean place v, choose a minimal Weierstrass equation and take the
corresponding invariant differential c^ in the similar way and let 6y be the
discriminant of this equation.

DEFINITION 1.2. — Define the global discriminant A = Aj< by

(7) A = ^ ordv(6v)'v.
V<^S^

Since each o^ can be extended to a Neron differential over 0-y, we
have the following equality of divisors

(8) A-12.V ordj^-)^=(<5).
4^o ^o-v/

Note that if K is a function field with constant field Fg, then ^ is just
the norm of ^ ord^(a;/a;o,v) • ^5 so (8) and the multiplication formula

V^S'oo

together imply

(9) n = g-^^V12.

Let ^ be a character of the idele class group and L / K the cyclic
extension determined by ^. Let Odd^ be the set of real places where \
is odd. For each v € Odd^, let w be the unique complex place of L sitting
over v.
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DEFINITION 1.3. — The relative global period ̂  is defined as

do) ^ = n^^'^^^^'n^
^Odd^ JE(L,) 1̂  • ̂  ^Odd^

The definition depends on \ and E. It is independent of the choice of a;.

DEFINITION 1.4. — For each finite separable extension L/K^ define
the relative discriminant (of the elliptic curve E) as

(11) ^L/K := A^ - A^.

Here we view Aj< and hence ^L/K as a divisor of L.

Notice that Aj< is an effective divisor supported only on places which
are both ramified (under the extension) and bad (for the elliptic curve).
Using (8), one can easily see that ^L/K ls divisible by 12.

For an abelian extension L / K , by the class field theory we identify
each character of Ga\{L/K) with a character of the idele class group of K.
By the definitions of ^ and f^, the multiplication formula and (8), we have

(12) n^llA^II-1/12.!]^
X€Gal(L/J<)

1.3. The Gauss sum.

Let ^ be a non-trivial character of the additive group K \ AK and (j>
a differential idele attached to ^ [Wl]. The Gauss sum is now defined as
follows.

DEFINITION 1.5. — For each pJace v and quasi-character ^, we
define r^v as follows. Ifv is non-archimedean and o.v = ordv(-D) > 0, define

(13) r ,̂ = ^ ^(x)x(x).
xe 0;-lw;^at••(0;;/l+lr?''0„)

Otherwise, define

(14) r^ = (2^/^l)°vx(<^l)•
The Gauss sum is defined as(15) 7-x=n7^-

V

It is easy to see that the definition of T^ is independent of the choice
of 1^, (f> and Try.
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Note that our Gauss sums are slightly different from the usual ones.
When K = Q, for each positive integer D we can identify (Z/D)* with
WD+OO by identifying each prime number p, such that {p,D) = 1, with
the element [p] C WD+OO- In this case, for any primitive character \ of
WD-^-OO = {^/D)*^ our Gauss sum r^ equals cl\/~=\ times the usual Gauss
sum of ^-1. We define the Gauss sum so as to avoid the appearance of \~1

in the definition of the theta element (see [MT2] and Section 1.4).

The following lemma can be proved by the usual method (see for
example [L]).

DEFINITION 1.6. — For an extended divisor D, define its norm as

(16) Pll^poll^-^^PP^-).

LEMMA 1.7. — Let \ be a character and f^ be the complex conjugate
ofr^ viewed as complex numbers. Then r^-i = r^ and

T^=||DJ-1.

1.4. Theta elements.

In this section, we define the theta element by identifying its
characteristic properties.

Throughout, whenever we refer to a quasi-character \ of WD
(c/. Assumption 1) we assume that it has the following property:

ASSUMPTION 2. — For any extended divisor D, we assume that the
analytic continuation L(^, 1) is defined for each quasi-character \ ofWo-

Examples in which Assumption 2 is satisfied include Weil curves and
curves over function fields.

Let R be a subring of C. Suppose D and D' are two extended divisor
of K such that D' > D. Let

(17) ZD^R[WD'}—R[WD\
be the ring homomorphism induced by the projection. Also let

(18) VD''.R[WD\——R[WD'}
be the trace map.

Using the above notations we may now define the associated theta
element Op € I? [Wo] using the following characteristic properties.
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DEFINITION 1.8. — The theta element QD is the unique element
of R\WD\ which satisfies the following properties:

(i) The compatibility property: for D1 > D, we have the following:

(a) Ifv^. Supp(TV) U Supp(J9) is non-archimedean^ then

ZD(Q^D) = (A. - M - M-1) • QD.

(b) Ifv € Supp(AQ and v i Supp(P), then

ZD(Q^D)={\v-[y}~l)'QD.

(c) Ifv is non-archimedean^ v ^ Supp(TV) and v € Supp(D), then

ZD{QV-\-D) ~ A-u • QD + VD^QD-Z;) = 0-

(d) Jfz;e Supp(JV) and v e Supp(D), then

ZD^OV-^-D) = A^ • QD-

(e) Ifv^. Supp(Z>) i's reaJ, tAen

^D(e^+D) = (-I)27771- • my ' QD.

(ii) Special Values: for each primitive quasi-character \ ofWDi we have

^(e^^.^.i/.i.LO^i),
where 0^ and r^ are the relative global period and the Gauss sum.

Note that the defining properties determine the values ^(©D) for each
quasi-character \ of WD. In fact, from the compatibility property, there is
an algebraic number C^ which is a polynomial (with rational coefficients)
in %(v) and A^,, v 6 Supp(-D), such that

(i9) ^e^^^.T^^.H.Hx,!).
Since the group ring C[lVo] is reduced, by (19) OD is uniquely determined
as an element of it. In the number field case, the existence of OD € C[TVo]
follows from using the inverse Fourier transform. In case that K = Q
and E is a Well curve, our definition agrees with the formula given by
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Mazur and Tate (see [MT2], [Tnl]). In this case, there is an integer M
depending only on E such that Qr> is in Z^^^TY^]. If K is a function
field of characteristic p and E is not a constant curve, then, after a slight
modification (see [Tn2]), our definition agrees with the formula given by
Mazur [M]. In the function field case, for each elliptic curve, the theta
element QD always exists inside Zip"1]^^], and the denominators of the
coefficients of QD are bounded for all admissible D. In particular, when K
is a rational function field and E is semi-stable, the denominators of the
coefficients are all bounded by

deg(N)/2-deg(AK)/12-<^-l^

2. The Mazur-Tate pairings.

2.1. Local trivializations.

In [MT1] and [MT2], Mazur and Tate introduce various local Neron
type pairings for abelian varieties. As pointed out by Zarhin in [Z], the
Neron type pairings between zero cycles and divisors are equivalent to
splittings of the canonical biextension. This is the method used in the
above papers. These local pairings can be put together to define a system
of global pairings which are the analogues of the global Neron-Tate pairing.
In this section, we recall some basic definitions and constructions of local
trivializations.

Let E'/j^ denote the dual elliptic curve of E/j< and P/j< the canonical
biextension (see [Mu], [SGA71]), associated to the duality, ofE/j<- and E'y^
by Gm- We can identify E^ with E/j<. But in the global pairing they do
not play symmetric roles. As in [MT2], different notations for them will
be used. If P is a biextension of commutative groups A and B by the
commutative group C, then for a € A, b G B, we denote by {a}P^ P{b} tne

subsets of P which sit over {a} x B and A x {b} respectively. By identifying
{a} x B with B and A x {b} with A, {a}P ̂ d P{b} become group extensions
of {a} x B and A x {&} by C.

DEFINITION 2.1. — Let v be a place of K. A local modification
of ^(Ky) is a triple (av, ^v> Pv) ofmorphisms:

(a^ : A^——E(^),
\ ̂  : B,——E'(^),
[^ : K:—^C^.


