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LP ESTIMATES FOR SCHRODINGER OPERATORS
WITH CERTAIN POTENTIALS

by Zhongwei SHEN (*)

0. Introduction.

In this paper we consider the Schrodinger differential operator

(0.1) P=-A+V(a;) on R ^ n ^ S

where V{x) is a nonnegative potential. We will assume that V belongs to
the reverse Holder class Bq for some q >, n/2. We are interested in the L^
boundedness of the operators (-A+V)17, V^A+V)"172, V^A+V)-^
and V2(-A + V)-1 where 7 € R.

Note that a nonnegative locally Lq integrable function V(x) on W1 is
said to belong to Bq(l < q < oo) if there exists C > 0 such that the reverse
Holder inequality

w (^M'̂ fM1^)
holds for every ball B in W1 ([G], [M]).

One remarkable feature about the Bq class is that, if V G Bq for some
q > 1, then there exists e > 0, which depends only on n and the constant
C in (0.2), such that V € Bq^ [G].

(*) Supported in part by the NSF.
Key words: L^ estimates - Schrodinger operators - Reverse Holder class.
Math. classification: 42B20 - 35J10.
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We now state our main results in this paper.

THEOREM 0.3. — Suppose V € Bq for some q > n/2. Then, for
1 < P < q, iiv^-A+yrvii^cpii/iip
where Cp depends only on p, n and the constant in (0.2).

THEOREM 0.4. — Suppose V € Bn/2' Then, for 7 G M, (-A + V)^
is a Calderon-Zygmund operator.

It is well known that Calderon-Zygmund operators are bounded on
J^ for 1 < p < oo.

THEOREM 0.5. — Suppose V <E Bq and n/2 < q < n. Then, for
1 <P<Po,

|| v^A+v)-1/2/!!^ ̂ ||/||̂
where (1/po) = (Mq) - (1/n).

We remark that the ranges ofp in Theorems 0.3 and 0.5 are optimal.
This can be shown by considering the potential V{x) = {x^ where
-2 < a < 0. See Section 7.

<s

It follows easily from Theorem 0.5 that, if V € Bq, n/2 < q < n,

(0.6) IK-A + Vr^np <. CM for po ^ P < oo
and

(0.7) ||V(-A + IQ^V/llp < q|/[|p for po < P < Po

where po =po/(po-l).

THEOREM 0.8. — Suppose V e Bn. Then

V(-A + V)-1/2, (-A + V)-1/2^ and V(-A + V)-1^
are Calderon-Zygmund operators.

We also obtain the L^ boundedness of the operators

v(-A+v)-1, V^-A + vr1^, V^^-A+V)-^
and

^^(-A+V)"1.

See Theorem 3.1, Theorem 5.10, Theorem 5.11 and Theorem 4.13 respec-
tively. As a direct consequence of our LP estimates, we have
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COROLLARY 0.9. — Suppose V G Bq for some q ^ n/2. Assume
that -An + Vu = f in R71. Then

\\^u\\p<CM^forl<p<q^

\\Vu\\p<C\\f\\p forl<p<q^

IÎ VnIlp < C\\f\\p forl<p<p,

where l/(pi) = (3/2<y) - (1/n) if n/2 < q < n; and pi = 2q ifq > n.

COROLLARY 0.10. — Suppose V € Bq for some q > n/2. Assume
that -An + Vu = divg in R71. Then

l|Vn||p ^ Cp\\g\\p for p o < p < po(l <p<^ifq> n),
ll^172^!? ^ C\\g\\p for p o < p < 2q(l ^p^2qifq>n)

where (1/po) = (1/9) - (l/^).

We now recall that an operator T taking C^^W) into L^M71) is
called a Calderon-Zygmund operator if

(a) T extends to a bounded linear operator on L^R71),

(b) there exists a kernel K such that for every / € L^R71),

Tf(x)--= ( K(x,y)f(y)dy a.e. on {supp/p,
JR-Tt

(c) the kernel K satisfies the Calderon-Zygmund estimates:

C\K(x^y)\<~ { x - y ^ '
C\h\6

(0.11) { \ K { x ^ h ^ y ) - K ^ y ) \
-̂ |^_^|n+65

\K(x^^^-K^y)\<^^

for x,y C R71, \h\ < \x - y\/2 and for some 6 > 0. See [St2].

We remark that in his thesis, which inspired the work in this paper,
J. Zhong [Z] studied the Schrodinger operator —A+y(rc), assuming that V
is a nonnegative polynomial in R71. He showed that, for 7 e M, (—A+V)^,
V^-A + V)-1, V(-A + V)-1/2 and V(-A + V)-1^ are Calderon-
Zygmund operators with bounds depending only on the degree of V and
the dimension n.

Related results can also be found in [HN] and [T]. In [HN], Helffer
and Noumgat considered the case of nonnegative polynomials. They proved
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the L2 boundedness of V^-A 4- V)~1 and ̂ /^(-A + V)-1, based on a
subelliptic estimate of Rothschild and Stein [RS]. In [T], the potential V =
\x\2 was considered in connection with the Hermite operator. Furthermore,
it was pointed out by the referee that the L^ (1 < p < oo) boundedness of
the operator (—A + V)17 in Theorem 0.4 follows from a general result of
W. Hebisch [H].

Note that, if V is a nonnegative polynomial, then

(0.12) maxV(x) <c(— [ V(x)dx\
x€B \WJB )

for every ball B in R71, where C depends only on the degree of V and n.
It follows that V satisfies (0.2), i.e., V € Bq for all 9, 1 < q < oo, with the
same constant as in (0.12). Hence, our Theorems 0.4 and 0.8 extend Zhong's
results on the operator (-A + V)'7, V(-A + V)-1/2 and V(-A + V)~1^
to the general Bq class. Clearly, Theorem 0.3 implies that V^—A+V)"1 is
bounded on L^R71) for all p, 1 < p < oo, if V satisfies (0.12). But it seems
that extra conditions are needed to assure that the kernel function for the
operator V^—A + V)~1 satisfies the Calderon-Zygmund estimate (0.11).

It is interesting to notice that, if V(x) = \Xn — (^(a^)!01, a > 0, where
x/ = (a;i , . . . , Xn-i) € R71"1 and (p : R71"1 — ^ R i s a Lipschitz function, then
V satisfies (0.12) with a constant depending only on n, a and ||V^||oo- Also,
if V{x) = la-l0, aq > -n, then V € Bq. In particular, V 6 B^/2 if a > -2;
and V <E Bn if a > -1.

The Schrodinger operator — A + V with nonnegative potentials is
useful in the study of certain subelliptic operators. Indeed, by taking the
partial Fourier transform in the t variable, the operator —Aa; — V(x)9^ is
reduced to -Ao; + V(x)S,2. See [Sm].

We briefly sketch the argument we will use in this paper. First, we
note that, in the case that V = P(x) is a nonnegative polynomial, the
weight function

(0.13) M(x,V)= ̂  I^P^)!1/^1^
|a|<fc

plays a key role. In (0.13), k = degree of P{x). See [Sm], [Z]. Here, for
V € B^/2, we define the function m{x^ V) by

(0.14) ^ = sup {r > 0 : ̂  /^ VWy ^ l}.

The function m( x, V) was introduced in [Sh] for the potential V satisfying
the condition (0.12) to study the Neumann problem for the operator
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—A+V^a:) in the region above a Lipschitz graph. Note that, i f r =
then

m(x, V)'

^-J V{y)dy=l.
' JB{x,r)

In the case that V = P(x) > 0 is a polynomial, it can be shown that

m(x,V) - M(x,V).

Next, we use a lemma due to C. Fefferman and D.H. Phong [F] to
show that, if V € B^/^i

/^ -i

^ l1^1 < {l+\x-y\m(xW • ]x^y[^
and, if Y € Bn,

(0-1()) '^•"^{TTl^^W-l^i^
for any k > 0, where !'(x,y) denotes the fundamental solution for the
operator —A + V(x) in W1. We remark that similar approaches were used
in [Sm] and [Z]. Also see [Sh].

Estimates (0.15) and (0.16) are essential to deal with the kernels
of operators in the part where \x — y\ > —-——. For the part where

m[x^ V)
\x — y\ < —,——r, the key observation is that, if V € Bq, q > (n/2),m(x^ V)

Ci\x-y\m(x vn2-^/^)(o.i7) \r(x^) -r^y)\ < c{{x y}m^——
\x — y\

where ro(a*,2/) is the fundamental solution for —A in R71.

Estimates like (0.15), (0.16) and (0.17) will enable us to control the
operator (-A + V)^, V(-A + V)-1/2 and V(-A + V)~1^ by the Hardy-
Littlewood maximal function and the corresponding (maximal) singular
integral operators associated with —A.

Finally, we note that, to study (-A + V)^ and V(-A + V)-1/2, by
functional calculus, we actually need to deal with r(rc, y , r) and Vr(.r, y , r)
where Y{x,y^r) is the fundamental solution for —A + V(x} + zr, r € M.
Moreover, if V E Bq^ n/2 <, q < n, we do not have pointwise estimates
for Vr(rc,2/,r). But, these difficulties are overcome by our basic idea that,
the operators associated with — A + V can be viewed as a perturbation
of the corresponding operators associated with —A in the scale less than
{m(^,V)}-1.
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The paper is organized as follows. In Section 1 we introduce the
auxiliary function m(x, V) and study its properties. We also state and
prove the Fefferman-Phong Lemma (Lemma 1.9) under the assumption
V G Bn/2' I11 Section 2 we establish the estimate (0.15) on the fundamental
solutions (Theorem 2.7). Section 3 is devoted to the proof of Theorem 0.3.
In Section 4 we give the proof of Theorem 0.4. Theorem 0.5 is proved in
Section 5, while Theorem 0.8 is proved in Section 6. A counterexample is
given in Section 7.

Throughout this paper, unless otherwise indicated, we will use C and c
to denote constants, which are not necessarily the same at each occurrence,
which depend at most on the constant in (0.2) and the dimension n. By
A ~ B, we mean that there exist constants C > 0 and c > 0, such that
c < A / B < C.

Finally, the author would like to thank the referee for pointing out the
relevance of Hebish's work, and for the valuable comments concerning the
limitations on p in Theorem 0.3 and 0.5, which lead to the counterexample
in Section 7.

1. The auxiliary function m(x^V).

Most of the results in this section were proved in [Sh] under the
assumption (0.12). The extension to the case V € Bq, q > n/2 is fairly
straightforward. For the sake of completeness we provide the proofs.

Throughout the section we will assume that V € Bq for some q > n/2.

It is well known that V (E -Bg, q > 1 implies that V(x)dx is a doubling
measure,

(1.1) / V(y)dy < Co f V(y)dy.
JB{x,2r) JB{x,r}

In fact, if V € Bq, q > 1, then V is a Muckenhoupt Aoo weight (e.g., see
[St2]).

LEMMA 1.2. — There exists C > 0 such that, for 0 < r < R < oo,

—— I V(y)dy < C (^V 2 . ——— / V(y)dy.
r JB(x,r) \r / H JB(X,R)
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Proof. — By Holder inequality,

( \ 1/9w^L^^ w^L^^)
/D \" /9 / 1 /• V79

^h) [w ,̂.,̂ ")
/RV/9 / 1 /• \^(7) (w^L,,̂ )

since V € Bg.

The lemma then follows easily.

By Lemma 1.2 and the assumption g > n/2, we see that, for any
a; eir,

lim ——^ / Vdy = 0
r->o r-2 J^r)

and
lim ——^ / Vdy = oo.

r-00 ̂ -2 7B(o:,r)

DEFINITION 1.3. — For x € M", the function m(x, V) is denned by

- 1 — - = sup [ r: —— ( Vdy < 1 \ .
m{x,V) r>o\ r^J^r) j

Clearly, 0 < m(x^ V) < oo for every x € W1 and if r = —-—— then
m[x, V )

— — 2 / Vdy=l.r JB(x,r)
Moreover, by Lemma 1.2, if

——, / Vdy ~ 1, then r ~ ———.
rn~2JB(x^ m{x,V)

The following lemma is very useful to us.

LEMMA 1.4. — There exist C > 0, c > 0 and ko > 0 such that, for
a înIEr,

/^
(a) m(;r, V) ~ m(y, V) if \x - y\ <, ,

mi^Xy v )

(b) m(y, V) < C{1 + \x - y\m(x, V^^x, V),
, . / „. _____cm(x,V)_____
(c) m{yfv)-{l+^-y^x^)}^/^1)'
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Proof. — Let r = Suppose |a; - 2/| < Cr. Since VAc is a
doubling measure,

—— f Vdz ~ -^ f Vdz= 1.
r JB{y^ r71 2 JB(x,r)

It follows that
^{y^v) ~ - =m(rc,y).

To see part (b), suppose \y - x\ ~ 2^rJ > 1. Let 0 < n < r and
2A;rl - 2^r. Then, by Lemma 1.2,

/ Vdz ̂  C(2fc)(n^)-n /t Vdz
^(y^i) ^B(y,2fcrl)

< G(2fc)<n/^-n /* Vd^
^B(2/,2.'r)

< G(2A;)(n/9)-n f vdz
JB(x,23r)

< C(2fc)(n/9)-n.^./> Vdz (by the doubling condition (1.1))
JB(x,r) v / /

^^^(n/g)-n.^.y.n-2^

Thus,

—— t Vdz < C^^)-71 'C^(^) n~2

^ */B(2/,n) u \riy
, , , / „ \ (^/9)-2

< C(2<7l/g)-nCo)J • ( — )

< 1/2 if n < Gi"̂  and Ci is large .
Hence, by Definition 1.3,

-(^)>cl-Jr•
It follows that

m(y, V) < C{m(x, V) < C{1 + \x - y\m(x, V^m^ V), ko = logs Ci.

Finally, we need to show part (c). We may assume that

I'-^m^r
for otherwise it follows easily from part (a).
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By part (b),

m(x, V) < C{1 + \x - y\m(y, V)}kom(y, V)

<C\x-y\kom(y,V)ko•}~l.
Thus,

^ cm^V)1/^ ^ ,^V)
vl75 } ~ \x - 2/|W(fco+i) - {1 + m(x, V)\x - 2/|}fco/(fco+i) •

The proof is complete.

The following is an easy consequence of Lemma 1.4:

COROLLARY 1.5. — There exist C > 0, c > 0 and ko > 0 such that,
for any x,y € R71,

c{l + \x - y\m(y, y^A^i) ^ 1 + [a; - y\m(x, V)
^{l-Hrc-^lm^y)}^1.

Using Holder inequality and the Bq condition we see that(1-6' /̂ k^^L,,,̂ -
Similarly, if V € Bn, hence V € Bn+e,
(L7) L^w^-^^L^-

LEMMA 1.8. — There exist C > 0 and ko > 0 such that, if
Rm{x, V) > 1, then

——— I Vdy^CiRm^V)}^.H JB(X,R)

Proof. — Let r = ———. Suppose 2^ < R < 2J+lr, j > 0. Then,m(x, V )
by the doubling condition (1.1),

/ Vdy < C^1 I Vdy = C^r71-2.
JB(x,R) JB{x,r)

It follows that

^L^^r '̂002"''''
S C{Rm(x, V))1", to = log. Go + 2 - n.
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We end this section with a lemma due to C. Fefferman and D.H.
Phong [F], which plays the crucial role in the estimates of the fundamental
solution for the Schrodinger operator -A + V(x).

LEMMA 1.9 (C. Fefferman-D.H. Phong). — Let u C C^IT). Then

\ \u(x)}\lm{x,V^dx^c[l |V^)[2Ar+ ( \u(x)\2V(x)dx\.
JRn l^R71 ,/Rri J

Proof.— Fix ^o C R^ let ro=-——^. Thenm(xo,V)

I Wx^dx > -^ [ [ \u{x) -^y^dxdy
JB TQ JB JB

( \u(x)\2V(x)dx> 4 f [ M^V^dxdyJB TQ JB JQ
where B = B(xo,ro).

Adding two inequalities we obtain

Lwdx + LH2y& ̂ LL ̂  [^v(y)] ̂ ^
where Co > 0 is a constant to be determined later.

Recall that V is an Aoo weight. Hence, there exists e > 0 such that,
for every ball B in R71,

l̂ ^mM î-
Now, let co = e\B(0,1)|-1, then

/^{^l^^""2-
It follows that

/ K^mOc.y)2^ < -^ / ^dx <:c[ [ Wdx^ I {u^Vdx}
JB ro JB {JB JB )

where we have used part (a) of Lemma 1.4. Moreover,

/ K^pm^, V)^ndx <.C\ [ |V^)[2m(a;, V^dx
JB{xo,ro} [JB(xo,ro)

+ / \u{x)\2V(x)m(x,V)ndx\.
JB{xo,ro) |
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To finish the proof, we integrate both sides of the above inequality in
XQ over R71 to obtain

r ( r
+ / \u(x)\2V{x)m(x,V)n[ /

JR" \J\xo-x\<^

Finally, note that, by part (a) of Lemma 1.4,

dxo } } .

! ^~(——\1 Y
^o-.K^-^ \rn(x^V)J
^"-^m^oTV)

The lemma then follows easily.

2. Estimates of fundamental solutions.

This section is devoted to the estimates of fundamental solutions for
the operator -A + (V + ir) on 1R71 where r e R.

We will assume that V G Bq for some q > n/2 throughout this section.

LEMMA 2.1. — Suppose -Au-{-(Y-\-ir)u = 0 in B(XQ, 2R) for some
XQ e IT, R > 0 and r G R. Then

sup{|n(.r)|:a* G B(a;o,-R)}

{ N 1/2_____Cfc_____ _^ r 2 1 /

- {1 + ̂ |r|V2}^{l + J?m(^o, V)}^ ^n 7B(.o^) • ' v }

for any integer k > 0, where C^ depends only on fc, n and the constant in
the reverse Holder inequality (0.2).

Proof. — Since

A(|n|2) = 2Re^u' u + 2|Vn|2 = 2V\u\2 4- 2|Vn|2 > 0,

\u\2 is subharmonic. It follows that

( \ 1/2
(2.2) sup{K.r)|:rreB(^o,-R)}<C7 — ( {u^dy} .

Jrl JB{xo,3R/2) )
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By Caccioppoli's inequality,

(2.3) I |Vn|2(te + / ^Vdx + |T| / ^dx
JB{xo ,3^/2) JB(XQ ,3^/2) JB{XO ,3A/2)

< - / H2^.
2T JB{xo,2R}

Now, let 77 e C§°(B(xo,3R/2)) such that 77 = 1 on B(xo,R) and
[VT/I < C/R. Applying Lemma 1.9 to the function ur], we obtain

r f /* /*
/ m{x, V)2\u\2dx <C{ |Vn|2^ + / ^Vdx

•/JB(a;o,-R) ^B(a;o,3ft/2) JB{xo^R/2)

+—[ \u\2dx\
H JB(xo,2R) J

^ - 1 \u?dx
lt JB(xo,2R)

where we used (2.3) in the last inequality.

Note that, by part (c) of Lemma 1.4, for x e B(XQ, R),

/ y^ ̂  ____cm(xo,V)____
v 5 / - {l+^m(a;o,^)P°/^o+i)'

It follows that

/ M^^.C+y1'.^^"/- |.|̂ .
JB{XQ,R) {m(XQ,V)R}2 JB{xo,2R)

Hence,

^(.0^) lnl2dlr < {l+fim^o^)}2/^^1) yB(.o,2Ji)lnl2da;'
Clearly, by repeating above argument, we have

(2.4) ( M2^^ . ck { ^dx for any fc>0.
JB{x^3R/2) {l-{-Rm(Xo, V^JB^W

Similarly, by CaccioppolFs inequality (2.3),

(2.5) f ^dx < cfc / H2^ for any fc>0.
JB(o;o,3^/2) (1 + \r\l/2R)k JB{x^2R)

The lemma then follows from (2.2), (2.4) and (2.5).

Let r(.r,z/,r) denote the fundamental solution for the Schrodinger
operator -A + (V(x) + rr), r G R. Clearly,

r(:c,2/,T)=r(^,-r).
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Since V > 0 and V € L^2, it is well known that

(2.6) |r(^,T)| ^ c for ̂  € R71

where (7 depends only on n.

Since V € -Bn/2 implies that V €. Bq for some q > n/2, the following
theorem follows easily from Lemma 2.1 and (2.6).

THEOREM 2.7. — Suppose V € 5n/2. Then, for any x,y e W,
^i i

^^l < {1 4- |T|i/2|^ - ̂ |p{i + rn(x, V)\x - y^ ' \x - y^-2

where Cjc is a constant depending only on n, k and the constant in (0.2).

COROLLARY 2.8. — Suppose V € Bn/2- Then there exists C > 0
depending on n and the constant in (0.2) such that, for every f € L^R71),
1 < p < oo,

llm^^^-A+y)-1/!!^^/^.

Proof. — It follows from Theorem 2.7 that

^ |r(̂ )|d, ̂  cf^ {̂ |,.̂ (̂ )P|,.̂

< c

~ m(x, V)2

where r(a:, y) = r(.r, ^/, 0) is the fundamental solution for —^+V(x). Thus,
if/Cl^R71),

u(^) = (-A + ̂ -VCr) = / r(x,y)f(y)dy,
JR"

we have

f /* 1 l /p/ f /> 1l/p
|^)|< / |r(.z;,2/)|dz/^ / \r^y)\\f(y)\Pdy\

IJR71 J IJR71 J

c1 ( r 1 l^p 'n.̂̂ ^{/..̂ •'"iî i""'} • ''''̂
It follows that

{ {m^Vfu^dx^C [ \fw[! m^V^x^^dy.
JR"- JRrt (JR^ )
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Finally, note that, by part (b) of Lemma 1.4 and Theorem 2.7,

/ m{x^\Y^y)\dx<cJ ———————^^P2^——————,dx
^iR71 7Rn {1 + \x - y\m(y, V)}^2^ \x - y^-2

<C if we choose k = 2ko + 3.
Corollary 2.8 then follows.

Remark 2.9. — If V satisfies (0.12), then V(x) < Cm{x, V)2 a.e. on
W1. It follows from Corollary 2.8 that, for 1 < p < oo,

\\V(-^+V)-lf^<C\\f\^

Also, for 1 < p < oo, by the L^ boundedness of the Riesz transforms,

IIV^-A + lO-VHp < G||A(-A + V)-1/!!?
^cii^-A+yrviip+Gii/iip
< ^11/llp.

3. The proof of Theorem 0.3.

In this section we give the proof of Theorem 0.3.

THEOREM 3.1. — Suppose V € Bq for some q > n/2. Then, for
1 < P < ̂

||y(_A+V)-V||^<G||/||,

where C depends only on n and the constant in (0.2).

Proof. — Let / e LP(R71), 1 < p < q and

u{x)= [ T(x^y)f(y)dy.
JR^

We need to show that
ll̂ llp < C\\f\\p.

Write

u(x) = I ^(x,y)f(y)dy-^- ( r(x,y)f(y)dy = u^x) +u^{x)
J\y—x\<r J\y—x\>r

where r = ———.
m(x, V)
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By the properties of Bq class, V € Bq^ for some QQ > q. We have

l-Mli/ , -fh——^
J\y-x\<r F y\

U \ 1/90

<Cr2-^ \f(yW°dy]
y-x\<r )

where we have used Holder inequality and the fact qo > n/2. Thus,

/ \V(x)ul(x)\qodx<C ^ \ \f(y)\qody^V(x)qom(x,V)n~2qodx
JRn JRn [^y-^^vi )

[ [ [ 1
= C I/O/)]90 ^ / V(x)^ m(x,V)n-2^dx ^ dy.

JRn l^l—^K^vy J

Now, let R = , _ . . Thenm(y, V)

f V^m^x, V^-^dx < CR2'10-71 f V{x)qodx
J\x-y<-^V^ J\x-y\<CR

90

^CR^[—{ V(x)dx\^UK \~Rn / "W
[H J\x-y\<CR

<C

where we used the part (a) of Lemma 1.4, (0.2) and Lemma 1.8.

Hence, we have proved that

( {V^u^x^dx^C f \f(x
Jprz JR

Next, note that, by (1.6),

[H J\x-y\<CR }

[ {V^u^x^dx^C { {/(x^dx for some qo > q ^ n/2.
JR" JR"

;, note that, by (1.6),

( \V{x)u,{x)\dx<C [ \f(y)\U v^——dx\dy
JRr. J^n ^^-^|<^^ \X-V\ J

^C f \f(y)\dy.
JRrt

Therefore, by interpolation,
ll^i ||p <C\\f\\p for Kp<qo.

To finish the proof, we note that, by Theorem 2.7 and the Holder
inequality,

IU2(^ < ci,^r {1 + k - y\m^, V^x - y|"-2

< cr2^' [ I _______f^pdy

-^r {1 + \x - y\m{x, V}}k\x - i/|»-2

1/p
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where 1 < p <, qy and r = ————
m(a;, V)

Thus,

/ \V(x)u^x)\Pdx < C I \f(y}\P
JVL" jRn

[ f .________\V(x)\Pdx__________1
[J\y-x\>^j^ m(x, V)2^-1^! +\x- y\m(x, V)}^ - y|"-2 J dy-

Now, fix y e R", let R = 1 By Lemma 1.4,
m(y, V)

/' ___________\V(x)\vdx__________
J\v-x\>-^^ m(x, V)2(p-D{l + ja; - y\m(x, V)}^ - y|"-2

^C I _____\V(x)\Pdx_______
J\y-x\^CR fi2(l-p)(l + R-l^ _ yj)fci|a; _ y]n-2 •

(where k, = fc-2^- l)fc°)
fco+1

^^7^1 Vp^•(2^1+2•fl2p

j==l ^ Jl^ ^|a;-3/|<2.'A

^^(f^/ y^^) .(2^)-fcl+2•^j=l V^"^ J\x-y\<23R )

00 ( i r ^^
^^E ff^2/ ^)^ .^.(2^)-^2

j==i V21 ^k-s/l^-R /

< C if we choose fc sufficiently large.
From this we have

{ \V(x)u2(x)^dx<C { \f(x)fdx for Kp<qo.
^R"' JR"

The theorem is then proved.

We are now in a position to give

The proof of Theorem 0.3. — Suppose V G Bq for some q > n/2. By
Theorem 3.1

||V(-A+V)-V||^<C||/||p for Kp<q.
It follows that

||A(-A4-V)-V||p<q|/||^ for Kp^q.
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Then, by the 1^ boundedness of Riesz transforms, for 1 < p < q,

IIV^-A + vr'np < CP||A(-A + vr'np < w\\,.

4. The proof of Theorem 0.4.

In this section we give the proof of Theorem 0.4 stated in the Intro-
duction. We also prove an L^ estimate for the operator V^V^A+V)"1

in the section (Theorem 4.13).

By the functional calculus, we may write, for 7 € R,

(4.1) ( -A+V)^=- 1 ^(-^(-A+V+ZT)-1^.
27T JR

Thus,

(-A 4- V)^f(x) = - 1 / (-rr)^(-A + V + rr)-1/^)^
^ J^

= / K(x,y)f(y)dy
JR71

where

K ( x , y ) = - 1 [\-irrr(x^r)dr.
^ JR

(4.2)
- ' v f 0 .̂ /27T J^

Note that, by Theorem 2.7,
C^H/2(4.3) \K(x^y)\< -, for any k > 0.

- {l+l^-i/lm^.y)}^ \x-y\

Let ro(^,2/,T) denote the fundamental solution for the operator
—A+irinM71 .!! is well known that

Ck 1|ro(a:,2/,r)|<
- (1+|T|V2^-^ |a:-2/|71-2

Ck 1(4.4) |VJ\)(a;,2/,r)|^

|V^ro(o;,2/,r)|<

(l+lTl1/2^-^ l^-t/l71-1

Cfc 1

(l+lTl1/2^-^ ' l^-2/l71

where Ck is independent of r € R.

LEMMA 4.5. — Suppose V € Bn/2- Then there exists Cjc > 0 such

<7fc {^-ylm^y)}2-^^

that

|r(a;,y,T)-ro(a;,y,r)|^ (l+lrlVz^-yDk |a;-y|»-2
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for re, y e R71, \x - y\ < ——— and for some qo > n/2.
m[x, V)

Proof. — Note that
-A^rQr, y , r) - Fo^, y , r)} + ir{T(x, y , r) - Fo^, y , r)}

=-y(:r)r(^r).
We have

r{x,y,r)-ro(x,y,r)=- ( ro{x,z,T)V(z)r(z,y,r)dz.
JR"-

Now, let R = |.K - y\ and suppose ^ ̂  ———. By Theorem 2.7,
m(x, V)

\r{x,y,r)-ro(x,y,r)\

^C [ (1 + \r\^\x - z^-^l + \r\^\z - y^V^) dz
- ^Rn {x-z^-ni-^m^y^z-y^z-y^

=Ck I +Ck I +Cfc/
J\z-x\<R/2 J\z-y\<R/2 '/^:^1|^

= A + ^ 2 + ^ 3 .
Since V e B^/^ V € B^ for some go > n/2. We obtain

7 < ck 1 f V(z)dz
1 - (1 + |r|V^ • ̂ -2 • j^^ \z - x\^

< ck 1 1 /> ,̂  , ,
- (1 + \r\^RY ' R^ ' Rn-^ J^^ ̂ ^

Ck {Rm(x,V)}2-^/^
~ (1 + \r\l/2R)k ' R1^2

where we have used (1.6) in the second inequality and Lemma 1.2 in the
third.

Similarly,
^ Cfc {JPm^.V)}2-^/^)

2- (l+lrlV^^ ' J?^-2

Finally, we need to estimate Js.

It is easy to see that
i, < ^ f v^z
- (l+|r|V2^ 71^1^/2 \^-y\2n-i{l+m(y,V)\z-y\^

^ [ f V^dz , I- V^dz \
- (l+\T\^R)k [Jr>\.-y^ |^-y|2"-4' J^y\^ \z-y\^-^ r
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, 1 1where r = —;——- ~m(y, V) m{x, V)'
Using Holder inequality and the Bqy condition (0.2), we obtain

V{z)dz/:r>\z-y\>R/2\^ - 2/1271-4

U -) V90 „ ^ l/9o

<C V^dz} { \ t(n-l)-2(n-2^o^
^y,r) } [JR/2 J

/o\2-(n/go) . f ^/R } ^o

<C^) 'p^^t t(n-l)-2(n-2)^l

C{Rm(y,V)}2-^/^
R^2

where we have assumed, without loss of generality, that (l/^o) > (4—n)/n
for n > 3, so n - 2(n - 2)qo < 0.

Also, using the doubling condition and taking k sufficiently large, we
see that

rfc/ ,> |.- .̂̂ ^£(27^^ y^2
^l-z-yl^y I ^1 ,==i \ ~ ' ) ^\z-y\<23r

00

^^-^W^-^f. .^^
,_1 V-" / J\z-y\<r

^-2n z)dz
J^l ^ r " - "••' J\z-y\<r

<
c

Thus,

13^

^^{fim^.y)}2-^^)
I?71-2

Cfc {^m^.V)}2-^")
(l+lrl1/2^ fi71-2

The proof is then finished since m(y, V) ~ m(x^ V) when |^—2/| < —-,——r.m(x^ V)
We need another lemma before we carry out the proof of Theorem 0.4.

LEMMA 4.6. — Suppose V G Bgo, (n/2) < QQ < n. Assume that
-An + (V + ir)u = 0 in B(xo, 2R). Then

( r V7'
/ Wdx] <CR{n/qo)-2{l-}-Rm{xo,V)}ko sup \u\

\JB{XO,R) ) B{xo,2R)
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where (!/() = (I/go) - (1/n).

Proof. — Let T) € C§°(B(XQ, 2R)) such that T? = 1 on B(a;o, 3R/2},
|V»?| < C/A and ̂ rj} ̂  C/R2.

Note that,

u(x)r)(x)= I ro(x,y,r){-^+ir}(ur])(y)dy
•/K"

(4-7) = / ^o(x,y,r){-Vur)-2Vu-^rj-uAr)}dy
JR"

= j ^ Fo(x, y, r){-Vurj + u^r]}dy

4-2 / Vyro(a;,2/,r).(V77)ud2/.
JR"

Thus,fora;eB(a:o,A),

(4•8)IVU(-)1<CL^1¥^^^L^
^ sup H./ v?^dy

B(xo,2R) JB(xo,2R) \X - i/l"-1

c r
+ D,̂ T / \u(y)\dy.

n JB(xo,2R)

It then follows from the well known theorem on fractional integrals that

/ r V/*
/ Wx^dx)

\ JB(xo,R) ja \ 1/90

^c auP 1"1 \V(x)\''°dx} +CR(n^)-^ sup |d
B(xo,2R) i(xo,2R) ) B(xo^R)

^CR^)-2 sup \u\[———f V(x)dx+l\
B(xo,2R) [A" 2 JB(xo,2R) f

where (1/f) = (I/go) - (1/n) and we have used (0.2) in the last inequality.

The desired estimate then follows from Lemma 1.8.

Remark 4.9. — If V € Bn and -Au + (V + ir)u = 0 in B(a;o, 2A),
then

(••<
sup |Vu|^ -.{l+aT^o.V)}''0- sup \u\.

B(xo,R) •". B(a;o,2fi)


