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LP ESTIMATES FOR SCHRODINGER OPERATORS
WITH CERTAIN POTENTIALS

by Zhongwei SHEN (*)

0. Introduction.

In this paper we consider the Schrédinger differential operator
(0.1) P=-A+V(z) on R",n>3

where V(z) is a nonnegative potential. We will assume that V' belongs to
the reverse Holder class B, for some g > n/2. We are interested in the L?
boundedness of the operators (—A+V)™, V(-A+V)~1/2 V(-A+V)~1V
and V2(—A + V)~ ! where v € R.

Note that a nonnegative locally L? integrable function V() on R" is
said to belong to By(1 < ¢ < 00) if there exists C' > 0 such that the reverse
Holder inequality

(0.2) (|—;T/3qu$) v SC(IT;/Bde)

holds for every ball B in R™ ([G], [M]).

One remarkable feature about the B, class is that, if V' € B, for some
q > 1, then there exists € > 0, which depends only on n and the constant
C in (0.2), such that V € By, [G].

(*) Supported in part by the NSF.
Key words: LP estimates — Schréodinger operators — Reverse Holder class.
Math. classification: 42B20 — 35J10.
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We now state our main results in this paper.

THEOREM 0.3. — Suppose V € B, for some ¢ > n/2. Then, for
I<p<y
IV2(=Aa+ V)" fllp < Goll£llp

where C,, depends only on p, n and the constant in (0.2).

THEOREM 0.4. — Suppose V € B, /5. Then, fory € R, (-A+ V)
is a Calderon—Zygmund operator.

It is well known that Calder6n-Zygmund operators are bounded on
LP for 1 < p < 00.

THEOREM 0.5. — Suppose V € By and n/2 < q < n. Then, for
1< p < Po,
IV(=A+ V)2 fll, < Cpll £l

where (1/po) = (1/q) — (1/n).
We remark that the ranges of p in Theorems 0.3 and 0.5 are optimal.

This can be shown by considering the potential V(z) = |z|* where
—2 < a < 0. See Section 7.

It follows easily fro;n Theorem 0.5 that, if V € By, n/2 < ¢ <mn,

(0.6) I(~A+ V)2V §|l, < Cpllfllp for ph <p<oo
and
(0.7) [V(=A+V)"'V{l, <Clfllp for py<p<po

where py = po/(po — 1).
THEOREM 0.8. — Suppose V € B,,. Then
V(-A+V) Y2 (-A+ V)" Y2V and V(-A + V)1V
are Calderon-Zygmund operators.

We also obtain the LP boundedness of the operators
V(—A + V)—l, V1/2(—A + V)—1/2, V1/2(—A + V)—IV
and
VI2v(-A+ V).

See Theorem 3.1, Theorem 5.10, Theorem 5.11 and Theorem 4.13 respec-
tively. As a direct consequence of our LP estimates, we have
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COROLLARY 0.9. — Suppose V' € B, for some q > n/2. Assume
that —Au + Vu = f in R™. Then

IV2ullp < Cpll fllp for 1 <p <4,
Vull, < Cllfll, for1<p<g,
IV2Vull, < Clfll, forl1<p<mp
where 1/(p1) = (3/2¢) — (1/n) if n/2 < g < n; and p; = 2q if ¢ > n.

COROLLARY 0.10. — Suppose V' € By for some q¢ > n/2. Assume
that —Au + Vu = div g in R™. Then

IVullp < Cpllgllp for py <p < po(1 <p < oo ifg>n),
IV'/2ull, < Cliglly forpy <p<2¢(1<p<2qifqg>n)
where (1/po) = (1/q) — (1/n).
We now recall that an operator T' taking C°(R™) into L} (R™) is
called a Calderén—Zygmund operator if
(a) T extends to a bounded linear operator on L?(R™),

(b) there exists a kernel K such that for every f € LS°(R™),

7f@) = [ K@@y s on {suwp )

(c) the kernel K satisfies the Calderén-Zygmund estimates:

.

K(z,y)| < —»
K@yl < o
C|h)°
(0.11) q 1K@ +hy) - K(z,y)| < #
Clh°
K(z,y+h) - K(z,y)| < ———
kl (.’L‘ Yy ) (.'1,' y)l |x—y|"+5

for z,y € R", |h| < |z — y|/2 and for some § > 0. See [St2].

We remark that in his thesis, which inspired the work in this paper,
J. Zhong [Z] studied the Schrodinger operator —A+V (x), assuming that V'
is a nonnegative polynomial in R"™. He showed that, for v € R, (=A+V)¥,
V2(-A + V)7, V(=A + V)~Y2 and V(-A + V)~!V are Calderén-
Zygmund operators with bounds depending only on the degree of V and
the dimension n.

Related results can also be found in [HN] and [T]. In [HN], Helffer
and Nourrigat considered the case of nonnegative polynomials. They proved
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the L? boundedness of V2(—A+V)~! and V1/2V(—A+V)~1, based on a
subelliptic estimate of Rothschild and Stein [RS]. In [T}, the potential V =
|z|? was considered in connection with the Hermite operator. Furthermore,
it was pointed out by the referee that the L (1 < p < 0o) boundedness of
the operator (—A + V)* in Theorem 0.4 follows from a general result of
W. Hebisch [H].

Note that, if V' is a nonnegative polynomial, then

(0.12) max V(z) < C (ﬁ /B V(x)dz)

for every ball B in R™, where C depends only on the degree of V' and n.
It follows that V satisfies (0.2), i.e., V € By for all ¢, 1 < g < 0o, with the
same constant as in (0.12). Hence, our Theorems 0.4 and 0.8 extend Zhong’s
results on the operator (—A + V), V(=A+V)~Y/2 and V(-A+ V)"V
to the general B, class. Clearly, Theorem 0.3 implies that V?(—A+V)~1 is
bounded on LP(R™) for all p, 1 < p < oo, if V satisfies (0.12). But it seems
that extra conditions are needed to assure that the kernel function for the
operator VZ(—A + V)~ satisfies the Calderén-Zygmund estimate (0.11).

It is interesting to notice that, if V(z) = |z, — ¢(2')|*, @ > 0, where
z' = (x1,...,Zn-1) € R® 1 and ¢ : R®"~! — R is a Lipschitz function, then
V satisfies (0.12) with a constant depending only on n, & and ||V¢||oo. Also,
if V(x) = |z|*, ag > —n, then V € B,. In particular, V € B,/ if a > —2;
and V € B, if a > —1.

The Schrodinger operator —A + V' with nonnegative potentials is
useful in the study of certain subelliptic operators. Indeed, by taking the

partial Fourier transform in the ¢ variable, the operator —A, — V()82 is
reduced to —A, + V(z)&2. See [Sm).

We briefly sketch the argument we will use in this paper. First, we
note that, in the case that V = P(z) is a nonnegative polynomial, the
weight function
(0.13) M@, V)= 3 |02P(@)| /=)

lel<k
plays a key role. In (0.13), k = degree of P(z). See [Sm], [Z]. Here, for
V € B, /3, we define the function m(z, V') by

1 1
. —_— = P — <l1p.
(0.14) @ V) sup {r >0 ) /B(m,r) V(y)dy < 1}

The function m(z, V') was introduced in [Sh] for the potential V satisfying
the condition (0.12) to study the Neumann problem for the operator
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—A+V(z) in the region above a Lipschitz graph. Note that, if r =

_
m(z,V)’
then

=),
- V(y)dy =1.
=2 B(z,r)
In the case that V = P(z) > 0 is a polynomial, it can be shown that
m(z,V) ~ M(z,V).

Next, we use a lemma due to C. Fefferman and D.H. Phong [F] to
show that, if V € B, /,,

C 1
0.15 I(z,y)| < '

(0.15) IP(z,y)| < {1+ [z —ymz, V)}F |z - yn2
and, if V € B,

(0.16) |VI(z,y) o 1

< .
S T i@ VF g
for any k > 0, where I'(z,y) denotes the fundamental solution for the
operator —A + V(z) in R™. We remark that similar approaches were used
in [Sm] and [Z]. Also see [Sh].

Estimates (0.15) and (0.16) are essential to deal with the kernels

of operators in the part where |z — y| > For the part where

m(z,V)’
|z —y| < m—(:clT/_)’ the key observation is that, if V € By, ¢ > (n/2),
c{lz — yim(z, V)}2~(n/9)
017) (@)~ Tofa,y)| < SE-UME L)

o= gl
where I'g(z,y) is the fundamental solution for —A in R™.

Estimates like (0.15), (0.16) and (0.17) will enable us to control the
operator (—A+V)¥, V(=A+V)~'/2 and V(—~A+ V)~!V by the Hardy-
Littlewood maximal function and the corresponding (maximal) singular
integral operators associated with —A.

Finally, we note that, to study (—A + V)* and V(-=A + V)~1/2 by
functional calculus, we actually need to deal with I'(z,y, 7) and VI'(z,y,T)
where I'(z,y,7) is the fundamental solution for —A + V(z) + i7, 7 € R.
Moreover, if V' € By, n/2 < ¢ < n, we do not have pointwise estimates
for VI'(z,y, 7). But, these difficulties are overcome by our basic idea that,
the operators associated with —A + V can be viewed as a perturbation

of the corresponding operators associated with —A in the scale less than
{m(z, V)}~. '
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The paper is organized as follows. In Section 1 we introduce the
auxiliary function m(z,V) and study its properties. We also state and
prove the Fefferman-Phong Lemma (Lemma 1.9) under the assumption
V € By, /2. In Section 2 we establish the estimate (0.15) on the fundamental
solutions (Theorem 2.7). Section 3 is devoted to the proof of Theorem 0.3.
In Section 4 we give the proof of Theorem 0.4. Theorem 0.5 is proved in
Section 5, while Theorem 0.8 is proved in Section 6. A counterexample is
given in Section 7.

Throughout this paper, unless otherwise indicated, we will use C and ¢
to denote constants, which are not necessarily the same at each occurrence,
which depend at most on the constant in (0.2) and the dimension n. By
A ~ B, we mean that there exist constants C > 0 and ¢ > 0, such that
c<A/B<C.

Finally, the author would like to thank the referee for pointing out the
relevance of Hebish’s work, and for the valuable comments concerning the
limitations on p in Theorem 0.3 and 0.5, which lead to the counterexample
in Section 7.

1. The auxiliary function m(z, V).

Most of the results in this section were proved in [Sh] under the
assumption (0.12). The extension to the case V € By, ¢ > n/2 is fairly
straightforward. For the sake of completeness we provide the proofs.

Throughout the section we will assume that V' € By for some ¢ > n/2.

It is well known that V' € By, ¢ > 1 implies that V(x)dz is a doubling
measure,

(L.1) / V(y)dy < Co / V(y)dy.

B(z,2r) B(z,r)
In fact, if V € By, ¢ > 1, then V' is a Muckenhoupt A, weight (e.g., see
(St2]).

LEMMA 1.2. — There exists C > 0 such that, for 0 < r < R < 0o,

= V(y)dy<c(5)%~2-—3— [ v
™2 JB(z,r) T oAr R"=2 Jp(a,R) '
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Proof. — By Holder inequality,

1 1 1/q
- Vdy< | ——— Vidy
IB(IE,’I‘)l B(z,r) (lB(.’L’, T)l B(z,r) )

n/q 1/q
R) 1
<\ BTy Vidy
(7 <|B(w, B Joon) )

R\™4 1
() \maml., ve
T (lB(l’, R)l B(z,R) )

The lemma then follows easily.

since V € By.

By Lemma 1.2 and the assumption ¢ > n/2, we see that, for any

r € R,
lim 1 / Vdy=0
r=07""2 Jp(e,m
and 1
lim n—2/ Vdy = oo.
T—00 T B(z,r)
DEFINITION 1.3. — For z € R™, the function m(z,V) is defined by
1 1
————— =SuUp{ T —> Vdy<1;.
m(w, V) 7‘>13{ -2 /B(a:,'r) v= }
n 3 J— 1
Clearly, 0 < m(z, V) < oo for every z € R® and if r = m@, V) then
1 3 / Vdy =1.
T B(z,r)
Moreover, by Lemma 1.2, if
1 1
Vdy ~ 1, th ~—
rn—2 L(m,r) v ’ mr m(a:, V)
The following lemma is very useful to us.
LEMMA 1.4. — There exist C > 0, ¢ > 0 and ko > 0 such that, for
z,y in R,
C
~ i — < _
(@) m(@, V) ~m(y, V) if o=yl < e,
(b) m(y, V) < C{1 + |z — ylm(z, V)}*m(z, V),
cm(z,V)
,V) 2> .
© V) 2 T e = yim(e, V)Yl
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1
Proof. — Let r = W Suppose |z — y| < Cr. Since Vdz is a
doubling measure,

1
'n.l-—2 / Vdz ~ ﬁ/ Vdz = 1.
r B(y,r) r B(z,r)

m(y,V) ~ % =m(z, V).

It follows that

To see part (b), suppose |y — x| ~ 2/r,j > 1. Let 0 < 71 < r and
2%r; ~ 2J7. Then, by Lemma 1.2,

/ Vdz < C(2%)(m/a)-n f Vdz
B(y,r1) B(y,2kry)

< C(2F)/a-n / Vdz
B(y,2ir)

< C(2F)r/a)-n / Vdz
B(z,2ir)

< c@2k)n/a-n.cs. Vdz (by the doubling condition (1.1))
B(z,r)

=c@ko-n. g2,

Thus,
1 wo-n. i ()
— Vdz < C(2 “q’"'C’-<—)
7'?_2 /I;(y,n) @) ° \n
o\ (D2
<c@R™MI-ncy) . (_)
™

<1/2 if n SCl’jr and C; is large .
Hence, by Definition 1.3,
1 )
—>C7r.
m(y, V) =
It follows that

m(y, V) < Cim(z,V) < C{1 + |z — yIm(z, V) }*om(z, V), ko = log; C1.

Finally, we need to show part (c). We may assume that

1
z—yl > ———x,

for otherwise it follows easily from part (a).
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By part (b),
m(z,V) < C{1 + |z — ylm(y, V)}**m(y, V)
< Cla — y[*om(y, V)ko+!.
Thus,
cm(z, V)l (kot1) cem(z,V)
|z — y|ko/(ko+1) = {1 4 m(z, V)|z — y[}Fo/ kot D)
The proof is complete.

m(y,V) >

The following is an easy consequence of Lemma 1.4:

COROLLARY 1.5. — There exist C > 0, ¢ > 0 and ko > 0 such that,
for any =,y € R",
{1+ |z — ylm(y, V)}/ &+ <1+ |z — y|m(z, V)
< C{l+ |z — ym(y, V)}*ort.

Using Holder inequality and the B, condition we see that

V(y) c
1.6 / dy < V(y)dy.
(1.6) B(z,R) 1T — y["2 R"2 JpzR) )
Similarly, if V € By, hence V € By,
V(y) c
1.7 / dy < V(y)dy.
(1.7) O P BT Jpen ()
LEMMA 1.8. — There exist C > 0 and kg > 0 such that, if

Rm(z,V) > 1, then

1 / &
—_— Vdy < C{Rm(z,V)}"°.
7 [, V0 < ClRm(z V)

Proof. — Letr = ﬁ Suppose 2/r < R < 29+1r, j > 0. Then,

by the doubling condition (1.1),

/ Vdy < it / Vdy = Citrm2,
B(z,R) B(z,r)

It follows that

1 . r n—2 .
- Vdy <3t (= < 2—n\j
Rn—2 /B(z,R) % < Gy (R) < Go(Go2"7")

< C(Rm(z,V))*, ko = logy Co + 2 — n.



522 ZHONGWEI SHEN

We end this section with a lemma due to C. Fefferman and D.H.
Phong [F], which plays the crucial role in the estimates of the fundamental
solution for the Schrodinger operator —A + V(z).

LEMMA 1.9 (C. Fefferman-D.H. Phong). — Let u € C}(R"). Then

/n lu(z)[*m(z, V)3dz < C {/Rn |Vu(z)|?dz + /Rn |u(a:)|2V(z)d:1:} .

1
Proof. — Fix zg € R™, let rg = —————. Then
m(zg, V)

/B Vu@)fde > ~ /B /B lu(z) — u(y) Pdedy
/B )PV @)ds > /B /B () PV (y)dzdy

where B = B(zg,19).

Adding two inequalities we obtain

/ |Vu|2dm+/ [ul?Vdx > —/ / gélg{ —,V(y) }|u(a:)|2dmdy

where ¢y > 0 is a constant to be determined later.

Recall that V is an A, weight. Hence, there exists € > 0 such that,
for every ball B in R”,

1
{zeBV lBI/deH‘2I |-

Now, let co = ¢|B(0,1)|~1, then

It follows that

/ [u(z)|*m(z, V)3dx < 92/ [u|?dx < C{/ |Vu|2dx+/ |u|2de}
B o JB B B

where we have used part (a) of Lemma 1.4. Moreover,

/ lu(z) [Pz, V)2+dz < C / Vu(z)|Pm(z, V) do
B(Io,ro) B(Zo 7‘0)

+/B(ZO’TO) lu(z) 2V (z)m(z, V)”dz}.
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To finish the proof, we integrate both sides of the above inequality in
zo over R™ to obtain

/ lu(z)|*m(z, V)2t" ( / dxo) dz
R™ |$0_$|<m_(zt,,_v)
2 n
<C {/R [Vu(z)|*m(z, V) </|mo-m|<m(,+,,v) dx0> dz
u 2 n
+ ‘/Rn| (x)|*V (z)m(z, V) </|zo—z|< 1 dx())}.

m(zg,V)

Finally, note that, by part (a) of Lemma 1.4,

/ dx ( ! )"
o~ | —F/—) -
|10—2|<'"l—(11—m75 m(x, V)

The lemma then follows easily.

2. Estimates of fundamental solutions.

This section is devoted to the estimates of fundamental solutions for
the operator —A + (V' +i7) on R™ where 7 € R.

We will assume that V' € B, for some ¢ > n/2 throughout this section.

LEMMA 2.1. — Suppose —Au+(V +i1)u = 0 in B(zo, 2R) for some
o € R®*, R >0 and 7 € R. Then

sup {|u(z)|: z € B(zo, R)}

c 1 12
k 2

< — d

= {1+ RIr[V2F{1 + Rm(zo, V) }¥ { Rn /B(zo,zm e y}

for any integer k > 0, where C}, depends only on k,n and the constant in
the reverse Holder inequality (0.2).

Proof. — Since
A(u?) = 2ReAw - T + 2|Vu|? = 2V |u|? 4 2|Vu|?> > 0,
|u|? is subharmonic. It follows that

1/2
1
(2.2) sup{|u(z)|:z € B(zo,R)} < C (——;/ |u|2dy> .
R™ JB(z0,3R/2)
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By Caccioppoli’s inequality,

(2.3) |Vu|?dz + / |u|?Vdz + |7| |u|?da
B(20,3R/2) B(z0,3R/2) B(z0,3R/2)
< % |u|?dz.
B(z0,2R)

Now, let n € C§°(B(zo,3R/2)) such that n = 1 on B(zo,R) and
|Vn| < C/R. Applying Lemma 1.9 to the function uz, we obtain

/ m(z,V)?|u?dz < C / |Vu|?dz + / |u|?V dzx
B(zo,R) B(z0,3R/2) B(z0,3R/2)

1 2
+—= u|“dz
R Jooar) " }

& |u|?dz
B(x0,2R)

where we used (2.3) in the last inequality.

Note that, by part (c) of Lemma 1.4, for z € B(xo, R),

Cm(.’lIo, V)
> .
#V) 2 T Rmizo, V) e/tatD

m(

It follows that
/ |’U,|2d$ <C- {1 + Rm(:co, V)}zko/(ko+1) / |’U,|2d.’l:
B(zo,R) - {m(zo, V)R}? B(x0,2R)

Hence,

C
ul?dz < / ul?dz.
/B(xo,R) F {14 Rm(zo, V)}*/(ko+1) Jp 10 2R) Fu
Clearly, by repeating above argument, we have
Ck
24 / ul?dz <
@4 B(a:g,3R/2)| | {1+Rm(z0, V)}*JB(z0,2R)
Similarly, by Caccioppoli’s inequality (2.3),
Cx
2.5 |u|?dx < —————/ |u|?dz for any k>O0.
29) B(z0,3R/2) | (1+|7[Y2R)* (4o 2R)
The lemma then follows from (2.2), (2.4) and (2.5).

|u|?dz for any k>0.

Let I'(z,y,7) denote the fundamental solution for the Schrédinger
operator —A + (V(z) +i7), 7 € R. Clearly,

F(x, y7T) = F(y’ z, _T)'
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Since V.>0and V € Lﬁf, it is well known that

(2.6) ID(z,y,7)| < for z,y e R"

|z —y|"—?
where C depends only on n.

Since V' € By,/; implies that V' € B, for some ¢ > n/2, the following
theorem follows easily from Lemma 2.1 and (2.6).

THEOREM 2.7. — Suppose V € By, /;. Then, for any z,y € R",

< Ck ' 1
{1+ 72|z — y|}e{1 + m(z,V)|z — y|}* |z —y|*~2

where Cy, is a constant depending only on n,k and the constant in (0.2).

IT(z,y,

COROLLARY 2.8. — Suppose V € By, /5. Then there exists C > 0
depending on n and the constant in (0.2) such that, for every f € LP(R"),
1<p< oo

Im(, V)2(=A + V)" fllp < Clifllp-

Proof. — It follows from Theorem 2.7 that

dy
I'(z,y)ldy< C
- T (z,y)|dy g {1+ |z —y|m(z, V) }B|z — y|*—2
C
< e——
= m(z,V)?

where I'(z, y) = I'(z, y,0) is the fundamental solution for —A+V (z). Thus,
if f € LP(R™),

u@) = A+ V)@ = [ T,

we have

wol<{ [ re oy { [ weswra)

C 1/p ) p
SW{/R 'F(m’y)llf(y)l”dy} =2t

It follows that

[ imvru@pis <o [ 15wp{ [ me vy i
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Finally, note that, by part (b) of Lemma 1.4 and Theorem 2.7,

 (w,V))?
o vPIRG i <G [ G

< C if we choose k = 2kg + 3.

Corollary 2.8 then follows.

Remark 2.9. — If V satisfies (0.12), then V(z) < Cm(z,V)? a.e. on
R™. It follows from Corollary 2.8 that, for 1 < p < oo,

IV(=A+ V)" fll, < Cllfllp-
Also, for 1 < p < 0o, by the L? boundedness of the Riesz transforms,
IV2(=A+ V)" fll, < CIA-A+ V) fllp
<CIV(=A+V) "l + Clfll
< Clfllp:

3. The proof of Theorem 0.3.

In this section we give the proof of Theorem 0.3.

THEOREM 3.1. — Suppose V € B, for some q¢ > n/2. Then, for
1<p<y
IV(=A+ V)7 fll, < ClIfll

where C depends only on n and the constant in (0.2).
Proof. — Let f € LP(R™),1 <p < qand

u@) = | Tenswi.

We need to show that

WVl < Clfll
Write
u(z) = / I(z,y)(y)dy + / I(z,9)f (4)dy = w1 (&) + ua(a)
ly—z|<r ly—z|>7r
1
where r =

m(z,V)’
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By the properties of By class, V' € By, for some gy > gq. We have

s ()] < /l @I,

y—z|<r l$ - yln—2

1/90
< Cr’w (f If(y)lq"dy)
ly—z|<r

where we have used Holder inequality and the fact go > n/2. Thus,

|V(z)ui(z)|%dz < C/ {/
Rn |

|f(y>|«mdy} V(@) om(a, V)"0 ds

R» y—z|<ma—cl'—ﬂ
= [f(y)|% { / V()% m(z, V)" 290dz » dy.
R~ l2=¥I< vy
Now, let R = ; Then
’ m(y, V)’
/ V(z)®°m(z, V)" 2%dg < CR2‘1°_"/ V(z)®*dz
lz—yl<7mvy ls—y|<CR
1 qo0
< CR*® —n/ V(z)dz
R™ Jio—y|<cR
<C

where we used the part (a) of Lemma 1.4, (0.2) and Lemma 1.8.
Hence, we have proved that
/ |V (z)uy(z)|%dz < C/ |f(z)|%°dz for some q¢ > g > n/2.
Next, ]i:)te that, by (1.6), <

V(z)
/Rn [V (z)u1(z)|dz < C/]R" |f(v)] {/[I_y|< . de}dy

m(z,V)
<c /}R 1F)ldy.

Therefore, by interpolation,
Vuill, < Cllfllp for 1<p<qo.
To finish the proof, we note that, by Theorem 2.7 and the Holder
inequality,

lug(z)| < C

|/ (y)|dy
ly—z|>T {1 + I'T - ylm(x, V)}k|x - y|n—2

1/p
<o || £ (@) Py
- ly—z|>7r {1 + fl‘ - y|m(.z', V)}kl.’l} - y,n—2
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1

Where1§p_<_q0andr=m.

Thus,
/ IV (@)us(e) Pdz < C / F@)P
R" Rn

/ |V (z)|Pdx dy
=212 gy M@ V21 + |z — yim(z, V)}elo — y|n=2 [

1
Now, fix y € R", let R = —————. By Lemma 1.4,
Y my,V)
/ |V (z)[Pdz
|y—1|2m;75 m(:c, V)2(p-1){1 + IIB - ylm(‘T’ V)}klx - y|"_2
o V(@)lPda
= Jiy—zi>cr R?A-P)(1+ Rz — y|)kr |z — y[n—2’
_k—2(¢—1)ko
(where k1 = Fo T 1 )
<0y =7

—~~

VPdz - (29)"*1+2. R
< (27R)" /|z —y|<2R @)
1 p
V(z)dz | - (29)~F+2.R?%
((2JR) [z—y|s2jR ( ) ) ( )

p
1 —k142
(R,.-z /.z-mv‘“d“”) i (29)

< C if we choose k sufficiently large.

IA

A
AL ||M8 i™Ms

C

From this we have
[ Veumeresc [ 1i@pe o 1<p <o
R™ R™
The theorem is then proved.

We are now in a position to give

The proof of Theorem 0.3. — Suppose V € By for some g > n/2. By
Theorem 3.1

IV(=A+ V) fll, < Clifll, for 1<p<gq.
It follows that
A=A+ V)7 fll, <Clifllp for 1<p<gq.
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Then, by the L? boundedness of Riesz transforms, for 1 < p < g,
IV2(=A+ V)" fllp < CollA(=A + V) fllp < Cpl fllp-

4. The proof of Theorem 0.4.

In this section we give the proof of Theorem 0.4 stated in the Intro-
duction. We also prove an L? estimate for the operator V/2V(—A+4V)~1
in the section (Theorem 4.13).

By the functional calculus, we may write, for v € R,
(4.1) (-A+V)7 = _% /R(—if)”(—A +V +ir)"ldr.
Thus,
(A +V)7(@) =~ [[(-in a4V + i) f@ar

= / K(z,y)f(y)dy
R™

where
(4.2) K(z,y) = —i /(—’iT)hF(:L‘, y, T)dT.
27 R
Note that, by Theorem 2.7,

Cie™l/2 1
43)  |K(z,y)| < .
@3 K@ S e ymE P T

, for any k > 0.

Let To(z,y,7) denote the fundamental solution for the operator
—A +i7 in R™. It is well known that

( Ck 1
To(z,y,7)| < )
To(z,y,7)I 1+ |[71'2|lz —y|)*  |o —y[n—2
C 1
(4.4) { Iv.T < £ :
IVaLo(,3,7)| < =3 o=y
1
V2To(z,y,7)| < g :
\i zLo(z,9,7)] < (14 72|z —y))k |z -y

where Cj, is independent of 7 € R.

LEMMA 4.5. — Suppose V € By, /3. Then there exists Cx > 0 such
that
Ci {le — ylm(z, v)} >~/
L+ |72z — y|)* |z —y[»—2

|F(:L‘, Y, T) - Fﬂ(x: Y, T)l <
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forz,y e R", |z —y| < and for some gy > n/2.

1
m(z,V)
Proof. — Note that

—Az{T(z,y,7) - To(z,y,7)} +ir{T'(z,y,7) — To(z,y,7)}
= -V(z)l'(z,y, 7).
We have
I(z,y,7) — To(z,y,7) = —/R To(z, 2z, 7)V(2)[(2,y, T)dz.

Now, let R = |z — y| and suppose R < . By Theorem 2.7,

1
m(z,V)
IT(z,y,7) = To(z,y,7)]

(4|2 — 2) 7 (L + |72z — y]) FV(2) d2
g (2= 2" 21+ m(y, V)|z — y[}r|z — y|n—2

=Ck/ +Ck/ +Ck
|z—z|<R/2 |z2—y|<R/2 1:::}%25;

< Ck

=0+ I+ Is.
Since V € By, V € By, for some go > n/2. We obtain
Ck 1 V(2)dz
SRS 1/2p\k  Rn—2 n—2
(1+|r[*2R)* R B(z,R/2) 12 — 7|
Ck 1 1 /
< . . V(2)dz
(1+|r['/2R)k  R*=2 R"=2 Jp(; rsa) (
< Ck {BRm(z,V)}?~(n/20)
= (1+|7|*/2R)k Rr—2

where we have used (1.6) in the second inequality and Lemma 1.2 in the
third.

Similarly,
G {Rm(z,V)y*-t/w
(1+ |7|Y/2R)k Rn—2 ’

Finally, we need to estimate I5.

I, <

It is easy to see that
I < Ck / V(z)dz
2= (+r2R)E J,_ysry2 |2 — g~ H{1+m(y, V)[z—y[}F

< Ck / V(z)dz +rk/ V(z)dz
N (1+IT|1/2R)IC r>|z—y|2§ |z_y|2n—4 |z—y|>7 Iz_y|2n—4+k




LP ESTIMATES FOR SCHRODINGER OPERATORS 531

1 1
m(y,V)  m(z,V)
Using Hoélder inequality and the By, condition (0.2), we obtain

/ V(z)dz
r>|z—y|>R/2 |Z - y|2n—4
1/90 r /g0
<C {/ V(z)""dz} {/ $(n—=1)—2(n—2)q5 g4
B(y,r) R/2

2—(n/q0) r/R /40
<c(R v / H(n=1)-2(n—2)d) gy
- T Rn_2 1/2

C{Rm(y,V)}*~ (/@)
<
- Rn—2
where we have assumed, without loss of generality, that (1/go) > (4—n)/n
forn>3,s0n—2(n—2)g, <0.

where r =

Also, using the doubling condition and taking k sufficiently large, we
see that

V(2)dz = 1 /
k k
T ——=<Cr e V(2)dz
s e <O Ry,
C- 1
S C7‘4_2n ron—ait Cg / V(z)dz
; (2])211, 4+k lz—yl<r
C
< rn—2
C{Rm(y, V)}*~ (/a0
< .
- Rn—2
Thus,
e O {Bm(y,V)}2-/«
*= (1 +|7['2R)* Rn—2 '
The proof is then finished since m(y, V) ~ m(z, V) when |z—y| < m(%/j

We need another lemma before we carry out the proof of Theorem 0.4.
LEMMA 4.6. — Suppose V € By, (n/2) < go < n. Assume that
—Au+ (V +ir)u =0 in B(zo,2R). Then

1/t
(/ |Vu|td:v> < CR™/%)=2{1 4 Rm(xo,V)}*® sup |ul
B(zo0,R) B(z0,2R)






