
ANNALES DE L’INSTITUT FOURIER

PAVEL I. GUERZHOY
Jacobi-Eisenstein series and p-adic interpolation
of symmetric squares of cusp forms
Annales de l’institut Fourier, tome 45, no 3 (1995), p. 605-624
<http://www.numdam.org/item?id=AIF_1995__45_3_605_0>

© Annales de l’institut Fourier, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1995__45_3_605_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
45,3 (1995), 605-624

JACOBI-EISENSTEIN SERIES
AND p-ADIC INTERPOLATION

OF SYMMETRIC SQUARES OF CUSP FORMS

by Pavel I. GUERZHOY

1. INTRODUCTION AND STATEMENT
OF THE MAIN THEOREM

Let
/=^a(n)e(nr) (e(x) = e2—)

n€Z
n>0

be a cusp Hecke eigenform of even integral weight k on the full modular
group SL^(Z). We denote the space of all such forms of weight k by Sk and
the space of all modular forms of weight k by Mk. Let M be an integer,
3 <, M < k-1, and \ be a Dirichlet character modulo r, x(-l) = (-l)^1.
The special values of symmetric squares of the cusp form / are defined by
the following:

(i) Wx)^°^.
n>l n

The values (1) are known to become algebraic numbers after multiplication
by an appropriate constant. Below we extend in a natural way this
definition for / being an Eisenstein series.

Key words: Jacobi forms — Eisenstein series — Symmetric square — Modular forms —
p-adic interpolation - Rankin's method.
Math. classification: 11F67 - 11F85 - 11F55.
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Let {fj | j = 1,... ,dimM/c} be a basis of the linear space Mk of
modular forms of weight k. This basis consists of the normalized (i.e.
a(l) = 1) Hecke eigenforms. The modular form

dim Mk r

(2) F^M^)= ^ _^n; , (M,x)
^l \ J ^ J j )

is the kernel function for the special values of the symmetric square with
respect to the Petersson scalar product (-, •) in the following sense:

{F(A,M,xU)=^,(M,x).

We construct a generating function from the modular forms F(k^ M, \) and
their derivatives.

MAIN THEOREM. — Let M ^ 1 be a fixed natural number, \ be a
fixed Dirichlet character modulo r, and t = (1 — ^(—1))/2.

Then

(3) Y^z^ ^ A(^^)F^)(2z.-2/.+M+^+l,M,x)=^+i(T^),
i/>0 0</x^

with the Jacobi-Eisenstein series E^^ (of weight M + 1 and index r on
SL'z(7i)) as explained below, where A(/^, v) is given by the following:

A(/^) = 21-4M-3A-^7^1/2-M-tr2l/+t^(M+ 1/2)-1

x V f n^f2^^ r(M+2^-2/^+l)r(2M+2^-2/^)
0^, r ( M + 2 z . - ^ + ^ + i ) r ( ^ + i ) r ( 2 z . - 2 ^ + ^ + i ) -

We must say a few words about the Jacobi-Eisenstein series
E^^(r^z) occuring in (3). Almost all necessary facts concerning Jacobi
forms one can find in [2]. Taking into account that our notations are slightly
different from those given in this work, we shall briefly recall some defini-
tions and propositions of this theory. Hereafter the letter H denotes the
complex upper-half plane, C denotes the whole complex plane, the letter
Z denotes the set of integers. For r G H and F € SL^{Z) we assume

7(r) = ———. The formulas
cr + d

/„ (a b\\ , f-crz<2\ .far-\-b z \
<^kr , r,^ = CT+GO- e(—— ^ —————— I

\ \c a) ) \CT+d/ \cr+d cr+d/

{(f) \r (A, ̂ )) (T, Z} = 6(7^^ + 2A^))(^(T, Z + AT + P.)

define the action of Jacobi group ̂ J (i.e. the semi direct product of SL^(Z)
and (Z x Z)) in the space of holomorphic functions ^(r, z) of two variables
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(r € H, z € C). Let k and r be positive integers. A function <j) is referred to
as Jacobi form of weight k and index r if it satisfies the following conditions:

(f) \k,r $0~? ^) = ^(^ ^) for every element ^ of r'7,

^(r, 2;) = y^ y^ c(n^m)e{nr-\-mz).
n>o "^z
- m2<4rn .

Denote as Jk,r the finite-dimensional linear space of Jacobi forms of
weight k and index r. For an integer k > 2 and any integer 5 the Eisenstein
series Ek,r,s in the space Jk,r is defined, as in [2], p. 25, by the following:

Ek,r,s(r, Z) = ^ e^T + 2a^) |fc,r 7^

• 7er^\r^
where

^ ^ = { 7 e ^ J : l | ^ 7 = l } = { ( ± 0 ^(o^)) | (n , / . ) ez^ ,
and where we use a, & for the unique natural numbers such that r = a&2

and a is square-free. This series depends only on the residue of s modulo
b. A Jacobi form is referred to as a cusp form if

(/)(r,^)=^ ^ c(n,m)e(nT + mz).
n>0 ^ez

m'2<4rn

The Eisenstein series in (3) is now given by

^(T,^) = (4^1/2 ^ X(^^(T,^).
s modr

The idea to construct generating functions connected with special
values of L-iunctions associated with modular forms appeared in [9]. In
this paper a generating function associated with the period polynomials of
modular forms was constructed and this generating function was calculated
in terms of Jacobi theta function.

Section 2 is devoted to the proof of the Main Theorem. In section 3
we shall derive explicit formulas for the Fourier coefficients of the series
E^(r^z) (cf. Theorem 2). In section 4 we shall use our Main Theorem
and these formulas to prove the existence of a p-adic analytic function
such that its special values coincide with those of the symmetric square
of a p-ordinary cusp form (cf. Theorem 3). The main idea for this is to
use the well-known p-adic interpolation properties of the special values
of Dirichlet L-function. These special values appear in the formulas for
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Fourier coefficients of our Jacobi-Eisenstein series. We construct the p-adic
analytic function in question as the non-Archimedean Mellin transform of a
bounded Cp- valued measure. The existence of this measure is proved using
the abstract Kummer congruences.

A similar result on p-adic interpolation of symmetric squares one can
find in [5]. Our method to prove it differs from those of [5]: we use Jacobi
forms instead of non-holomorphic modular forms.

The author is very grateful to A.A. Panchishkin for a lot of useful
discussions.

2. PROOF OF THE MAIN THEOREM

To prove this theorem we must recall some facts concerning Jacobi
forms and the Rankings method of calculating the symmetric square special
values.

2.1. Differential operators acting in the space of modular forms.

For two smooth functions / and g, a natural number v and real
positive fci and k^ Cohen [1] defined smooth functions F^^2 by the
formulas
F^(f a) = y (-ir-^ (^ n^^n^^) ^ ̂.: ( ) ^<. Um^r^-^/ g
w = V (-D- (^ r(fc^)r(fci+^+2^-i) ^_^

o<2^ ^ r(fci+^)r(fci+^-i)u9 ) •
It is known that if / and g are modular forms on some group H C SL^(Z),
with weights fci and A;2, then F^^2 (/, g) is a modular form on H of weight
ki + A;2 + 2^.

A function /^(r,^) of two variables was constructed in [1] for a real
positive number £ and a smooth function /:

^ ,) - y- WTW
;^o^^+W+l/) '

Both these operators are tightly connected:

//•(^^(..^E^r^Tirfefc^^'1-^./')-
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2.2. Rankings method for symmetric squares.

These operators can be used for the calculation of the symmetric
square special values.

Let Tr^2 : Mfc(ro(4r2)) -> Mk be the trace operator as in [4].

PROPOSITION 1 ([10]). — Let i/ and M be natural numbers. Let
X be a Dirichlet character modulo r, t = (1 - ̂ (-1))/2, and :\:(-1) =
(_I)M-H yj^ ̂ ^ exists an Eisenstein series S = S(2^ 4- M +1 +1) in
the space of modular forms of weight 2v -{• M 4-1 -hi on SL^(Z) such that

(. ̂ (̂ .̂̂ ,.̂ -̂ g^^^
XTY-^^^AM+I^/L ^x \
'"--"I "^ V^^M+l^

where
dim5'fc «

^•'"•>:)= g (CT^WA
and the sum is carried out through all normalized cusp Hecke eigenforms of
weight k. Functions h^ and E^^,^ are the modular forms of half integral
weight introduced in [8]:

^(^l^^^n^nV),
n€Z

E. - \- X(ri) (^) (^-2t-1 ^
M+l/2- (^ (cr+d)M+l/2 \c^+^ ^

c=0 mod 4r

Now we define the special value of symmetric square Df(M, \) when
/ is not necessary a cusp form by deleting the "addition member" S in (5).
Assuming this definition one can rewrite (5):

(6) F(2. + M + ,+ 1. M, x) ̂  (2^)-/ W^^M + 1/2)A/ v / r(M + 2^ + t)r(M + v +1/2)
XT^F^AM+I^^^^
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2.3. Taylor expansions of Jacobi forms.

PROPOSITION 2. — Let (f) E Jk,r be a Jacobi form. We denote by
xy{(t))(r) tne Taylor expansion coefficients of the function (f) on z:

^z)=^X^)(r)z\
v>Q

a) The function

. r ^ . y (-2mrmk+v-^-l)^)
0^/2 r(^-1)1^+1) ^-^M

is a modular form of weight k+y on SL^ (Z). In other words, one can define
operators ̂  : Jfc,r -^ Mk+y.

b) The following identities take place:

X (^M- ^T (2^^r(fc+^-2^),^ ^
( )( ) ~ o<^ r(^.-^)r(^i)^-^ ̂

It means that the set of modular forms ^(0)(r) defines the Jacobi form 0
uniquely.

c) Let SL^(Z) = \JH(TJ be a finite coset decomposition. Then
3

E^i^-^E^)-
3 3

In other words, the operators ̂  commute with the trace operator.

d) One can construct the operators ̂  using the Fourier coefficients
c(n, m) of Jacobi form 0. If

0(r, z) = E E c(n5 rn)e(nr + 7712;) e Jk,r2

n>o mez
- rn2^4r-2n

then

(27r)-2•/-t^(^) = E E E (-1)'
n>OmeZ O<JLA<^

r(2^+t+fc-/.-i) 2^-2^,2..^., . / .
r(^+l)r(2v+t-2^+l)r(2v+k+t-l) c(n,m)e(nr).

Here one must take t equal to 0 or 1 to make the number k+t even.
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Parts a), b) and d) of this proposition are contained in [2], Theorem
3.2. To prove c) we consider firstly the case when k is even. Consider the
space Mk^r of holomorphic functions (/) of two variables with the property

(ar+b z \ ^ ( rcz2 \ . .
^^Tcr ̂ Td) = ̂  + ̂ e (cTT^J^^

for every element (a ) of SL^ (Z). The differential operator
\c d/

. . . 9 92 2k -1 9Lk = 8mr— - —— - ————
9r 9z2 z 9z

maps an element 0 of Mk,r to an element L^ of Mfc+2,r. It is easy to see
that

LkWk^) = (^/c)k+2,r0- for all a € SL^Z),^ e Mk,r,

^L(0)(^) = (Lk^-2 o ̂ +2i/-4 o • • • o Lk(f))(r, 0).

Part c) of the Proposition 2 in the case of even k follows immediately from
these formulas. To prove it in the case when k is odd one must consider
the function

(t>i(r,z) =z(f)(r,z) eMfc+i^.

It has the same Fourier coefficients as <^, the number k + 1 is even and it is
enough to apply part a) to finish the proof.

2.4.

Let \ : Z/rZ -^ C be a Dirichlet character; t = 0 or 1, x(-l) = (-I)*.
We denote by 0^ the theta-function associated with character \:

0^(r,z) =-- 1/2(4^)-* ̂  x(m)e{m2r+2mrz).
mez

LEMMA 1. — Let 67.2 (Z) = L^c^r2)^ be a right coset decompo-
3

sition. Then for a natural number k > 2
EXM^z)=Y^(0^z)E^ (r)) a,.

' k,r2

To prove this lemma we use the following assertion connected with
the action of elements of ro(4r2) on the function 0^.



612 PAVEL I. GUERZHOY

LEMMA 2. — Let ( a ) C Fo(4r2), and let \ be a primitive
Dirichlet character modulo r. Then

^ (̂ . 4.) - ̂  (^)' © ̂ (--^ (^s) ̂
where Cd = 1 or i according as d = 1 or 3 mod 4.

This lemma follows immediately from the modular properties of the
function h-^ (cf. [8]) and the following three propositions.

PROPOSITION 3 ([8], Proposition 2.2, p. 457). — J f 7 = f a l e
\c d/

ro(4r2), then

M7(r)) = x(d) (^-V (cr + d)^1/2^^).

PROPOSITION 4. — The following identity holds true:

^(T^)=(^)t^/2+t(T,^).

PROPOSITION 5. — I f f i s a smooth function, i a natural number,
and 7 = 1 ) e SL^(Z) then

\c d/

^ /ar+& z \ p f cr2z2\ \. ̂ "̂  p^o'r-\-b\Y
f (c7Td'c7TdJ=(CT+d)e(c7TdJ [(CT+d) ̂ (c^)] •

The Cohen's operator in the right-hand side of this equation acts on
the function in the square parentheses. Now we turn to the proof of the
propositions.

Proof of Proposition 4. — After differentiation and changing the
order of summation one has:

^/w, . _ r(t+l/2) ̂  , . , ^ . y- (2^)2-^+21/

x ^ ) ~ 2 ^x(n)e(7^T)^^(.+l)^(t+l/2+.)•
To finish the proof of Proposition 4, it is sufficient to use the Legendre
formulas for F-function and to observe that

Y^ / ^ 2 ^V- (47^m^)2^/+(l-t)
g^^Erd.d-.),.)^-
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Proof of Proposition 5. — We consider a function E(r) = l/(r - f)
on the upper-half plane. The bar denotes the complex conjugation. This
function satisfies the following functional equation:

E (^r^d) = (CT + d?E(r} ~ c(cr + d)

for every 7 = ( J € SL^(Z). We construct a two-variable function

Gy^(r,z) associated with the function /(r):

G,,,(r,,) = ,xp(,̂ (.))S^^ /̂<-)(.).

From the following identities proved by Cohen ([I], p. 281) one gets the
statement of Proposition 3:

G^(r,zV2m) = e(z2E(r))——fl{r,z},

^(^•^)=(CT+d)-^^(T'-)•

Now we turn to the proof of Lemma 1. We claim that for every integer
k>2

^(^^^E^i^f^)^^
(c,d) ^ ^

where for each pair of integers (c, d) the numbers a and b are such that

( ) € 51/2 (Z) and the sum is carried out through all such pairs (c,d)\c a)
for which an appropriate pair (a, b) exists. One has:

E .̂(:>.)

E ( , J\-k ( cr2z2\n far-}-b Z \= (CT + d) e( -—————, 0y —————_, —————
V c r + d j x\cr+d'CT^d)

^ f A -\ ^v^ / ^ k ( cr2z2\
=-2(4m) ^(CT+d) ^-^d)

E , , / oar+6\ / z \
x x(m]e m"———- e 2mr———-

m^ V CT+^ V CT+d}

-J^-E^E^)^)- .̂̂ ^^-^)
=^(r,z).
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On the other side one can apply Lemma 2:
(a ^

E^z)=^e^(ab\r^)
(r d} v /(c,d)

-E E ,̂. ° (^)<o ^
^ d^'"

A;,r2

^1^ r£^c.-2*-lx(rf)(^)(,)^-
(cT+d)^-1^=Epx(^) E

J \ (c,d)
\ c=0 mod

(c,d)
c=0 mod 4r2

= E (^(^^)^-1/2(T))|^ ̂ .

A;,r2

Lemma 1 is proved.

2.5. Proof of the Main Theorem.

It is enough to calculate the Taylor expansion coefficients of the
Jacobi-Eisenstein series E^^. Taking into account Proposition 4 we have:

(7) ^(T^)^M+1/2(T)

(^ \2y^t

= r(t +1/2) E(^^(^l)^(^l/24-.)^)£;M+l/2•
^>0

We see from (7) that

x^e^E^^r)) = ̂ '̂nî ^TT^^^v..
Using assertion a) of Proposition 2 and (4) we get

(8) ^+t(^M^M+l/2(T)) = ̂ T^WM+1/2(T)) = -;

r(M + 1 + v}
F^W/^h^EM+i/2).r(v + i)r(M + 2v + t}r(t +1/2 + v) v ' x^

Applying to (8) Lemma 1 and assertion c) of Proposition 2:

(9) 6.+^M+i) = ̂ r^^r

F(M + * + v)
' T(v + 1)T(M +2v+ t)ri,t + 1/2 + v)TrfF^/W1/2^,^^).
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Now one can rewrite the right-hand side of (9) in accordance with (6):
^+t(-%+i) = r21^1-^-3^2^1/2-^-^-!)-

r(2M+t+2i/)
><^(l+2^f)^(M+l/2)F(2I/+M+t+l;M;^

Application of assertion b) of the Proposition 2 finishes the proof of the
Main Theorem.

3. CALCULATION OF THE JACOBI-EISENSTEIN
SERIES FOURIER

In the simplest case of the Jacobi-Eisenstein series Ek,i of index one,
these coefficients were calculated in [2]. To prove the p-adic interpolation
theorem for symmetric squares of cusp forms we need some information
about the Fourier coefficients e^ (n, m) of the Jacobi-Eisenstein series

E = (47rz)^(r^) = ̂ e^(n,m)e{nr + mz),
n, m

where ^ is a primitive Dirichlet character modulo r = p L ^ L > 0 , p l S 8 L
fixed odd prime number. We denote by G(^) the Gauss sum associated
with the character ^ and by L(s^\) the Dirichlet L-function associated
with the character \:

^W = ^> '0(m)e(m/r),
m rnodr

L(5, x) = ̂  X^m-8 (SR5 > 1).
m>0

We set G(^)) = 1 if the character -0 is trivial.

THEOREM 2. — In the above notations one has:

a) e^(n,m) = 0 ifm2 > 4r2yl.

b) e^(n,m) = ̂ (m/2r) = ̂ (^n) ifm2 = 4r2n.

c) Ifm2 < 4r27^ then

(10) e^(n m) - ̂  7^fc"l/2 r2-2^^^"1^^ a Y[ { ) ) ek^m)-^ 2^1^-1/2)^ Gw L^k-^2)91"

In (10) D == m2 — 4r2n < 0, ̂  is the Dirichlet character associated with
the imaginary quadratic field Q(vT)),

Y=Y^^n)=\{Y^
q\D
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where the product is taken over all prime numbers q dividing D and Yq is
a polynomial in the variable {^((y)^1"^}, 9i = 1 if^ is the trivial character
(i.e. L=0).IfL>0 then

(11) pi =gi(^m,n) == ̂ ^-^(pAp- l))6^0

<>o

x ^ ^(^((A^-Am+rn)^),
Amodp1^

A^—Am+rnSOmodp^

where 5^o = 1 or 0 according as t = 0 or i > 0.

d) Let
HW = ^ VW(Q(A)/A

A mod p^^
Q^sOmodp^

be the internal sum in (11), Q(X) = A^ — Am 4- rn; r = j^, m = ĵ m,
a > 0, p \ m; n = p^n, b > 2L > 0, p f n.

Then ̂ (^) 7^ 0 implies t = a, and ^ is equal to 0 or 1.

Remark. — One can prove that the summation over £ in (11) is
finite also in the case when b < 2Z/, but we do not need this fact for our
purposes.

The assertions a) and b) of Theorem 2 are contained in [2] and are
almost evident. The proof of part c) is similar to the Fourier coefficients
calculation in the case when the character ^ is trivial. This calculation is
contained in [2], Theorem 2.1. We will prove now the assertion d). One can
rewrite the condition Q(A) = Omodj/ as:

(12) pLA2 -^mA +p6+Ln = Omodp^.

PROPOSITION 6.

a) Ifa> L thenH(£) =0.

b) If a <L andC^a then H(£) = 0.

To prove part a) of the proposition, we consider three cases: 0 < t < L\
e == L; i > L.

If 0 < i < L then (12) is true for any A but Q(\)/p^ = Omodp yields
W(A)/p) = 0.



JACOBI-EISENSTEIN SERIES AND p-ADIC INTERPOLATION 617

If t=L then

H(l) = ^ V»(A)^(A2 - mAp"-1' + np6)
Amodp21'

= ^ ^(A-mp0-1')
A mod p21'

Pj^

= ^ ^(A-m^-^O.
Amodp21'

If i > L then (12) implies A2 = Omodp and ^(A) = 0.

To prove part b) we assume that a < L and consider the cases
0 < t < a and I > a. If 0 < t, < a, then Q(A)/p^ = Omodp yields
^(QW/P^ = 0. If < > a then (12) implies A2 = Omodp and V?(A) = 0.

Now we assume that a = L and consider three cases: 0 < £ < L,
L < ^ < 2L and^> 2L.

If 0 ̂  ^ < L then QW/p^ = Omodp and ^(QW/p1) = 0.

If £ < ^ < 2£, then

^w = E ^(A)^((A2 - mx + ̂ ) '̂~L)
AInodp<+I'

Q(A)=Omodp<

= E ^(^((A2-^)^-1')
^ mod p^^

ASThmodp^"^

= ^ ^((A-m)^-1-)
Amodp^1'

Asrfimodp^-1'

= ^ i/i(a)=0.
amodp21'

Here we have done the variable change A = m -h ap^11.

If < > 2£, then Q(A + p^/p^ = QW/P1 mod?1' implies

^w = ̂  E ^(A)^((A2 - mA + ̂ /p'"^'
X mod p^

Q(A)=Omodp<

Let A = a 4- fSp1'1", amodj/"1'; ^modp2'. After this variable change we
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have

H{£) ̂  ^ ^(^/^-^((a2 - ma+np^/p1-1'
amodp^-1' /3modp1' r> /, .-

Q(c.)=omodp^ + /3(2a - m) + /?? ' " )

^^ ]̂  ^ ^((^-ma+np^/p^-^+^a-m)).
Q! mod p^~^-1 f3 rnod p^

Q(a)=0modp^

The condition 0(0;) ^ Omodp^ yields a'2—am-\-npb ^ Omodp^"1'. It takes
place only if a = 0 or mmodp. In both cases H(£} = 0.

Now Proposition 6 is proved and we are able to finish the proof of
part d) of Theorem 2. One can deduce from Proposition 6 that the Fourier
expansion coefficient (10) may become non-zero only if a <: L and £ = a.
If 1 < a < L, then

HW= ^ WWW/P^
\modpa'+L

QC^SOmodp11

= ^ ^(A)^1'-'^2 - mA + np^1'-")
\modpa+L

= ^ ^(p^X - m)
Amodpa+L

PtA

=pL^-m) ^ ^(p^A+l)
A mod p0'

pfA

=p^(-m)( ^ ^-A+l)- ^ ^(p^A+^^O,
VAmodp" Amodp"-1 /

because for a primitive Dirichlet character '0, both sums in the parentheses
are equal to zero if a > 1. It remains to consider only one case: a = L = £.
Then

H(i) = ^ ^(A)^(A2 - mA + np^
X mod p21^

= ^ ^(A - m) = pL^(-m) ^ ^(pA + 1) = 0.
Amodp21 ' A rnod p1'"1

P\\
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4. p-ADIC INTERPOLATION OF SYMMETRIC
SQUARE SPECIAL VALUES

In this section we use the results of the two previous sections to
construct the j?-adic interpolation of the symmetric squares special values of
cusp forms. We fix an odd prime number p and an embedding ip : Q —>• Cp
of the algebraic closure of the field of rational numbers Q into Tate's
field. We shall make no difference between Q and it's image under ip and
omit symbol ip in formulas. One can construct a Cp-analytical function on
Xp = Homcontin(Z* C*) as a non-archimedean Mellin transform of some
bounded p-adic measure ^ on Z*:

L^(x) = p.{x) = / xdfi.
JK

We identify the elements of the torsion subgroup of X^ C Xp with
primitive Dirichlet characters modulo powers of p.

The symbol Xp will denote the natural embedding Z* —> C*, so that
Xp C Xp and all integers k can be considered as the characters x^ : y ̂  y^.

The existence of a special values p-adic interpolation of some zeta
function is equivalent to the existence of a p-adic measure with given special
values ([5]). We shall use the following important fact to prove the existence
of these measures.

4.1. The abstract Kummer congruences.

PROPOSITION 7 ([5], [7]). — Let {fj} be a family of continuous
functions from Z* to the ring of integers Op in Cp. Assume that the set of
finite Cp-linear combinations offj is dense in the space of all such functions.
Let {dj} be a family of elements in Op. Then the existence of a measure
with the property

\ fd^=dj
JY

is equivalent to the fact that the following statement is true: for every finite
set of elements bj G Cp it follows from ^ ̂  bjfj (y) € pn0p for every y 6 Y >

1 3 '
that [Y^bjCLj epn0p^.
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To formulate the theorem we need the definition of p-ordinary form.

A cusp form
f(r)=^a(n)e{nr)^Sk,

n>l

normalized by the condition a(l) = 1 which is an eigenform of Hecke
algebra is called p-ordinary if |a(p)|p = 1.

We denote the subspace of the p-ordinary forms of weight k by
S°k C S,.

For a prime number q we denote by a = a(q) and f3 = /3{q) the roots
of the Hecke polynomial X2 - a(q)X + q^1. We define by multiplicativity
the numbers a(n) and /3(n) for every natural number n.

THEOREM 3. — Let c > 1 be a natural number, p \ c. Let f be a
p-ordinary form of even weight k. Then there exist a Cp-analytic function
D° : Xp -^ Cp such that its value DC(Xp[)c) for 3 < M < k - 1 equals

2-4M-2t+l^-2M-fc+l^+2M-l^-M-2r(fc + ̂  _ l)Y{M)G(x)~2 L{2M, X2)

x(l-x(c)2c-2M)^T^(M,x),

where \ € X^ is a Dirichlet character, 1 < M < r - 1, M is an integer,

_ ( 1, if^ is a non-trivial character (r > 1)
~ f (1 -pM-l)(l - a^-V^-2)^ - a(p)-V-2), otherwise.

Here r is the conductor of\, G(^) is the Gauss sum, associated with \.

Proof. — One can assume that \ is primitive. Using the notation

\(k M f}- ^-5M-4t l/2-M-t.k-M-t-l H2-^ + elv + t)A(A;,M,t)-2 TT z r (2^+t+l)r (M+l/2) '

(^\k-M-l
Ai(fc,M,t) = [ ) A(fc,M,t)-l(47^^)-t,

definition (2), and statement (3) one gets
dim Mfc

E 7T-7T^Wx)=A,(A;,M,t)^^ ^ (-ly*
j=l Uji^J/ ^^ ^ 0</i<(fc-M-l)/2

. r(fc-^-i)r(fc-M)v ' r(^+i)r(fc-M-2^)r(A;-i)
X ̂ fc-M-2^-l^-(fc-M-2^-l)^^^^^^^
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The idea is to apply some operators to both sides of (13) to get some
"good" j?-adic properties in the right-hand side of the obtained identity
keeping under control what happens in the left-hand side. We denote by V
and U the operators

f\U(d) == ̂  a{dn)e(nr) = d^-1 ^ /|, Q u} e M^W X),
n>0 umodd v /

f\V(d) = f(dr) = d-^f^ ^ € Mk(Nd,x),

V(d)oU(d)=id.

It is known [3] that for a natural number s there exists a limit

£,=lim[7(p)<

We apply the operator £s o V(r2) to both sides of (13). To calculate the
limit in the left-hand side we consider the modular forms on ro(p2)

/,,o(T)=/(T)-a,/(pr), /j,i(r)=/(r)-/3,/(pT).
We denote

A,= lim af, B, = lim ftf.
V—>00 J V—^00 J

It is clear that one of the numbers Aj^Bj is zero because o.jf3j = pk~l . For
a p-ordinary form fj one of them is non-zero. Without loss of generality
one can assume that Aj -^ 0 (i.e. \0ij\p = 1). After noticing that

fj = ———'/rfj^1 ~^ ~Q———/7>°»^ j - f t j f3 j -0 i j
we can write

(14) Ai(fc, M, x)-^^, M, x)1^2)!^
dlmsok 1 A f= E ws^^W^-1''^'

We denote by Cs(fc,M,^,n) the Fourier coefficients of the modular
form in the left side of (14):

(15) ^M^)=F^M,x)\V(r2)\£s = ^c,(A;,M,^n)e(nr)
n^O

and consider the limit in the right side of (15). Now assume that \ is
non-trivial. Using part d) of Theorem 2 and the notation

-M+l/2

W^,x) =tM+l 2M-ir(M + 1/2) ̂ W2M, x2)-^-^^-1),
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we can rewrite (15):
A2(/c, ̂  ̂ -^i^, M, x)"1^^, M, ̂  n)

= J^o E D^-^-mWM^ ̂ X)Y^ m^ M)^-^
m^O mod p

D^=4•npsPV —m2<0

-^-2 ^ D2M-l^-m•)L(M,^x)Y{n,m,x,M)mk-M-\
m^O mod p

D2=4npsP^; -2-m2<0

and apply the following assertion.

PROPOSITION 8 ([6]). — Let uj be a primitive Dirichlet character
modulo A, (p, A) = 1. For an arbitrary integer c > 1 such that (c,j?A) = 1,
there exists a Cp-valued measure ̂ (c,^) on Z^. This measure is uniquely
defined by the following condition:

f xxyd^(c^)
z; ,1 ^ -M^AMrM , - ^HM^T^M - 6)/2) _

=(l-xa;(c)c ̂ G^^^^ (2.)M—————x-
where

_ J 1, if ^ is non-trivial
~ \ (1 - (^^-^(l - a;(g)9-M), otherwise,

<5 = 0 or 1; (-1)6 = ^Lc;(—l); M a positive integer.

Introducing the notation

A3(M,x) = sr^)71"'1'0^^2^^5

one has

(1 - ̂ (^^(M, x)"^, ̂  xr'M^ M, ̂ "'^(/c, M, x, n)
= J^ E ^r172^-1^^! + x^(c)c-M)

m^O mod p
-Dl=4npsPV-m2<0

x(-£»l/Am)Mx(-Ol/Am)y(n,m,x,M) /" yr^+(c,^)
^z;

-pfc-2 E ^-^^-^(^^(i+^^^c^)
m^O mod p

£)2=4•»^psP^' -2 -m2 <0

x(-D2/Am)Mx(-D2/Am)Y(n,m,x,M) f ̂ ^+(c,^).
•/z;

Here we used the fact that $£>(?') = 1 and ^(-D) = ^(TO2) for
D = m2 — 471?̂ ° if v is sufficiently large.
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It remains to consider the case when \ is trivial. This case is slightly
different from previous, but the calculations contain no essentially new
ideas. One must apply additionally the operator (1 — pM~^k~2V(p2))(l —
pk-2y^p2^ ^ keep the "good" form of the formulas.

Now we notice that in the right-hand side of the obtained equation
there are Fourier coefficients of modular forms of weight k on ro(p2). They
can be expressed as follows:

(16) E^^)^ / X^^D).
3 l/z?

The numbers \j in (16) are p-integers, do not depend on M and \ and
the sum is finite. Proposition 7 yields this Fourier coefficients to be Cp-
analytic functions on Xp. On the other hand the modular forms with these
coefficients belong to the finite-dimensional linear space of the modular
forms of weight k on ro(p2). It implies the values of each functional on this
modular form to be values of some Cp-analytic function. To complete the
proof of Theorem 3 it remains to consider the linear functional (-,/j) of
the Petersson scalar product with a p-ordinary form fj.
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