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LOJASIEWICZ INEQUALITIES FOR SETS DEFINABLE
IN THE STRUCTURE Rexp

by TA LE LOI

The object to be studied in this paper is the class Z> of subsets of
Euclidean spaces definable from addition, multiplication, and exponentia-
tion. In Section 1 we recall some properties of sets in this class; we refer
the reader to [3], [9], [11] for details. In the next sections we consider some
variants of Lojasiewicz inequalities for this class. In Section 2 we prove
the Lojasiewicz-type inequalities for V-sets and P-functions. Section 3 is
devoted to some applications of the inequalities given in Section 2. The
global Lojasiewicz inequalities with or without parameters for analytic V-
functions are presented in Section 4. The rationality of the Lojasiewicz
exponents is also proved. Some of the results of this paper were announced
in [10].

In the sequel, |[ || and ^(•,') denote the Euclidean norm and the
Euclidean distance in W1 respectively, d(rc,0) ^= 1. B(x^r) denotes the
open ball with center x and radius r. °X ̂ W \X for X C R71.

1. The class of P-sets.

1.1. DEFINITION. — Let "R,n denote the algebra of real-valued func-
tions on R71 generated over R by the coordinate functions and their expo-
nents, i.e.
_________^n dl! [^i,..., Xn, exp(a;i),..., exp(a;n)].

Key words'. P-sets - Lojasiewicz inequalities - Lojasiewicz exponents.
Math. classification: 14P15 - 14P99 - 26D20.
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Let Vn denote the class of subsets of W1 each of which is of the form:
^(/"K0)^ where f ^ ^Zn+rn, rn C N and TT : BT x W^ -^ W1 is the natural
projection. A set A is called V-set if A € Vn for some n € N. A map
f : A —> B is called V-map if its graph is a V-set.

Remark. — The class V contains all semi-algebraic sets. A P-set, in
general, is not subanalytic (e.g. {(x^y) : x > 0, y = exp(—-)}). If / is ax
P-function, then so is exp/. If, in addition, / > 0, then log/, /a (a C R)
are D-functions.

As a direct consequence of Wilkie's theorem [20] this class has the
following substantial property.

1.2. THEOREM (Wilkie). — V = (Pn)ncN is a Tarski system, i.e.

IfA.Be Pn, then A U B, A H B and A \ B e Vn'

If Ac Pn+i, then 7r(A) € Pn, where TT : M71 x R -> R71 is the natural
projection.

Proof. — See [19], [20] (see also [11]). D

Here we shall give some geometric properties of P-sets which will be
used in the next sections.

1.3. PROPOSITION.

(i) Every V-set has only finitely many connected components and
each component is also a V-set.

(ii) The closure, the interior, and the boundary of a V-set are V-sets.

(iii) The composition ofV-maps is V-map.

Proof. — (i) follows from a Khovanskii result on fewnomials [6], [7]
and Theorem 1.5 below (see also [3], [8]). (ii) and (iii) follow directly from
Theorem 1.2. . D

1.4. DEFINITION.

(i) A V-map f : A -^ W with A C W is called V-analytic if there
is an open neighborhood U of A inW1, U e Vn and an analytic V-map
F : U -^ IT1 such that F\ . = /.

A
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(ii) T>n -analytic cells in W1 are defined by induction on n: 'Pi-analytic
cells are points {r} or open intervals (a, b), —oo < a < b < +00. If C is a
T>n-analytic cell and /, g : C —> R are "D-analytic such that f < g, then

(f^g) d^ {(^r) € C x R: f(x) < r < g{x)},

(-ex), /) d^ {(^ r) € C x R: r < f(x)}^

07, +00) ̂  {(^ r) € G x R: g(x) < r},

r(/) ^= graph/ and (7 x R are Pyi+i-analytic cells.

(iii) A D-analytic decomposition ofW1 is defined by induction on n: a
7)-analytic decomposition ofR1 is a finite collection of intervals and points

{(-oo,ai) , . . . , (afc,+oo), {a i} , . . . , {a^}}, where ai < • • • < a^, A - € N.

A V-analytic decomposition ofM77^1 is a Alite partition ofW1'^1 into
'D^+i-analytic ceiis C such that the collection of all the projections 7r(C)
is a V-analytic decomposition ofR71 fhere TT : R714"1 ^> R72 is the natural
projection).

We say that a decomposition partitions A if A is a union of some cells
of the decomposition.

1.5. THEOREM (van den Dries & Miller).

(In) For Ai,... ,Afc (E PH there is a V}-analytic decomposition ofW1

partitioning A\,..., Ak.

(IIyi) For every function f : A —> R, A e 'Pyi, there is a T>-analytic
decomposition of R71 partitioning A such that for each cell C C A of the
decomposition, the restriction f\ is V-analytic.

I

Proof. — For the proof see [3], [4] or [9]. D

1.6. PROPOSITION (definable selection). — Let A C M71 x W be a
V-set and let TT : W1 x W —^ R71 be the natural projection. Then there
exists a V-map p : 7r(A) -^ W1 x W such that 7r(p(x)) = x for all x e 7r(A).

Proof. — See [3], Ch. 8, Prop. 1.2. D

1.7. DEFINITION. — The dimension of a V-set A C R71 is defined by

dim A ^= max{dimr:r is an analytic submanifold ofM71 contained in A}.
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Remark. — The class of P-sets shares many interesting properties
with those of semi-algebraic sets. For example, P-sets admit Whitney
stratification, they can be triangulated, and continuous P-functions are
piecewise trivial (see [3], [9], [11]).

2. Lojasiewicz-type inequalities.

2.1. DEFINITION. — For m e N define:

• expo(^) ̂  t, exp^(t) ̂  exp(exp^)), t e R.

' ^^"expj^
Note that expyy^ and (prn are T>-functions.

2.2. PROPOSITION.

(i) (po(t) = |^|, and for m > 0, (prn € C00 and Qat at 0.

(ii) Vm,^eN,a^O, lim (pm(tw) = 0.o^-*o ^m(a^)

Proof.

(i) Let u(t) = exp^-V t > 0, m C N, m ^ 0. By elementary
computation we have:

or'E ,̂...̂ ),
where fc, r(fc) € N, P,,fc € R[a;i,..., a-fc], deg Pi,k < i;

.̂ (̂ .expd),...,.̂ )).̂ ),

where Qk € R[a;o,.. • , ̂ m-i].
Therefore

s(fc) 1 1 1
^^'^expW^ ^05

where ̂  € R[a:o,... ,a;m-i], ^ = l , . . . ,5(fc) , s(fc) e N. So (i) follows, as
exp,(l/^)

lim J . . . = 0 for 0 < j < m.t-oexp^ ( I t ) - J
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(ii) is proved by induction on m. D

2.3. LEMMA (van den Dries & Miller). — Let f : (a,+00) -^ R
be a V-function. Then there exist £,m e N, C,r > 0 such that \f(t)\ <,
Gexp^),W>r.

Proof. — See [4], §9, Proposition 9.2 (see also [14]). D

2.4. LEMMA. — Let v : A —^ R, A c R71, be a V-function. Suppose
that v is bounded on every bounded subset of A, i.e.

(*) Vt > 0 if At = [x e A : ||o-|| ̂ } 7^ 0, then supv < +00.
At

Then there exist £, m e N, C > 0: \v(x)\ < (7(1 + exp^([|a;[|^)), \/x e A. In
particular, the inequality holds if v is continuous and A is closed.

Proof. — Let
fsup-y, if At 7^0,

w(t) = < A*
[ 0, if At = 0.

Then w is well-defined, by (*), and w : R4' —> R is a P-function, by Theorem
1.2. By Lemma 2.3 3t, m € N, r, Ci > 0 : |w(t)| < Ci exp^(^), W > r. Let
C == max(Ci, sup, ?;), then C < +00 by (*) and

Ar

|w(^C(l+exp^)), V ^ > 0 .

That is
Ko;)|<C(l+exp^(||a;f), Va:eA. D

2.5. LEMMA. — Let A be a locally closed V-set ofW1. Then there
exists a homeomorphic T>-map from-A onto a closed V-set ofW1^1.

Proof. — By the assumption A = A D E7, where (7 = "A U A is a
nonempty open P-set. R71 9 x i-̂  d(a;, c^7) is a continuous P-function, by
Theorem 1.2. So the P-map x ̂  (x, d(x, c^)-l) is a homeomorphism from
A onto the closed P-set {(x,t) € R^ x R : x e A, td^x^U) = 1} of
R^1. D

2.6. THEOREM. — Let / : A -^ M. Suppose that A is locally closed
in R71, / is a continuous T>-function and g : {x e A : /(a;) 7^ 0} -^ R is
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a continuous V-function. Then there exist M, L G N such that ^pM^f^ • P
can be continuously extended to A by 0 at all x G A with /(a:) =0.

Proof. — By Lemma 2.5 we can suppose that A is closed. For re e A,
n ^ 0 define

A.,. = {y C A: \\y - x\\ < ̂ u\f{y)\ = 1}.
Then Ax,u is a compact 'D-set. Let

,,//, ,\ _ J ̂ {l^)! : 2 / € ̂ L if A^ + 0
v ' ' f o , ifA,,,=0.

By Theorem l ^ ^ A x R - ^ R i s a P-function.

Claim. — v satisfies (*) of Lemma 2.4. Indeed, for t > 0
s\ip{v(x,u) : \\(x,u)\\ <t}

^sup{|^) | :3(a;^)eAxR+J|(^^)| |<^ \\y - x\\ ̂  1, u\f{x)\ = 1}.
The set X = {y : 3{x,u) € A x R+, ||(rc^)|| < t, \\y - x\\ ^ 1, u\f(y)\ = 1}
is the image under a projection of the set

y={Q/ ,^):rreA, u < 0, \\{x^u)\\<t^ \\y-x\\<,l, u\f(y)\ = 1}.
But Y is compact, for A = A, / is continuous and X C {||(a;,u)|| < ^,
{?/ — ^|| <: 1}- Hence X is compact. The claim follows because g is
continuous. Now, by Lemma 2.4, there exist ^, m € N, (7 > 0:

|^,^)| ̂  C(l +exp^(||0z1,^)), V(^,n) e A x M^.
Fix a; G A, |v(a;,^)| ^ 2Cfexp^(2^||^t||^), V'a ^ maxdl.rll.C, 1). This implies

|^)|<2Cexp^(^p),

when y G^A, /(2/) ^ 0, \\y - x\\ < 1 and \f(y)\ < min(^, 1, l). That\||a:|| c /
means ^m(^f\y)) • |^(2/)| < 2G, when 2/ € A, /(2/) ^ 0, \\y - x\\ < 1

and |/(?/) | is sufficiently small. By Proposition 2.2 (^(.f^1) • 9 can be
continuously extended to 0 at all a* € A with f(x) = 0. The theorem is
proved. D

2.7. COROLLARY. — Let f,g : A —> R. Suppose that A is closed in
W1, f,g are continuous T>-functions and /"^(O) C ̂ (O). Then there exist
L, M G N, a continuous V-function h on A such that ^M^) = h - f. In
particular, there exist ^, m € N, (7 > 0 sucA that

'̂ i ̂ -p^m^^^'va;eA
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Proof. — From the assumption — : {x G A : ^(rr) -^ 0} —»• R
is a continuous P-function. By Theorem 2.6 there are L,M e N such

that h = ——,—— can be continuously extended to A. Moreover, from

Lemma 2.4, 3^m € N, C" > 0: \h(x)\ < C(exp^\\x\\£), Va; <E A (we can
suppose m -^ 0). The corollary follows. D

2.8. COROLLARY. — Let f : A -> R. Suppose that A is closed in
R71, / is a continuous V-function. Then there exist ^,m,L,M e N, G > 0
such that

1/^)1 ^ exp^^ll^)^^^^"1^^ va; e A

Proof. — Apply Corollary 2.7 to g(x) = d(a-, /"^O)). Note that g is
a continuous P-function, by Theorem 1.2. D

2.9. COROLLARY. — Let X,Y be closed V-sets ofR". Then there
exist £, m, L, M e N, C > 0 such that

c^, X) + d(^, v) > ^iin^M^^ x n r)), v^ e R71.
^-''-PmUl**-'!! J

Proof. — Apply Corollary 2.7 to
f(x)=d(x,X)-^-d(x,Y) and g(x) = d(x,X H Y). D

2.10. Remark. — In Corollaries 2.7 and 2.8, if we suppose that A is
a locally closed subset of R71, then, from the proof of Lemmas 2.5 and 2.4,
there exist m € N, C > 0 such that

_ K^Cexp^lMI+dOr,^)-1, V:r e A,
where 17 = ̂  U A. Therefore, by replacing the denominators on the right
sides of the inequalities in Corollaries 2.7 and 2.8 by exp^{\\x\\ + d(x°U)~1)
we obtain the inequalities in the case that A is locally bounded.

Similarly, Corollary 2.9 can be somewhat generalized as follows.

2.9\ COROLLARY. — Let X,Y be closed V-sets in an open V-set
OofR71. Then there exist m, L, M e N, C > 0 such that

d(.,x) +d(.,y) > ̂ ^ ̂ (^)-i)^(^nn), v..a
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3. Applications.

As a first application of the inequalities given in Section 2 we prove
the Tietze-Urysohn theorem for the class of P-functions.

3.1. PROPOSITION. — Let Ac R71 be a locally closed V-set and
F c Abe closed in A. Suppose that f : F —^ R is a continuous V-function.
Then there exists a continuous V-function f : A—^R such that f\ = /.

Proof. — By decomposing / = / + + / - , where /+ = ^d/] + /),
_ 1 2

/ = ^(l/ l - A we can suppose that / > 0. Moreover, by Lemma 2.5, it
suffices to prove the proposition for A = W1.

Now suppose that / : F —^ R is a continuous P-function, F c W1

is a closed P-set and / > 0. Applying the inequality in Corollary 2.6 to
1/(^)-/Q/)1 and \\x-y\\, (x,y) e F x F, we can find L,M e N (M > 1), a
continuous P-function h : F x F -^ R such that ipM(\f(x) - / ( y ) ^ ) =
h(x,y)\\x - y\\, x,y e F. By Lemma 2.4 there are m € N, C > 0:
h{x,y) ̂  Cexp^(||(^,2/)||), x ^ y e F (where \\(x,y)\\ d^ (||^||2 + ||2/||2)1/2).
It is easy to see that ^M is strictly increasing on [0,+oo). So there
exists the inverse function y?^1 which is also a continuous P-function and

strictly increasing on [0, r^), where TM d^ lim (pM(t) = ——1——. Hencet-^+oo exp^(O)
h{x,y)\\x - y\\ < TM, ̂ x,y e F. By Corollary 2.8 there are p e N, C ' > 0

C'such that TM - h{x,y)\\x - y\\ > —————. \/x,y C F. Define

k(x,y)=mm(Cexp^(\\(x,y)\\)\\x-y^ rM-^——-——-), x^eR".

Then A; is a continuous P-function and ^M(\f{x) - / ( y ) ^ ) > k(x, y) < TM->
V.Z;, y € F. Define

A(^2/) = ̂ (k^x^Y^ + ||rz: - ,/||, ^^ e r1.

/(^) = mf{f(y) + A(a;, ̂ ) : y e F}, x e R71.

Then / satisfies the demands of the proposition (see for example Bochnak-
Coste-Roy, "Geometric algebrique reelle", Ch. 2, Prop. 2.6.9). D

In the differential analysis aspects, the behaviour of infinitely differ-
entiable P-functions, briefly C°° P-functions, is quite bad.
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3.2. Examples.

(i) (Bierstone [I], Ex. 2.18). Let F be the complement of the open
subset of R2 denned by {(x,y) : 0 < y < e-1/^2, x > 0}. Let / be the
function on F denned by f(x,y) = e-1/^2 if x > 0, f(x,y) = 0 otherwise.
Then / is a continuous P-function on F, infinitely differentiable on int F
and all partial derivatives of /i. extend continuously to F (in particular,

to zero at the origin). But / is not the restriction of a C°° function on R2

because if x > 0 then the difference quotient
f^e-^-f^)

e-i/^-0

(ii) (Malgrange [13], Ch. VI.2). Let f{x,y) = y + e-1/^2 if x ^ 0,
/(0,i/) = y2. Then / is a C°° P-function on R2. The ideal fC°°(R2) is not
closed in C°°(R2) (with the topology of uniform convergence of functions
and all their partial derivatives on compact sets), that is, there exists a C°°
function g on R2, g ^ fC°°(R2) but for each (x, y) € M2 the Taylor series
of g at ( x ^ y ) belongs to the ideal generated by the Taylor series of / at
(a-, y) in the ring of formal series. (In fact, / does not satisfy a Lojasiewicz
inequality in any neighborhood of the origin.)

We introduce here the notion of<?M -flatness. It measures, in a certain
sense, the "degree of flatness" of the contact of the zerosets of C°° functions
with P-sets.

3.3. DEFINITION. — Let Q, be an open subset ofR". Let X be a
closed subset in ̂ , / be C°° function on Q and M € N. / is called (pM-fl^t
on X iff for every a € 0, there exists a neighborhood Ua of a such that

Va € N71,^^, L^ > 0 : 1^/^)1 ̂  Ca^pM^^X)), \fx e Ua n U
Let <S>M(^,X) denote the set of all C°° functions on fl. which are (pM-n^t
onX.

3.4. PROPOSITION. — Let Q, be an open subset ofR71, Let f : ̂  —^ R
be a C°° V-function. Then there exists M G N such that

V<y e ^M(^, /"'(O)), 3^ e C00^): g = ̂  • /.

Proof. — By Corollary 2.8 and Remark 2.10, there are m,M > 1,
C,L > 0 such that

^M-l^J-^O)) ., .,,

l/(')l>exp,(||.||+d(.,^)-l)5 va;ea
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Let a € /-^O) and ff e ^^("J-^O)). Then there is a compact
neighborhood K of a such that VQ e N", 3Ca, La > 0:

1^(^)1 ^C'^M^a;,/-1^)), \/x€K.
On the other hand, V/3 e N", |/3| < |a|, 3C', N > 0, (7" > 0:1^0i^

C"7

^ ^M-i^rc, /-I(O))H+I' v^^.r1^).
So, from Leibnitz's formula, Va e N'1, 3C"" > 0:

\Da(gVx)\<C///y ^(d^-^f-^)) ^ -i
v ^^-iW^/'W^1 •/ (0)-

since ̂  ̂ r̂ H^ = 0? VL/ € N) ^(f) can be înnously
extended to 0 to 0 at any x € /-^O). Then, by Hestenes lemma (see, for
example, [15], Ch. IV, Lemma 4.3), s- is the restriction of a C°° function

on 0 which is flat on /"^O). The proposition follows, n

3.5. PROPOSITION. — Let X,Y be closed V-sets in an open V-set
0 ofR71. TAeii there exists M e N such that; for every /, g e C°°(Q,), f-g
is fpM-nat on X H V, i.e. f-ge <S>M(^X n Y), exists a e C00^) such
thata^=f^a^=g^

Proof. — By Corollary 2.ff there are m, L € N, C > 0 (M > 1) such
that

d(x,X)+d(.,Y) ̂  exp^dl.ll^,^)-!)^-1^^^^))- va: ̂  "•

Applying this inequality and using a similar argument as in the proof of
[15], Ch. IV, Lemma 4.5, we can find 0 € C°°(fl \ {X H Y)) with 0 == 1 on
X \ (X n V), 0 = 0 on Y \ (X n V) and Va € Q there is a neighborhood
Ua of a such that:

Va € N71, 3C,, L, > 0 : 1^0(^1 < C^M-i^Cr.Xny))-'0!,

Va-e£/a\(^ny).
Define a = f + e(g - /). Then ai^ = / , , ̂  = p . . Moreover, if / - g is

y?M-flat on X n V, then Va C 0 there is a neighborhood U C 0 of a such
that

v/5 e N71, 3^, ̂  > o: \D^f-g)(x)\ < C^M^^xny)), v^ e u.
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By Leibnitz's formula and properties of 0, shrinking U if necessary, for
every 7 e N71 there is C > 0 such that

1^ - '^ <- c^^::^- v" - (- n
Hence 0(g - f) is the restriction of a C°° function on Q, by Hestenes lemma,
and so is cr. The proposition follows. D

4. Global Lojasiewicz inequalities for analytic P-functions.

Throughout this section, let fl. be an open P-set of R71. We are
interested in the class of analytic P-functions on 0. First we list some
properties of this class:

It is a ring containing all (restricted) polynomials.
e\ p

It is a differential ring, i.e. if / is in this class, then so are ——
ox,

(z= l , . . . , n ) .

It is closed under exponentiation, i.e. if / is in this class, then so is
exp/.

If / is in this class and / > 0, then so are log/, /Q (a € R).

It has the weakly Noetherian property, i.e. if {/i, i € 1} is a family
of functions in this class, then there exist t i , . . . , ik € I such that

^l^l(o)=^l(o)n•••n^l(o)•
iei

(The proofs are given in [11].)

From the rationality of Lojasiewicz's exponent of subanalytic func-
tions on compact subanalytic sets (see [2]) and the finiteness of the number
of connected components of P-sets (Proposition 1.3), we obtain the global
Lojasiewicz inequality for analytic P-functions.

4.1. THEOREM. — Let f,g : 0 -> R be analytic V-functions.
Suppose that /"^O) C p'^O). Then:

(i) There exist L C N, a continuous V-function h onfl, such that

h(x)f(x}=gL(x), x^^l.
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(ii) There exist m e N, a, C > 0 such that

î i2.,,,̂ -̂ )̂̂ "̂ ""-
(iii) If F C Q. is a closed V-set orR", then there exist m? ^ N, o^,

C^ > 0:
|/(^)| > , ^^.J^r, V^CF.

^Pr^dRl)

(iv) The Lojasiewicz exponent ofg with respect to f on ^,

£^(f,g) ^ inf{a € ]R-(- : there is a continuous P-function h on fli,
h(x)\f(x)\ > \g(x)\^ Vrce^},

is a rational number. Moreover, there exists a continuous V-function h on
^ such that h{x)\f{x)\ > |^)|^^), Va: e ̂ .

Proof. — Let r(a;) = .d^^O), a; e M71 (d(a:,0) = 1, by definition).
Then r is a P-function by Theorem 1.2. Define

^(rr) = inf{a€R+ : 3C>0, C'l/C.z;')!^!^)!0, V^eB^^^))}, .re^.
Note that the sets which are taken infimum are not empty by the well-
known theorem on Lojasiewicz inequality for analytic functions on compact
subanalytic sets. So £ is well-defined. £. is a P-function, by Theorem 1.2.

(To assure this we can directly verify as follows: Consider
X={{x,a):xe^aeR^3C>0^xfeB(x,r(x)),C\f{x/)\ ̂  ^(OH.

First let
Xi = {{x,a,C) e ̂  x R+ x M+ : W C B(^r(^)), G|/(a;')| > 1 '̂)^}.
Then X = 7Ti(Xi), where 71-1 (re, a, G) = (.r,a). Now define
X-2 = {(a;, a, C, x ' ) e ̂  x R+ x R+ x R'1 :

|k-^||<r(^ C|/(^)[ < l^7)!"}.

Then "Xi = ^(Xs) U ̂  x R+ x R4-), where ^(.r^.G,^) = (a;,a,C).
Finally, let
Xs = {{x, a, C, x ' , v , w) G ^ x R+ x R+ x R71 x M x R :

(^(^ - ||̂  - ̂ || _ ̂ 2 ̂  (^(^|a _ C|/(^)|)W2 - I)2 = 0}.

Then X^ = ̂ (Xs), where Trs^,^,^,^',?;,^) = (x,a,C,x'). But Xs is of
the form

Xs = S H F'^O), where 5' is a P-set and F : 6' —^ R is a P-function.
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So X^ is a P-set. This implies X is a P-set. By a similar way one can check
that

graph^ = {(a;, A) : x e ^, A = infX,},

where X, d^ {a e R : (x, a) € X}, is a P-set.)

By Bochnak-Risler's theorem [2], §1.3, Th. 1, £(x) € Q+, \/x G ^.
Therefore, by the finiteness of the number of connected components of P-
sets, Im £ is a finite subset of Q-|-. This implies that there exist a (E f^,
p,g e N such that suplm^ = £(a) = p. So V^ > 0, \/x € ^, 3C^(a;) > 0:

q
Ce{x)\f(x')\ ̂  \g{x')\P^, W € B(x,r{x)). Let L = ?] + 1, where [a]

denotes the integral part of [a]. Define

^)^^(^), i f ^ e n , /(^o,
[ 0, if x C ^, /(rr) = 0.

Then /i is a continuous P-function on fl, and h(x)f(x) = gL{x}^ x G ^.

(i) is proved.

(ii) follows from (i) and Remark 2.10.

(iii) follows from (i) and Lemma 2.4.

(iv) We prove that t^{f,g) = p = £(a). Let e > 0. Define

{ |o|(P/9)+^h^x)= —jr^ i fa ;e^^)^0-
0, if a; e ^, /(a;) = 0.

r)
Then ke is a continuous P-function on f^. This implies ^(/,p) < - + £.

9
On the other hand, by the definition of ^(/,^), there exists a

continuous P-function he on Q such that

he(x)\f(x)\ > \g(x)\W^^ ^xe^.

Therefore,

^up (/i,^) + 1)1/^)1 > \g{x)\^^e^ ^ ^ B(a,r(a)).
^eB(a,r(a))

So p = ^(a) < ̂ (/, ̂ ) + £. (iv) follows. D
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4.2. Remark.

(i) In fact, in the proof of Theorem 4.1 we only require the subana-
lyticity of / and ^, so our proof can be modified to obtain similar results
in the following cases:

a) /, (7, being P-functions, are continuous and subanalytic in fl, with
r^c^o).

b) fl. is a closed Z>-set and subanalytic subset of W1, and f ^g , being
P-functions, are continuous and subanalytic on Q, with f~l(0) C (^(O).

(Under the assumption b), instead of £ in the proof of the theorem
we define
A(r) = inf{a e M+ : 3C > 0,

C\f(x)\ > |^)r, V:reB(0,r)rW}, r^d(0,0).
The remaining argument can be modified without difficulty.)

(ii) By the above remark, the rationality of Lojasiewicz exponent for
continuous semi-algebraic functions on closed or open semi-algebraic sets
follows. In [5] Fekak proved this, but his method relied upon the theory of
the real spectrum.

(iii) Similar remarks can be made for Propositions 4.3 and 4.4 below.

4.3. PROPOSITION. — Let f : fl, —^ R be an analytic V-function.
Then:

(i) There exist m G N, a, C > 0 such that

Mx) £ exp„(M+c'^,^-.)•f•<J!•^l'o»• vx 6 "•

(ii) There exist mp € N, ap, Cp > 0 such that

^ ̂  p ^IMh^^"1^ ^x e F)
^PmF (IF II)

where F is as in (iii) of Theorem 4.1.

(iii) £^{f) ^= inf{a € R+ : there is a continuous T>-function h on
fl,, h(x)\f(x)\ > da(a;,/-l(0)), Va; 6 f^} is a rational number. Moreover,
there exists a continuous V-function h on Q. such that h(x)\f(x)\ >
^(/)(^j-i(o)),vo;e^.

Proof. — Using the notation of the proof of Theorem 4.1, we now
define
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£i(x) = inf{a e R+ : 3C > 0,
C\f(xf)\^da(x^f-lW^ x^B^r(x))}^ x € ̂

Arguing as in the proof of the theorem, now replacing £ by ^i, we obtain
the desired result. D

4.4. PROPOSITION. — Let
P

X = [j{x e ̂  : fi(x) = 0, g^{x) > 0, . . . ,gir{x) > 0}
i=l

and
q

Y = \j{x C ̂  : h,{x) = 0, k^(x) > 0 , . . . ,A^Or) > 0},
j=i

where the /^, hj, ̂ i , . . . , ̂ 7.5 ̂ i, • • • , kjs are analytic V-functions on ^.
Suppose that X, V are closed in fl,. Then:

(i) There exist m € N, a, (7 > 0 such that

d0r,x)+d(^y)> c d^xnnv^co.
^PmdMI +d(a;, cn) 1)

(ii) There exist mr € N, a^, C^ > 0 such that

d^JO+^y)^—6^—.d^(^xny),v^eF,
^Pmp ( 1 1 ^ 1 1 )

where F is as in (iii) of Theorem 4.1.

(in) £^(X^Y) ^ mf{a € 1R+ : there exist a continuous V-function
h on Q, fa(a;)(d(^X) + d(x,Y)) > ^(x.X n V), V.r e n} is a rational
number. Moreover, there exists a continuous V-function h on ^ such that
/iCr)(d(:r, X) + d(x, Y)) > d^^^ (x, X n V), \/x e n.

Proof. — Using the notation in the proof of Theorem 4.1, instead of
^, we define
£^(x) = inf{a € M+ : 3C > 0,

C(d(x/,X)+d(xf,Y))>da(x\X^Y), x' eB(^,r(^))}, a; e Q.
Once again, carrying out the same argument as in the proof of the theorem,
but now replacing i by -^2 5 we obtain the proposition. D

4.5. Remark. — Tougeron in [18] proved global Lojasiewicz inequal-
ities for functions in the exponential extensions of rings contained in a cer-
tain class of weakly Noetherian rings of analytic functions (see [16], [17]
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for the precise definition). Here we present a simple proof of these inequali-
ties for analytic P-functions, this class is much larger than the exponential
extension of the ring of polynomials.

As an application of the global Lojasiewicz inequality in Theorem
4.1, we prove the next proposition which is analogous to a theorem of
Lojasiewicz [12], Th. 3, p. 98.

Let An denote the smallest ring of real-valued functions on W1

containing all polynomials and closed under exponentiation. A subset X of
W1 is called An-semianalytic, iff it can be globally described by functions
in Ani i.e.

P
X=\J{xeRk•.fi{x)=0, 9i,(x)>^ j= l , . . . ,9} ,

1=1
where the /,, g^ are in An, P, Q € N.

Note that functions in An (resp. An-semianalytic sets) are P-func-
tions (resp. P-sets).

4.6. LEMMA. — Let X be an open An-semianalytic subset ofV.
Let

U = {x e W1 : ̂ i (x) > 0 , . . . , gq(x) > 0}
and

Z = {x € U : f(x) = 0},
where /, ̂ i , . . . , gq G An' I f Z c X , then there exist a, m € N, C > 0 such

that

Z c { x e U : \f(x)\ exp^dl.rll2) < C\g{x)n C X, where g d±f f[ g,.
j=i

Proof. — Apply Theorem 4.1 and Remark 4.2 (i), b) to the restric-
tions of / and g to U \ X. There are a, m € N, C > 0 such that

l^^exp^l^l'5 v-ez7^
Therefore Z C {x € U : \f(x)\ exp^(||a;||2) < Wx)^} C X as desired. D

4.7. PROPOSITION. — Let X be an An-semianalytic subset ofR72.
If X is open (resp. closed), then X can be represented in the form

r s r sx = u n^^: hi^> °} (res^x = u n^^: M )̂ > o})
Z=lj==l 1=1 j=l
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where the hzj are in An'

Proof. — It is sufficient to prove the proposition for the open case.
Suppose that X is an open An-semianalytic subset of R71. Then X =
U Ui n Z,, where U, = [x e R71 : g^x) > 0, j = 1,... ,g}, Zi={xeUi:

1=1
/z(a;) = 0} with fi.gij € An, i = 1,... ,P, J = 1,..., q. Fix i and apply the
lemma with U = Ui, Z = Zi. There exist OL^ mi € N, Ci > 0 such that

Zi c Ui n {x e R71: ̂ i(x) > 0} c x,

where ̂  = C? ft 4^ ~ /^PrrJIMI2)- (Note that ̂  € AJ Therefore
i=l

P q
x c \J ^\{x e R71: ̂ (a;) > o, ^(x) > 0} c x.

i=lj=l

This implies that X can be represented in the desired form. D

The remain part of this section is devoted to Lojasiewicz inequalities
with parameters. Let

X C BT x W and (x,t) be the coordinate of R71 x R^

Xt d^ {x C y1: (x, t) € X} be the fibre of X over t € R^

X|r d^ X n R71 xT be the restriction of X to T C R771.

If / : X -^ R, then define /t(a;) = f{x, t).

4.8. THEOREM. — Let X C W x R771 be a Jocaify dosed V-set and
let f,g :X -^Rbe V-functions. Let T = 7r{X), where TT : R71 x R771 -^ R771

is the projection on the last m coordinates. Suppose that for all t G T, Xt is
open and ft^Qt are analytic on Xt with ./'^(O) C (^(O). Then there exist
a V-analytic decomposition of T into cells C\,..., Ck and r - i , . . . , rk € Q+
such that:

(i) For each t C Q, ix,{ft.9t) = n (i = 1,..., k).

(ii) For each i € {1, . . . , k} there exists a continuous P-function hi on
X\d:

^(^t)i/(^t)i>i^)r1, v^cxic,
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Proof. — Define

r(x, t) = ^d(x, c^), x e JET and t e IT1,

^, t) = inf{a e R+ : 3C > 0,

CW^)1 > \g{x1^, W^B^r(x,t))}^ (^)CX,
L(t)= sup £(x,t), teT.

xeXt
Then r, ^ are P-functions. From the proof of Theorem 4.1, for each t eT
the set {£(x, t) : x e Xt} is a finite subset of Q+. So L(t) e Q+, \ft e T, It
can be verified that L is a P-function (as in the proof of Theorem 4.1). By
the finiteness of the number of the connected components of P-sets, Im L
has finitely many components. So Im£ = {n,... ,^}, where n e Q+,
i= 1,...,5.

Let T, = T H L-^n), z = 1,. . . , 5. Then, from Theorem 4.1,

^(/i,^)=n, Vter,, z=i,...,5.
Now fix i e {1 , . . . , s}. Define

^^{^ if^,/^0
[0, ifa:eX(, /<(a;)=0

and
d(x,t) = sup^^.t) : a:' € B{x,r(x,t))}, (x,t) e X|r,.

Then A^, Gi are P-function. Note that r is continuous in x for each fixed
t € T. By the cellwise triviality theorem [3], Ch. 10 (2.6) and Theorem 1.5,
there exists a P-analytic decomposition of Ti into finite number of cells 7-,
such that r\(X\Tij) are continuous.

The theorem follows from the following

4.9. LEMMA. — Let Yij = {(x,t) € X\Tij : ki\{X\T^) is not
bounded in every neighborhood of (x,t)}. The Y^ is a V-set and
dim7r(y^ < dimT^-.

Let us suppose that the lemma is true. Then, by Theorem 1.5, 7-,
can be partitioned into finite cells T^ such that for each /3A;,|(X|r^) is
locally bounded. Since the T^ are cells, they are locally closed in R771.
Then X\T^ are locally closed in y1 x R771. By Lemmas 2.4 and 2.5, for
each (z,j,/3) there is a continuous P-function h^ : X\Ti^ —> R such that
ki\{X\Tij^) < hijp. The cells 7^ and the functions h^^ satisfy (i), (ii)
(with the exponents r^ := 7z).
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It remains to prove Lemma 4.9. By the definition of V^-,

Yij = ^(x,t) C X\Ti, : V^ > 0, V<5 > 0, 3(a/,t') e X|r^,

IK^)-^)!!^, ki(x^tf)>^}.

So, by Theorem 1.2, Y^ and 7r(Y^) are P-sets. Suppose the assertion of the
lemma is false, i.e. dim^Yy) = dimT^. Then, by Theorem 1.5, there is a
cell U C ^(Yij) with dim U = dim 7^. By Proposition 1.6 there is a P-map
p ' . U -> Yij\U such that p(t) = (x(t),t), t € U. By theorem 1.5, shrinking
(7, we may suppose that p is analytic. So p(U) is a cell contained in Yij\U.
Since C\p(U) is a P-function, by Theorem 1.5, we may also suppose that
C\p(U) is analytic. Let (xo.to) e p(U) and K be a compact neighborhood
of (xo.to) in p(LQ. Then there are 6, M > 0 such that

r(x,t)>6 and Ci(x,t) < M, V(a^) e ̂ .
Since (a?o^o) € y^|(7 and ̂  is its neighborhood, there exists (x,t) e X\Tij
such that

\\(x,t) - (xo,to)\\ < j, ki(x,t) >M,te 7r(K), \\p(t) -p(to)\\ < j.

From the last inequality x € ~B(x(t),r(t),t)). This implies
ki(x,t) < snpik^x^t) : x1 e B(x{t),r(x(t),t))} = d(x,t) < M.

It is a contradiction. The proof of the theorem is complete. D

The following propositions have a similar argument.

4.10. PROPOSITION. — Under the assumption of Theorem 4.8,
there exist a V-analytic decomposition of T into cells C i , . . . , C f c and
7*i» • • • ? 7*fc € Q+ such that:

(i) For each t € Q, ̂ CA) == r,, z = 1,. . . ,fc.

(ii) For each i € {1, . . . , k} there exists a continuous V-function hi on
X\d:

hi(x,t)\f(x,t)\ ̂  ̂ (^/^(O)), V0r,t) € X\d.

4.11. PROPOSITION. — Let A C R71 x IF1 be a locally closed V-set.
Suppose that At is open for each t e M771. Let

P
X = \j{(x,t) e A : fi(x,t) = 0, gn(x,t) > 0,... ,gir(x,t) > 0},

z=l
9

V = \j{(^t) e A : /î .t) = 0, k^t) > 0,... ,^(^,t) > 0},
j=i
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where the /z, ̂ j, <^ i , . . . , (7zr, f e j i , . . . , kjs are T>-functions.

Suppose that (/z)t, (^)t,.. • , (^zi) t , . . . , (^r)t, (fcji)t, • . . , (^)t are
analytic on At and Xf, Yf are closed in At, for all t e T. Then there exist
a V-analytic decomposition ofT into cells Ci , . . . , Ck and r i , . . . , rk € Q+
such that:

(i) For each t C C,, ̂ (X,,^) = n, z = 1 , . . . , k .

(ii) For each i € {1 , . . . , k} there exists a continuous V-function hi on
A\d:

hi(x,t)(d(x,Xt)+d(x,Yt)) > (T^x.Xt nV,), V(a;,t) e A|Q.

Adcjiowiedgment. — The author wishes to express his thanks to
Professor Wieslaw Pawhicki and the Institute of Mathematics of the
Jagiellonian University, Krakow.
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