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ON THE DISTRIBUTION
OF THE ROOTS OF POLYNOMIALS

by F. AMOROSO and M. MIGNOTTE

1. Introduction.

In this paper we are interested in the angular distribution of the
roots of univariate polynomials. To explain our results we need to recall
some definitions. If a;i, ..., XN is a finite sequence of points in [0,27r), we
define the absolute discrepancy of this sequence by

|#{j;^e[q,/3)} /3~a|
D(XI,...,XN) = sup

0<Q</3<27T N 27T

where # denotes the cardinality of a set. Let
n

P(Z) = OnZ" + On-lZ71-1 + • • • + O^Z + OQ = On ]]^{z - PjC1^),

j=l

CiQa'n 7^ Pl,...,Pn > 0,

be a polynomial of degree n with complex coefficients, where (pj € [0,27r)
for j = 1, . . . , n. For 0 < a < (3 < 27r, put N(a,f3) = #{j\ ̂  € [a,/?)}.
We are interested in the distribution of the points y?i, . . . , ipn- With the
previous notations,

\N(a,/3) (3-a\
-D(^l, . . . ,^n)= SUp

n 27r0^a</3<27r

Key words: Polynomials — Roots — Equidistribution — Conjugate harmonic functions —
Theorem of Erdos-Turan.
Math. classification: 26C10 - 30C15 - 42A50.
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to simplify the notation we put

Dp=£)(<^i,. . . ,^),

which we call absolute discrepancy of the roots of P.

The first result on Dp was obtained by Erdos and Turan:

THEOREM A. — With the above notations, for 0 < a < /3 < 27T,
we have ________

N^^-'^—^n <l6jnlog—£—
27T

where |P| =max|P(^)[.
\z\=l

In other words,

Dp^ieJ1^^1^
y ^

The proof of [ET] consists in solving several extremal problems on
polynomials, using orthogonal polynomials. A few years later, Ganelius
[G] proved a general theorem on conjugate functions and showed that his
theorem implies a sharpening of the Erdos-Turan, namely he could replace

00

the constant 16 by - ^ / 2 - K / k = 2.5619..., where k == ^(-l)771"1 (2m +
o

I)-2 = 0.915965594... is Catalan's constant.

The result of Ganelius is the following:

THEOREM B. — Let F = / + if be an analytic function on
D = {\z\ < 1} satisfying F(0) = 0. Suppose that f, f are real and f < H,
9f/90 < K on D <*). Then for (3 > a and p < 1,

r^
\f(pe^) - /(^)| < 27rJJ. VHK.

V K

For the convenience of the reader, we briefly explain how Theorem B
implies Theorem A. Let us consider the polynomial

Q^^^l-z'e-^).
.7=1

^ ) Here and in the sequel we often identify the complex variable z with pe10\
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As remarked by Schur,

Hence

ott

Pj^i

101 <

^ l-e*^-^)

1^1

Now let

/(^) = I log |0(^|, f{z) = ^ 5>rg (1 - ̂ -^)
j-i

and observe that the function F(z) = f +if is analytic on D and satisfies
F(0) = 0. We have / < ^-log|Q| and 9f/90 < n/(27r). Moreover, it is

easily seen that / takes the boundary value

^-jv(0,0)+C(Q),

where

^^-m}-
3=1

Henceforth Theorem B gives

[2w [l
^VT-Vn
^<J^.J^\<J^.^-———.

V k V n V f c y7 1 V\aoa'n\

Theorem B was sharpened much later in [M], where, under the same
hypotheses, it is proved that

/7T -\f{pei^-f(peia)\<27^^HK^

H = 1
where

-3- r n+(e^0)d(9<maxn+

and u^ = max{n,0}.

Let us define h(P) = 1 / log4' |P(e^)|d(9. Since
27T J_^.

- r log+ io(^)i^ < - r ̂  ̂ -p-de,
27r J_^ 27r 7_^ V|aoan|

Mignotte's result leads to a version of Erdos-Turah's theorem where
IPI " P -I n g 1 — ! — is replaced by fe( —) It is worth remarking that /^(F)
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can be much smaller than log |P|: for a discussion on the relations between
these two measures, see [A].

In Section 3 we give a new (very short) proof of the result of [M],
using a theorem of Kolmogorov on conjugate functions (see Section 2 for
definitions and properties of conjugate and harmonic functions).

Recently, Blatt obtained a sharpening of Theorem A for square-free
polynomials. He proved the following result:

THEOREM C. — Let P(z) be a monic polynomial of degree n with
all its roots zj on the unit circle. Assume that

(1.1) |P|<A and \P\z,)\ > ̂  ^ = l , . . . , n ,

for some constants A, B > 1. Then,
^^(logn)logC^

n
where c is some (non computed) absolute constant and Cn = max{A, B, n}.

A similar statement holds for polynomials vanishing only on [—1,1].
Totik improved this last result on [-1,1] by replacing logn with
log(n/log(7n), provided that logCn < n/2.

As noticed in Blatt's paper, Theorem C is a direct consequence of the
following:

THEOREM D. — Let P(z) be a monic polynomial of degree n with
all its roots on the unit circle. Then

(1.2) Dp < C^ ̂ ^JlogTOI -nlog|4

Since ̂ P^z)} = |P(1/^)|, inequality (1.2) is equivalent to

Dp^^llogTOII^^.

In Section 4 we give a short and simple proof of the following theorem on
conjugate functions:

THEOREM E. — Let f be a real harmonic function on D = {\z\ < 1}
and let assume that its conjugate function f satisfies 9f/90 < K on D.
Then, for any r e [1/2,1)

^<l{10^)^^1—.
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If we choose as before / = — log |P[, we obtain the following improve-
7T

ment of Theorem D:

THEOREM D'. — Let P{z) be a polynomial of degree n with all its
roots on the unit circle. Then

Dp^^^^WP^-f-1—, ^t1/2 '1]-
This result implies the following improved version of Blatt's theorem:

THEOREM C7. — Let P(z) be a polynomial satisfying the assump-
tions of Theorem C. Then

^13max{l,log———}10^.1^ log Cn) ri

Ti

The previous assertion is trivial if logCn > -. Assume that (1.1)
2t

holds and suppose logCn < -. We apply theorem D' choosing r =z
1 _ og n. By the maximum principle log"^ |P|r < log"*" A, while by the
Lagrange interpolation formulay pw-,,^)-.p'(2<)(-^<)
we have log" |PL < log"^ -——. Hence1 — r

I log |P||, ^ max S^og-^ A,^ ̂ B^ < logCn + log ̂  = log ̂ ^.

Theorem D' gives
_ ^ 12 /, In \, n^Cn , 16^3 log Cn
Dp ̂  ̂  0°' WJ log Wn + ̂ r———T-

f In \ logCn
<13max{l,log^^}^..

We notice that the conformal mapping z \—r - ( z + - ) which sends

the unit circle onto [—1,1] can be used to get similar results on the
distribution of the roots of a polynomial vanishing only on [—1,1].

In Section 5 we consider the problem of finding an upper bound for
the maximum modulus of a polynomial depending on its degree and on the
discrepancy. We prove the following theorem:
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THEOREM F. — Let f be a real harmonic function o j iD={ |^ |< l}
such that /(O) = 0 and 9f/90 <, K on D. Let also

A=^^|/(^)-/(w)|.

Then

sup/^fs+log2^).
D 7T \ ° A /

By applying the previous result to the function / = - log |P| we
obtain: 7r

COROLLARY. — Let P{z) be a polynomial of degree n with all its
roots on the unit circle and such that P(0) = 1. Then

log |P| ^ nJDp(3 + log I / D p ) .

Finally, in Section 6 we discuss an extremal example.

2. Some results from harmonic analysis.

In this section we recall some basic facts on harmonic analysis. The
standard reference of all definitions and results is the book of P. Koosis
([K]).

Let / be a 27r-periodic real function on in Li(-7r, 7r). Then its Hilbert
transform

^-L^
exists and is finite almost a.e. (= almost everywhere). We call / the
conjugate function of /. Although / does not belongs to Li(-7r,7r) in
general, we have the following theorem of Kolmogorov (as improved by
Davis) which is very important for our purposes.

THEOREM 2.1. — Let f e 2.1 (-TT, 7r) be a ̂ -periodic real function
and let f be its conjugate. Then, for any positive X,

^{0 G [0,27r); |/[ > A} < ̂  F |/(0)[ d9

where k is Catalan's constant. In this inequality, the constant ^ / S is the
best possible.
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Kolmogorov's proof gave no information about the best constant,
which was obtained much later by Davis [D]. Also, see Baernstein [Ba]
for another proof.

A real function f(z) on the open disk D = {\z\ < 1} is harmonic if
it is the real part of a function F(z) analytic on D. We notice that F is
unique to within an additive constant. The harmonic conjugate of / is the
real function / such that / + if is analytic and /(O) = 0. Given a function
on D, we often use the notation f(r,0) = / (re'0). Let / = SRF with F
analytic on D. Then the non-tangential limits

f(0) := lim /(r,(^), f(0) := lim f{r^)(p—>f/ (p—>o
r-^l- r-»l-

exist a.e. if F belongs to the Hardy space ffi, i.e. if

/7T

sup |F(re^)|d0<+oo.
0<r<l -TT

Let p € (1, oo). By a theorem of Riesz,

(2.1) sup / \f(r,0)\pd0<-}-oo
0<r<U-7r

if and only if

(2.2) sup ( \f(r,0)\pd0<+oo.
0<r<lJ-7r

Therefore, if (2.1) or (2.2) holds for some p > 1, then / + if G ffi. In
particular, if / or / are bounded, then / + if C ffi. If the non-tangential
limit f(0) exists, it is called the boundary value of / and similarly for /.

Let, for r C [0,1) and 0 C R,

K^ = l-2^cos^+^' w) = iJ^T^
be the Poisson kernel and the conjugate Poisson kernel. Then for any real
harmonic function / we have the Poisson representations

(2.3) /(p, ̂  = 1 F K(p/r, 0)/(r, ̂  - 0) d6
Z7r J—7r

and

(2.4) /(p, ̂  = ̂  J ' K(p/r, 0)/(r, ̂  - 0) d0

which hold for 0 < p < r < 1 and ^ € R. If / + if € H^ then (2.3) and
(2.4) still hold for r = 1.
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Let g € Li(—7r,7r) be a 27T-periodic real function and let g its
conjugate function. Then

f{p^)=^f'K(p,0)g^-0)d0

is harmonic and its harmonic conjugate is

7(p, ̂ )= ̂  /7r ^0% °^ - 0) d e '
Assume further g 6 Li(—7r,7r). Then the boundary values f(0) and /(0)
both exist and

/W=PW, m=9(0) a.e.

We also recall the following elementary inequalities which hold for all
p e [0,1) and all 0:

(2.6) o<^K(^)^

and

(2.7) [KM|^^.

Moreover, we notice that

(2.8) / K(p, 0)d0=2 arctg ( ——p • tg . ) + constant.

In particular, this implies

(2.9) - ^ J ' K ^ 0 ) d t = l .

For the conjugate kernel, we have

(2.10) / K(p, 0) d0 = log(l - 2pcos0 + p2) + constant,

so that

(2.11) r|K(^)|d0=41og1-^.
J—7T 1 P
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3. Ganelius' theorem via Kolmogorov.

We begin this section by a very elementary lemma.

LEMMA 3.1. — Let g: R —> R be a 27r-periodic function and suppose
that there exists a constant K such that

g(y-^e)^g^)^eK,
for any (p € R and any e > 0. Assume further that for any positive number
X the set

^={0e[0,27r);|^)|>A}

satisfies

/^A) < ̂ ,

where p, is Lebesgue measure and C is some positive constant. Then
max |̂ | < 2VCK.

Moreover,
\g^\^\g-\<2V2CK.

Proof. — Put A = VCK and A = 2VCK. We first want to prove
that \g((p) | < A for any (p € R.

If (p ^ E\ then \g(^fi)\ < X and we have nothing to prove. If y? € E\,
since ^(E\) < (7A~1, there exists e\ > 0 such that 5i ^ C\~1 and
y? - f:i ^ J^A, hence

C^T€
g(y) < g(^p - d) + ci K ^ X + — = A.

In the same way, there exists £2 > 0 such that 6:2 ^ C'A"1 and <^+£2 ^ E\,
which implies

C^K
g(y) > g(y + £2) - £2 K > -X - — = -A.

This proves the first assertion. To prove the second one consider the sets

^={00 [0,27r);^(0) > A} and E^ = {0 e [0,27r);p-(0) > A}.

For any A > 0 and any y?, ^ € R, the preceding argument leads to
v/^

g^W^g-W ^ A+^(E^)+A+^(^) ^ 2A+JW;o < 2A+-y1,
and the choice A = ^ / C K / 2 gives the second assertion. This concludes the
proof. D
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We denote by \f\r the sup of \f(z)\ on \z\ = r and by |/| the sup of
|/(z)| on [2;| = 1. When / is real-valued we define the span of f by the
formula

Acn^i+iri,
where f^(x) = max{/(:r),0} and f~(x) = max{-/(a;),0}. Trivially,
A(/) < 2|/|.

If we apply Kolmogorov's Theorem 2.1 and Lemma 3.1 (with g = /),
we get:

THEOREM 3.1. — Let f C Ia(-7r, 7r) be a 2^-periodic real function
and let f be its conjugate. Suppose that there exists a positive constant K
such that

/(^+5)^/(^)+^,

for any (p e T and any e > 0. Let also

H=i/JfWe.
Then,

I/I < Ti-,/^ • VHK and A(/) < I-K
V K

where k is Catalans constant.

One may notice that this result is essentially the same as the refine-
ment of Ganelius theorem published in [M]. In fact, denote by the same
letter / the real harmonic function on D whose boundary value coincide
with / almost everywhere. Then, J_^ f(0) d0 = /(O). Hence, if we further
assume /(O) = 0, we have

= ̂  f^ \m\d6 = ̂  f f^^dO ^ max^.f'^jj^-^u^

4. On Blatt's theorem.

Let g be a real harmonic function on D and assume that there exists
a constant K such that 9g/Q6 < K on 'D. The function p —^ \g\p in
general does not satisfy Lipschitz's condition. As an example, consider
g = Arg(l — z). However, we have:
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LEMMA 4.1 ("Turn-growth lemma"). — Let g be a real harmonic
function on D and assume that there exists a constant K such that
9g/96 < K on D. Then, for any p € [0,1),

\g\<3\g\p^^V3K 1-P
1+P'

Proof. — Let e = 2arctg (^}—p) ^ (0,7r). Then, by (2.8)

(4.1) ^^K(,,<)^^>,c.g(^..,|)=J

and, by (2.9)

(4.2) ^ [ K(p ,0 )d0= l - 2 -
Z7r J£<\O\<'K ° ^

Now assume \g\ = —g(^>) for some y? G R (otherwise |̂ | = \g~^~\ and a similar
argument applies). Since g is bounded on \z\ <, 1, Poisson's Formula (2.3)
applies and we have, by (4.2),

-\9\p < g{p, ̂  + e) = ̂  F K(p, 0)g^ + e - 0) d0

(4.3) < ̂ V K(p,0)^+5-0)d0+||p|.

By our assumption we have g{(p + e — 0) < g((p) -\- K(e — 0) for 0 < e.
Moreover K(p,0) > 0, whence, by (4.1),

^ ̂  K(p, 0)^(^ + e - 0) d0 < J (<^) + ̂ ) - ̂  f K(p, 0)0 d0.

Since 0 i-̂  0K(p, 0) is odd we have f^ K(p, 0)0 d0 = 0 and we obtain

^^K(p,0)^+5-0)d0<J(-|^|+^).

Now (4.3) gives

-\g\p < J (-|p| 4- Ke) + JH = |̂  - j|^|

and, since e < 2\/3——',
!+/?

bl<3|^.+4V^3A:^. D

The next lemma is an easy consequence of Poisson's formula.
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LEMMA 4.2. — Let f be a real harmonic function on \z\ < 1 and
let 0 < p < r < 1. Then,

î K'̂ )'̂
Moreover, i f /+ if € ^i, we ateo have

^^•^/j/wi1"-
Proof. — By Poisson's formula (2.4)

/(P, ̂  = ̂  /7r K^ ̂ (^ ̂  - 0) ̂

It follows by (2.11) that

i/^K'0^)^
Assume now f-^-ifeH^. Then Poisson's formula (2.4) still holds for r = 1
and we find

/(P, ̂  = ̂  f K(p, e)f^ - 0) d0.

Therefore, by (2.7),

\f\P^)\<^^'^f'\f(0)\d0. D

Lemma 4.1 and the first part of Lemma 4.2 lead to Theorem E
announced in the introduction:

THEOREM 4.1. — Let f be a real harmonic function on D and let
assume that its conjugate function f satisfies 9f/0 < K on D. Then, for
any r € [1/2,1)

I/I < 6 flog 2 ) I/I, + ^K1——7-.TT \ 1 — r/ r

Proof. — Let p, r such that 0 <, p < r < 1. From Lemmas 2 and 3
we obtain

i^K'08^)^"4^^-
Now choose p = 2r — 1. n
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The second part of Lemma 4.2 leads to an elementary proof (with a
worse constant) of Ganelius-Mignotte's theorem:

THEOREM 4.2. — Let f be a real harmonic function on D such that
Qf/QO < K on D. Then

where

I/I < 4V/3\/j • VHK

-ifj'w-H =

Proof. — From Lemma 4.1 (with g = /) and Lemma 4.2 (since / is
bounded, / + if e H^) we obtain

i/î 4^-
Let a, /3 > 0 and u(p) = —xp— + /^1 ~ p}. Then inf u(p) < ̂ o^. In1 — p 1 + p o<p<i
fact, if f3 <, a we have n(0) = /? <. \/o/3; otherwise po = 1 - ./— e (0,1)

and u(po) = y^o^. Using this remark with a = 12H and /? = 4\/3j?<T we
obtain

I/I < \/QH ' AV3K = ̂ 3V3HK < 9.119 .\/~HK. D

5. Upper bounds for max/.

The aim of this section is to give an upper bound for the maximum
of an harmonic function / such that 9f/90 is bounded on D.

THEOREM 5.1. — Let f be a real harmonic function on D such that
/(O) = 0 and Qf/QO < K on D for some K > 0. Then,

^<w(^^\
D 7T \ A(/) /

Proof. — Let y € R and let p 6 (0,1). We apply Poisson's formula
(2.4) to the harmonic function /. Since /(O) = 0 we have J = —/.
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Moreover, since / is bounded, / + if € H\ and (2.4) still holds with r = 1.
By using (2.11) we get

(5.1) f(p^) = -^j" K(p,0)/(^-0) d0

= ^^7^K(p,0)(/(^+0)-/(^-0)) d0 < ̂ ^log^.

Since 9f/Q0 = p(9f/9p), we have /(</?) < f(p^) + ̂ logl/p. Therefore
(5.1) gives

max/ ^ 2A(/) log - 2 + ̂ log 1.TT 1-p p

Now choose p = ̂ /(A^) + KTT). Since A(/) < 27rK, we obtain

m"/<2^•o^+(ir+Am)l-(l+^))
<Am(3+2•^)• D

We end this section with a further remark concerning harmonic
functions.

PROPOSITION 5.1. — Let f be an harmonic function on D and
assume that f + if € H^. Then, for 0 < p < 1 and y? € R,

(i) -'——'--r'f-Wd0<.f(p^<1——^.1<" -^x r^J'^^ '^ < ̂  x ̂ U^-
Moreover, if f(0) < 0, then

(ii) ^'^^^//^^

1 — p Z7T J_^ 1 — p 27T

Moreover, if f(0) < 0, then

Proof. — By Poisson's formula (2.3), for any p C (0,1) and for any
y? G R we have

f(p,t)=-^^K(p,e-y)f(e)d0.
Thus, by (2.6)

-^x i Lrw (w ̂ f(p-v) ̂ x i £f+^de-
which proves (i).
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Assume now f(0) < 0. Then

-/(P, ̂  = ̂  f'_ KG9,0 - ̂  (-f(e)) d0 > ̂  x ̂  ̂  (-/(0)) d0,

which leads to (ii). D

COROLLARY 5.1. — Let P be a polynomial with no zeros for | z | < 1.
Then, for 0 < p < 1 and (p € R,

-^(w+iogM(P)) ^ ̂ I^P^)! < ̂ x /l(p)•

Proof. — Use (i) and the relation

^ ̂  log |P| = logM(P) = ̂  ̂  ̂  |P| - ̂  ̂  log- |P|. D

COROLLARY 5.2. — Let P be a polynomial with no zeros for \z\ < 1.
Then, for 0 < r < 1,

|P|r< |P|WM(P)W.

Proof. — This is an easy consequence of (ii). D

6. An extremal example.

Let x be a positive real number and consider the set Ax of polynomials
P(^) = ayi^71 + • • • + fli^ + ao such that aoOyi 7^ 0 and

[P|
log . <, x ' n.

Let
f(x) = sup Dp.

PCAx

Then, / is a non-decreasing function and Erdos-Turan's theorem implies
the inequality ___

f(x) < C^/X^ C = \/27T/fc.

The aim of this section is to prove that this inequality is essentially sharp.

THEOREM 6.1. — For any x e (0,1/2) we have f(x) ^ V2x.
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Let n, r two positive integers with r < n. By the results of [ET], §14,

(6.1) P(z) = ̂ ^ f^z - tY-^l + tYt— dt

is a monic polynomial of degree n vanishing at —1 with multiplicity r such
that

(6.2) log Ml = | f: log(l+;)<^.
i/=n—r+l v /

where ||P|| is the euclidean norm of the polynomial P, i.e. the quadratic
mean of the moduli of the coefficients of P. Moreover, by (6.1)

(6.3) ao = P(0) = (-l)71-^^ + r} ( (1 - s)^71-1 ds = (-l)"-^.
\ r / Jo n

TSince P has a root at —1 of multiplicity > r we have Dp > —. On theu
other hand, by (6.2) and (6.3) we obtain

|P| , Vn\\P\\ r2 1, n2 r2

log———— < log———— < ^7———r + ,log— < -.———r +logn.^/|aoan| ^/Jaol 2(n-r) 2 r 2(n~r)
Hence

H^D^ff—————^}.
n \2n(n—r) n )

Let now x € (0,1/2) and choose a sequence (n^^k) such that rik —> +00
and

rl ^ lognfc
2nk{nk-Tk) nk

increases to x as k —^ +00. Then we have rk/rik < f(x) and, when k —> +00,

V2x < f(x). D
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