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GERMS OF HOLOMORPHIC MAPPINGS
BETWEEN REAL ALGEBRAIC HYPERSURFACES

by Nordine MIR

1. Introduction and formulation of main result.

A real algebraic hypersurface in C™ is the zero set of a real polynomial
with non-vanishing gradient. A holomorphic function defined in an open set
in C™ is called algebraic if it is algebraic over the field of rational functions
over C, or equivalently if it satisfies a polynomial equation of the form

A(Z2)f¥(Z) 4 ...+ Ao(Z) = 0,

where the functions A;(Z) are holomorphic polynomials, with k£ > 1 and
Ay # 0. In recent years, several papers appeared concerning algebraic-
ity of holomorphic mappings or CR mappings between algebraic Cauchy-
Riemann manifolds ([16], [7], [5], [22], [3]). For mappings in the same di-
mension, Baouendi and Rothschild (7], [5] (for the hypersurface case) and
Baouendi, Ebenfelt and Rothschild [3] proved that holomorphic nonde-
generacy is a necessary and sufficient condition for algebraicity of germs
of biholomorphic maps between minimal generic CR submanifolds of C™.
Here, holomorphic nondegeneracy and minimality must be understood in
the sense of Stanton [24] and Tumanov [25]. We note also that in the work
[3], the authors consider real algebraic sets (i.e. with singularities). How-
ever, when one drops the assumption of nondegeneracy, no information is
given about the eventual algebraicity of some components of the map. In
this paper, we consider the following setting which will be called the general
situation:

Key words: Algebraic real hypersurface — Holomorphic mapping — Segre variety —
Holomorphic nondegeneracy.
Math Classification: 32H99 — 32D15 — 32D99.
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Let (M, po) and (M’,pg) be two germs of real algebraic hypersurfaces
in CN*1 N > 1, with M not Levi-flat, and H : CN*t1 — CN*! 4 germ at
po of a holomorphic map of generic mazimal rank (i.e. Jac(H) % 0) such
that H(po) = py and H(M) C M'.

Then we address the following question. What can it be said about
the mapping H without assuming any nondegeneracy condition on the
manifolds? Theorem 1.1 below gives an answer to this question. We
emphasize that the situation here is much more different than in [7], [5] and
[3], because we do suppose nothing else than the non-flatness assumption
on our hypersurfaces.

We shall now describe our main result. In the general situation
described above, after a translation, we may assume that p} is sent to
0 and M’ is given near 0 by

M ={Z'eCNt /) p(Z2',Z") =0}, Z'=(,v')eCN xC,

8 /
where o’ is a real polynomial and @:t(O) #0 (w' =2y, +iyn,y)- By
the algebraic (complex) implicit function theorem, M’ can also be defined

near 0 by the equation
(1) w = QI(ZI,’LT)’, z/),

with @’ holomorphic algebraic of its arguments and Q’(0) = 0 (see [12]).
For any holomorphic function x defined in a neighborhood of 0 in C¥,
k > 1, we put X(p) = x(p) for p close to 0. Following the philosophy of the
Schwarz reflection principle ([4], [17]), we define the reflection function R
near (pg,0) € CV*! x CN to be the map (Z,\) — Q'(H(Z),)). Let An41
denote the ring of germs at 0 in CV*! of holomorphic functions which are
algebraic over the field of rational functions over C and Fy; denote its
quotient field (this is a field of abelian functions). Write Q' in the following

way: Q' (2, w', &) = S pl(2',w')€. Following [19], we denote by K(M')
a€eNN
the smallest field contained in Fv 11, containing C and the family (o) gen~ -

We are now ready to state our main result.
THEOREM 1.1. — In the general situation described above and with
the previous notations, one has:
i) The reflection function R is holomorphic algebraic near (po,0).

ii) For every element q € An41 which belongs to the algebraic
closure of K(M'), the function Z — q o H(Z) is holomorphic algebraic.
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Moreover, if the coordinates (2’',w’) are normal with respect to M’ (i.e.

Q'(#,w',0) = w'), the normal component of H is always algebraic.

We emphasize that here, we have only done a translation from the
original defining function of the target hypersurface. As an immediate ap-
plication of an algebraic criterion of holomorphic non-degeneracy obtained
by the author in [19], Theorem 1.1 leads to the following well-known corol-
lary.

CoroLLARY 1 ([7], [5]). — Assume in the general situation that the
source hypersurface is holomorphically nondegenerate at py. Then H is
holomorphic algebraic.

The paper is organized as follows. In Section 2, we recall briefly some
basic facts from algebraic hypersurfaces and the Segre varieties associated
to them. Section 3 is devoted to the proof of an algebraic proposition of
some interest. Section 4 contains some technical lemmas and in Section 5,
we first prove part (ii) of Theorem 1.1, and then part (i). We conclude with
the proof of the corollary and some examples illustrating the spirit of our
main result.

It is a pleasure to thank my thesis advisor Makhlouf Derridj for
his very careful reading of the manuscript and his numerous suggestions
regarding the paper.

2. Algebraic real hypersurfaces, Segre varieties.

Let (M, po) be a germ of a real algebraic hypersurface in CV+1. As in
the introduction, we may assume that, after a translation, M is given by

M={zZeC"*' [ p(Z,2) =0}, Z=(zw)eC" xC,

where p is a real polynomial and with the corresponding statements of
the introduction without primes. For any point (z,w) near 0, we define a
complex algebraic hypersurface Q.,.), called the Segre variety associated
to (z,w) by

Q(Z,w) = {(5?7-) e cN+1 / p((gﬂ-)a (27 17))) = O}?

where we have complexified p. These manifolds were introduced by Segre
[23], and were extensively used by many mathematicians in mapping
problems such as Webster [26], Diederich-Webster [12], Diederich-Fornaess
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[10], [9], Diederich-Pinchuk [11], to name a few. Recall also, as in the
introduction, that by the algebraic implicit theorem, the Segre variety
Q(z,w) can be given near 0 by Q(,..,) = {(§,7) € U° / 7 = Q(z,w, &)},
where Q is holomorphic algebraic of its arguments and U? is a sufficiently
small neighborhood of 0 in CNV+1. Recall also that the polar M of M (i.e. its
complexification) is the complex algebraic hypersurface in C2V*2 given by
{(z,w,&,7) €U xU° / 7 = Q(2,w, &)} and U! is a small neighborhood")
of 0 in CV*! with U? C U!. We remind the reader that from the reality of
M, one has the following identity:

(2) Q& Q(2,w,8),2) = w.

We will make use of the following basis of holomorphic vector fields
tangent to the Segre variety Q, .,

/ 9 > & & _9p,. _ a
J — P v s _
(3) X(f’u_)) - or (Z, w’g’ T) a&-] 6{7 (szﬁg, T) 6_7" J 1,... N.

3. An algebraic proposition.

In this section, we consider the target hypersurface given as in the
« /

introduction. First, define for « € NV Z,(£,7,2) = ?]%(f, T,2). (We
have dropped the ’ for the variables.) This defines =, as an element of
Aan+1. We also define gg = ﬁ%, for 3 € N¥. We denote by K the smallest
field contained in Fan41 and containing C, the families z = (21,...,2n)
and (Z,). To finish with these notations, let X(M’) be the smallest field
contained in Faon+1 and containing C and the family (gg). Then one has

the following

ProposiTION 1. — The field K(M') is contained in the algebraic
closure of K.

Proof. — We must show that for each multi-index 8 € NV, gg is
algebraic over K. First, recall that if k; and ko are two fields with k1 C ko,
a finite subset {s1,...,5s,} of k2 is called algebraically independent over k;
if the following proposition:

(P € k[Ty,...,Tp] and P(sy,...,sp) = 0 implies that P = 0)

&) Throughout the paper, all neighborhoods will be assumed to be connected.
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holds. (For more details about the standard concepts of field theory we
shall use, we refer the reader to [15], [27] or [20].) To begin with, choose
in the families z and (E), a maximal set of algebraically independent
elements over C. Such a set is always finite and does not exceed 2V + 1,
the transcendence degree of Fon41 over C. Note that since the z;, for
i=1,..., N are algebraically independent over C, we can assume that the
set chosen is of the form (21,...,2n,Zqa,,. -, 2q, ). This also means that

the algebraic closure of K is the algebraic closure of C{ 2,Z,,,...,Z2q, | i-e.
the smallest field containing C and the family (z,E,,,. - ., Zq, )-(Moreover,
/

0
one can see that the fact that —?Q— does not vanish at 0 implies that k > 1;

but it has no importance in thegequel of our proof.) Recall that we want
to show that for any 3, g is algebraically dependent over K, i.e. over the
family (2,Zaq,,---;Za,)- To show this, it suffices to see, according to [15]
(Theorem III, p. 135, volume 1), that the generic rank of the following
Jacobian matrix v = v(&, 7, 2):

0Zq, BEQ!
021 T 0z
In . B 0
0= 0=, 0
_La__ZN . _hafN
Zoy 6:‘.[,! _8&
23 tee 961 3
0 R :
6:a] 3:.0,! aﬂ
or T or or

is less or equal to N +k. We may assume that k < N+1. Indeed, in case k =
N+1, similarly to what has been done in [19], the family (2,Zq,, ..., Eay,;)
would be a transcendence basis of Fon41 over C. As a consequence, we
then would have that the algebraic closure of K is all 541, and then the
proposition follows. We will thus suppose that k¥ < N + 1. We shall first
show that each square submatrix = of order N +k+ 1 extracted from v has
a determinant which vanishes identically. Consider such a submatrix z. For
z close to 0, consider the Taylor expansion of Eg = (€, 7, A) with respect

A —_ a
to A at z, i.e. Eg(€,7,A) = Y. Eays(é, T z)# This implies for z
a€NN a:
= (=2)*
close to 0 that gg(§,7) = Y. Eats(€,7,2) ' and hence
a€eNN Qa:

e}

% — Eatp (—2)* .
(4) 3, & 1)= |§::0 o (&7,2) o fori=1,...,N+1,
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where we note {541 = 7. Now, consider for n € N, the following element u?

of Aan41 defined by uB(€,7,2) = 3 Equp(&, T, z)( a') . By the choice
lerl<n :
of the family (z,Eal,...,Eak), one sees that each term of the sum is

algebraically dependent over this family, and hence u? too. This implies
(again according to [15] Theorem III, p.135, volume 1, or [20]) that the
generic rank of the following matrix:

aEa] 650& 8u'?
Oz v Oz1 8z1
In : :
aEa] asab Buﬁ]
dzn dzn Ozn
65&] Eah Buﬁ
8¢, I3 23!
0 D E
6:'041 a:cxk Buﬁ]
or tr or T
which is the same as the following one:
BEa] 024 0
0z1 e Oz
Iy : E
Bza] B:Q! 0
Ozn et Bzn
Sy . 6~=ak Buﬁ
o€, 3 3
0 : cee "
a:a] a:-oz!; Su
or co or

is less or equal to N + k. Now, one sees that identity 4 together with
the above statement implie that the determinant of z is the limit of a
sequence of determinants which all vanish identically. This shows that
the generic rank of v is less than N + k£ and hence that the family
(z,Eal,...,Eak,qg) is algebraically dependent over C. By the choice of
the family (z, Eagy- - ,Eak), this proves that gs is algebraic over K. This
completes the proof of Proposition 1.



GERMS OF HOLOMORPHIC MAPPINGS 1031

4. Algebraicity along Segre varieties.
4.1. Some preliminaries.

We consider now the general situation described in the introduction of
the paper. We will assume that the source manifold is given as in Section 2
and the target manifold is given as in the introduction. To begin with, recall
the following arguments due to Webster [26]. In the general situation, one
has H(Qp) C Q’H(p), where the ’ means that we consider the Segre variety
of the target manifold. If H = (f,g) = (f1,.--, fn,g), then for any point
(z,w) € U and any point (£,7) € Q(z,4) N U, we have

(5) o6 = Q' (_f<s, ),9G9), /(€ T>)-

Recall that (§,7) € Q(z,), is equivalent to saying that (z,w,§,7) belongs
to the polar M. Define for (z,w,&,7) € MNU! x U°,

D(zyw,&m)=D=det( XL, fl60)

%,5=1,...,N
ay anN

and let X& . denote (X(lz’w) X(Ig’w) for each multi-index

a = (a1,...,an). Differentiating the identity (5) along the Segre variety
Q(z,w) yields the following lemma, whose proof can be found in substance
in [6].

LemMMA 1. — For any multi-index 3 € NV with |3| > 1, there exists
a universal polynomial Pg € C[T,(n+1)] with a = card{a / 1 < |of < |8}
such that for any point (z,w,&,7) € MNU' x U°, one has

DU 2,(F(2,w), 5z w), £(6,7)) = P ((Xa,w)H(e, r))1<|a|<m|).

Before following our plan, we would like to point out a simple but
crucial fact . In the above lemma, the identity holds on MNU! x U°, but D
and the right hand-side of the last equation are defined (and holomorphic)
in the whole neighborhood Ul x U? of C2N+2, Furthermore, by the choice of
the vector fields tangent to Qz,4) (recall that p is a polynomial), one sees
that D and the right hand-side of this last equation are actually elements
of O(U%)[Z,W] i.e. polynomials in (2, w) with holomorphic coefficients in
(¢,7) e UC.
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Since in our defining functions we allow pure terms and terms of order
one to exist, we must be a bit careful in our computations. Hence, we have
to show the following lemma.

LEMMA 2. — D does not vanish identically in M N U x U°.

Proof. — First, we choose a point ¢ € M (arbitrarily close to 0) such
that the Jacobian determinant of H does not vanish at g (this is possible
since M is a set of uniqueness for holomorphic functions defined near M).
As one can easily check, the rank of the Jacobian matrix of H at q is the
same as the rank of the following N + 1 x N + 1 matrix:

(ngz‘(Q))i’jsN (%5 (@q) % (Q))ksN> '
(X39(q))jen % (g,9) % (q)

A(g,q) = (

Differentiating (5) along the Segre Varieties and evaluating at the
point (3,q) € MNU! x U, we get for j =1,...N,

N
(6) Xg9(a) = 3 Q. (H(a), £(a) X7 /i(9)

If D(g,q) = 0, then from (6), one sees that the rank of the following

N + 1 x N matrix:
< (Xéﬂ(q)),,j@)
(X39(q))j<n

is less or equal to N — 1. This implies that the rank of A(g,q) is less or
equal to N, a contradiction. Hence, D can not vanish identically on the
polar.

We follow our plan by applying Proposition 1. This latter means that
for any 3 € NV, there exists a positive integer k(3) and holomorphic
polynomials of their arguments RZ; (with 0 < j < k(B)) such that near
0, one has

KB) 4
(7) > R ((Eap €72 )p=1,..rs z’) au(€',7)

j=0

0,

with B ((Za, (€', 7', 2)p=t,.rs# ) # 0, and ((Eay (6,7 2))pmt,crs 7 )
is a maximal set of algebraically independent elements as in the proof
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of Proposition 1. For (z,w,£,7) € M NU! x U° putting 2/ = f(&,71),
&' = f(z,w), and 7" = §(z,w) in the previous equation yields

(8)
k(8)

> R (e, (7l w), 32 0), € Tpmt,ers £€7) ) G (H (2, 0)) = 0,
=0

which can be rewritten in the following way:

k(B)
Zéé(z’w7§77-)q%(g(z,w)) =0 inM ﬂUl X UO.
=0

To continue, we will need the following.

LeEMMA 3. — The holomorphic map 6zw ) does not vanish identically
on MNU! x U°.

Proof. — Recall that
657 (2,w,€,7) = RE® ((Ba, (F(2,0), 5(2, 0), FE,T))pr,.rs F(6,7)).

Moreover, we know that Rz(ﬁ)( Eap(§’,r’,z’)pzl,m,r,z’) % 0. Hence,
to show that 6Z(ﬂ) does not vanish identically it suffices to see that
the holomorphic map u, defined by (z,w,£,7) € M NU! x U° —
(f(z,w),g(z,w),f(é,T)) € C2N+1 js of generic complex rank 2N+1 near
0. But if we take a point ¢ € M (arbitrarily close to 0) satisfying the
conditions of the proof of the preceding lemma, we easily get that our

map u is precisely of complex maximal rank at the point (g,q) € M. This
achieves the proof of the lemma.

We shall now use lemma 1. For (z,w,&,7) € @ = { v € MNU" x
U°® / D(v) # 0}, we have the following identity for §}:

' ) Pap ((ng,w)H(év T))1<|‘1|<|0‘p|>
(9) 65(2,w,&,7) =Ry Dlap1 f(&7)

Note also in the case where one of the «; equals 0, we just replace the
corresponding term by g(&,7) according to Equation 5. Now, multiplying
the last equation by enough powers of D and reminding the reader the
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remark after Lemma 1, one sees that for each 3, we have

k(B)

(10) Z u’é(z,w,{,T)qé(I_{(z,w)) =0,

Jj=0

for (z,w,€,7) € Q. Moreover, k(8) > 1 and each ufa is holomorphic in the
whole neighborhood U x U°, and more precisely belongs to O(U°)[Z, W].
This implies (together with Lemma 2) that the identity (10) holds on
M NU' x U%. To finish, note also that from Lemma 3 and Lemma 2,
we see that for each multi-index 3, ug(ﬁ ) does not vanish identically on
MNU x U

Equation 10 means, in a certain sense, that each function Z —
qs(H(Z)) is algebraic along the Segre varieties of M. Our aim, now, is
to show that this implies the algebraicity of the latter function. But, here,
the identity 10 is a very weak statement concerning algebraicity compared
to the ones than one can find in the literature ([7], [5], [3]). Nevertheless, we
will show, by using the fact that the uJﬁ are actually polynomials in (z,w),
that 10 will be sufficient for us to prove algebraicity of the desired map.

From now, we only have to consider the following situation. Let M
be a real algebraic hypersurface given as in Section 2, with M not Levi-flat
(near pg = 0), and h a holomorphic function defined in neighborhood of 0
(in CN*1), which is algebraic along the Segre Varieties in the sense that h
satisfies an identity of the form

k
(11) Zvj(z,w;ﬁ,T)hj(z, w) =0,
7=0

for (z,w,&,7) € MNU'xU®, with k > 1,v; € O(U°)[Z,W]forj =1,...,k,
and v does not vanish identically on the polar.

First, choose a point py € U®° N M such that M is of finite type
at this point. Indeed, this is possible since M is assumed not to be
Levi-flat (near 0), and hence M contains minimal points arbitrarily close
to 0. (See for example [13].) In a second time, note that since the set
T = {(z,w,z,w) € U x U° / (z,w) € M} is a maximally real (algebraic)
CR submanifold of MNU! x UY, it is a set of uniqueness for holomorphic
functions defined on the polar [21], and hence vy can not vanish on any open
subset of T'; and we may thus choose a point p; = (21, w;) € M (arbitrarily
close to pg) such that vy, does not vanish in an open set V! x V0 of C2V+2,
with (p1,p1) € V! x VO C U x U°. Moreover, since M is minimal at py,
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we can assume that M is also minimal at p; (recall that minimality is an
open property since it is equivalent to the finite type condition of Kohn
[18] and Bloom-Graham [8]). Now, we restrict the identity (11) to the
complex submanifold near (p,p1) given by (MNVIx VO N{(z,w,&,7) €
VIxVO/(&7)€EQp}t=MNVIxVO)N{(z,w,&,7) €eVIXxV? /1=
Q(21,w1,€)}. This gives that for (z,£) € CN x CN near (21,7 ), one has

(12) ZUJ(Z 5 Q zlvwl,g) ) 6,@(21,’(U1,§))'¢)j(z,£) = 0’

where ¥(2,€) = h(z,Q(&§,Q(21,w1,£),2)). Our next goal is to show the
following proposition, which will be the main purpose of Subsection 4.2.

PROPOSITION 2. — % is holomorphic algebraic near (z1,%;).
4.2. Proof of Proposition 2.

Recall first that for j = 1,...k, v; € O(V1)[Z,W]. This implies
together with Equation 12 that we have for (z,£) € CV x CN near (21, %)
the following identity:

k v )
1) Y > 2 (QE R, w1,8),2) Uaws(©¥ (2,6) =0,

7=0 aenNV |a|<b
v=0,...,c

where b, c € N*, the u,,, ; are holomorphic near z;, and

> (2)*(w1) vawk(5) = vi(z1, w15 £,01) # 0.

aeNN,| |u|<b
v=0,...,c

(We have used the identity (2).) We define for (0,¢) € CN x CV close
to 0 the following holomorphic function ¢(o,€) = ¥ (o + 21,€ + Z1). After
this translation was made, it is enough to prove that ¢ is algebraic near 0
to prove Proposition 2. Now, from (13), one sees that ¢ satisfies near 0 a
relation of the form (we omit the parameter (z1,w;))

k
(14) YooY 0%(0(0,0) Wa, (¢’ (0,€) =0,
j=0 aenNN, |a|<b’

v=0,...,¢/

with 6 algebraic holomorphic near 0 (recall that @ is algebraic) and
> 000)Wouk(0) = > > (2)%(w1)"vawk(21) # 0. The

v=0,...,c/ €NV |a|gbv=0,...,c

crucial point of our proof is now the following lemma.
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LemMMA 4. — For any given n € N, there exists a family (z
(lo| < b,v=0,...,c,j=0,...,k), such that

au])

i) this family agrees with (W, ;) up to order n (at 0);

ii) each z7, , ; is algebraic holomorphic;

k
i) > Y 0%(8(0,€) 2L, j(€)p?(0,€) = 0, near 0.
J=0 aeNlV ,|a|<b’ ™
v=0,...,¢/

Proof of Lemma 4. — Before beginning the proof, let us deal first
with (14). Expanding it in a Taylor series with respect to o at 0 yields

Z Z Z Al Wa,u,i( Z ‘pu,J(e =0,

3=0 aeNN ja|<b! |v|=0 |p|=0

v=0,...,¢/

for (o, €) belonging to a small neigborhood W' x W0 of 0 in C¥ x CV, and
0., is holomorphic algebraic. We may thus rewrite the previous equation
in the following form:

(15)
oo
Yot Y Y gt Wans@0s( =0
|u|=0 «€eNN ueNN v=0,...,¢/ K
la|<b! ,atp<u I=0,-..,k
where o + 4 < u means that foreach i =1,...,N, a; + p; < u;. Now, for

each multi-index u € NV, we may define the following holomorphic function
Ju in WO x C* (s =card{ (o,v,5) / |o| <¥,v=0,...,c,5=0,...,k}),

Tl (Taws)
= ¥ Y et W O)us )

aeNN ueNN v=o0,...,c/
loe|<b! yatpsu 3=0,..k

Note that it is possible to define all these holomorphic functions in a
common neighborhood of 0 in CN x C?® since the 6,, and the ¢, ;
correspond to the derivatives associated to # and ¢. By the Noetherian
property [14], there exists l[p € N* such that the ideal generated by the
(Ju)uenn is the same as the ideal generated by the (Ju)|u|<i,- To continue,
we have to show the following lemma.

LEMMA 5. — For any u and for any j, ¢, ; is algebraic holomorphic.

Proof of Lemma 5. — Recall that by construction, ¢, (e) =

oMl i
oo

(0,€) and that ¢(o,€) = Y(o + z1,€ + Z1). We treat the case j = 1,
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since as we shall see, the general case follows from the same lines. We thus
have that the derivatives of ¢ evaluated at (0, €) are the same as the deriva-
tives of 1 evaluated at (21, €+ 2;). We claim that these derivatives are alge-
braic functions of €. Indeed, recall that 1(z, &) = h(z, Q(¢, Q(z1, w1, £), 2))-
Hence, all the derivatives of ¢ evaluated at (21,€ + Z;) involve the deriva-
tives of @ (which is known to be algebraic) and all the derivatives of h
evaluated at the point (21, Q(e+ 21, Q(21, w1, €+ 21), 21)) = (21, w;) (recall
(2)). Hence, these latter derivatives are independent of €, and we are done.

We come back to the proof of Lemma 4. Since for |y| < lo, |p| < lo,
j=0,...,kand v =0,...,c, the ¢, ; — ¢, ;(0) and the 0., , — 6, ,(0) are
algebraic, they satisfy the following non-trivial polynomial system:

0.

(16)  Vui(&Pus = #ui(0) =0, @4,(66y, —04,(0)

The ¥, ; and the ®, , are polynomials of their arguments. We shall now use
a procedure which has already been used (in another context) by Baouendi
and Rothschild ([7] Lemma 1.11). We first choose ng € N large enough
so that two families of (germs at 0) holomorphic functions (xy,;, $4,,) and
(Mu,j» ty,v) which satisfy (16) and which agree up to order ng must be equal.
Let us consider now n > ng, and the following system of equations in ¢, in
the unknowns R = (R, ), w = (wy;), T = (Ta,w,j), With || < lo, |u| < lo,
v=0,...,c,7=0,...,k, |a| <b"

E ’iu,a,u(Ru—a—u,u + gu—a—u,v(o))(Ta,l«j + Wayl/,j (0))
aeNN uenN
Je|<b! ,atpgu
v=0,...,¢/
=0,k
X(@p,j + ¢u,;(0) =0,
Vi€ @) =0, @yu(6Ry0) =0,

1
for all u € NV such that |u| < lp. (Kyapu = ) According to

p(u—a—p)
(15) and (16), Y = ( (83,0 = 05, (0)); (P1s = #u5(0))s Warj = Wai(0)))
is a convergent power series solution of this system. Since we deal with
a polynomial system, according to a result of Artin [2], there exists an
algebraic formal power series (R%", @™, T%"), which satisfies the above
system and which agrees with the original solution Y up to order n at 0.
The algebraicity of T%™ gives a family of non-trivial polynomials (i.e all at
least of degree one) Ef, , . = Ey, , ;(e; X) such that Ej, , :(e; o™ () =0

a a,v,j
(in the sense of formal power series). We consider now the following new






