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THE FINITE SUBGROUPS
OF MAXIMAL ARITHMETIC KLEINIAN GROUPS

by T. CHINBURG*, E. FRIEDMAN**

1. Introduction.

The finite subgroups of PGL(2,C) have been known since Klein's
time to be isomorphic to a cyclic group, a dihedral group, A4, 84 or A5. In
the study of hyperbolic 3-orbifolds, especially in connection with volumes
estimates [7] [8] [9], it is useful to know which of these finite groups appear
as subgroups of a given Kleinian group F C PGL(2,C). In this generality,
it seems that the problem can only be solved at the level of finding an
algorithm which computes, in terms of a presentation, all the isomorphism
classes of finite groups which are realized as subgroups of F. We treat
here the more restricted problem of computing the finite subgroups of
a Kleinian group corresponding to a minimal arithmetic hyperbolic 3-
orbifold, where minimal means that the orbifold does not properly cover
any other orbifold. The arithmetic hyperbolic 3-manifold of smallest volume
has been identified recently using a combination of computational Kleinian
group theory, analytic number theory, lists of number fields of small degree
and the results of this paper [4].
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** Research partially supported by FONDECYT grant 198-1170.
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1766 T. CHINBURG, E. FRIEDMAN

While our interest in the subject of finite subgroups of arithmetic
Kleinian groups originated in the study of hyperbolic 3-manifolds, it turned
out that the subject is linked to interesting aspects of indefinite quaternion
algebras over a number field. Thus, the results of this paper required a
prior study [2] of the embeddability of a commutative order into a maximal
order. This uncovered, in certain exceptional cases, the existence of a global
obstruction affecting exactly half of the maximal orders. Another surprising
aspect is an assignment, linked to dihedral subgroups of arithmetic Kleinian
groups, of an ideal class to a pair of global Hilbert symbols. This is discussed
following Theorem B below.

Borel [1] associated to an arithmetic Kleinian group F C PGL(2, C)
a quaternion algebra B over a number field k. The field k has exactly
one complex place and the algebra B ramifies at a set of places Ram(B)
which includes all real places of k. Let V be a maximal order of B, and
let S be a finite set of prime ideals of k such that S H Ram(B) = (f). Borel
defined a subgroup r^,z> C B*/A;* C PGL(2,C) for each such P and 5',
and showed that F is conjugate to a subgroup of TS,T> for some T> and
S. Thus, arithmetic Kleinian groups F can be identified with subgroups of
some B * / k * and maximal F are among the F^p.

When S = (f) is empty, we have by definition

r^p == Fp = {x e B*/A;*| xVx~1 = v}.

Here x e B * / k * denotes the class of x e B*. The complex place of k is
used to embed Fp into PGL(2,C). For a general 5, the definition of F^p
is similar, except for a local twist at the places in 5'. Details are given in §3.

In this paper we identify the finite subgroups of F^p up to B * / k * ~
conjugacy. First, in §2, we determine explicit parameters (i. e., invariants)
for all finite subgroups H C B* /A;*, where H is taken up to B* / k * -
conjugacy. The main tools used in §2 are Klein's list and the classical
theory of quaternion algebras. In the case of A4, 84 and As, we relied on
Alan Reid's kind help, as well as on the results of [8, §9]. The net result is
that, up to conjugation, there is in B * / k * at most one subgroup isomorphic
to each of A4, 84, As or to a cyclic group of order at least 3. In each
case we give necessary and sufficient conditions for this subgroup to exist.
Thus, no parameters are needed to identify these subgroups. On the other
hand, there are infinitely many non-conjugate dihedral subgroups of B * / k *
and we give parameters for them. We do the same for cyclic subgroups of
order 2.
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FINITE SUBGROUPS OF ARITHMETIC KLEINIAN GROUPS 1767

Next, in Theorem 3.3, §3, we identify the cyclic subgroups of B * / k *
which are actually in F^-p. We give here the result for Fp.

THEOREM A. — Let B be a quaternion algebra over a number field k
having exactly one complex place, let B ramify at all real places ofk, let Ok
denote the ring of algebraic integers ofk, and suppose n > 2 is an integer.
If k contains a primitive n-th root of unity Cn, then Fp contains a cyclic
subgroup Cn of order n if and only ifB is isomorphic to the matrix algebra
M(2, k). Assume now that <n ^ k. Then F^p contains a Cn-subgroup if and
only if conditions (1) and (2) below hold:

(1) There is an Ok-embedding ofO^n} mto V.Ifn= 2^ for some
prime £ ^ 3, then also the full ring of integers Ok^rz) G^eds into T>.

(2) If a prime [ of k divides a rational prime £ ^ 2, n = 2^ and
I ^ Ram(B), then the absolute ramification index e\ is divisible by (p{n),
where y? is the Euler function.

For most n, Theorem A simplifies to

COROLLARY. — Let B and Cn be as above and assume that n > 2 is
not twice a prime power. IfC,n ^ k, then F-p contains a Cn-subgroup if and
only ifB ^ M(2, k). If^n ^ k, then Fp contains a Cn-subgroup if and only
if T> contains a primitive n-th root of unity.

The case n = 2 of Theorem A is given in Theorem 3.6 below.
Condition (1) in Theorem A, which is the only one involving Z>, is analyzed
in [2]. In Theorem 3.3 below we give simple necessary and sufficient
conditions under which an embeddability obstruction vanishes, so that (1)
can be replaced by an elementary criterion (1') that only involves k and
Ram(B).

In §4 we study dihedral subgroups of PGI^F), where F is a local
field. In §5 we put this together with the results of §2 to list, for a given
non-cyclic finite subgroup H C B*/A;*, the TS,T> which contain a conjugate
of H. Such a subgroup H, unlike a cyclic one, "selects" only a few F^ p, as
we now explain.

Define two maximal orders T and P of B to be in the same S-type
if there is an a; € B* such that the p-adic completions of V and 7 satisfy
^p = xT>^x~1 for all p ^ S. The reason for introducing 5-types is that F^ p
is conjugate to F^ if T and Z> belong to the same 5-type. When S is
empty, an <S'-type is just a conjugacy class of maximal orders, i. e., a type
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1768 T. CHINBURG, E. FRIEDMAN

in the usual sense [5] [13]. Just as in the classical case, the set of 5'-types of
maximal orders is finite and in bijection with a quotient Ts of the 2-part
of the narrow ideal class group of k [13, p. 88] [2, Lemma 3.2].

The results of §5 can be summarized as

THEOREM B. — Let the algebra B be as in Theorem A and let H be
a non-cyclic finite subgroup ofB* fk*. Then there exist two Gnite sets 5m
and SM of primes ofk, and an SM-typQ T(H) of maximal orders ofB with
the following property: a B* / k*-conjugate ofH is contained in F^p if and
only ifV belongs to the Su-type T{H) and Sm C S C SM'

We give in the proof of Theorem 5.1 an explicit description of Sm and
SM in terms of the invariants of H described in §2. In §6 we compute some
examples of Theorems A and B of varying complexity.

The assignment given in Theorem B of an 5'M-type T(H) to a non-
cyclic subgroup H remains mysterious in the case of dihedral subgroups.
Take, for example, the case of a 4-group, so H ^ Z/2Z x Z/2Z. In Lemma
2.4 we show that such subgroups of B * / k * are classified, up to B* / k * -
conjugacy, by pairs (a,&) € k* / k * 2 x k * / k * 2 such that their global Hilbert
symbol coincides with that of the quaternion algebra B. Thus, H = Ha,b- It
is perfectly straightforward (see §5) to determine Sm {Ha,b) and SM (Ha,b)
from (a,^). However, we are at a loss to give a global description of the
function given by (a, b) >—>• T(Ha,b) assigning an 5'M-type to a symbol. Our
proof yields only a description of this map in terms of local maximal orders.

To make this problem more concrete, we replace types by ideal classes
as follows. There is a canonical "distance map" p between two SM-types,
with values in a quotient Ts^ of the narrow ideal class group of k (see §3).
Fixing SM? this gives rise to a canonical map

((a,^),(c,d)) ̂  (Ha^Hc^d) ̂  p(T(Ha^^T(Hc,d))

which associates to two pairs (a, b) and (c, d), with coinciding global Hilbert
symbols and satisfying certain local conditions, a well-defined class in Ts^.
It would be interesting to elucidate this map using solely the arithmetic
of A;.

Finally, we note that while our main interest is in finite subgroups
of a maximal arithmetic Kleinian group F C PGL(2,C), we actually deal
throughout with the more general case of a maximal irreducible arithmetic
group F C PGL(2,R)71 x PGL(2,C)m.
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2. Finite subgroups of B*/A;*.

In this section we describe the finite subgroups of B*/^*, where B is a
quaternion algebra over a number field k. Thus, A; is a finite extension of Q
and the algebra B is a 4-dimensional ^-vector space with basis l,x,y and
xy with the multiplication rules

x2 = c, y2 == d, yx = -xy,

where c (= c ' l),d e k* and 1 is the multiplicative identity of B. We
summarize this by saying that B has Hilbert symbol (c,d), or simply
B = (c,d). In this section B may be definite or indefinite at any real
place of k.

We denote the reduced norm, reduced trace and canonical involution
[13, p. 1] of B by nr, tr and L, respectively. We use p, (, and "prime of k"
exclusively to denote non-archimedean places of k.

LEMMA 2.1. — Let n> 2 be an integer and let Cn be a primitive n-th
root of unity in some algebraic closure ofk. Then B * / k * contains a cyclic
subgroup Cn of order n if and only if (1) and (2) below hold:

(1) Cn + Cn'1 C k . I f B is a division algebra, (n ^ k.

(2) If p e Ram(B), then p is not split in the quadratic extension
k((:n)/k.

The subgroup Cn is unique up to conjugation by an element of B * / k * .
It can be described as follows. If (,n € k, so B = M(2,A;), then the class
of ̂  ^ in PGL(2,k) = B* /A;* generates a Cn. If, on the other hand,
Cn ^ k, then conditions (1) and (2) are equivalent to the existence of a
C € B* satisfying (n = 1, (^n/d ^ 1 for any proper divisor d of n. For any
such C, k((,)/k is a quadratic field extension, k(C;y/k" C B*/A;* contains
a unique Cn and the class of 1 + C in B*/A;* generates Cn. Moreover, ifn
is odd and C,n i k (respectively, Cn C k ) then the class of C (respectively,

[ -i } ) 8^so generates Cn-
\ ° Cn /

We note that the lemma implies that for odd n, any Cn C B * / k ^ is
contained in a Can-

Proof. — As before, we denote by x an element of B * / k * represented
by x e B*. Let us prove the existence of a Cn when (1) and (2) hold.

TOME 50 (2000), FASCICULE 6



1770 T. CHINBURG, E. FRIEDMAN

Suppose first that Cn e k. Then (1) implies B = M(2, k), so that (^ ° }
represents an element of B* / k * generating a Cn. Now suppose Cn ^ A;.
Condition (2) implies that A;(Cn)A embeds in B [13], p. 78. Let C be the
image of Cn under this embedding, and let d be the order of C in B * / k * .
Then d|n and Cn e A;, so (1) implies Q(Cn -+- Cn^Cn) C fc. Because Cn ^ k,
we conclude that d = n if n is odd and d = n/2 if n is even. Hence
(1 + C)2^ = 2 + C + <-1 € A;*, shows that TTC generates a Cn.

Suppose now that B* / k * contains a Cn' Equivalently, suppose there
exists an x e B* satisfying a:71 € A;*, x71^ ^ k for any proper divisor d
of n. We first consider the case in which k(x) C B is not a field. Then
B ^ M(2,fc), so (2) is vacuously true. The eigenvalues of x must lie in
k, since otherwise k(x) would be a field. Hence x € B* ^ GL(2,A;) is
conjugate, by an element of GL(2,A;), to a scalar multiple of ( ~ ( ) or

( „ , ) for some t and A in k. The first matrix we may discard since it is
either the identity (if t = 0) or of infinite order in PGL(2, k). The second
matrix has order n in PGL(2, k) if and only if A € A;* is a primitive n-th
root of unity. Thus, Cn ^ k. In particular, Cn + Cn"1 c ^ proving (1) in the
case that k{x) is not a field. We have also shown that up to conjugation
there is at most one subgroup of Cn C B * / k * of order n > 2 having a
generator represented by an a; € B* such that k(x) is not a field. Such a
Cn exists if and only if Cn € A; and B ^ M(2, A;).

Suppose now that A;(rz;) C B is a quadratic field extension of A;, as
is necessarily the case if B is a division algebra. Let a be the non-trivial
automorphism of k{x) fixing k. Let C = a ( x ) / x . Then, as rr71 € A;, we
have C71 = cr^x^/x1"' = 1. If for some proper divisor d of n, C^^ = 1,
then (T(xn/d) = a;71^, which contradicts x^^ ^ A;. Hence C is a primitive
n-th root of unity. Since x = cr(a(x)) = a(^x) = a(^)^x, we find that
^'(C) :== C~1' As n > 2, we conclude that C ^ k. Therefore k contains no
primitive n-th root of unity Cn- From Tr^)/^) = C + C~1 we conclude
that Cn+Cn1 ^ Q(C+C~1) C A;, which proves (1). Since k(x) = A;(C) ^ A;(Cn)
(where C maps to some Cn)? we see tnat k{(^n)/k embeds in B. Hence no
prime in Ram(JE?) splits in k(^)/k [13], p. 78. This proves (2). We note
that by replacing x by x3 for some integer j relatively prime to n, we may
assume that C is mapped to Cn under the A;-isomorphism A;(C) ^ A;(Cn)-

We now prove the uniqueness claimed for Cn in the case that k{x) is
a field. From Tr^w^a;) = x-}-o~(x) = a;(l-|-C) ̂ d n > 2 we see that x and
1 + C generate the same subgroup of B* /A;*. But, by the Skolem-Noether
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theorem [13], p. 6, 1 + C e B is the unique (up to conjugation) solution
of its minimal equation. Hence there is, up to conjugation, a unique Cn
admitting a generator represented by an x such that k{x) is a field.

We have also seen above that there is a unique Cn when k(x) is not
a field. However, in that case, <^ € A;, while in the present case <^ ^ k.
Finally, the last statement in Lemma 2.1 follows from (1 + C)2^1 ^ ^*- D

The above lemma completely describes the cyclic subgroups of B* / k *
of order n > 2. We now turn to the case n = 2. Suppose w e k* and that
there is some x = x^ C B* satisfying x ^ fc*, a;2 = w. Then, x € B * / k * has
order 2. If w (f: k* , then Xw (if it exists in B) is unique up to conjugation
by f?*, again by the Skolem-Noether theorem [13], p. 6. In the case that
w = x2 € A;*2, we must have B ^ M(2,A;), and a scalar multiple of x
must be conjugate in B to ( „ _- ). If w ^ A;*2, then Xw exists if and only
if k{^/w) embeds in B. As this amounts to a local condition at places in
Ram(B) [13], p. 78, we have

LEMMA 2.2.— The subgroups of order 2 of B * / k * , taken up to
B* / k*-conjugacy, are in bijection with the cosets wk*2 C k* / k * 2 , where
w runs over all elements of k* such that no place v E Ram(B) splits in
k(^w)/k. When w € A;*2 this condition is taken to mean that B ^ M(2, k).
The bijection is obtained by mapping an x = x k * 6 B * / k * , having order
2, to x2^2. Conversely, given a coset wk*2 as above, there is an x 6 B*,
x ^ k * , such that x2 == w. This x is unique up to conjugation and k(x) is
a field if and only if w ^ k*2. Ifw C fc*2, then x is conjugate to a scalar
multiple of(^ °^\

We now turn to the dihedral subgroups of B* / k * .

LEMMA 2.3.— Let Cn C B * / k * be a cyclic group of order n ^ 2.
Then there exists a dihedral group H C B* / k * of order 2n containing Cn'

Given a dihedral group H C B* / k * of order 2n (n > 2), let x € B*
represent any generator of a cyclic group Cn C H of order n. Let y € B*
represent the generator of a cyclic subgroup C^ C H of order 2 which is
not contained in Cn • Let C,n denote a primitive n-th root of unity in some
algebraic closure of k. Then B is given by Hilbert symbols B = (ri,w),
where d, w € A;*, w = y2 and d == (<^ -j- Cn'1)2 — 4 for n > 2, d = x2 if
n=2.

TOME 50 (2000), FASCICULE 6



1772 T. CHINBURG, E. FRIEDMAN

Conversely, suppose B has Hilbert symbol (d, w) for some d and w in
A;* . Ifn > 2, assume also that B satisfies conditions (1) and (2) in Lemma
2.1, and assume that d = ((<^ + Cn'1)2 - 4)a2 for some a e A;*. Then there
exists y € B*, with y2 = w, and a cyclic subgroup Cn C B*/A;* of order n
such that Cn and y generate a dihedral subgroup H of B * / k * of order 2n.
Furthermore, ifn=2, the nontrivial element x of C^ is represented by an
x C B* such that x2 = d and xy = —yx.

Proof. — We note that for any s e B, the reduced norm and trace
satisfy nr(s) = s ' i(s) , tr(s) = s + i(s), where L is the canonical involution
of B. Hence, i(k{s)) C k(s) for s € B, and i{s} == s if and only if s € k.
If B is a division algebra and s € B, s ^ k, then i induces the non-trivial
Galois automorphism of k ( s ) / k . If k(s) is not a field, so B = M(2, k) and

/a / 3 \ _ / 6 -f3\
^ ^ V - 7 a ) -

then i again restricts to the unique non-trivial ^-involution of k(s).

Assume first that Cn C B " / k * and let x generate Cn' By the Skolem-
Noether theorem, there is a y e J3* such that ysy~1 = i(s) for all
s € k(x). As conjugation by y induces a non-trivial ^-involution of k{x),
y ^ k(x). Now, x = ^(^(^)) == y2xy~2, shows that w = y2 € k(x}. As
i{w) = ywy~1 = yy2y~l = w, we see that w € A:*. Furthermore, for j e Z,
yx3 ^ k* as y ^ k{x). Now, //(a;) = m(x)x~1 implies y x y ~ 1 = x~1. Thus,
x and ^ indeed generate a dihedral subgroup of H C B* / k * of order 2n
containing Cn, proving the first claim in Lemma 2.3.

Now suppose Cn is contained in some dihedral subgroup H C B* / k *
of order 2n, and let y € H^ y ^ Cn- Let us show that B = (c?,w), with
w = y2 and d = x2 if n = 2, d = (^ + <^1)2 - 4 if n > 2. Note that
y has order 2 and y x y ~ 1 = aT~1. Then w := y2 ^ k* and yxy~1 € A;(a*).
Hence conjugation by ^/ induces a ^-involution of A; (a;). If this were the
trivial automorphism, then y € k(x) and x~1 == ^. Thus n = 2. But then
x2 € A;, y2 € A: and A;(a;) = A;(z/) imply that a;"1!/ € A;, contradicting ^ ^ Cn-
Hence conjugation by y induces the non-trivial A-involution of k(x) for any
n > 2. Let 2^ = a* — </(a;), so yzy~1 = t(z} = —z. For n > 2, Lemma 2.1
implies that for some a e A;*, ( z / a ) 2 == (<^ + Cn"1)2 — 4 = d. Here the main
point to check is that z2^ taken modulo A;*2, is independent of the chosen
generator x of Cn. But this follows from (x — t(x))~ (x3 — i(x3)) 6 A;*,
since this quotient is fixed by i. Likewise, for n = 2, Lemma 2.2 implies
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(z/a)2 = x2 = d for a = 2. As {z/a)2 = d, y2 = w and y(z/a)y-1 = - z / a ,
we have shown that B = (d, w).

We now prove the converse claim. If n = 2, the hypothesis B = (d, w)
implies the existence of x and y in J3* such that x2 = d, y2 = w and
^ = -^- Hence x and ^ generate a Klein subgroup of B*/A;* as claimed
in the lemma when n = 2. Assume now n > 2. Lemma 2.1 implies the
existence of a C^ C B*/A;* with a generator represented by x C B* as
described in that lemma. By the hypothesis on d and the definition of the
Hilbert symbol B = (d,w), we can find y and z in B* satisfying

y2 = w, z2 = d = a2^, + C,1)2 - 4), yzy-1 = -z,

for some a e k * . Now, z ^ A:* and satisfies (z/a)2 = d = (Cy, - C^1)2 =
(a; - b(x)) for some x e B* representing a generator of Cn, as follows
from Lemma 2.1. Hence z / a is conjugate to x — i(x). After simultaneously
conjugating z and y , we may assume z / a = x - u(x). Hence k(z) = k(x).
As y ( z / a ) y ~ 1 = - z / a , conjugation by y induces i on k(x). As we saw at
the beginning of the proof, this implies that x and y generate a dihedral
subgroup H C B* / k * of order 2n. n

Having settled the problem of the existence of dihedral subgroups of
J3*/A;*, we turn to their classification up to B*/A;*-conjugacy. Let us first
fix a dihedral subgroup H C B*/^* of order 2n and examine the effect on
d and w of varying the choices allowed in Lemma 2.3. When n > 2, there
is a unique cyclic subgroup Cn C H of order n. We saw in the proof of the
previous lemma that the coset dk*2 = (x - i{x))2 k*2 is independent of
the choice of.r. However, the subgroup C^ = {!,]/} is not unique. It can be
replaced by {l,yx3} = {l,y7} for any j e Z. Let w1 := y12. One calculates
that either w'W € A;*2 or w-lw/nr(a•) e A;*2, depending on the parity of
j. If Cn 1 k, Lemma 2.1 implies nr(a-) = a2^ + <^1 + 2) for some a G A;*.
If Cn ^ k, this still holds as, calculating modulo k*2,

m(x) == Cn = Cn(l + Cn1)2 = Cn + Cn1 + 2.

When n = 2 there is an additional choice involved in Lemma 2.3, as
Cn = C2 C H is not unique. We can replace x by ^/ or xy, leading to
d being replaced by w or -dw. Also, 2/ can be replaced by xy, which has
the effect of replacing w by —dw.

In conclusion, for each fixed n (and 5), we obtain from H a well-
defined conjugacy invariant [H] = [d,w] e { k * / k * 2 x A;*/^*2)/^, where ~

TOME 50 (2000), FASCICULE 6



1774 T. CHINBURG, E. FRIEDMAN

is the equivalence relation generated by the relation

(dk*2,wkt2)^(dk*2,(^+Ql+2)wkf2),

where

B = <".'")• »>2. (^-4^
or by the relations

{dk^.wk^) ~ (wk^.dk^)^ (dk^.-dwk^) (B=(d,w), n = 2 ) .

We remark that when n is odd, there is actually no equivalence imposed
on w, beyond taking it modulo A:*2, simply because (^ + Cri"1 + 2) € A;*2.
By Lemma 2.3, any equivalence class [c?,w] as above can be realized as
[H] = [c?,w], for some dihedral subgroup H C B " / k * of order 2n. We now
prove that, for a fixed n, [H] is the only conjugacy invariant of such dihedral
subgroups.

LEMMA 2.4.— Two dihedral subgroups H\ and H^ of B * / k * having
the same order 2n are conjugate in B * / k * if and only if [H}] = [H^\ in
(k^/k^ x A;*/A;*2)/-, as denned above.

Proof.— From the preceding discussion, one sees that [H-t] = [H^\
when Jfi and H^ are conjugate. To prove the converse, note that by Lemmas
2.1 and 2.2 we may assume, after conjugating H^, that Cn C H\ C\H^ for a
cyclic group Cn of order n. Let x generate Cn and let y~i generate a subgroup
of Hz of order 2, disjoint from Cn- As we are assuming [H^} = [H^}, after
possibly replacing ^2 by xy^^ we may assume that y^ = y\. As we saw
in the proof of Lemma 2.3, we have then y\xy^1 = i(x) = y^xy^1. Thus,
y\^V2 ^ k(xY, as y ^ l y ' 2 commutes with x. Write y^ = y\h, h G k{x)*.
Then nr(/i) = 1, as nr(^i) = nr^).

If k(x) is a field, Hilbert's Theorem 90 shows that there is a g € k(x)*
such that h = gi>(g)~1. Since conjugation by y^ induces L on k(x), we have
i-Wyi = yi9- Hence, i(g)yii(g)~1 = y\gi{g)~1 = y\h = y^ As i{g) G k(xY,
t(g)xi(g)~1 = rr. Hence H^ and ^2 are conjugate, as claimed.

If k(x) is not a field, Lemmas 2.1 and 2.2 show that k(x) is (isomorphic
to) the A;-algebra (^ ^Y with a, b G k. But nr(/i) = 1 shows h =

( S a~1 ) = ^</(^)-15 ̂ ere ̂  = ( a ^ ) 6 A;(rr)*. Thus the above argument
applies in this case too. D
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Remark. — A review of the proofs of Lemmas 2.1 to 2.4 shows that
they are all valid if k is a finite extension of an ^-adic field Q^. Actually,
some statements simplify in the local case. For example, we can drop (2)
in Lemma 2.1, since a prime cannot split in a nontrivial local extension. In
particular, [d, w] classifies dihedral subgroups ofPGL(2, F) up to conjugacy
when F is a local field. We shall use this in §4.

We define the parity of a € k* (or of a A;*2 C k ^ / k * 2 ) at ( as the parity
of ordi(oi), where the valuation ord[ is normalized so that its value group
is Z. Similarly, we shall say that x € B* (or x € B*/fc*) is odd or even
at ( depending on the parity of ordi(nr(rr)). To determine when a cyclic
or dihedral subgroup G C B* /A;* lies in F^p, we will need to determine
whether G contains an element which is odd at some prime [ of k.

LEMMA 2.5. — Let i be a prime of k lying above the rational prime
£ ^ 2, and let H be a dihedral subgroup o f B * / k * of order 2n and invariant
[H} = [d, w]. Ifn = 2, then H contains an element which is odd at [ if and
only ifd or w is odd at L Ifn = 2£r, with r ^ 1, then H contains an element
which is odd at [ if and only ifw is odd at I, or if the absolute ramification
index e\ is not divisible by (p(n), where y? is the Euler function. For other
n, H contains an element which is odd at I if and only if w is odd at I.

When n = 2, it is easy to see that the conditions on d and w given in
the lemma are independent of the choice of d and w permitted by the
equivalence relation used in defining [H]. For n > 2, this amounts to
showing that ord((<^ + C^1 + 2) is odd if and only if e\ is not divisible
by y(n). This is done in the course of the proof below.

Proof. — Let x and y represent generators of H as in Lemma 2.3.
H contains an element which is odd at I if and only if m(x) or nr(^/) is
odd at 1. When n = 2, the lemma is clear since nr(a:) = —x2 = —d and
nr(^/) = -w. For n > 2, we must show that nr(rc) is odd at I if and only if
n = 2^ and e\ is not divisible by (p(n). As we saw after the proof of Lemma
2.3, nr(rr) = Cn+Cn 1 +2 (modulo A;*2). As C.+Cn^ = (l+Cj(l+Cn1).
we conclude [12, p. 12] that ord[(^ + Cn1 + 2) ¥- 0 if and only if n = 2F.
Thus, we can assume n = (2£r. Then ^ + C^"1 + 2 is a generator of the
prime (o ^Q^n+Cyi"1) lymg above £. As lo has absolute ramification index
e.o=^

ord,(C« + C1 + 2) = ei^orcUCn + C1 + 2) = e^ = ̂ - = -2—.

This last integer is odd if and only if </?(n) does not divide e\. D
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