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AN APPLICATION OF SHIFT OPERATORS

TO ORDERED SYMMETRIC SPACES

by N.B. ANDERSEN and J.M. UNTERGERGER

0. Introduction.

Let A4 be an ordered symmetric space, let a- be the negative Weyl
chamber of a Cartan subspace a C p n q for A4 and let A E aê, the complex
dual of a. Let denote the Harish-Chandra series on the Riemannian dual

A4 d of A4. The Olafsson expansion formula for the spherical functions p x
on A4, see [Ola2, Theorem 5.7], states that

where c(A) is the c-function for A4 and Wo is some Weyl group.
Let A4m,n, m, n E N be a symmetric space of Cayley type, where m

denotes the multiplicity of the short roots and n the rank of the symmetric
space (= dim a). Let also denote the product of n copies of the rank
1 space SOo(l, 1). We note that A40,n is not a symmetric space
of Cayley type. Using the Olafsson expansion formula and the theory of
shift operators introduced by E.M. Opdam (acting on the Harish-Chandra
series), we relate the spherical functions on A4m,n, via some differential
operator given as a composition of shift operators, to the spherical functions
on A4k,n, where k C ~0,1~ satisfies = m mod 2. A similar result for
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the spherical functions on is well-known, using the Harish-Chandra

expansion formula.

The spherical Laplace transform £ on A4 is defined in terms of

integrating against the spherical functions. Let m E 2N. Using the above,
the proof of the Paley-Wiener theorem for the spherical Laplace transform
on reduces to the rank 1 case, studied by G. Olafsson and the first
author in [A6]. The special case .Jlil2,n = x was

furthermore considered in [AU].

Finally we consider BCn type root systems not necessarily corre-
sponding to some ordered symmetric space. We define hypergeometric
functions of the second type for these root systems and we define the cor-

responding hypergeometric Laplace transform. As above we can prove a
Paley-Wiener theorem when the multiplicities of the short and intermedi-
ate roots are even and the multiplicity of the long roots is odd.

We would like to thank G. Heckman, G. Olafsson, and E.M. Opdam
for helpful and useful discussions and comments.

1. Ordered symmetric spaces of Cayley type,
spherical functions and the spherical Laplace transform.

Let A4m,n = Gm,n/ Hm,n denote (ordered) symmetric spaces of

Cayley type with root multiplicities (long roots, short roots) - (1, m),
and rank n, n E N, see [61al, Definition 5.7] for a precise definition

of symmetric spaces of Cayley type. The irreducible symmetric spaces of
Cayley type are classified by the following table (up to diffeomorphisms):

Below we present the properties of the ordered symmetric spaces
A4m,n that we need in the following, we refer to [Far], [FHO] and [Ola2]
for more details.

%a q and g = ~ be the decompositions of the Lie

algebra g of into the {±1}-eigenspaces respectively of the involution
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7 of Gm,n fixing Hm,n - and of a Cartan involution 9 commuting
with r. Let Km,n = be the maximal compact subgroup of Gm,n fixed
by B with Lie algebra t. Let a be a maximal abelian subspace of p n q,
then a is a Cartan subspace for both and the Riemannian dual

’ ’?Tt,?T- ~~ 
Let A = A(g, a) denote the associated root system of type Cn. Then

A= for some basis (~yl , ... , Tn) of the dual a* of a, with

multiplicities ma = m for the short roots a =  2 2 and 1 for the
, . ,

long roots a = Let be a set of positive

roots. Let furthermore Ao denote the root system with

positive roots Let

I

and 1

(the permutation group of n elements) denote the Weyl groups of the root
systems A and Ao respectively.

We identify the complex dual aê and en by the map

Let (., .) denote the usual scalar product on C~ and identify a with R~ such
that the negative Weyl chamber a- is given by

We write x &#x3E; r (x &#x3E; r) &#x3E; r) for all j (x Let

R &#x3E; r &#x3E; 0 and define Let

finally So :={~&#x3E;0}.
Let cm~,~.L ~ y and cm,n(.) denote the c-functions of respectively the

Riemannian symmetric space and the ordered symmetric space
Then

where see [Hel, Chapter 4, Theorem 6.14], and 
where
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and

see [FHO, §6] and [Far, §5].
The spherical functions on Mm,n and will be denoted by

t) (defined for A in some dense subset of en and t E SO) and

od ,,,(A, t) (A E en, t E JRn) respectively, and the Harish-Chandra series on
will be denoted by t) (Re A E a-, t E a- ), see [FH6, §5],m

[6la2, §4] and [Hel, Chapter 4] for the precise definitions and properties.
We note that we here consider the spherical functions as Wo - (resp. W - )
invariant functions on ,S’° (resp. on a - instead of as (invariant)
functions on (some subset) of A4m,n or 

The c-functions determine the asymptotic behaviour of the spherical
functions. The Olafsson and Harish-Chandra expansion formulae, express-
ing the spherical functions as sums over one of the Weyl groups in terms
of the c-functions and the Harish-Chandra series, are given by

see [6la2, Theorem 5.7], and

for t E a-. We note that

t E a-.

We furthermore define the normalized spherical functions
on by

LEMMA 1. - The map (~, t) - cp°2 n (~, t) extends to
an analytic function for (A E ReÀ &#x3E; -1/4} and t E S’.

Proof. - Using the Olafsson expansion formula, the proof follows
from the same arguments used in e.g. [HS, Part 1, Chapter 4] to prove
holomorphy for the hypergeometric function. 0
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Let 6m,n (t) = sinh"2a ( - denote the Jacobian associated

to the radial coordinates on a- . The normalized spherical Laplace trans-
form on and the spherical Fourier transform on A4 d
are defined by (integrating against the spherical functions)

M, n (f) (A) a- 
for f C ( left- Wo-invariant functions in whenever the

integral converges, see ~FHO, ~ 5~ , and

for for see [Hel, Chapter 4].
Given f E we denote by fd C the W-invariant

function such that fd coincides with f on ,S’°. Then

almost everywhere (and the right hand side extends to an analytic func-
tion), where c~ ~(A) := Cd .(A)/cO ,,(A). Using this, the inversion formula
for the spherical Fourier transform yields the inversion formula for the nor-
malized spherical Laplace transform

for t E a-, see also [6la2, Theorem 6.3].
Let Pa and Qa denote Legendre functions of the first and second

kind. We can view (cosh t) and (cosh t) as spherical functions
on respectively the Riemannian symmetric space 2)/SO(2) and on
the ordered symmetric space both of rank 1, see [FH6]
and [A6] . We recall the following well-known growth estimates:

for all t E R and A E C, for some constant c; and, for any r &#x3E; 0:

for Re A &#x3E; 0 and t &#x3E; r &#x3E; 0, where cr is a constant only depending on r.

Let A4o,n and be the products of n copies of 2)/ SOo(l, 1)
respectively of n copies of 2)/SO(2). The Harish-Chandra series on

is given by
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We use the Olafsson expansion formula to define (normalized) pseudo-
spherical functions on A4o,n by

We easily get the following estimate: Let r &#x3E; 0. There exists a constant cr
such that

for 0 and t &#x3E; r, where to = ( 1, ... ,1 ) . We similarly define pseudo-
spherical functions 7pd O,n on by t) 

2. Shift operators.

In this section we briefly discuss the action of the elementary shift
operators on the Harish-Chandra series and thus on the spherical functions.
We follow the 3 survey papers [HS, Part 1~ , [Hec] and [Opd], which we refer
to for more information and references.

For the remainder of this paper we fix the rank r~ E N and use

subscript instead of Let ~0~ and let G~ and denote

the elementary (raising, respectively lowering) shift operators associated
with the orbit of the short roots, cf. [HS, Part 1, Definition 3.2.1] and
[Opd, Definition 5.9]. Both operators preserve the space and,
for all nt e N U (0) :

for all f 1, f 2 E They ’shift’ the spherical functions in the
following sense:

LEMMA 2. - For all nt G N U 101 and A generic, we have

Proof. By [Hec, Corollary 3.4.4] we have
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which yields

whence the result, since the fraction is Wo-invariant. 0

We notice that the above expression for the spherical function

U {0}, is W-invariant in the t-variable, since t)
obviously is so.

LEMMA 3. - For all rn G N U ~0~ and A generic, uTe have

Proof. - As before. D

Fix and define two differential operators D~ = Gt-2 0 ... o
Gt+2 o G) - Gk+2 0 ... o G’.,.z-2 o where k E ~0,1 ~ is given
by k - m mod 2. We have the following relation between the normalized
spherical Laplace transforms L~ and 12% associated with the root systems
(I, Tn) and (1, k):

for f E (using a ’bump’ function to compensate for the fact
that ~oo(A,.) is not compactly supported). We can obtain a similar result
for the Fourier transform.

3. The Paley-Wiener theorem.

We recall the definition of the Paley-Wiener space for the

spherical Fourier transform: it is the space of W-invariant holomorphic
functions g on C~ satisfying the estimate
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for all N E N. The Paley-Wiener theorem for the spherical Fourier trans-
form states that is a bijection of

for It I &#x3E; R} onto for all R &#x3E; 0, see e.g. [Hel, Chapter 4, Theo-
rem 7.1~ .

We define the Paley-Wiener spaces and Pwm(cn) for
the (normalized) spherical Laplace transform as:

DEFINITION 4. - Let m C and let R &#x3E; r &#x3E; 0. We define the

Paley- Wiener space as the space of Wo-invariant meromorphic
functions g on cn, holomorphic on the extended tube ReA &#x3E; -1/4,
satisfying

for all N E N, where to = (1,..., 1), and

(ii) the average ~~(A) = ex-

tends to a function in ~CR ((Cn ) .
Furthermore denote by Pwm(cn) the union of the spaces over

ah R &#x3E; r &#x3E; 0.

LEMMA 5. - and let k E ~0,1 ~ be given m mod 2.

Let R &#x3E; r &#x3E; 0 and assume that Assume that the function

is holomorphic for ReA &#x3E; -1/4 and that is holomorphic on cn,
then gm E 

Proof. - We note that

Since is a polynomial and E [Hel, Ch. III,

Lemma 5.13] shows that P;:"v 9m E Since also - is a polynomial,m gm E H (C Since 
( . )

we furthermore conclude from the proof of the aforementioned lemma that

gm satisfies the first growth inequality in the definition of D

THEOREM 6 (The Paley-Wiener Theorem). - Let m E 2N U {0}.
The normalized spherical Laplace transform Lo is a bijection 
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onto More precisely it is a bijection := ~ f E
supp f c onto for all R &#x3E; r &#x3E; 0.

Proof. Let 0  r  R. From the estimate (2) it is easily seen that
120 maps into for all R &#x3E; r &#x3E; 0. Lemma 5 and (3)
thus imply that ,C°2 maps into for all R &#x3E; r &#x3E; 0.

It remains to show that £~ is onto. Consider the wave packet
Ymg E defined by the inversion formula ( 1 ) :

Define the auxiliary function 7d by

Hence We also define the (Wo-invariant)
fraction

Let g E Assume that r, that is, r for a certain

j x n : then there exists a A, &#x3E; 0 such that (A~,~ 2013 rta) == -E  0. Let

also As = s(l, ... 1) for some s &#x3E; m, so that + Às) (and Cm -
and 1/c0m(A) since m is even) are well-defined for Re A&#x3E; 0. Using Cauchy’s
theorem and Wo-invariance we get:
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- 0 for p - oo,

by the growth estimates of the Legendre functions, and we conclude that
is zero r}. The first contour shift is permissible since

for all A, t E a-, see e.g. [Wal, Proposition 4.6.3]. We can interchange
the differential operator D+ and the integral by the Paley-Wiener growth
estimates and Lebesgue’s dominated convergence theorem, since D+ is of
the form 

---

where the functions f Ti I are differentiable functions on a- .

An easy calculation shows that (for t E a- ) :

which we recognize as the inverse Fourier transform of C HR(cn),
whence 0 for It I &#x3E; R by the Paley-Wiener theorem for the
spherical Fourier transform on A4£. All this implies that C 

Since for all the above also yields

for all

and
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Then Pm h(~) _ ] W]c£ (A)c£ (-A) = 0, whence also = 0.

The function h1 also satisfies item (i) of Definition 4, in particular, 

denote the Euclidean Fourier transform of hl (i ~ ) . The condition (i) implies
that h’ is holomorphic in an open set containing ~z E C~ 01, and
the standard argument with Cauchy’s theorem gives that -y is supported on

r}. On the other hand, the average av q is the Fourier transform

of which vanishes, hence av q vanishes as well and ~ = 0 by the
support condition. Since the Euclidean Fourier transform is injective on

we conclude that hl, and hence also h = g, vanishes.

This implies that = g for all g E and hence that 

maps onto for all R &#x3E; r &#x3E; 0. m

Remark. - It follows from the above that the proof of the full

Paley-Wiener theorem for all ordered symmetric spaces of Cayley type
basically has been reduced to the M1,n = x Ri-case.
Furthermore we can use the same approach, but using shift operators
associated with both the orbit of the short roots and the orbit of the

(unique) long root, to prove a Paley-Wiener theorem for Sp(n, C)
(where the root multiplicities are 4 for the short roots and 3 for the long
root), see also the next section.

Remark. - We proved the Paley-Wiener theorem for

./1~12 = R2
in [AU] using explicit expressions of the spherical functions in terms of
Legendre functions.

4. The hypergeometric Laplace
transform on BCn type root systems.

Consider the BCn type root system

We choose a set of positive roots by

Let again Ao denote the root system with positive roots

and let W ~ x {:i:1}n and Wo ~ denote the
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Weyl groups of the two root systems. Let m = (m1, m2, m3) denote the
root multiplicities m1 for the short roots  22 , m2 for the intermediate
roots ~- and m3 for the long roots 

We identify aê with C~ and a with R~ as before and we define the c-
functions c° .c,~,, and the Jacobian 8m using the product formulae
in §1

We define the Harish-Chandra series t E a- ) and
the hypergeometric functions (of the first type) = ¿wEW 

t) (A E C-, t E IRn) as in e.g. [HS, Part 1, Chapter 4]. We use
the Olafsson expansion formula to define hypergeometric functions of the
second type pm (A, t) as follows:

defined for A in some dense subset of C~ and t E So. We also define

the normalized hypergeometric functions of the second type ~p° z (~, ~ ) by
~ ) . - ~pr,.L ( ~, ~ ) /cm ( ~ ) . We note that Lemma 1 still holds for m E

1~3 U (0) . We define the normalized hypergeometric Laplace transform ,C°2
by integrating against ~(A,~):

for f e whenever the integral converges. The hypergeometric
Fourier transform is similarly defined by integrating against ~m (~, t) (for
f E 

As has been shown by Heckman and Opdam, see e.g. [Hec, §5] and
[Opd, §8], the Paley-Wiener theorem for the spherical Fourier transform on
a Riemannian symmetric space can be generalized to the hypergeometric
Fourier transform associated to a root system, even for non-integer (non-
negative) values of the multiplicity parameter m (for certain values of m
this is of course the same transform).

We define the Paley-Wiener spaces and for

the (normalized) hypergeometric Laplace transform as in Definition 4 (with
me~u{0}).

THEOREM 7 (The Paley-Wiener Theorem). - Let 21~ and

m3 E 2I‘~ - 1. The normalized hypergeometric Laplace transform £~ is a
bijection onto More precisely it is a bijection of

onto for all R &#x3E; r &#x3E; 0.
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Proof. As before, using (compositions of) shift operators associ-
ated with the orbits of respectively the short roots, the intermediate roots
and the long roots. Lemma 2 and Lemma 3 still hold with m E ~T3 U 101
(and the obvious changes in notation) and Lemma 5 also still holds with
the modification that k = (A;i, ~2, ~3) ~ ~0,1~3 satisfies k- = mi mod 2 for
i E {I, 2, 3}. 0

Remark. - A similar definition of the Laplace transform in the
rank 1 case (for non-integer values of the multiplicity parameter) has
been considered by M. Mizony in [Miz], in which he defines the Laplace-
Jacobi transform by integration against the (normalized) Jacobi function
of the second type. He also obtains a partial Paley-Wiener theorem, and
an obvious question is of course if the above Paley-Wiener theorem can
be generalized to non-integer values of the multiplicity parameter m. With
modifications, the above definition of the hypergeometric functions of the
second type and the associated hypergeometric Laplace transform also
carries over to other root systems.
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