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ON p-ADIC ABELIAN STARK CONJECTURES
AT s = 1

by David SOLOMON

1. Introduction.

In the 1970’s and 80’s Harold Stark [St] made a series of conjectures
concerning the values at s = 1 and s = 0 of complex Artin L-series
attached to Galois extensions of number fields Subsequently, these
conjectures have been extended and generalised in various ways, with

particular attention paid recently to certain refined versions in the case
where is abelian ([Ru], [Po]). The main aim of this paper is to give a
new formulation of an analogous p-adic conjecture in this case.

Since Stark’s pioneering work, most authors have concentrated on the
values (or leading terms) at s = 0. In any case, the complex conjectures at
s = 1 are equivalent to those at s = 0, thanks to the functional equation
satisfied by the L-functions. However, the analogous p-adic L-functions
are not known to satisfy a similar equation relating s = 1 to s = 0 in

Zp. Consequently one must choose at which point to study their values.
Tate’s book [Ta] mentions two corresponding and independent p-adic Stark
conjectures: one at s = 0 ascribed to Gross, and one at s = 1 ascribed
to Serre. Unfortunately, the exposition of the latter is faulty and Serre’s
original paper actually only hints at a conjecture. (See Subsection 3.3 for a

Keywords: Stark conjecture - p-adic - L-function - zeta-function - Abelian extension -
Unit - S-unit - Regulator - Special value.
Math. classification: llR42 - llS40 - 11R20 - 11R27.
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brief discussion.) We shall take a new approach to the abelian case of the
p-adic conjecture at s = 1. This is based upon a reformulation developed
in [So2] of a refined complex abelian conjecture at s = 0 originally made
by Rubin in [Ru]. The central idea of this reformulation was to replace
(complex) L-functions at s = 0 by what we called ’twisted zeta-functions’
at s = 1. In Section 2 of this paper, the definitions and basic properties
of the latter functions are reviewed and extended. Then we introduce and

briefly study the analogous p-adic twisted zeta-functions which will serve
to formulate the p-adic conjecture.

Section 3 contains the statements of all our conjectures, studies their
properties and relates them to other Stark conjectures. Analogous complex
and p-adic versions of the conjectures are stated in parallel. The natural
setting of the p-adic versions being that in which K is (totally) real, we
have restricted attention to this case.

One feature that should be mentioned is that for fixed real k, instead
of ‘parametrizing’ our conjectures by the abelian extension field K, the use
of twisted zeta-functions makes it more natural to use another parameter
f which is a proper ideal of C~~ (as well as a further set of primes ideals,
denoted T). The field K is then always taken to be the ray-class field
of k modulo f. Since f is not assumed to be a conductor, we may get
different (though related) conjectures with the same extension (This
corresponds to different choices of the set ’S’ in [Ru] etc.) Of course, every
real abelian extension of 1~ is contained in some such ray-class field.

Briefly, the conjectures take the following form: First we assemble all
the complex (resp. p-adic) twisted zeta-functions for given f and T into
a single group-ring-valued assuming that
T contains the primes above p). The value of the latter at s = 1 is then

conjectured to be equal to the complex (resp. p-adic) group-ring-valued
regulator of a certain element 77f,T (resp. T/f,T,p), multiplied by an explicit
algebraic constant. In general terms, both and are required to

belong to a certain exterior power of the group of S-units of K, tensored
with some subring 7Z, say, of Q. (Here S consists of the infinite primes
and those dividing f.) For general values of the parameters, only ’basic’
conjectures are formulated for which we take R to be Q itself. If, however,
the primes in T do not divide ~, then there is a way to render the elements

T/f,T and (assuming Leopoldt’s conjecture) ?7f,T,p unique. In this situation
we formulate a pair of ’refined’ conjectures, essentially taking R to be

Z[I / [K : k]]. The complex version is therefore similar to (but weaker than)
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that of Rubin as reformulated at s - 1 in [So2]. Not only are all our

p-adic conjectures entirely analogous to their complex versions but, with
appropriate normalisations, they can be combined with them: In essence,
we postulate that equals ?7f,T,p for fixed and T and every eligible
p. We thus arrive at the main focus of the paper which we call the ’Weak

Refined Combined Conjecture’ (Conjecture 3.6). The paper closes with a
study of two special cases of this conjecture and some remarks on the
possibility of refining it, e.g. by taking 7Z = Z.

A forthcoming sequel [RS] to the present paper is devoted to the

numerical investigation of the Weak Refined Combined Conjecture in a
variety of cases where k is real quadratic. For selected k and t we verify
both the complex and p-adic parts of the conjecture to high precision, using
new techniques to for a number of different primes p.

2. Preliminaries.

Let 1~ C C be any number field of finite degree over Q. Its ring of
integers will be denoted 0. We first recall the definitions of the complex
twisted zeta-functions over k and the function introduced in the

paper [So2] (which may be consulted for more details and proofs).

2.1. Twisted Zeta-Functions and 

Let I be any fractional ideal of k and any character on (the additive
group of) I with values in p(C), the complex roots of unity. The annihilator
of ~ is the ideal f  C~ given 1 b’ x E Suppose
that 3 is the formal product of some subset of the real places of k. Then,
with the usual conventions, we write m for the cycle that is the formal

product f~. We denote by Em the subgroup of finite index in C~" consisting
of the units that are congruent to 1 modulo m in the usual sense. For

any finite set T of finite places (prime ideals) of C7, the group Em acts by
multiplication on the following subset of I:

where k 3 X denotes the elements of k I which are positive at all places
dividing 3 and the notation (J,T) = 1 indicates that an ideal J of 0

has support disjoint from T. The functions and a H ~I : (a) ~ are
constant on the orbits of Em acting on the above set and for s E C, R(s) &#x3E; 1
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we consider the absolutely convergent Dirichlet series, called the ’twisted
zeta-function’ for these data, defined by

(As the notation indicates, the sums are taken over any set of orbit

representatives of Em on S(1, 3,T).) Now suppose that I’ is another

fractional ideal, and that ~’ : I’ - p(C) a character of I’ such that I = cI’
and o c for some c E This relation between (~, I) and (~/, I’)
clearly implies that ~’ also has annihilator f. In fact, it is easy to see that
it is an equivalence relation (depending on 3) on the set M~ of all pairs
(~, J), where ~ is a character of annihilator f on a fractional ideal J. The
quotient set of Wf by this equivalence relation will be denoted 3Um- Now,
by ’transport of structure’, it is clear that the above relation also implies
that ZT(s;ç,I,m) equals ZT (s; ~’, I’, m). Thus, for any equivalence class
tt1 E flllm we can unambiguously define

For any non-zero integral ideal a of 0 and any pair w = (~, I ) E Wf,
we write a - w for the pair (ÇlaI, aI) which lies in Wi, where f = 
The map w H a - w thus defined respects the above equivalence relation
and so descends to a map of classes a ~ m from 211m to 2Um where
tn = f ~ . Now let denote the ray-class group of k modulo m. Thus

where Ij(k) denotes the group of fractional ideals
prime to f and the subgroup consisting of those of the form (a) for
some a E a = 1 (mod m). We write [a]m for the class in Clm(k) of
a fractional ideal a E If a E is an integral ideal then the map
m - a . to sends Wm into itself. It is easy to check that this determines a
well-defined action of Clm(k) on Wm by setting [a]m - to := a - to for any

integral a E lf(k). Moreover, this action is free and transitive (see [So2]).
We use it to combine all the twisted zeta-functions for to E 29m (and
fixed T) into a single function as follows. Let D denote the

absolute different of k and write g( for the character on ~-1 D-1 which
sends a to exp (27ri Trk/Q(a)). The pair (ç?, f-lV-1) clearly lies in Wf and
we write 1bm for its image in 3Um’ Let C C be the ray-class field over
1~ modulo m as described by Global Class-Field Theory. Then the Galois
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group Gm := Gal(k(m) /k) is isomorphic to Clm(k), via the Artin map

sending c E Clm(k) to arc E Gm, say. (Given a fractional ideal a E we

shall often write a a,m in place of We let CGm denote the complex
group-ring of Gm and make the

DEFINITION 2.1. - For any cycle m - f3 for k and any finite set T of
prime ideals of 0, we write for the function

The basic properties of were laid out in [So2, §3]. However,
in that paper, both and the twisted zeta-functions s) were
only defined under the additional hypothesis that (~, T) - 1. This was

motivated by an application to the reformulation of K. Rubin’s refinement
(in [Ru]) of the complex abelian Stark Conjectures, for which he imposes
an equivalent condition. In the present paper, however, we shall need to
p-adically interpolate and since this requires that T contain all
the prime ideals dividing p in C7, the above condition would exclude from
treatment all cycles m not prime to p. It is in order to avoid such a

restriction that we have here abandoned the assumption that (~, T) - 1,
at least for the present. So far, this generalisation has cost us nothing. In
particular, our definitions of ZT (tu; s) and still make perfect sense.
The important Theorems 3.2, 3.3 and 3.4 of [So2, §3] will, however, require
some modifications, which we now indicate.

First we prove a lemma that allows us to remove one at a time the

primes in T that divide f (compare [So2, Thm. 3.1]). For any cycle m
dividing m we use the notation 7rm,m to denote the natural homomorphism

and also for the restriction homomorphism Gum - Gm
which corresponds to the former by the Artin isomorphisms. The symbol

will also be used for the linear extension of either of these maps to

a homomorphism of group-rings. We write vm,m : CGm for the
C-linear homomorphism which sends g E Gm to the average of its inverse
images under 1fm,m, that is:

Thus vm,m induces an isomorphism between CCGm and the ring ofker(1fm,m)-
invariant elements in (CGm such that 1fm,m o vm,m is the identity.

LEMMA 2.1. With notations k, m = fh etc. as above, we suppose
that q is a prime ideal in T which also divides ~. Write f = q~ and m for
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Proof. Let c be any element of and suppose that c - tvm is
represented by the pair (ç, 1) E Wm. Since S (I , ~, T B ~ q ~ ) is the disjoint
union of 5(1,3, T) with S(qI, 3, T B fql) we find, by Equations (1) and (2)
that

Now, each term in the sum on the R.H.S. can be written as 

Moreover, since the restriction ÇlqI has annihilator f, this
term depends only on the Em-orbit of a in which is a

union of precisely Em : orbits for Em. Therefore, since q - ( c ~ lies

in 2Um? we have

In fact, it is clear from the definitions that q
so the last two equations give

Now the exact sequence (see for example [So2, §6])

and a similar one with m and f in place of m and ~, give the equalities

Dividing, and using the fact that 1r m,m is surjective gives

Finally, substituting this equation into Equation (4), multiplying by ac 1
and summing over c E gives (3). 0



385

The following result generalises Theorem 3.2 of [So2].

THEOREM 2.1. Let

dividing m. and we write

where the (integral) ideal go is supported on primes in T and
Define also

and suppose that s lies in (C with R(s) &#x3E; 1.

If go is square-free and prime to f then

Otherwise,

Proof. Theorem 3.2 of [So2] is simply the special case of this result
under the hypothesis (~, T) = 1, which is equivalent to the two conditions
go - 0 and ( f , T) - 1. However, an examination of the proof in [So2, §6]
reveals that it only uses the fact that p g T for any prime ideal plf-If = g.
It therefore goes across word for word to prove the Theorem in the special
case go - 0 (thus T = T but (f, T) = ( f , T) may or may not be 1). For the
general case, we write f 1 for the ideal goi and m, for the cycle fI3 = gom.
Thus fnlml Im and 7rm,m = Since f = the above-mentioned

special case (with fl and nii and in place of f and m) gives

Now clearly, for any the conditions p f f 1 and p f f are equivalent, and
if they hold then Therefore, the full result will follow
on applying to the above equation once we have proven that

if go is square-free and
prime to ~, and

otherwise.
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CLAIM 2.1. Suppose that p is a prime dividing go and set f2 ~=
lgo)f, m2 := f2~ so that fl = pf2 and mI = pm2. Then

Assuming this Claim for the moment, we use it to prove Equation (7).
We can suppose that C~ (otherwise Equation (7) is trivial), then choose
p = say, and define m2 as in the Claim. Suppose first that go is

square-free and prime to f. Then pi t f 2, so applying 1rm2,m to Equation (8)
gives on the L.H.S. and on the R.H.S. it gives

But pi Igo is also square-free and prime to f. So, replacing mi by m2, go
by Pllgo and T by TB ~.p 1 ~, Equation (7) follows in this case by induction
on the number of primes dividing go. If, on the other hand, go is either not
square-free or not prime to ~, then either the same will be true of Pllgo or
.p 1 must divide ~2 . In either case, the equation = 0 follows

by applying 7rm2,m to Equation (8) (and using (7) inductively if necessary).
It remains to prove the Claim. For this we use Lemma 2.1, taking ’m’

to be mi = gof3 and ‘q’ to be P so that ‘m’ is actually m2 . Applying ?fml ,m2
to Equation (3) with these substitutions gives

But the case the current Theorem (already proven!) gives

and substituting into Equation (9) gives (8). This completes the proof of
the Claim and hence of the Theorem. D

Let x : p(C) be any ray-class character modulo m. For
us, the conductor of X will be the unique minimal cycle m(x) == f(X)3(X)
dividing m such that X factors through The primitive form x of

x is then the unique character on Clm(x) (l~) such that X = x o 7rm,m(x) and
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we say that X is primitive (modulo m) if and only if x == ~. The Artin
isomorphism allows us to regard X as a character on Gm and then, by C-
linear extension, as a ring-homomorphism from CGm to C, and similarly for
~, mutatis mutandis. If a is an ideal in we shall sometimes write x(a)
instead of = and similarly for ~. If x is primitive modulo
m (= m(x)), and s E C, R(s) &#x3E; 1, then the L-function of X is given by the
absolutely convergent expressions

Under the Hypothesis that (~, T) = 1, Theorem 3.3 of [So2] provides a
relation between and the L-functions of the characters X of 
Without this hypothesis we have the following generalisation.

THEOREM 2.2. - For m = f3, any T and any character X of 
as above, we write

where the ideal go is supported on primes in T and (g’, T) = 1. Suppose
that s lies in C with R(s) &#x3E; l.

Suppose that go is square-free, a product of t distinct primes, none
of which divides f (X). Then

where gm(X) (x) ~ 0 is the Gauss sum attached to ~. (See [S02, §6.4] for a
definition,.)

Otherwise, &#x3E;

Proof - Write X as i o and use Theorem 2.1 to evaluate

If go does not satisfy the stated condition, then we

get zero. Otherwise, a little rearrangement gives
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. Let also

if p lies in T B T’ then it divides and the primitivity of X implies
that this character is non-trivial on where n denotes the cycle

From this, it follows easily that i o 0, so Lemma 2.1

gives . By iterating this procedure, we
_ 

I’ll

can remove from T all the primes that are not in T’ and since (f(x), T’) = 1,
we can then apply Theorem 3.3 of [So2] to get

Substituting into Equation (11) yields Equation (10) since the condition
on go implies that the set {p E T : .p ~ is the disjoint union of the set

with T’. D

We write for the dual group of Clm(k) , i. e. the group of all

ray-class characters modulo m, and identify it as above with the dual group
Gm of Gm. We have a character decomposition, for any s E C, sJR(s) &#x3E; 1:

(where e x denotes the idempotent Thus the be-

haviour of the primitive L-functions ~L(s, E G~} determines that of
via Theorem 2.2. For instance, each possesses a meromor-

phic continuation to the whole of C, which is actually holomorphic unless x
is trivial (O x is trivial), in which case L(s, ~) = (k (s) has a simple pole at
s = 1 with known residue (see e.g. [Ta, §I.1~ ) . Combining this information
with Equation (12) and Theorem 2.2 yields:

THEOREM 2.3. - For any m = f3 and T, the function 4Dm,T extends
to a meromorphic function on C with values in CGm. is not a product
of distinct primes lying in T, then this extension is holomorphic. Otherwise
it has a unique, simple pole at s = 1. In all cases is holomorphic
for any x in the augmentation ideal of CGm. D

Remark 2.1. - Note that the product mentioned in the statement of
the Theorem could be empty; thus has a pole if f - 0. Indeed,
if we restrict to (~, T) - 1 then this is the only case in which there is a
pole, and Theorem 3.4 of [So2j (the analogue of Theorem 2.3 with this
restriction) gives the residue. The equivalent, generalised residue formula
in Theorem 2.3 is left as an exercise.
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We shall henceforth make use of its meromorphic continuation to
regard as a function on the whole of C (or In so doing,
identities such as (3), (3.5), (10) and (12), automatically become valid over
the whole of these domains, not just for R(s) &#x3E; 1.

2.2. p-adic interpolation.

Let Q denote the algebraic closure of Q within C. Thus Q contains
the values of all the additive and multiplicative characters mentioned so
far. In addition, the field k, along with all its abelian extensions are to be
considered as subfields of Q. For the purposes of p-adic interpolation, we
need k to be totally real.

We choose a prime number p, write Cp for the completion of an
algebraic closure of the field Qp of p-adic numbers and fix an embedding
j : Q 2013~ Cp. We write p(Qp) for the group of roots of unity in Qp. Every
element x of 7~~ can be written uniquely as a product

where w(x) lies in p(Qp) and (x) lies in 1 + pZp for p odd and in 1 + 47~2
for p = 2. (w is the so-called Teichmfller character.) Let

and consider the set of rational integers defined by

Thus the closure of .M(p) in Zp is the p-adic disc D(p) := Zp for p odd,
D(p) 1 -f- 2~2 for p = 2. We also write for the punctured disc

We first state a result on the existence of p-adic L-functions attached
to primitive p-adic valued ray-class characters. The latter are, of course,
precisely the characters of the form j 0 ’ljJ for some primitive complex ray-
class character 7p and, roughly speaking, the associated p-adic L-function
’interpolates’ the function £(8, ’ljJ) at the points s E Jvl(p). The details we
require are set out in the

THEOREM 2.4 (p-adic L-functions). - Let k be totally real and p,
j as above. For any primitive complex ray-class character o modulo

we have
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(i) For every m E the value lies in the field Q(O) C C
generated by the values of~.

(ii) There exists a unique (p-adically) continuous function

called the p-adic L-function associated to j o 1/J, satisfying the interpolation
condition

(iii) Lp(s, j o1jJ) is a p-adic meromorphic function on D(p). If 0 (equiva-
is not the trivial character, then Lp (s, j 0 1jJ) is actually analytic

on this domain. Otherwise it has at most simple pole at s = 1.

(iv) Suppose that 0 is totally even, is trivial or, equivalently, the

ray-class field K := is totally real. If Leopoldt’s conjecture holds
for K at p then 0 if 0 is non-trivial, and 0

if 0 is trivial.

(v) If 0 is not totally even then Lp(s, j o 0) - 0 bs.

Proof. Siegel [Si] and Klingen showed-and Shintani [Sh, Cor. to
Thm. 1] re-proved-that the partial zeta-function of k associated to any
c E Clm(k) takes rational values on Part (i) follows on multiplying by
0(c) and summing over c. Parts (iii) and (v) follow from [CN, Thm. 1.4] (see
also Thm. 2.2, Ch. VI of [Ta]. For part (v), see Remark 2.3, Ch. VI of [Ta]).
The main theorem of [Col] implies that if Leopoldt’s Conjecture holds for
K and p then the p-adic Dedekind zeta-function (K,p(s) has a simple pole
at s = 1. Part (iv) therefore follows from (iii) and the formula expressing

as a product of LP (s, j o ~) for X E Clm(1fJ)(k)* including V). (This
formula follows by interpolation from the analogous one for ~K(s).) 0

We now apply Theorem 2.4 to the p-adic interpolation of Qm,T (s) .

THEOREM/DEFINITION 2.1 (p-adic interpolation of Qm,T) . - Under
the hypotheses of Theorem 2.4, we let be any cycle for k and T

any finite set of prime ideals of k including all those dividing p. We extend

j to a homomorphism from QGm to CpGm by :=

LaEGm j (aa )0". Then

(i) For every m E Z-o, the value lies in 
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(ii) There exists a unique (p-adically) continuous function :

D° (p) --~ CpGm satisfying the interpolation condition

We shall instead of whenever its dependence on j (via
Equation (13)) needs to be made explicit.

(iii) 4Dm,T,p is a p-adic meromorphic function on D (p) . is not a product
of distinct primes lying in T, then ~m,T,p is actually analytic on this domain.
Otherwise it has at most a unique, simple pole at s = 1. In all cases

is analytic in D(p) for any x in the augmentation ideal I((CpGm)
of (C p Gm .

(iv) For any s E D° (p) we have

where for every X E G* the p-adic function X) is defined as follows.
We first define I as in Theorem 2.2. If

,go is squarefree, a product of t distinct primes none of which divides 
we set

Otherwise, we set

Proof. - Since gm(x) (~) is algebraic for each x E Clm(k)*, Part (i)
follows from Theorem 2.2 and Equation (12) together with Part (i) of
Theorem 2.4 with V) - x. On the other hand, for any x E 1 + pZp (or
x E 1 + 4Z4 if p = 2), the function s H xs is analytic and non-zero on Zp.
It follows from Part (iii) of Theorem 2.4 (~ = ~) that, for all x E 
the function X) is analytic on DO(p) except perhaps for a simple
pole at s = 1 when X is trivial and f is a product of distinct primes in
T. Therefore, if we use Equation (14) to define 4Dm,T,p, it will certainly
satisfy both Parts (iii) and (iv). To check that it also has the interpolation
property (13), we apply j o x to both sides and see that it suffices to

show for all x E G* and m E M(p). But



392

this follows from the definition of x) , Part (ii) of Theorem 2.4
= x) and the fact that m = 1 (mod wp), together with Theorem 2.2.

Also, ~m,T,p is continuous since analytic on D°(p) and the uniqueness in
Part (ii) follows as before by density. 0

Remark 2.2. - Lemma 3.3 below gives a sharpening of part (i).
Similarly, we refer to Lemma 3.4 for the ’field of definition’ of andm,T p
to Corollary 3.1 for its dependence on j. 

From a metamathematical i.e. a logical and even historical-
viewpoint, one could argue that it is somewhat perverse to construct Qm,T,p
by means of p-adic L-functions, as we have done above, rather than the
other way around. The latter are, of course, much better known than the

former. However, their construction by interpolation in [CN] passes first
by that of certain functions Z(L, ~, s) (see ibid., Thm. 22) which are much
closer to our twisted zeta-functions. And these in turn are the coefficients

of It might therefore be logically preferable, as it is certainly possible,
to start by p-adically interpolating the twisted zeta-functions. From the nu-
merical viewpoint too, the computation of at integer arguments can
be carried out more efficiently by applying methods (derived from those
of [CN], [Sh], [La] and [Ka]) directly to the twisted zeta-functions them-
selves rather than passing via the L-functions (See e.g. [RS, Theorems 3.2,
3.3]). If desired, one can then recover the p-adic L-functions by means of
Theorem 2.2.

For any two cycles m and m with mlm we use the symbols 7Tm,m and
to denote the Cp-algebra homomorphisms between CpGm and CpGffi

defined in an entirely analogous way to the corresponding homomorphisms
between CGm and CGrn. The following corollary shows that the functions

’really belong to cycles with trivial infinite part’.

COROLLARY 2.1. - Let k, p, m and T be as in Theorem/Definition 2.1.
Then

vanishes unless for some
..., ~ 11 ~

, in which case it is easily seen

Therefore, Equation (14) gives
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3. Conjectures.

3.1. Statements of the basic conjectures.

We shall first state two parallel, ’rational forms’ of the Stark Conjec-
ture, one complex and one p-adic. They will be formulated side by side for
the same field k (of degree r say, over Q), cycle and set T, but in
terms of and respectively. We make the

HYPOTHESIS 3.1.

(i) k is totally real,
is not a product of distinct primes lying in T (in particular, f is

not trivial), and

(iii) 3 is trivial, i.e. m = ~.

Hypothesis 3.1 will be assumed from now on unless the contrary is
explicitly stated, so that, in general, we can write etc. in place of

etc. We shall also write K for the ray-class field k(m) = C C

(necessarily totally real) and G for G~ = Gal(K/k). Let 6’oo and So = 
denote respectively the set of infinite (real) places of k and the set of finite
places dividing f in k. We let S = U So. The notations 
and S’(K) refer to the sets of places of K dividing those in these three sets.
We abbreviate to Us (K) or Us the group of S(K)-units of K.
Let cl, ... , ~~. denote the embeddings of k into Q. For each i = 1, ... , r we
choose an extending tz. We write for the p-adic
embedding j of k into Cp, and also ¿i,p for its extension j 0 ¿i : K - Cp.
We then define logarithmic maps Ai : RG and Us - CpG by
setting

and

where ’logp’ denotes Iwasawa’s p-adic logarithm. Both Aj and Ai,p are
clearly ZG-linear and so ’extend’ by Q-linearity to QUS := Q Us.
(Henceforth, we shall often write 7ZA in place of R A considered as

an R-module, for any commutative ring R and abelian group A.) These
extensions in turn define unique, QG-linear, group-ring-valued ’regulator
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maps’ R and Rp sending the rth exterior power
into RG and CpC respectively and satisfying

and

We shall use an additive notation for QUs as ZG-module and write

~~ p and instead of Ài,p and Rp whenever their dependence on j (via
the ii,p) needs to be made explicit. Finally, we let ~/~ E R denote the
positive square-root of the (positive) absolute discriminant dk of k. We
make the

CONJECTURE 3.1 (Basic complex conjecture). - If Hypothesis 3.1
holds then there exists Aoc ~Us such that

Now suppose that p is a prime number and consider the condition

(17) T contains the set Tp of all primes dividing p in C7.

This condition is necessary to define We make the

CONJECTURE 3.2 (Basic p-adic conjecture). - If Hypothesis 3.1 and
condition (17) hold then, choosing an Cp, there exists
’7f,T,p E ÅQG ~US such that

3.2. A study of the basic conjectures.

First note that we could of course do away with the factor 2r

(TIpET Np) -1 in the statements of both conjectures since we are free

to multiply the elements ?7f,T and ?7f,T,p of A’G QUS by any a E QX.
This is what we mean by calling the form of these basic conjectures
’rational’. In contrast, the ’integral’ forms to be discussed later will not
be insensitive to such multiplications. The introduction of the above factor

simply anticipates these refinements.
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It is easy to check that changing the choice and/or ordering of the
extensions Ti, i = 1, ... , r would have the effect of multiplying both R(TJf,T)
and by :f:0" for some cr E G. Clearly, these changes could be
nullified by replacing TJf,T and TJf,T,p by and respec-

tively. Consequently, this choice/ordering is immaterial to the veracity of
Conjectures 3.1 and 3.2.

The choice of j in Conjecture 3.2, turns out to be irrelevant too,
but in the stronger sense that it doesn’t even affect TJf,T,p’ To prove this

statement, we first need some facts about the ’fields of definition’ and the
action of Gal(Q /Q) on certain values and (Df,T,p- We shall suspend
until further notice Hypothesis 3.1 and return to writing k(m), Gm and
~m,T etc. instead of K, G and tPf,T etc.

LEMMA 3.1. - Suppose that 3 is trivial and let ‘~’ denote the complex
conjugation extended coefficientwise to CGm. Then ~m,T(s*)* - 4)m,T(s)
for all s in C (or in ~ B ~ 1 ~). In particular takes R (or R 11) into
RGm.

Proof. By analytic continuation, it suffices to show that 

4)m,T(S) whenever R(s) &#x3E; 1. But for such an s and any ? E 211m, repre-
sented by a pair (,J) E Wt, say, the definitions show that 
ZT (s *; , J, m) * - J, m). o (-1) and J = - J, so, by
definition, the pair (~*, J) is equivalent to (~, J), relative to a trivial 3 . Thus

- from which the result follows easily. D

Next we define a unique integer f &#x3E; 0 by setting f n Z We write

pf for the group of f th roots of unity in C. For any pair (~, ~I ) E Wf, the
image of ~ in p(C) is precisely, and we have

LEMMA 3.2. - If k is totally real and m E Z(o, then m)
lies in Q(ttf) and tPm,T(m) in Moreover, for every a E Gal(Q/Q),
the pair (a o ~, J) lies in Wf and

Proof. It is clear that (ç, J) E W~ implies (a o g, J) E W~ so it

suffices to show that ZT (m; ~, J, m) lies in and that (19) holds. First
reduce to the case where h is maximal and T = o using successively Theo-
rem 2.1 and Equation (4) above and Theorem 3.1 of [So2]. Two approaches
are now possible. One is two rewrite J, m) as a linear combination
of partial zeta-functions with coefficients in Q(JLf) (cf. [So2] proof of The-
orem 3.3) and then use the rationality result of Siegel/Klingen/Shintani
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cited in the proof of Theorem 2.4. Alternatively, one can apply the meth-
ods of Shintani directly to J, m): First write it in terms of simpler
Dirichlet series involving the character ~ by means of a ’cone decomposi-
tion’ of a fundamental domain for the action of Em on S (J, 3 , o) (cf. [Sh, 7
Prop. 4]). Then apply [Sh, Prop. 1] to each of these series. For notes and
details of the second procedure the reader can consult [R-S], Theorem 3.1
and Example 3.1 where it is carried out explicitly in the case r = 2. D

Let oo denote the unique real place of Q. If the infinite part 3 of
m is not (resp. is) trivial we shall denote by m~ the cycle (resp.
fZ) for Q, so that the ray-class field Q(mQ) is equal to Q(J-tf) (resp. to
Q(pf)+ = Q( cos (27T//)), the maximal real subfield Lemmas 3.1

and 3.2 combine to give

LEMMA 3.3. - If k is totally real then lies in Q(mQ)Gm for
every m E D

For any prime p, we shall (abusively) denote by the field

that is the (topological) closure of any embedding in Cp. The
following is a p-adic analogue of Lemma 3.1.

LEMMA 3.3. - If k is totally real and condition (17) holds then, for
any choice of j : Q - Cp, the function maps D°(p) (or D(p), under
Hypothesis 3.1 (ii)) into 

Proof. By Corollary 2.1 we can assume w.l.o.g. that 3 is trivial,
i. e. m = ~. Then Lemma 3.3 and Equation (13) tell us that -1)(j) P(Tn)
lies for all m E M(p). The result follows by density and
continuity. D

The extension of ideals from (Q) to If (1~) induces a homomorphism
(denoted tm) from ClffiQ(Q) to Let ~ab and k b denote the maximal
abelian extensions of Q and k respectively inside Q C C. We write simply
Ver for the transfer homomorphism from the abelianisation 

(identified with Gal(Q /Q)) to (identified with 
It is a well-known fact from Class-Field Theory (see e.g. Ch. VII, §8 of [Se2])
that the outer rectangle of the diagram (20) commutes. (The horizontal
isomorphisms are the maps a~~ H c, i.e. the inverses of the respective Artin

maps. The other horizontal maps are the restrictions.) We define the map
vm to be the composite of Ver with the restriction Gal(kab /k) - Gm, so
that the whole diagram commutes. We can now prove
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PROPOSITION 3.1 (Galois action on m e If k is

totally real then for any m E and any a E Gal(Q/Q) ure have

(Note that a acts coeflicientwise on the L.H.S. and that the R.H.S. is a
product in the group-ring Q(mQ)Gm.)

Proof. We fix m and a and choose (as we may) d E Z&#x3E;o, (d, f ) = 1
such that

Then explicit class-field theory for Q tells us that ~~ _ ~d for every ( E [if .
Thus, if to E 211m is represented by some pair (ç, J) E Wf, we have, by
Lemma 3.2,

But, since d is positive, the pair (~ o d, J) is clearly equivalent to the pair
(ÇldJ, dJ) relative to h and so lies in the class m E Wm by definition.
Therefore ZT (m; m)° = ZT (m; m) , from which it follows that

Now on the one hand equals On the other, restricting
both sides of Equation (21) to Q(mQ), we find 

It therefore follows from Diagram (20) that O"dO,m = as

required. D
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are two embeddings then j’ - j 0 a for some

COROLLARY 3.1 (Dependence of (D,,,,T,p on j) - - Suppose that k is
totally real and that condition (17) holds. Then, for any j : Q --+ (Cp and
a E Gal(Q/Q),

for all s in D° (p) (or in D(p), under Hypothesis 3.1 (ii)).

Proof. The interpolation property of gives, for each m E

by Proposition 3.1 and the result follows by density and the continuity of
I*- I I.,

We now reimpose Hypothesis 3.1 (so m = f) and again write K, G and
etc instead of k(m), Gm and ~m,T etc. In particular, we can specialise

Lemmas 3.1 and 3.4 and Corollary 3.1 at s = 1 and deduce the properties

and

Notice that, for all 1 actually lies in RG. Hence
Conjecture 3.1 is compatible with (22).

We shall now prove similar compatibilities between Conjecture 3.2
and both properties (23) and (24), by showing that the quantity

satisfies relations analogous to these. Let us further ex-
tend the 7~ 2013~ Q to automorphisms {{3I,..., 
of Q constituting a complete set of representatives for the coset space
Gal(Q/Q) /Gal(k/Q). Given any a E Gal(Q/Q), there must exist ~I,... qr
E Gal(Q /k) and a permutation 1fa of ~1, ... , r~ such that
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By definition, Ver(aIQab) equals the image of &#x3E;
that

Now, for any u E Us and each i = 1, ... , r, the definition of gives

in CpG, from which it follows by the definition of .

Equation (25) and Q-linearity that

On the other hand, for any Z-base

so that

PROPOSITION 3.2. - For Cp and any ? i

actually lies in Moreover

Proof. Equation (28) is immediate from Equations (26) and (27).
It is clear from the definitions and lie in ~P and
QpG respectively, where Qp denotes the algebraic closure of Qp in Cp.
For the first statement of the Proposition it therefore suffices to show

that is fixed by any element p of Cal(op/Qp(pf)+), extended
coefficientwise to QpG. But such a p is continuous, so commutes with

logp : follows that p o A~j) = and since p o j equals
j o 6 for some 6 E it follows from Equation (28) that
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But Diagram (20) shows that Y factors through the restriction to 
Q(pj)+ on which 6 is trivial, so - 1G and the first statement
follows. D

The first statement of Proposition 3.2 demonstrates (as we wished)
that Conjecture 3.2 is compatible with (23). Furthermore, a comparison of
Equations (28) and (24) yields

PROPOSITION 3.3. - Suppose that ?7f,T,p E (QG QUS satisfies Con-
jecture 3.2 for some (Cp. Then it also satisfies the same
conjecture for any other such embedding. D

In order to discuss the dependence of the basic conjectures on T, we

suppose that q is a prime in T and abbreviate the set T B {q} to T. First,
suppose that q f f. Then we have

Indeed, this follows by analytic continuation from Theorem 3.1 of [So2].
(It is there assumed that (~, T) - 1 but the proof uses only the condition
( f , q) - I and not (f, t) = 1.) Specialising at s = 1, comparing with (16)
and noting that (Nq - O"q,f) is a unit of QG, we obtain

PROPOSITION 3.4. - Suppose q f f. Then rJf,T = q satisfies Conjec-
ture 3.1 for and T, if and only if ?7f,T = (Nq - satisfies Conjec-
ture 3.1 for k, f and T . 0

Now, given a prime p, the analogue of Proposition 3.4 for Conjec-
ture 3.2 requires the assumption of condition (17) for T, hence that q
does not divide p. If we make these assumptions, then for any choice of

j, it follows by density and Equation (13) together with Equation (29) for
s E .M(p) that

Specialising at s = 1 again, we get

PROPOSITION 3.5. - Suppose T ~ Tp and q f p f . Then 77,,I;,p = 77
satisfies Conjecture 3.2 for k, f, T and p, if and only if ~ N
satisfies Conjecture 3.2 for k, f, T and p. 0

In particular, Propositions 3.4 and 3.5 clearly show that for fixed k

totally real and fixed f different from 0 (resp. not a product of distinct
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primes in Tp), Conjecture 3.1 for T = o (resp. Conjecture 3.2 for p and
T = Tp) is equivalent to Conjecture 3.1 for any T such that (f, T) = 1

(resp. to Conjecture 3.2 for any T D Tp such that (f, T B Tp) = 1 ) .
The situation is a little more complicated if we allow T to vary by

primes dividing ~. Let k, f , q E T and T be as before but suppose now that
We write f’ for q-1 f and K’, G’, S’, Us, , and R’ respectively

for k(f’), Gf" U S’(~’) (contained in S), U S’(K’) (K’) (contained in Us),
and the maps from Us, and CG’ defined using I§ for

i = 1,..., r. It follows that k and m’ :- ~’ satisfy Hypothesis 3. ~, since k

and m = ~ do. Moreover Lemma 2.1 (continued to s = 1) together with
Equation (5) gives

On the other hand, for any u’ E US, we find that

and hence

Together with Equation (31) this gives

PROPOSITION 3.6. Suppose qlf and - q-lf. If E

ÂQGQUs and ÂQG,QU’s, satisfy Conjecture 3.1 for k, f, T

and k, ~, T respectively, then the element T/f,T := 
satisfies Conjecture 3.1 for and T. D

To round off the discussion we note the p-adic analogue of Propo-
sition 3.6. Assuming that T contains Tp, the analogue of Equation (32)
follows by density from the continuation of Lemma 2.1 to M(p) (again
using Equation (5)). Equation (32) also has a natural analogue, replacing
R and R’ by RP and defined in the obvious way. The result is

PROPOSITION 3.7. Suppose T D Tp, qlf and q f pO. Let f _ 

ÂQG QU sand ÂQG’ QU’s, satisfy Conjecture 3.2
for k, f, T, p and k, f’, T, p respectively, then ~= 

, 
satisfies Conjecture 3.2 for k, f, T and p. 0

Note that Propositions 3.4 and 3.6 (resp. 3.5 and 3.7) together allow
one to reduce Conjecture 3.1 for fixed totally real k (resp. Conjecture 3.2
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for fixed totally real k and p) to the case T = o (resp. the case T = Tp),
provided that f is not fixed but made to vary subject to Hypothesis 3.1 (ii)
for this minimal choice of T.

3.3. Relations between conjectures.

We can reduce Conjecture 3.1 to the case ( f , T) = 1 as above. Suppose
first that no prime dividing f splits completely in K (e.g. if f is a conductor)
Conjecture 3.1 then becomes essentially a special case of Conjecture 5.2
of [So2]. The choice of the field denoted ‘I~’ must there be restricted to our
totally real k, ’K’ to our ray-class field and the more general set ’S’
to our ,S’ _ S~ U ,S’o ( f ) . The p(,S) + I’ of Conjecture 5.2
amounts to our insistence that j # O in this case, and condition (ii)
becomes precisely our condition (16) with - (Condition (i)
and the uniqueness requirement on in Conjecture 5.2, as well as

condition 20(c) of [So2] can all be dropped for this ’rational form’, cf.

ibid. §4.2.) Now suppose that there is a split prime q dividing f. Then
the of Conjecture 5.2 is at least equal to r + 1 and so, to fulfil the

requirement ’IS I &#x3E;, p(,S’) + 1’, f must have at least two prime factors. If these
conditions hold then equation (10) shows that vanishes at s = 1

for each X E hence so must 4bf,T(s) and Conjecture 3.1 is trivial.
(In this case, Conjecture 5.2 of [So2] concerns higher derivatives of ~m,T
at s = 1.) Finally, if f = q l for some q split in K and 1 &#x3E; 0, then and

‘p(,S’)’ both equal r + 1, so Conjecture 5.2 does not apply. However, in this
case, both Conjecture 3.1 and Conjecture 3.2 can be proven directly (see
Subsection 3.5).

In [So2], the functional equations of the complex L-functions were
used to show that the full Conjecture 5.2 is itself equivalent to Rubin’s
Conjecture A’, hence also to his Conjecture A, in [Ru]. Both of these latter
Conjectures are ’rational forms’-or, as Rubin says, forms ’over Q’-of his
more refined, integral conjectures. They relate to the (higher) derivatives
at s = 0 of the L-functions for X E G* and Proposition 2.3 of [Ru] shows
that they are in turn simply equivalent to Stark’s original conjecture at
s = 0 (Conjecture 1.5.1 of [Ta]) for an appropriate subset of these functions.
There are also conjectures at s = 0 for p-adic L-functions. These are due
to Gross (see [Grol], [Ta, §§VI.3-4] for the original conjectures and [Gro2]
and [Ha] for refinements and developments). Since no functional equation
is known for these functions, Gross’ conjectures do not translate to s = 1
and an independent p-adic conjecture at s = 1 is therefore formulated as
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Conjecture VI.5.1 in [Ta], where it is attributed to J-P. Serre. In fact, it

appears to be Tate’s elaboration of a remark in [Se]. ’Serre’s Conjecture’
does not relate directly to our Conjecture 3.2 but takes the form of a
comparison between the values of complex and p-adic L-functions at s = 1.
Unfortunately, the formulation given in [Ta] is defective. (The intended
meanings of the notations ‘log(U)’ and ’pp’ for instance, are unclear and
there seems to be no entirely coherent way to resolve them.) It is not hard
to furnish a corrected conjecture along similar lines, although for reasons
of space we shall not state it here. Suffice it to say that under certain

hypotheses one can prove the implication

(Corrected form of Serre’s Conjecture)+(Conjecture (3.1) with = ~7)
==~ (Corrected form of Serre’s Conjecture)

+(Conjecture 3.2 with = 1])

and that the converse implication also holds at least if we assume Leopoldt’s
Conjecture for K and p.

In any event, this strongly suggests the

CONJECTURE 3.3 (Basic combined conjecture). - If Hypothesis 3.1
and condition (17) hold then, there exists 77 E A’G QUS such that both (16)
and (18) (for any j) hold with ?7f,T ~.

Proposition 3.3 and the comments at the start of Subsection 3.2 again
show that the veracity of Conjecture 3.3 is independent of the choice of j
or on the choice and/or ordering of the Ti.

3.4. Refined conjectures.

These are either ’integral forms’ of the basic conjectures (forms ’over
Z’ in the terminology of [Ta] and [Ru]) that require and to

lie in certain ZG-lattices inside /BQG QU S, or they may just ’control the
denominators’ of these elements with respect to such lattices. To begin the
discussion, we introduce

HYPOTHESIS 3.2. - Hypothesis 3.1 holds and (f, T) - 1.

It would be interesting to formulate refined conjectures in the case

(~, T) &#x3E; 1. However, its exclusion here simultaneously achieves several

simplifications: Part (ii) of Hypothesis 3.1 becomes simply ’f # (9B the
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’denominators’ in ?7f,T, coming from Propositions 3.6, 3.7 (for r &#x3E; 1)
are avoided and these elements also acquire a uniqueness property which
we now explain.

For any X in G* (identified with we set := dimc
(ex(CUS ) . Let Xo c G* denote the trivial character and for any place v of
1~ let G(v) denote the decomposition subgroup of G associated to each of
the places w of K dividing v. It is well known that

The first equation follows from the logarithmic embedding of Us (cf. Ch. I,
§4 of [Ta]) and the second from (10), since (f,T) = 1. Because f ~ C~, it

follows that r(S, x) &#x3E; r for every X E G* and we set

A priori, these are mutually orthogonal idempotents of QG. But r(S, x)
obviously depends only on the Gal(Q/Q)-conjugacy class of X so they
actually lie in QG. Henceforth we let 9 denote the cardinality of G. Thus

:= ges,r and es,&#x3E;r := clearly lie in ZG. For any ZG-module A,
we shall write := so that D 

PROPOSITION 3.8. - Suppose that Hypothesis 3.2 is satisfied.

(i) If Conjecture 3.1 has a solution r¡f,T = 77 in A’ G QUs then it has a
unique solution Tlf,T = 77’ in (ArG 

(ii) Suppose also that T D Tp. If Conjecture 3.2 has a solution Tlf,T = r¡
in !BQG QU s then it has a solution r¡f,T - q’ in QU s) [S,r] which is
unique if Leopoldt’s conjecture holds for K at p.

Proof. lies in by Equation (33). 
lies in for any j, by (14), (15) (with (~, T) - 1) and part (iii)
of Theorem 2.4. Since R and are QG-linear, the existence of Tl’
(given q) in parts (i) and (ii) follows on setting r~’ - Unique-
ness is proven for both parts just as for in [So2, §4.2] : Briefly,
_ B r, r,...., 1.

I is free of rank 1 over es,rQG which
is a product of fields. Again, Equation (33) (resp. (14), (15), Theorem 2.4
part (iv) and the assumption of Leopoldt’s Conjecture) implies that the
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same is true of the QG-module generated in (resp. by
in But the existence of q’ implies that the image by

the map R (resp. Rp~ ~ ) of one module contains the other. Therefore this
map induces an isomorphism between them and q’ must be unique. 0

COROLLARY 3.2. Suppose that Hypothesis 3.2 is satisfied, that

T D Tp and Conjecture 3.3 holds. lies in (A-G QU S ) IS"] and satisfies
Equation (16) then it also satisfies Equation (18) for any j : Q - Cup.

Proof. By Conjecture 3.3 there exists some r~" EARQG QUS which
satisfies Equation (16) as well as Equation (18) for any j : Q ~ Cpo The
proof of the Proposition shows that es,rTJ" also satisfies these equations
and the uniqueness in Part (i) shows that q = es,rq". 0

For any ZG-submodule M of Us, we denote by the image
of the exterior power Now suppose that M is of

finite index in Us so that AZG M is a lattice of full rank in /BQc QUS.
Then elements 01, - - - , Or of Homzc(M,71G) extend uniquely to maps
oi : QG and together define a QG-linear map CPI A ... from

/BQc QUS to QG by setting A ... A 0,)(ul n ... A ur) = det (oi 
for any u 1, ... , Ur E QU s. See [Ru, §1.2] for the following 

PROPOSITION/DEFINITION 3.1. For M as above, we set

If r = 1 then image of M in QUS. More generally

A’o M is a ZG-lattice containing M with finite index supported on g.

D

(For n E Z&#x3E;o , we say that a (E Q is ’supported on n’ iff ordp (a) = 0 for
every prime p t n.) Given any T we write T(K) for the set of primes in K
lying above those in T and, if (~, T) = 1 then we set US,T := In E US : 77 = 1
(mod q3) V q3 E T (K) ~, which is a ZG-submodule of finite index in Us.

CONJECTURE 3.4 (Refined complex conjecture). - Suppose that Hy-
pothesis 3.2. holds and that Us,T is Z-torsionfree. Then there exists a

unique satisfying Equation (16).
Let p be a prime number.
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CONJECTURE 3.5 (Refined p-adic conjecture). - Suppose that Hy-
pothesis 3.2 and condition (17) hold and that US,T is Z-torsionfree.

Then there exists Yf,T,p E satisfying Equation (18) for any
j : 

Of course, Corollary 3.2 shows that Conjecture 3.5 would follow
from Conjectures 3.3 and 3.4. The uniqueness of r¡f,T in Conjecture 3.4
is automatic by Proposition 3.8 part (i) and that of ?7f,T,p in Conjecture 3.5
follows from Proposition 3.8 part (ii) if we assume Leopoldt’s Conjecture
for K at p. A few further remarks on the above two conjectures mostly
echo those on Conjectures 3.1 and 3.2 (see Subsections 3.2 and 3.3): Again,
the choice and/or ordering of the extensions Ei is immaterial. So long as

f # ql for any l &#x3E; 0 and prime ideal q splitting then the integral
Conjecture 3.4 is either trivial or a special case of the integral Conjecture 5.1
of the paper [So2]. The latter conjecture is there shown to be equivalent
to Conjecture B’ hence also to Conjecture B of [Ru]. If on the other hand
f = ql for some q split in K, then Conjectures 3.4 and 3.5 can be proven
directly (see Remark 3.3).

In order to discuss the role of T (prime to f ) in the refined conjectures,
we suppose as before that q is a prime in T. Now Popescu has already shown
in [Po, Prop. 5.2.1] that if Rubin’s Conjecture B’ holds for T B {q} then
it holds for T. (The other data for the conjecture are more general than
ours but are taken to be the same for TB {q} and T.) The core of his proof
is essentially the non-obvious fact that if is Z-torsionfree then

q E =:~, (Nq - E Â~ US,T. By combining this implication
with Propositions 3.4 and 3.5 and iterating we arrive at the

PROPOSITION 3.9. - Suppose that T C T and that the two sets
of data (~,f,f’) and (k, f, T) (resp. (p, k, f, t) and (p, k, f, T)) obey the
hypotheses of Conjecture 3.4 (resp. Conjecture 3.5~. Let 77 be an element
of ÂQG QUS. Then r~ satisfies this conjecture with the first set of data if
and only ifTIqETBT(Nq - O"q,f)r¡ satisfies it with the second set of data. D

This allows us to reduce the refined conjectures to the cases where
T is minimal satisfying the appropriate conditions. In our situation K is
totally real so US,T is Z-torsionfree if and only if it doesn’t contain -1.

Thus, for Conjectures 3.4, 3.5 (p # 2) and for Conjecture 3.5 (p = 2), these
minimal sets T are precisely those of form {q}, Tp and respectively,
where q is any prime ideal of k not dividing 2.

In [Po] Popescu formulates an integral, complex conjecture that

slightly weakens Rubin’s Conjecture B’ but appears to behave better under
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change of the base field k. We shall shortly state a ’combined’ conjecture
(Conjecture 3.6) that is considerably weaker than Conjectures 3.4 and 3.5
(although still much stronger than Conjecture 3.3) but it is better adapted
for numerical verification (as in [RS] . Instead of seeking ’solutions’ lying in
a specific lattice inside merely controls the primes dividing
their denominators relative to the lattice ARZG Us ~s~T ~ . For certain purposes
this will allow us to replace Us with the true unit group E(K) of K, as we
now explain. For any subgroup H  G we set NH := E ZG. In

particular, NG = and we define

Note that lies in the augmentation ideal of 7lG and (es,T)2 -
Note also that r(6’, xo) = r if and only if f is a (non-trivial) power of

a prime ideal, a condition we shall denote simply ’f = ql,. If this is not the
case then &#x3E; r and we shall write ’f =1= 

LEMMA 3.5. - In the above notations

uTe have

, . -. __ - - __ ..

Proof. In part (i), the containment of the R.H.S. in the L.H.S.
is obvious. Thus it suffices to show that if ~1, ... , E, are in Us then

lies in i (bars denote images in

ÅQG Let q be any prime dividing f. For every X E such

that r(S, x) = r, Equation (33) implies that xIG(q) i= 1. It follows that
= 0 so that, for every prime il above q in 1~ and every E E Us,

we have Letting q and 11
vary with qlf and Dlq, we deduce that is an actual unit, i. e. that

eS,rU,s c E(I~), hence 

as required. Now, for any ZG-module M, we have ; 1
On the other hand, Equation (35) shows

that for any f and all x E and even for x = 1 if f ~ ql .
Using these two facts, part (ii) follows easily from (i). 0
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CONJECTURE 3.6 (Weak refined combined conjecture). - Suppose
that k is totally real and f -1= 0 is any proper integral ideal. Then, in
the above notations, there exists a unique element Tlf of QU S ) 
with the following properties:

(ii) For every prime number p with (p, f) - 1 and for one (hence any)
embedding j : Q - Cp vrre have

(iii) If f then

(iv) If f = ql then

Remark. - Taken by itself, Condition (40) on an element f c-

(AoG QUS) Is,’] has many equivalent reformulations. For example, it is
I 

- 

,

equivalent to the containment of ~ 1 or

which equals ;
. - , . - .. 1"" ..__

’I by Lemma 3.4.5. It may therefore
also be rewritten

Remark. - Once Condition (36) is known to be satisfied, we can
calculate NG?lf explicitly and hence show that (40) implies (39). Indeed,
suppose that f - ql for some prime ideal q and let Ok,fql denote the
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ring of q-integers of k, namely the subring la E k : vp(a) &#x3E; 0 Vp # q
Thus Let us denote by the

element where u 1, ... , u~. are any
r elements of constituting a Z-base modulo {:f:1}. Thus is

defined up to sign and we fix it completely by insisting in addition that

det(log be positive hence equal to the regulator of 

It then follows easily from the definitions that 

Now suppose that 17¡ E (Aoc QU S ) ~s,r~ satisfies Equation (36). Applying
NG to both sides and using Theorem 2.2 with m - ~ - a l , T - ~ and
X = Xo, we obtain

where denotes the class-number of and the last equality follows
by a standard calculation from the ’Analytic Class Number Formula’ for

(see Thm. 1.1 and the method of Cor. 2.2 in [Ta, Ch I], for

example). But R is injective on Dirichlet’s Theorem for 

for instance) so, comparing Equations (42) and (43), we find that

Now, writing ?If as we see that (40) implies
(39). Since it is also equivalent to the

containment of the element (or in

, by the previous Remark) .
We now show that Conjecture 3.6 follows from the previous conjec-

tures. The following result is Lemma 1.1, Ch. IV of [Ta]. (The notation
‘ (... ~ ~’ means ’the Z-submodule generated by’. )

LEMMA 3.6. - Let M/L be any abelian extension of number fields
with group G and let denote the set of prime ideals of OL which
are unramified in M/L and do not divide l¡,t( M) I. Then, for any subset
Q C QMIL with QI  00, uTe have
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We apply this lemma with M/L = It shows that, 
is generated over Z by the elements Nq - O"q,f f as q runs through the set
Q(2f) := {q : q t C QKlk- It follows, of course, that there are finite
subsets of Q(2f) for which the same is true.

PROPOSITION 3.10. - Let Qo be any subset of Q(2f) such that

equals (Nq - : q E Qo)z (for example, Qo = Q(2f)).
Then Conjecture 3.6 is a consequence of Conjecture 3.3 for and Tp for
all p such that (p, f ) == 1, together with Conjecture 3.4 for k,f and T = {q}
for all q E Qo.

Proof. If Conjecture 3.3 holds for k,f and Tp for some p such that
(p, f ) = 1, then so does Conjecture 3.1 and hence, by Proposition 3.4

(iterated) the latter also holds for and T = 0. By Proposition 3.8 (i)
there is a unique element Tlf := "71,0 E (AQG QUs) [s,r) satisfying (36).
For any p such that (p, f) - 1, Proposition 3.4 shows that the element

, B. - -

satisfies (16) for and T =

Tp. Therefore, by Corollary 3.2 it also satisfies (18) with these data
(for any j) and Property (ii) of Conjecture 3.6 follows. Now suppose
that Conjecture 3.4 holds for and T = {q} for a given q E Qo.
Then, by Proposition 3.4 and uniqueness, the element - (Nq -

must lie in fortiori in 

Proposition/Definition 3.1. Therefore, letting iif denote the image of Tlf in
the quotient we find

Conditions (39) and (40) now follow. Moreover, if f 54 q’ then

977f - = so the membership in (38) also follows
(the equality is from Lemma 3.5 (ii)). D

3.5. Two special cases of conjecture.

The first special case in which we can prove this conjecture is that
in which the set IX E G* : r} consists precisely of the
trivial character Xo. This means that f - ql where q splits completely
in K = which implies in turn that K must also be the Hilbert Class
Field k(o) of k, so that G is isomorphic to in which the class of q must

be trivial. Using the notation of Remark 3.2, it follows that g = hk = 
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and we set

The second and and third equalities in (43) together with Equation (42)
give

which establishes condition (36) for this choice of r~f.

Analogous arguments establish the p-adic condition (37) for any

prime p such that (p, q) - 1. Indeed, using Theorem/Definition 2.1 and
Theorem 2.4, we find that

· r

(where equals Lp (s, j o in our notation). The second equality
above comes from an evaluation of the limit analogous to that of the
complex case. This is the principal result of [Col] where it is noted

that although the p-adic regulator Rp,k E (Cp of k and d 1/2 E Cp
are only defined up to sign, yet their quotient appearing in (45) is to

be understood as it is uniquely prescribed in [A-F]. Let us assume (as
we may) that the appearing in the definition of (see
Remark 3.2) lie in E(k) and satisfy &#x3E; 0. With this

assumption, the prescribed value for the quotient Rp,kld 1/2 is easily seen
to be Since also det(log &#x3E; 0, a

simple argument with complex determinants shows that u, must generate
the principal ideal q and an analogous p-adic calculation yields

Combining this with (45) establishes part (ii) of Conjecture 3.6 in this case.
(The above arguments also show that 0, i.e. Leopoldt’s Conjecture
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fails for k at p, then Equation (37) will simply read 0 = 0.) Finally, we
note that Equations (39) and (40) are trivially satisfied, completing the
verification of Conjecture 3.6 in this case.

Remark. - The above arguments can easily be adapted to prove the
refined complex Conjecture 3.4 in this case for any T such that (q, T) = 1
and US,T is torsionfree. After calculating (Df,T(l) by means of Equations
(29) and (44), the interested reader can see how to modify the definition
of ?7f,T and so conclude the proof by referring to Rubin’s Proposition 3.1
and his exact sequence (1) in [Ru]. (The Proposition actually establishes
Rubin’s Conjecture B’ in an analogous but more general case.) Also, if T
contains Tp then the p-adic arguments above can be similarly adapted using
(30), (45) etc. to show that Conjecture 3.5 is satisfied with equal to
the same ?7f,T-

We now sketch the proof of Conjecture 3.6 in our second special case,
namely that in which k = Q. Suppose that f - fZ for some f E 
(not necessarily a conductor) so that K = Q(~) = Q((f + where

(f := We introduce the notation K for Q(f+) == Q((f) and
. We shall identify Clj(Q) with

.... 
,

(/ f ) " / 1 . To a class b in the latter group (b E Z and (b, f ) = 1)
the Artin map associates sb = sb, f : which is the image in G of the
automorphism sb - sb, f E d sending (f to (j. In this case, we have the
following explicit formulae:

and, for any prime p t f and any embedding j

There are two ways in which these formulae can be obtained. Firstly, one
can treat them character by character, thus reducing by Theorem 2.2 (resp.
by Theorem/Definition 2.1) to formulae for the value/residue at s = 1

of L (s, Ø) (resp. of Lp (s, j o ~) ) for even, primitive Dirichlet characters

~ of conductor f &#x3E; 1 dividing f. (See e.g. [Wa] for such formulae.) For
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this approach one also needs well-known ’norm relations’ which relate

to 1 - (¡ (see for example [Sol, Lemma 2.1] in the
case f, ¡ 1= 2 (4) and note that I

The second approach is more direct, proving (46) and (47) from
scratch, coefficient by coefficient. For example, if we first write as

by Theorem 2.1, then it suffices to note that the coefficient
of Ab in 4)f+,, (s) is a twisted zeta-function that can be written out explicitly
for ?(5) &#x3E; 1:

and whose value at s = 1 by Abel’s lemma. (This
is of course the very calculation that lies at the heart of the above-

mentioned formulae for A similar method exists for (47): The
coefficient of sb in ~~+ ~~~,~ (s) is a function of s which interpolates the

valuers .. for m ~ i

The value (in Cp) of this coefficient at s = 1 E Zp can be determined by
methods similar to, but simpler than those of [RS]. (The key point is that
the analogues of the power-series H and U · H appearing in Lemma 3.3
ibid. can now be written out explicitly in terms of the formal logarithmic
series. Details are left to the reader. See also Ch. 4, §§1-3 of [La]).

Equations (46) and (47) show that conditions (36) and (37) can be
satisfied in this case by letting El be the inclusion

and 77t the following element of 1

To study the remaining parts of the Conjecture we can omit all exterior
powers (since r = 1) and introduce the following notation for F = K or K:
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It is well-known that 1 - (¡ lies in V(~C). Supposing first that 2 and

working inside (images in which are also denoted by a bar) it follows
that ’fJf lies in 2 Y(K). Furthermore, the above-mentioned norm relations
can be used to show that = 0, so that ’’If lies and

Condition (39) is satisfied in all cases.

But ’l7f also equals and so lies in
r

where 7~ :==
Gal(K/K) == ~s~l ~. Consider the exact sequence of G-modules

Taking H-invariants, we get an exact sequence of G-modules

where 6(v) is the class of s_1(v)/v in ~ J
IT

for any v E V(k) such
that v ~ V(K) . In particular 6(?7f) is the class of -(1 which is trivial if
and only if f m 2 (mod 4) (i.e. f is not a conductor). In this case f 
and 77t lies in V(K). Thus

rC’f .,1

If f 1= 2 (mod 4) and also then 77t and g = ~( f )/2
must be even (~=Euler’s function) so that (38) is still satisfied. In the

general case (and in particular if f = ql ) we have 6(xqj) = z6(qj) = 0
for E I(ZG). Thus C so condition (40) certainly

.... , .

holds. In fact more is true: z(2qj) lies in But

is torsionfree, so for all f # 2 we actually

Finally, Conditions (39) and (40) (and (48)) hold trivially for f = 2.

Remark 3.4. - An interesting question is when and under what

conditions the factor Z [I /g] can be suppressed where it occurs in Conditions
(38), (39) and (40) without losing the corresponding memberships of 77t or
the containment of We look first at (38) (in the case f 54 ql ) .
For k = Q, since r = 1 and US /EK is clearly torsionfree, the equality in

(38) can be strengthened to = whenever f =,4 ql. We have
shown that in this case, the factor can be suppressed in one (hence
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both) occurrences if f - 2 (mod 4) and that otherwise 2 divides g and a
factor of 1/2 is necessary in both. Nevertheless, the proof shows that this
factor is in a certain sense, explained by the (cohomology of) roots of unity
in Us, hence, ultimately, by our abandoning the condition that US,T be
torsionfree in our ’weak’ refined conjecture.

In all the examples with f i= ql which are checked numerically in [RS],
one finds that Equation (38) can be strengthened E A’ZGE(K)ls,’"]. (In
fact, one can show these examples.)
However, a counterexample to a conjecture of Sands discussed by Rubin
in [Ru, §4.2] shows that this is not always the case. There one has

It is an easy exercise

to check that K - where - 7C - pip2 p2). Since K/Q
is abelian we can evaluate directly. Indeed, by [So2, Thm. 5.1] it

in Rubin’s notation. His calculations therefore imply
that, for appropriately chosen 62, Conditions (36) and (37) are satisfied
with

Tlf = a A {3 where

It is easy to check that (in an additive notation) 2a and 2/3 lie in the (images
of) Us and E(K) respectively and that 6~2~ = NG13 = 0. Therefore 41]f
lies in , / . On the other hand, Equation (48) shows that (3 - NG)a
and 3{3 == (3 - NG),3 also lie in the image of E(K). We deduce that 13 does

r Cf (")1 r 

too and that 3qj = (3 - lies in , / Finally,

therefore, 1Jf must lie in both , / . But Rubin

shows that ~

Turning to (39) in the case f = ql, the factor in this equation
made its verification easy in the first special case of Conjecture 3.6 dealt
with in this subsection. However, it is less clear whether its presence was

necessary there. In the second special case we saw that the factor Z[I /g] is
unnecessary in (39) for 1~ = Q and f = ql, but that the factor 1/2 is always
necessary. Exactly the same situation occurs in all the examples verified

numerically in [RS].
As regards Equation (40), in both special cases we have seen that, in

fact,
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whether or not f = ql. This also holds in Rubin’s example above and in all
those treated in [RS]. The strengthened Condition (49) appeals not only
by its uniformity but also because it eliminates the trivial character which
is the source of so many difficulties and exceptions. In fact, one can check
that in all of our examples and those mentioned above, Equation (49) can
even be further strengthened to

(That is, for every f, Equation (41) holds without the The

author would be interested in any counterexample to Equation (49) or (50).

Remark 3.5. - The above discussion suggests the possibility of a new
Combined Conjecture with conditions similar to (36)-(39) but multiplied
by an arbitrary element x E I(ZG). Without entering into the details,
let us note that the hypothesis ~ 0 could then be removed since
both and are well-defined, by Theorem 2.3 and

Theorem/Definition 2.1 part (iii).

Regarding the numerical verification of such a conjecture, it is true

that the methods of [RS] require f =1= 0 in order to calculate But

one could, for instance, make use of the p-adic interpolation of Equation
(6) which expresses as for any prime
ideal t f p. Moreover, if the set of generates = 

then the elements ( I - generate over 7 G.
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