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DIVERGENCE OPERATORS
AND ODD POISSON BRACKETS

by Y. KOSMANN-SCHWARZBACH
and J. MONTERDE

0. Introduction.

Graded algebras with an odd Poisson bracket - also called Gersten-
haber algebras - play an important role in the theory of deformations of
algebraic structures as well as in several areas of field theory, as has been
shown by Batalin and Vilkovisky [2] [3], Witten [43], Lian and Zuckerman
[29], Getzler [10], Hata and Zwiebach ~11J, among others. Generators of odd
Poisson brackets, in the sense of Equation (1) below, are differential oper-
ators of order 2 of the underlying graded algebra, sometimes called "odd
laplacians", and usually denoted by the letter A. Batalin-Vilkovisky alge-
bras - BV-algebras, for short - are a special class of these algebras, those
for whose bracket there exists a generator assumed to be of square 0. The

geometrical approach to odd Poisson algebras and BV-algebras in terms of
supermanifolds was first developed by Leites [28], Khudaverdian [17] (see
also [19]) and Schwarz [37].

The purpose of this article is to study various constructions of gen-
erators of odd Poisson brackets. Our constructions will rely on the general

Keywords: Graded Lie algebra - Gerstenhaber algebra - Batalin-Vilkovisky algebra -
Schouten bracket - Supermanifold - Berezinian volume - Graded connection - Maurer-
Cartan equation - Quantum master equation.
Math. classification : 17B70 - 17B63 - 58A50 - 81 S 10 - 53D17.
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notion of divergence operator on a graded algebra, which generalizes the
concept of the divergence of a vector field in elementary analysis. Given an
odd Poisson bracket, to each element in the algebra we associate the diver-
gence of the hamiltonian derivation that it defines, and we show that such
a map from the algebra to itself, multiplied by the factor - and by an ap-
propriate sign, is a generator of that bracket (Theorem 1.2). We then adopt
the language of supermanifolds to treat two constructions which determine
divergence operators on the structural sheaf of the supermanifold.

The first construction uses berezinian volumes, and is modeled after
the construction of divergence operators on smooth, purely even manifolds
which uses volume elements. Once a divergence operator is defined, we
apply Theorem 1.2 to obtain generators of an odd Poisson bracket on the
supermanifold. One can deform any generator, obtained from a berezinian
volume, by a change of berezinian volume, i.e., the multiplication by an
invertible, even function. The deformed generator then differs from the

original one by the addition of a hamiltonian derivation. If the original
generator is of square 0, a sufficient condition for a deformed generator to
remain of square 0 is given by a Maurer-Cartan equation. (Under the name
"BV quantum master equation" , this condition plays a fundamental role in
the BV quantization of gauge fields.) We study two special cases in detail:
(i) the cotangent bundle of a smooth manifold viewed as a supermanifold
whose structural sheaf is the sheaf of multivectors on the manifold, in which
case the odd Poisson bracket under consideration is the Schouten bracket,
and (ii) the tangent bundle of a smooth manifold as a supermanifold whose
structural sheaf is the sheaf of differential forms on the manifold, when the
underlying smooth, even manifold is a Poisson manifold.

The second construction utilizes graded linear connections on super-
manifolds, and generalizes to the graded case an approach to the construc-
tion of divergence operators on purely even manifolds using linear connec-
tions. Given a linear connection on a smooth, even manifold, the divergence
of a vector field X is defined as the trace of the difference of the covariant

derivation in the direction of X and of the map ~X, . ], where [ , ] is the
Lie bracket of vector fields. In the case of a supermanifold, given a graded
linear connection, the divergence of a graded vector field is defined in a si-
milar manner, replacing the trace by the supertrace, and the Lie bracket by
the graded commutator. We then apply Theorem 1.2 to obtain a generator
of an odd Poisson bracket on the supermanifold. As an example, we again
study the generators of the Schouten bracket of multivectors on a manifold,
equipped with a linear connection. On the one hand, there exists a unique
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generator of the Schouten bracket whose restriction to the vector fields is
the divergence defined by the linear connection. On the other hand, on the
cotangent bundle considered as a supermanifold, the linear connection on
the manifold defines a graded metric in a simple way. This graded metric
in turn determines a graded torsionless connection on this supermanifold -
the associated Levi-Civita connection -, from which we obtain a generator
of the Schouten bracket, following our general procedure. We show that
these two generators of the Schouten bracket coincide and that, when the
connection is flat, this generator is of square 0.

One can ask: what happens if we deal with an even Poisson bracket
instead of an odd one? The answer is that the phenomena in the odd and
in the even cases are very different, although there is a formal similarity of
the constructions. In the even case, the results extend those of the purely
even case, e.g., the usual case of Poisson algebras of smooth manifolds.
Taking the divergence of a hamiltonian vector field with respect to a volume
form if the manifold is orientable, or, more generally, to a density, yields
a derivation of the algebra, i.e., a vector field. This is the modular vector
field that has been studied in Poisson geometry (see [24], [42]) and in more
general contexts (see [16], [44], [21]). One can prove that this vector field
is closed in the Poisson-Lichnerowicz cohomology. A change in the volume
element modifies the vector field by a hamiltonian vector field, therefore
the cohomology class of the closed vector field does not change. One thus
obtains a cohomology class, called "the modular class" [42]. So, while in the
odd case we get a second-order differential operator which is a generator
of the bracket, in the even case we get a first-order differential operator, in
fact a derivation of the structural sheaf of associative algebras.

The paper is organized as follows. In Section 1, we first recall the
definition of an odd Poisson bracket on a Z2-graded algebra, and, in Section
1.2, we define algebraically the notion of a divergence operator on a graded
algebra and that of its curvature. We then prove Theorem 1.2, which will
serve as the main tool in our constructions, and we study the deformation
of divergence operators and of the associated generators of odd Poisson
brackets.

In Section 2, we study the divergence operators defined by berezinian
volumes (Proposition 2.2), the associated generators of odd Poisson brack-
ets, and their deformation under a change of berezinian volume. We show
that the "Batalin-Vilkovisky quantum master equation" appears as a suffi-
cient condition for the modified generator to remain of square 0 (Proposi-
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tion 2.5). In Section 2.3, we consider the example of the cotangent bundle
of a manifold M, considered as a supermanifold. To a volume element
element M on M, there corresponds a berezinian volume, which behaves
like the "square of M’" In Theorem 2.8, we show that the generator of the
Schouten bracket furnished by the general construction outlined above co-
incides with the generator obtained from the de Rham differential by the
isomorphism defined by M relating forms to multivectors. In Section 2.4,
we treat the case of the tangent bundle of M, which is an odd Poisson su-
permanifold when M has a Poisson structure. We prove that the generator
defined by the divergence of hamiltonian vector fields with respect to the
canonical berezinian volume coincides with the Poisson homology operator,
and that its square therefore vanishes (Theorem 2.11). In Section 2.5, we
express the properties of the supermanifolds studied in Sections 2.3 and 2.4
in the language of QS, SP and QSP manifolds of [37] and [1] (Theorems
2.16 and 2.17).

In Section 3, we study the divergence operators defined by graded
linear connections. The definitions of a graded linear connection, its cur-
vature and torsion, and of the associated divergence operator (Proposition
3.3) are given in Section 3.1. We then study the generator, associated to
a torsionless graded linear connection, of an odd Poisson bracket and the
effect of a change of connection on the generator (Section 3.2). The Levi-
Civita connection of a graded metric on a supermanifold is introduced in
Section 3.3. In the remaining part of Section 3, we study the cotangent bun-
dle of a manifold as an odd Poisson supermanifold. More specifically we
study two constructions of generators of the Schouten bracket associated to
a torsionless linear connection on the base manifold, and we show that the
two constructions yield the same generator (Theorem 3.16). We conclude
the paper with remarks concerning the relationships between divergence
operators, right and left module structures in the theory of Lie-Rinehart
algebras [15] and right and left D-modules, and their analogues in the
graded case [34], and we formulate a conjecture regarding the existence of
a unique prolongation of a divergence operator on a supermanifold into a
generator of an odd bracket on the algebra of graded multivectors.

We shall usually denote a supermanifold by a pair (M, A) where M
is an ordinary smooth manifold, called the base manifold, and is a sheaf
over M of 22-graded commutative, associative algebras. The sections of
,,4 will be denoted by f, g,..., but this notation will be modified in some
instances. When a is an element of a Z2-graded vector space, lal denotes the
Z2-degree of a and, whenever it appears in a formula, it is understood that
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a is homogeneous. The word "graded" will often be omitted. The bracket
[ , ] denotes the graded commutator. Manifolds and maps are assumed to
be smooth. We recall some general properties of supermanifolds and the
definition of the berezinian volumes in the Appendix.

1. Odd Poisson brackets and divergence operators.

In this section, we review the main definitions concerning odd Poisson
brackets on graded algebras and we study how to construct generators of
such brackets.

1.1. Gerstenhaber and BV-algebras.

Let A be a Z2-graded commutative, associative algebra over a field of
characteristic 0. The multiplication map of algebra A, 
f g E A, will be denoted by m. By definition, an odd Poisson bracket or
a Z2- Gerstenhaber bracket on A is an odd bilinear map, 7r : ( f , g) E
A x A - [/, g] E A, satisfying, for any f, g, h E A,

("Map 7r is odd" means that modulo 2.) The pair
(A, 7r) is then called an odd Poisson algebra or a Z2-Gerstenhaber algebra.

A linear map of odd degree, A : A - A, such that, for all f, g E A,

is called a generator or a generating operator of 7r (or of bracket [ , ]). If
there exists a generator A of the bracket which is of square 0, then (A, 7r, A)
is called a Z2-Batalin-Vilkovisky algebra, or BV-algebra for short.

Remark. - Since a Gerstenhaber bracket in the usual sense, defined

on a Z-graded algebra, is of Z-degree 20131, it is clear that it can also be

considered to be a Z2-Gerstenhaber bracket. Similarly, Batalin-Vilkovisky
algebras in the usual, Z-graded sense, are particular cases of Z2-Batalin-
Vilkovisky algebras.
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A generator of an odd Poisson bracket is clearly not a derivation of
the graded associative algebra (A, m), unless the bracket is identically 0.
We shall now see under what condition a generator A of an odd Poisson
bracket 7r is a derivation of the graded Lie algebra (A, yr). A straightforward
computation, using the defining relation (1) for a generator, yields the

identity,

for all f, g E A. From (2), we obtain

LEMMA 1.1. - A generator 0 of an odd Poisson bracket 7r is an odd
derivation of the odd Poisson algebra, (A, if and only if the map ð.2 is
an even derivation of the graded associative algebra (A, m). In particular,
if A2 = 0, then 0 is a derivation of (A, 7r).

Remark. - In the case of a Z-graded algebra and a linear map A of

degree -1, the map 02, which is of degree -2, is a derivation of (A, m)
if and only if it vanishes. Therefore, in this case, a generator A of 7r is a
derivation of (A,7r) if and only if A2 - 0.

The following identity, of which we shall make use in Section 2.5, is
the result of another computation. If D is an odd derivation of (A, m), then

Let 6m be the graded Hochschild differential of algebra (A, m).
Equation (1) expresses the equality

Let us also introduce the graded Chevalley-Eilenberg differential of (A, 7r),
denoted by 87r’ Equation (2) expresses the equality

and Lemma 1.1 can be reformulated as follows : A is a 6,-cocycle if and

only if A’ is a 8m-cocycle.
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1.2. Divergence operators.

Let (A, m) be a Z2-graded commutative, associative algebra, and
let DerA be the graded vector space of graded derivations of (A, m). By
definition, a divergence operator on A is an even linear map, div : DerA --+
A, such that

for any D E DerA and any f E A.

This definition obviously generalizes the usual notion of divergence of
vector fields in elementary analysis. More generally, if A is the purely even
algebra of smooth real- or complex-valued functions on a smooth manifold,
divergence operators on A can be defined by means of either volume forms
or linear connections, the two approaches being related in a simple way.
See [24]. These two approaches will be generalized below in Sections 2 and
3, respectively.

We define the curvature of a divergence operator, as the bilinear map,
Rdiv : DerA x DerA - A by

for any derivations Dl , D2 E DerA. A short computation shows that R
is A-bilinear. If 6j , j denotes the graded Chevalley-Eilenberg differential of
the graded Lie algebra (DerA, [, ]) acting on cochains on DerA with values
in the DerA-module A, then the definition of in (5) can be written

1.3. Divergence operators and generators.

On the odd Poisson algebra (A,7r), we define the hamiltonian map-
ping by X7r : A - DerA, defined by

The graded Jacobi identity for the bracket 7r is equivalent to the relation

for any f, g E A, which expresses the fact that X" is a morphism of graded
Lie algebras from to (DerA, [ , ]).
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We now introduce the main object of interest in this paper, the odd
linear map A : A - A, depending on both 7r and the choice of a divergence
operator, defined by

for f E A.

THEOREM 1.2. - The operator A on A, defined by (7), is a generator
of bracket 7r.

Proof. To show that Equation ( 1 ) is satisfied, we compute A(fg)
using the Leibniz rule for the odd Poisson bracket, and the fundamental

property (4) of the divergence operators,

and the result follows. D

This fundamental result must be contrasted with a parallel, but

strikingly different result valid for even Poisson brackets, and consequently
also, in the usual case, for ungraded Poisson algebras. If, in (7), we replace
the hamiltonian operator defined by an odd Poisson bracket by the one
defined by an even Poisson bracket, a computation similar to the proof
of Theorem 1.2 shows that the operator thus defined is a derivation of
the associative multiplication. When the Poisson algebra is the algebra
of functions of a smooth orientable Poisson manifold, in which case the

divergence operator is the one associated with a volume element, this

derivation is a vector field. It is easy to see that, up to the factor 1/2,
it coincides with the modular vector field of the Poisson manifold [42] (also
[16], [21] and references cited therein).

We now establish a relation between the operator A defined by 7r and
div, and the curvature of the divergence operator evaluated on hamiltonian
derivations.

PROPOSITION 1.3. - For any f, g C A,
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Proof. By (6) and the definition of A,

In view of the definition of the curvature, the proposition follows. D

COROLLARY 1.4. - The generator A is a derivation of (A, vr) if and
only if Rdiv vanishes on the hamiltonian derivations.

In terms of the differentials 6, and 6j , j , Equation (8) can be written

1.4. Deformations of divergence operators and of generators.

Since the difference of two divergence operators is an A-linear map
from DerA to A, the space of divergence operators on A is an affine
space over HomA (DerA, A). We shall be interested in the case where the
difference of two divergence operators is an evaluation map, D E DerA - )

D(2w) E A, where w is a fixed, even element in A. (The factor 2 is

conventional.)
Since the difference of two generators of an odd Poisson bracket ir on

A is a derivation of (A, m), the space of generators of 1T is an affine space
over DerA.

PROPOSITION 1.5. - Let div and div’ be divergence operators on A
such that there exists an even w E A satisfying

for all D C DerA. For 7r a fixed odd Poisson bracket, let ~ and A’ be the

generators of the bracket defined by (7) for div and div’, respectively. Then

Proof - Equation (10) follows from (9) and the skew-symmetry of
the bracket. D
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Remark. - In the case of an even Poisson algebra, and, in particular,
in the usual case of the Poisson algebra of a smooth manifold, a similar ar-
gument is valid. As a consequence, one proves that the class of the modular
vector field in the Poisson cohomology is well-defined, independently of the
choice of a volume element [42].

We shall now consider under what condition a generator of 7r with

vanishing square remains of square 0 when modified by the addition of an
interior derivation X~ .

PROPOSITION 1.6. - If A is a generator of square 0 of bracket 1r, and
w is an even element of A, then

Proof - From Lemma 1.1, we know that ~2 = 0 implies that A is
a derivation of 7r, whence . Using this relation and (6), we
obtain

whence the result.

The equation

is the Maurer-Cartan equation, familiar from deformation theory. (See ~39~ . )
Thus we can state

COROLLARY 1.7. - Let A be a generator of square 0 of bracket 7r,
and let w be an even element of A. The generator A’ = A + X~ is of
square 0 if and only if the hamiltonian operator 2 D 

vanishes.

If, in particular, w satisfies the Maurer-Cartan equation (12), then the
generator 0’ - A -f- X’ is of square 0.
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2. Berezinian volumes and generators
of odd Poisson brackets.

An odd Poisson supermanifold (resp., a BV-supermanifold) is a

supermanifold (M, A) whose sheaf of functions, A, is a sheaf of odd Poisson
algebras (resp., of BV-algebras). In the context of supermanifold theory, an
odd Poisson bracket is often referred to as an anti bracket [2] [43] [11] or
a Buttin bracket [28]. The notions of derivations and divergence operators
that we have introduced in Section 1 have obvious analogues in the case of
sheaves of algebras, and we shall use the same symbols. On a supermanifold,
a derivation of the sheaf of functions is called a graded vector field. We use
the term "operator from to .~4.2" for a morphism of sheaves of vector
spaces from to A2.

In this section, we show how generators of an odd Poisson bracket on
a supermanifold can be obtained from berezinian volumes.

2.1. Divergence operators defined by berezinian volumes.

We first recall the main properties of the Lie derivatives of berezinian
sections. (See the Appendix for the definition of the berezinian sheaf. See,
e.g., [7] for a proof of the following proposition.)

PROPOSITION 2.1. - Let ~ be a berezinian section on (M, A). For any
graded vector field D and any section f of A,

and

We shall now define the divergence operator associated with a

berezinian volume.

PROPOSITION 2.2. - Let ~ be a berezinian volume. For any graded
vector field D, there exists a unique section, div~ (D), of A such that

The map D - div~(D) from DerA to A defined by (15) is a divergence
operator.
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Proof. The map div~ is even, since I
We must prove that div~ satisfies (4). Using Proposition

2.1, we obtain

whence the result.

Example with graded coordinates
, the section

is a berezinian volume and, if

A short computation shows that, for graded vector fields DI and D2,

In view of the definition of the curvature of a divergence operator (5), we
have proved

PROPOSITION 2.3. - For any berezinian volume ~, the curvature

of the divergence operator div~ vanishes.

We now consider the effect on the divergence operator of a change
of berezinian volume. When v is an invertible, even section of A, then ç.v
is also a generator of the berezinian sheaf. We remark that any invertible,
even section, v of A, can be written as for an even section w of A.

In fact, v can be written as the product of a nowhere vanishing function
on the base manifold and a function 1 + u, where u is nilpotent. Since
u is nilpotent, say of order k, 1 + u is equal to exp(ln(l + u)), where
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PROPOSITION 2.4. - Let ~ be a berezinian volume. For any invertible,
even section v of A, the berezinian section ~.v is a berezinian volume, and,
for any graded vector field D,

If v = e2w, where w is an even section of A, then

Proof. Using (13), we compute

Therefore

and, multiplying both sides we obtain formula (17), since v is even.

0

2.2. Properties of generators defined by berezinian volumes.

We shall now assume that there is an odd Poisson structure, 7r, on

(M, A), with odd Poisson bracket [ , ]. Let ~ be a berezinian volume on
(M, A). Following the general pattern of Section 1.3, we define the operator
p~ ~~ : ,,4 -~ A by

for any section f of A. It follows from Proposition 2.2 and Theorem 1.2
that the odd operator A is a generator of bracket 7r. Thus, given an odd
Poisson bracket, to any berezinian volume there corresponds a generator
of this bracket. We shall now study the effect on the generator of a change
of berezinian volume, and determine under which conditions the generator
corresponding to a berezinian volume is of square 0.

It follows from (18) and Proposition 1.5 that, when ~ is a berezinian
volume and v = e 2w an invertible, even section of A,
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It also follows from Proposition 1.6 that, if ~ is a berezinian volume such
that (~7r,ç)2 = 0, and v = e2w is an invertible, even section of A, then,

Moreover,

and therefore

In the context of supermanifolds (usually infinite-dimensional), the
Maurer-Cartan equation,

is referred to as the Batalin-Vilkovisky quantum master equation. In the
case of odd symplectic supermanifolds, the results stated below can be
found in articles dealing with the BV-quantization of gauge theories,
starting with [2], [3], followed by, among others, [43], [17], [37], [18], [1],
or of string theories [11]. See also [10] and [39]. In our treatment, the more
general case of possibly degenerate odd Poisson structures is included.

PROPOSITION 2.5. - Let ~ be a berezinian volume on (M, A) such
that (A,,,~)2 = 0, and let v = be an invertible, even section of A.

(i) The following conditions are equivalent:

(ii) If this condition is satisfied, then (

Proof. - These implications follow from Equations (22) and (21). D

Conversely (A,,~.,)2 - 0 implies that there exists an odd Casimir
section C of square 0 such that A’,~(e’)C = 0. (A Casimir section is a
section of ,,4 such that Xi = 0.) In fact, if (0~’~’v ) 2 = 0, then there exists
a Casimir section C such that

Together with (.ð 7r,~)2 == 0, this condition implies that
whence also C2 = 0.
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If the odd Poisson bracket 7r is nondegenerate, any Casimir section is
a constant, therefore even, and necessarily C = 0. In this case, (i) and (ii)
in the proposition are equivalent.

In quantum field theory, e * S is the action, and the condition

0’ (e S) - 0 states that the action is closed with respect to the dif-
ferential A.

PROPOSITION 2.6. - If v = e2w is an invertible, even section of A
such that w is a solution of Equation (23), then, for any section f of A,

Proof. Using (1), we find that

By (22) and (20),

The proposition is proved. D

2.3. The supermanifold HT*M.

For any manifold M of dimension n, we consider the supermanifold
HT*M of dimension nln, whose structural sheaf is the sheaf of multivectors
on M. The supermanifold HT* M has an odd Poisson bracket, the Schouten
bracket of multivectors on M. It is in fact nondegenerate, i.e., the odd
Poisson structure on I1T* M is symplectic. Here we revert to the usual
notations for vector fields, differential forms and functions on the ordinary
manifold M. See the Appendix for the definition to be used below of the
map a - a from forms on a supermanifold (M, A) to forms on M.

LEMMA 2.7. - Given a volume form J1 on M, there is a unique
berezinian volume ~,, on IIT* M such that

for any held of multivectors X, where the result of the duality-
pairing of the homogeneous component X(n) of degree n of the multivector
X and the n-form p.
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Proof - To any graded vector field, D, on HT* M is associated a
vector field, D, on M, defined by

for any function f on M. Given a differential n-form, p, on M, we can
define a graded n-form, J-lG, on IIT* M by

for graded vector fields D1, ... , Dn. Then pG = ,u. Since the map X -

is a differential operator of order n on the structural sheaf of flT*M,
the map g, : X - defines a section of the berezinian sheaf,
which is a berezinian volume if and only if p is a volume form. D

We remark that, for any positive function v on M,

We assume that M is an orientable manifold, and we let , be a volume
form on M. In the non orientable case, densities must be used instead of

volume forms. On IIT*M, there is an operator associated to

the odd Poisson bracket and to the berezinian volume by means of (19).
Let d be the de Rham differential on M, and let *~ be the isomorphism
from multivectors to forms defined by the volume form p. Then we know
(see, e.g., [21]) that 8, = - *~ 1 d* is a generator of the Schouten bracket.

THEOREM 2.8. - For any volume form p on M, the generator
of the Schouten bracket coincides with o~~, == - *~ 1 d *tl , and

.

Proof. It is enough to show that these operators coincide on vector
fields. We prove this fact using local coordinates (Xl, ... I x’, ~l, ..., ~.) on
IIT * M. For a vector field considered as a function

Assume that / , so that
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More generally, if, I ~, and for any vector field X,

The fact that = 0 is now an immediate consequence of the

fact that d~=0. 0

Remark. - The equality A = means that, for any differential

form a,

The map * g  coincides with the "Fourier transform with respect to the odd
variables" introduced in [41] and [37], p. 255. Therefore, in the case of a
nondegenerate Poisson structure, our result reduces to that of [41] and [37],
formula (20), a fact already observed by Witten in [43], formula (13). In
the terminology of Voronov and Schwarz, the operator 8, on the functions
on I-IT*M is the "Fourier transform" of the de Rham differential acting
on functions on IITM. Schwarz proves that a supermanifold (M, ,~4) of

dimension n(n with an odd symplectic structure is equivalent in a suitable
sense to HT* M with its canonical, odd symplectic structure.

Now, let , be a volume form, and c,~ a differential form on M such

that is a volume form. If Q = *~IW, then ~’ - çJ-L.Q2 is a berezinian

volume on HT*M. Setting A’ = we see from Proposition 2.5
that (f1’)2 == 0 if AQ = 0. By Theorem 2.8, this condition is equivalent to
dw = 0. So ( 0’ ) 2 = 0 if c,~ is a closed form. This result constitutes part of
Theorem 5 of [37]. Moreover, it is proved there that two closed forms in
the same de Rham cohomology class yield equivalent structures.

2.4. The supermanifold IIT M.

We shall now consider another supermanifold attached to a smooth
manifold M of dimension n. Let ,~1= Q(M) be the sheaf of differential forms
on M. The pair (M, A), usually denoted by TITM, is a supermanifold of
dimension nln. The sections of the sheaf Q(M) will be denoted by a, (3 ...,
but differential forms of Z-degree 0, i.e., smooth functions, will be denoted

by, f, g,.... If a is a section of Q (M), then we denote the homogeneous
component of a of degree n by a(n) .
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2.4.1. Canonical berezinian volume on the supermanifold HTM.

LEMMA 2.9. - There is a unique berezinian volume ~ on IITM, such
that, for any section cx off2(M),

Proof - If ~ and ç’ are berezinian volumes satisfying (24), then
(ç - ~’) (a) = 0 for any section a of S2(M), and this means, by the definition
of the berezinian sheaf, that g = ~’, which proves the uniqueness of a
berezinian volume satisfying (24). To prove its existence, we use local
coordinates and we show the invariance under a change of coordinates.
Let (x 1, ... , xn ) be local coordinates on an open set U of the manifold M.
Then (x 1, ... , xn, 5~ = dx 1, ... , sn = dxn ) are graded local coordinates in
HTM, and a local basis of derivations is

We now consider the local section of the berezinian sheaf,

A change of coordinates from induces a change
of graded coordinates to ( with matrix

whose berezinian is equal to 1. Therefore, we can define a berezinian section
~ on HTM by piecing the locally defined çu’s together.

This berezinian section is also a berezinian volume. In fact, this is

true locally and, if U and V are open sets such that and if local

forms a and {3 satisfy then a = (3, on U n V.

Finally, if a(,,) - f dxl A... A dxn, where f E C°° (U), then çu(a) ==
f dGxl n ... A dGxn, and therefore

and ~ satisfies condition (24).
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2.4.2. The canonical divergence operator on IITM.

Let us denote by divcan the divergence operator associated to the
canonical berezinian volume, ~, on IIT M. The graded vector fields on IIT M
are the derivations of the sheaf of differential forms. Let us denote the
sheaf of vector-valued differential k-forms by TM), for k &#x3E; 0. By
the Fr6licher-Nijenhuis theorem [9], we know that a derivation D of degree
I~ of Q(M) can be uniquely written as

where K is a section of TM) and L is a section of TM).
We introduce the notation C for the (1, I)-contraction map from
TM) to defined on a decomposable element K - w 0 X,

where X is a vector field and w is a by CK - 1, and

LEMMA 2.10. For K a section and L a section of

Ok+l(M; TM),

where d denotes the de Rham differential.

Proof. We shall first compute divcan(iL) for a decomposable L =
w 0 X where w is a section of For any differential form a,

where we have used the relation

Similarly, for the derivation d,
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which is always an exact form. Thus ,Cd~ = 0. Finally, using (16), we obtain

In particular, if X is a vector field on M, then

2.4.3. Generators of the Koszul-Schouten bracket.

We shall now assume that the base manifold M is equipped with a
Poisson structure. Given a Poisson manifold (M, P), there is an odd Poisson
bracket, [ , 7 ~p, on the supermanifold HTM, called the Koszul-Schouten
bracket, that is characterized by the conditions,

for all f, g E C°° (M), where f , I denotes the Poisson bracket on C°° (M)
defined by P, together with the graded Leibniz rule. It was shown by Koszul
[24] that a generator for this bracket is the Poisson homology operator,
ap = [d, ip], sometimes called the Koszul-Brylinski operator. See [14], and
also [21]. On the other hand, we know that, given a berezinian volume ~
on HTM, the operator 0 ~p~ ~~ defined by

for any differential form a, is also a generator of [ , ] p.

THEOREM 2.11. The generator of the Koszul-Schouten

bracket associated to the canonical berezinian volume coincides with 8p,
and .

Proof. It suffices to prove that and 8p agree on 1-forms,
and it is enough to show that both vanish on exact 1-forms, a = d f , where
f E C°° (M) . In fact, From

(25), it follows that And clearly
ap (d f ) = 0. Moreover, (Igp)2 - 0, since [d,9p] = 0 and ~i p, ap~ - 0, and
therefore (O~pO~an)2 =0. 0

Remark. - Any nondegenerate metric g on the manifold M defines
an isomorphism from multivectors to differential forms. Hence, from the
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Schouten bracket of multivectors, we obtain a Z-graded bracket [ , 1 19 on
the sheaf of differential forms on M. Then, the codifferential 69 associated
to g is a generator of this bracket. (See [40] or [6].) One can also consider
the operator associated to the canonical berezinian on IIT M, defined by

for any differential form a, and one can show that these two generators of
the bracket [ , , ~9 coincide, 69*

2.5. QS, SP and QSP-manifolds.

The following definitions, adapted from [37] and [38], will be useful
in order to reformulate some of our results.

DEFINITION 2.12. - Let (M, A) be a supermanifold, D an odd vector
field and ~ a berezinian volume. We say that ((M, A), D, ~) is a QS-manifold
if D2 = 0 and div~ (D) = 0.

DEFINITION 2.13. - Let (M, A) be a supermanifold, 7r an odd Poisson
bracket and ~ a berezinian volume. We say that ((M,A),7r,ç) is a weak
SP-manifold if (A,,~)2 - 0, where is defined by (19). If the Poisson
bracket is nondegenerate, then the supermanifold is an SP-manifold.

DEFINITION 2.14. - Let (M, A) be a supermanifold, 7r an odd Poisson
bracket, D an odd vector field and ~ a berezinian volume. We say that

((M, ~), 7r, D, ~) is a weak QSP-manifold if

~ ((M,A),7r,ç) is a weak SP-manifold,
~ ((M, ,,4), D, ~) is a QS-manifold, and

. D is a derivation of the odd Poisson bracket, 7r.

If the Poisson bracket is nondegenerate, and if D is the hamiltonian
vector field defined by an even section of A, then the supermanifold is a

QSP-manifold.

If the graded vector field D is the hamiltonian vector field Qh, . ],
where h is an even section of A, then D2 = 0 if and only if [h, h] = 0.
In field theory, this condition appears under the name classical master

equation.



440

It follows from identity (3) that, if A is a generator of the odd Poisson
bracket [ , j and if D is a graded vector field on (M, A), a necessary and
sufficient condition for D to be a derivation of the odd Poisson bracket

is that the graded commutator, [D, 0~ , be a derivation of the associative
multiplication of A. This implies

PROPOSITION 2.15. - If 7r and ~ define a yveak SP-structure on

(M, A), if D and ~ define a QS-structure on (M, A), and if [D, A] - 0,
then 7r, D and ~ define a weak QSP-structure on (M, ,~4).

The following theorems follow in part from the results of Section 2.3
and 2.4. See also [1]. Recall that a Poisson manifold is called unimodular if
the Poisson cohomology class of its modular vector field (see [42]) vanishes.
In particular, any symplectic manifold is a unimodular Poisson manifold.

THEOREM 2.16. - (i) For any manifold M with a volume element, p,
the supermanifold TIT* M, with the Schouten bracket and the berezinian
volume çJ-L’ is an SP-manifold.

(ii) Let (M, P) be an orientable, unimodular Poisson manifold, and
let ~P, . ~ be the Lichnerowicz-Poisson differential. There exists a
volume element /-t on M such that IIT*M, with the Schouten bracket, the
odd vector field dp, and the berezinian volume çJ-L’ is a QSP-manifold.

Proof. - In fact, dp is the hamiltonian vector field with hamiltonian
P, with respect to the odd Poisson structure defining the Schouten bracket.
Therefore, by Theorem 2.8, -2 -2 8J-LP, But
8,P is the modular vector field with respect to p of the Poisson manifold
(M, P) (see [21]). Therefore there exists a volume element p on M such
that div JL dp vanishes if and only if (M, P) is unimodular. The odd vector
field dp is of square 0, because [P, P~ - 0, and it is a derivation of the

Schouten bracket by the graded Jacobi identity. 0

THEOREM 2.17. - (i) For any manifold M, the supermanifold HTM,
with the de Rham differential d and the canonical berezinian volume, is a

QS-manifold.

(ii) Let (M, P) be a Poisson manifold, and be the Koszul-

Schouten bracket. Then TITM with the odd Poisson bracket Q , , ]p, the
de Rham differential d and the canonical berezinian volume, is a weak

QSP-manifold. If P is a nondegenerate Poisson structure, then TIT M is a

QSP-manifold.
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Proof. To complete the proof, we only have to recall that the
de Rham differential d is a derivation of Q , ~ p, and that, when P is
nondegenerate with inverse the symplectic form, w, then d = [w, . j~p,
so that d is the hamiltonian vector field associated to w. (See [22] or [5] for
a proof of this fact.) D

3. Linear connections and generators
of odd Poisson brackets.

Divergence operators on smooth manifolds can be defined not only by
means of volume forms, but also by means of connections. (See [15].) While
in Section 2, we generalized the first approach to supermanifolds, replacing
volume forms by their graded analogue, the berezinian volumes, in this
section we generalize the second method, defining divergence operators by
means of graded connections.

3.1. Divergence operators defined by graded connections.

We first recall the notion of graded connection. See [30] and [31] for
the definitions of left and right graded connections. Here we consider only
left graded connections, which we simply call connections. Let (M, ,,4) be
a supermanifold and let DerA be the sheaf of derivations of A.

DEFINITION 3.1. - Let S be a sheaf of A-modules on M. A left graded
connection, or simply a connection, on S is a morphism of sheaves of graded
vector spaces from DerA 0 S to S, denoted D 0 a H VD a, which satisfies
the identity

and the Leibniz rule,

for any section f of A, any derivation D of A, and any section a of S.

A connection on the sheaf DerA of derivations of A is a graded linear
connection or simply a linear connection on (M, ,,4) .
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DEFINITION 3.2. - The curvature, of a connection, V, on S is
defined by

for any derivations Di, D2 of A.

The torsion, TV, of a linear connection, ~, on (M, A) is defined by

We shall now define the divergence operator associated with a linear
connection on (M, A). Let sTr denote the supertrace of an endomorphism
of sheaves of A-modules (see, e.g., [30] or [7]), and let adD denote the
endomorphism of DerA, E - [D, E]. For any graded vector field D, we set

PROPOSITION 3.3. For any linear connection, W, on (M, A), the
map, divv : A, defined by (26) is a divergence operator.

Proof. The map divv is even. It follows from I
, that

Let the graded dimension of the supermanifold be and let us choose

a system of local graded coordinates ..., Xm, We find that

where we have used the local expression of the derivation D in the basis of
local graded vector fields,

PROPOSITION 3.4. - Let V be a torsionless linear connection on A

and let DI and D2 be graded vector fields. Then
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Proof. - We have to prove that

This result follows from a computation of these two expressions in local
coordinates, for pairs of commuting graded vector fields, DI and D2, in a
local basis. 0

3.2. Generators defined by graded connections.

We now assume that (M, ,A) has an odd Poisson structure, 7r, whose
bracket we denote by [ , ]. Let V be a linear connection on (M, A).
Following the general pattern of Section 1.3, we define the operator A’,v :
A -t A by

for any section f of A. It follows from Proposition 3.3 and Theorem 1.2 that
the odd operator A’,’w is a generator of bracket 7r. Therefore, to any linear
connection on an odd Poisson manifold, there corresponds a generator of
the odd Poisson bracket.

PROPOSITION 3.5. - Let W be a torsionless linear connection on A.
The following properties are equivalent:

. ~ 7T, v is a derivation of the odd Poisson bracket,7r,

. ( 0’~ ~ ~ ) 2 is a derivation of the sheaf of associative algebras, A,
~ sTr(R"’) vanishes on the sheaf of hamiltonian derivations.

Proof. These equivalences follow from Lemma 1.1, and from Corol-

lary 1.4 together with Proposition 3.4. D

We now compare the generators associated to torsionless linear con-

nections, V and V7’, on A. The difference V’ - V7D is then a morphism
of sheaves of A-modules from DerA to itself, which we denote by u(D).

PROPOSITION 3.6. - Let V and V’ be torsionless linear connections
on A. Then

for any section f of A.
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Proof. This relation follows from the fact that, for any derivation

Remark. - In the case of an ordinary manifold, the trace of the
curvature of a linear connection is the curvature of the connection induced

on the bundle of top-degree forms. It would be interesting to interpret the
supertrace of the curvature of a graded linear connection as the curvature
of a connection on the sections of the berezinian sheaf.

3.3. Metrics and metric connections on supermanifolds.

We recall the definitions of metrics and metric linear connections on

supermanifolds.

DEFINITION 3.7. - A graded metric, or simply a metric, on (M, A)
is a morphism of sheaves of A-modules, ( , ) : Der Q9 Der ,,4. --~ A, such
that

for derivations Dl and D2 (graded

. the map D - (D, - ) is an isomorphism of sheaves of A-modules
from DerA to Hom A (DerA, A) (nondegeneracy).

DEFINITION 3.8. - A linear connection V on A is metric with respect
to a metric ( , ) if, for any derivations D, D 1, and D2 of A,

where V == ~u + V’ is the decomposition of the linear connection into its
even and odd components.

The proof of the following theorem, can be found in [27], p. 134, and
in [33].

THEOREM 3.9. - There exists a unique torsionless linear connection
which is metric with respect to a given metric. It is determined by
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The linear connection defined in Theorem 3.9 is called the graded
Levi-Civita connection or simply, the Levi-Civita connection of the metric
(, ). The Levi-Civita connection of a homogeneous metric is even. (See also
[8], where an expression in local coordinates of the Levi-Civita connection
is given in the case of a homogeneous, even metric.)

3.4. Linear connections and Schouten bracket.

We shall again consider the supermanifold HT*M, whose sheaf of
functions is the sheaf of multivectors on M. We shall use the notations

f, g,... for functions on M or on an open set of M, and the notations
X, Y,... for vector fields and a, ~3, ... for differential 1-forms.

3.4.1. Graded vector fields on HT*M.

Whereas the derivations of the algebra of forms on a manifold can be
classified by the Frolicher-Nijenhuis theorem [9] (and see Section 2.4.2), the
classification of the derivations of the algebra of multivectors on M requires
the use of an auxiliary linear connection, V. Let U be an open set of M. If
K = Q ® X is a vector-valued multivector on U, where Q is a multivector
and X is a vector, we define VKV = Q A VXV, for any multivector V
on U. If L = W Q9 a is a 1-form-valued multivector on U, where W is a
multivector and a is a differential 1-form, we define 

PROPOSITION 3.10 [32]. - Let D be a graded vector field of degree
r on IIT*M, i.e., a derivation of degree r of the sheaf of multivectors on
M. On any open set U of M, there exist a vector-valued r-vector, K,
and a 1-form-valued (r -f- I)-vector, L, each uniquely defined, such that

As a consequence, we see that, if (el , ... , en ) is a local basis of vector
fields on U and (6~,.... En) is the dual basis, then (Vei,..., Den , iEl , ... , iEn )
generate the derivations of the algebra of multivectors over U, as a module
over the algebra of multivectors over U.

3.4.2. The graded connection on HT*M associated to a linear connection
on M.

We shall show how to associate a metric on IIT * M to a linear

connection on M, and we shall study the Levi-Civita connection of this
metric.
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DEFINITION 3.11. - Let V be a linear connection on M. We define a

metric (, )v on IIT*M by its value on derivations of type Vx, where X
is a vector field, and of type ia, where a is a 1-form,

To verify the nondegeneracy of the metric thus defined, we observe
that, in the local basis of derivations (V,,, . - - , B7 en, iEl , ... , iEn ), the matrix
of this metric is (ld 0 ). This metric is odd.

PROPOSITION 3.12. - Let V be a torsionless linear connection on M.

The Levi-Civita, connection, W, of the metric ( , )v on is given by

where R denotes the curvature tensor of B7.

Proof. We shall make use of the commutation relations

Using Theorem 3.9, Definition 3.11 and the fact that the connection V is
torsionless, we obtain

and

From these relations and the nondegeneracy of the graded metric we obtain
the first two formulae, while the third follows from the fact that V is
torsionless, and the fourth follows from the definitions. D

PROPOSITION 3.13. - The curvature RV of the Levi-Civita connec-

tion, V, of the metric (, )v on IIT * M, satisfies
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where R denotes the curvature tensor of V, and R(X, Y)* denotes the
transpose of R(X, Y). Moreover 0.

Proof. - The proof is a straightforward computation using Proposi-
tion 3.12. D

COROLLARY 3.14. - Let V be a torsionless linear connection on M.

Then the Levi-Civita connection of the on IIT* M is flat if

and only if V is flat.

3.4.3. Generators of the Schouten bracket.

We have just seen that, to a torsionless linear connection V on M
we can associate the Levi-Civita connection, W, of the odd metric ( , )v
on HT*M, and therefore, by (28), a generator of the Schouten bracket,
which we shall denote by There exists another construction,
due to Koszul [24], which associates a generator of the Schouten bracket
to a torsionless linear connection V on M. To V, he first associates the
corresponding divergence operator, defined on vector fields X by

This is the definition that is used in fact in [24] (although it appears by
mistake with the opposite sign in its first occurrence, page 262, before
Lemma (2.1)). This map is a divergence operator, i.e., satisfies (4), on the
purely even algebra C°° (M) . For a flat connection on flat space, it reduces
to the elementary divergence. He then shows, using a local basis of vector
fields, that there is a unique operator on the multivectors, 0°, of degree
- l, that extends the operator -divv and generates the Schouten bracket.
We shall now show that the generators of the Schouten bracket obtained

by these two constructions coincide.

LEMMA 3.15. - For any vector field X, and for any 1-form a,

Proof. - If (x 1, ... , is a system of local coordinates on M, then a
local basis of graded derivations on HT* M is .-l ... , V-1L , idxl , ... , 2dxn ) ·
We use the relations

der to compute , we first observe that,
because V is torsionless,
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Therefore

THEOREM 3.16. - For any torsionless linear connection V on M, the

generators A Schouten,V and 0° Of’ the Schouten bracket coincide. If V is

flat, this generator is of square 0.

Proof. Since we know that both operators are generators of the
Schouten bracket, we need only show that they coincide on functions and
on vector fields. On functions, Schouten, V vanishes since [/, - j = id f and

= 0, as does 0° because it is of degree -1. Now, for any vector
field X and any torsionless linear connection V on an open set U of M,
QX, . ~ - V x - ivx, since both derivations of the sheaf of multivectors
coincide on functions and on vectors. If (ei , ... , en) is a local basis of vector
fields on U and (6B ... , En) is the dual basis, then the 1-form-valued vector
VX in U can be written as B7 eJ X 0 Thus iox - A 

Therefore, by Proposition 3.3 and Lemma 3.15,

It follows that

It follows from Corollaries 1.4 and 3.14 together with Proposition 3.4
that, if V is flat, the operator derivation of the sheaf

of multivectors with respect to the exterior product. Since, moreover,
Z-degree -2, it vanishes. D

Remark. - Koszul [24] proves that, conversely, any generator of the
Schouten bracket of multivectors on a manifold M is of the form 0° for
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some torsionless linear connection on M, and that two connections give rise
to the same generator of the Schouten bracket if and only if they induce the
same linear connection TM, m being the dimension of the manifold.
We have not found any straightforward extension of this result to the case
of odd Poisson brackets on supermanifolds in general.

3.4.4. Conclusion.

Given a smooth manifold M, we set A = C°° (M), and we let Der A
denote the module of vector fields on M. The definition of a divergence
operator on a graded algebra reduces, in the purely even case of A, to the
requirement that the linear operator, div : Der A --+ A, satisfy the identity
div ( f X ) = f divX + X ( f ) , for any f E A and X E Der A. The operators
divv, considered in Section 3.4.3, where V are torsionless linear connections
on M, are examples of divergence operators. Other examples are furnished
by the operators div, associated to volume forms, p, on an orientable
manifold M. The Schouten bracket is an odd Poisson bracket on the graded
commutative, associative algebra, A = ÅA (Der A) = A),
where m is the dimension of the manifold M. It is the opposite of a

divergence operator that can be extended into a generator of the Schouten
bracket. In fact, for any divergence operator on A, the operator -div can
be uniquely extended to a generator of Z-degree -1, denoted A("v), of the
Schouten bracket. One can characterize the generator A(div) recursively
since, for any f E A, it commutes with the interior product id f . More
generally, for any form a,

It is easy to see that, in the purely even case, a divergence operator
div : DerA ---* A is nothing but a right (A, DerA)-connection on A, in the
sense of Huebschmann [15] [16]. In fact, if div is a divergence operator, then

is a right (A, DerA)-connection on the algebra A, and, conversely, if

( f , X) E A x right (A, DerA)-connection on
A, then X E DerA - -1 o X, where 1 is the unit of A, is a divergence
operator. Moreover, the right (A, DerA)-connection is a right (A, DerA)-
module structure if and only if the curvature of the divergence operator,
defined by (5), vanishes. In fact,
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In the papers cited above, the notion of a divergence operator does
not appear explicitly, but the preceding remarks show that the 1-to-1

correspondence ([15], Theorem 1) between right (A, DerA)-connections on
A and generating operators of the Schouten bracket of A yields a 1-

to-1 correspondence between divergence operators and generators, which
restricts to a 1-to-1 correspondence between divergence operators whose
curvature vanishes and generators whose square vanishes. Also, the 1-to-1
correspondence ([15], Theorem 3) between right (A, DerA)-connections on
A and left (A, DerA)-connections on the top exterior power, 1B; DerA =
A Ap DerA, translates into a 1-to-1 correspondence between divergence
operators and left (A, DerA)-connections on the top exterior power. The
canonical bundle DerA is, in a natural way, a right module; equipping
it with a left module structure, which can be done by choosing a volume
element, is equivalent to equipping A itself with a right module structure
and therefore to selecting a divergence operator whose curvature vanishes
(cf. Proposition 2.3). To summarize, divergence operators, right connections
on A, left connections on the top exterior power of DerA, and generators
of the Schouten bracket are in 1-to-1 correspondence. The definition

of divergence operators and the preceding constructions extend to the
framework of Lie algebroids and to that of Lie-Rinehart algebras. See

[15], [16] and also [44] and [21]. While there is a functor from Lie-

Rinehart algebras to Gerstenhaber algebras, there is also a functor from Lie-
Rinehart algebras with a divergence operator (resp., divergence operator
with vanishing curvature) to Gerstenhaber algebras with a generator
(resp., to Batalin-Vilkovisky algebras). In the case of a complex analytic
manifold M and its algebra of analytic functions, the left (A, DerA)-module
structures on the canonical bundle (top exterior power of holomorphic
vector fields) are called Calabi-Yau structures [36]. In this case, left (resp.,
right) (A, DerA)-module structures coincide with left (resp., right) Dm-
module structures.

The extension of the above 1-to-1 correspondences valid in the purely
even case to the case where A itself is a Z- or Z2-graded algebra, A, remains
to be done. The appropriate framework is that of the graded Lie-Rinehart
algebras, whose theory has already been developped by Huebschmann
(1990, unpublished), and left and right (A, DerA)-connections and module
structures in an appropriate sense. Sheaves of graded Lie-Rinehart algebras
should then be considered, the fundamental example being (A, DerA), for
any supermanifold (M, A). A divergence operator with vanishing curvature
should define a right (A, DerA)-module structure on A, and there should
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be 1-to-1 correspondences between divergence operators, right structures
on the structural sheaf and left structures on the berezinian sheaf. Another

approach is by means of the theory of D-modules. Left and right D-modules
on complex supermanifolds have been studied by Penkov [34], who showed
that the berezinian sheaf of a complex analytic supermanifold is a right
D-module in a canonical way. Defining a left D-module structure on the
berezinian sheaf, which can be done by choosing a berezinian volume, is
equivalent to defining a right D-module structure on the structural sheaf,
and should be equivalent to the choice of a divergence operator.

One can define graded analogues of the modules of multivectors on
a manifold as modules of skew-symmetric multiderivations of A, and one
can generalize these notions to the case of sheaves of graded algebras over
a manifold. Multigraded generalizations of the Schouten bracket on the
space of skew-symmetric multiderivations of a graded algebra were defined
by Krasil’shchik in [26], following his earlier paper [25]. An analogue of the
1-to-1 correspondence between divergence operators and generators should
be also valid in the graded case.

Conjecture. A divergence operator on the graded algebra A, up to sign
factors, can be uniquely extended to an operator on the skew-symmetric
multiderivations of A that generates, in a suitable sense, the bigraded
Krasil’shchik-Schouten bracket.

In particular, this construction would associate to a divergence op-
erator on a supermanifold (M, ,A.) a generator of the bigraded bracket on
multivectors on the supermanifold. We hope to return to this question and
also to study the relationship between the generators of a graded bracket
and those of its derived brackets, in the sense of [20], in a future publication.

Appendix. The berezinian sheaf.

We shall recall the definition of the berezinian integral and some
fundamental results, following [4], [30], [35], [41] and mostly [12] and [13].

Let (M, ,~1) be a supermanifold of dimension mln, in the sense of [23].
Thus, M is a smooth manifold and ,,4 is a sheaf of Z2-graded commutative,
associative R-algebras over M. There is an exact sequence
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where N is the sheaf of nilpotent sections of A, and .,4/N is the sheaf
C°° (M), regarded as trivially graded. The projection ,A -~ ,A/N = C°° (M)
is denoted by the symbol ~ , and there is a unique prolongation to the
module of differential forms of this projection, that commutes with the
de Rham differentials. Thus, if we denote by d and dG the de Rham
differentials in M and (M, A), then

for any differential form a on the supermanifold (M, A).
The berezinian sheaf can be described as follows. Let be the

vector space of the differential operators of order 1~ on A. There is both a

right and a left A-module structure on given by ( f .P) (g) = f .P(g)
and (P. f ) (g) = P( f .g), respectively, for sections f, g of A and P E 
If (xl I... xm, s’~ ) are graded coordinates on an open set U in M,
then is free for both structures of A-module, with basis

where k, ... , kin E N, 1  p1  p2  ...  and k, +... + k,,, +j = k.

Let us now define Q Q) Qm 0 where Q Q is the sheaf
of differential m-forms on (M, A). Let J(n be the subsheaf of elements P
in pn(A’OA) such that, for any section f of ,~4 over an open set U of
M with compact support, there exists an (m - 1)-differential form c, with
compact support in U such that P( f ) = dw. Is is easy to show that 
is a subsheaf of right A-modules of The berezinian sheaf is

the quotient sheaf P’(A, The sections of this sheaf can be locally
expressed as

where f is a section of A. If V C M is an open set with graded coordinates
(Y’, ... , ym, ti 7..., t~), then, on U n V,
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where

and where Ber denotes the berezinian. (The berezinian, also called the
superdeterminant, of an invertible even matrix of the form ( ~ D is

If M is an orientable smooth manifold, the Berezin integral, f
maps the sections with compact support of the berezinian sheaf to R, and
is defined by , As an example, if (M, ,A) = R’1’, then

where ,f ~1~2,...,n) is the coefficient of SI s2 ... sn in the expansion of f as a
sum of products of the sp’s.

A section, ~, of the berezinian sheaf is called a berezinian volume if
it is a generator of the berezinian sheaf, i.e., if any other section can be

uniquely written as ~. f for some section f of A. A berezinian volume is a
homogeneous section of the berezinian sheaf, whose degree depends on the
parity of the dimension n. If ~ is a berezinian volume and v is a section of
A, then ~.v is also a berezinian volume if and only v is invertible and even.

In order to define the Lie derivatives of berezinian volumes with

respect to graded vector fields, we first observe that, in a similar way, we
can define the right submodule I- 

for each ~~1,
and that the canonical inclusion induces

an isomorphism of sheaves of right A-modules from to

Let D be a graded vector field on (M, A). The Lie derivative of the
berezinian volume [w 0 P] with respect to D is

The main properties of the Lie derivatives of berezinian volumes are stated
in Section 2, and are used there in order to derive the properties of the

divergence operators.
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