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HOMOLOGY OF GAUSSIAN GROUPS

by P. DEHORNOY &#x26; Y. LAFONT

Ann. Inst. Fourier, Grenoble
53, 2 (2003), 489-540

Introduction.

The (co)homology of Artin’s braid groups Bn has been computed by
methods of differential geometry and algebraic topology in the beginning
of the 1970’s [3], [4], [29], [16], and the results have then been extended to
Artin-Tits groups of finite Coxeter type [8], [31], [46], see also [17], [18],
[19], [38], [39], [47]. A purely algebraic and combinatorial approach was
developed by C. Squier in his unpublished Ph. D. thesis of 1980-see [42]-
relying both on the fact that these groups are groups of fractions of monoids
admitting least common multiples and on the particular form of the Coxeter
relations involved in their standard presentation.

On the other hand, it has been observed in recent years that most of
the algebraic results established for the braid groups and, more generally,
the Artin-Tits groups of finite Coxeter type ("spherical Artin-Tits groups")
by Garside, Brieskorn, Saito, Adyan, Thurston among others, extend to
a wider class of so-called Garside groups. A Gaussian group is defined

to be the group of fractions of a monoid in which left and right division
make a well-founded lattice, i.e., in which we have a good theory of
least common multiples, and a Garside group is a Gaussian group that

satisfies an additional finiteness condition analogous to sphericality (see
the precise definition in Section 1 below). In some sense, such an extension
is natural, as the role of least common multiples (lcm’s for short) in

some associated monoid had already been emphasized and proved to be
crucial in the study of the braid groups, in particular in the solution

Keywords : Free resolution - Finite resolution - Homology - Contracting homotopy -
Braid groups - Artin groups.
Math. classification : 20J06 - 18G35 - 20M50 - 20F36.
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of the conjugacy problem by Garside [30] and the construction of an
automatic structure by Thurston [45], see also [28], [12], [13]. However, the
family of Garside groups includes new groups defined by relations quite
different from Coxeter relations, such as (a,b,c,...;aP = bq = cr = ... ) ,
(a, b, c; abc = bca = cab), or (a, b ; ababa = b2) -see [36] for many examples-
-and, even if the fundamental Kfrzungslemma of [9] remains valid in

all Gaussian monoids, many technical results about spherical Artin-Tits
groups fail for general Gaussian groups, typically all results relying on the
symmetry of the Coxeter relations, like the preservation of the length by
the relations or the result that the fundamental element A is squarefree.
Thus, the extension from spherical Artin-Tits groups to general Gaussian
groups or, at least, Garside groups is not trivial, and, in most cases, it

requires finding new arguments: see [25] for the existence of a quadratic
isoperimetric inequality, [21] for torsion freeness, [23] for the existence of
a bi-automatic structure, [37] for the existence of a decomposition into a
crossed product of groups with a monogenic center, [40] for the decidability
of the existence of roots.

According to this program, it is natural to look for a possible extension
of Squier’s approach to arbitrary Gaussian groups (or to even more general
groups). Such an idea is already present in Squier’s paper, whose first part
addresses general groups and monoids which are essentially the Gaussian
groups we shall consider here. However, in the second part of his paper,
he can complete the construction only in the special case of Artin-Tits
groups. Roughly speaking, what we do in the current paper is to develop
new methods so as to achieve the general program sketched in the first part
of [42].

As in [42], we observe that the homology of a group of fractions
coincides with that of the involved monoid, so our aim will be to construct
a resolution of the trivial module Z by free ZM-modules when M is a monoid
with good lcm properties. We start with the natural idea of constructing
an explicit simplicial complex where the n cells correspond to n-tuples of
elements (~i,..., of M, and, in order to obtain reasonable (finite type)
modules, we assume in addition that the ai’s are taken in some fixed set
of generators of M. The idea, which is already present in [42] even if not
stated explicitly, is that the cell [al, - - -, represents the computation of
the left lcm of a 1, ... , an. The core of the problem is to define the boundary
operator and to construct a contracting homotopy. Here Squier uses a trick
that allows him to avoid addressing the question directly. Indeed, he first
defines by purely syntactical means a top degree approximation (in the
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sense of Stallings [44]) of the desired resolution, and then he introduces
his resolution as a deformation of this abstract approximated version.
The miraculous existence of this top approximation directly relies on the
symmetry of the Coxeter relations that define Artin-Tits monoids. For more

general relations, in particular for relations that do not preserve the length
of the words, such as those mentioned above, even the notion of a top
factor is problematic, and it is doubtful that Squier’s construction can be
extended-see Remark 4.11 for further comments about obstructions.

In this paper, we develop new solutions, which address the

construction directly. We propose two methods, one more simple, and
one more general. Our first solution is based on word reversing, a syntactic
technique introduced in [20] for investigating those monoids admitting
least common multiples. Starting with two words u, v that represent some
elements x, y of our monoid, word reversing constructs (in good cases) two
new words u’, v’ such that both u’v and v’u represent the left lcm of x
and y, when the latter exists. The idea here is to use word reversing to fill
the faces of the n-cubes we are about to construct. The resulting method
turns out to be very simple, and we show that it leads to a free resolution
of Z for every Gaussian monoid (and even for more general monoids called
locally Gaussian) provided we start with a convenient family of generators,
typically the divisors of the fundamental element A in the case of a Garside
monoid. We also show that the resolution so obtained is connected with

the one constructed by Charney, Meier, and Whittlesey in [14] (in the
special cases considered in the latter paper), and with the Deligne-Salvetti
resolution [26], [38], [18] (in the more special cases of Artin-Tits groups).

Our second solution is more general. It is reminiscent of work by
Kobayashi [32] about the homology of rewriting systems-see also [34],
~41~ -and it relies on using a convenient linear ordering on the considered
generators and an induction on some derived well-ordering of the cells. This
second construction works for arbitrary generators in all Gaussian monoids,
and, more generally, in so-called locally left Gaussian monoids where we
only assume that any two elements that admit a common left multiple
admit a left lcm (non-spherical Artin-Tits monoids are typical examples).
The price to pay for the generality of the construction is that we have so far
no explicit geometrical (or homotopical) interpretation for the boundary
operator and the contracting homotopy, excepted in low degree.

With the previous tools, we reprove and extend the results about the
homology of spherical Artin-Tits groups, and, more generally, of arbitrary
Artin-Tits monoids. In particular, we prove
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THEOREM 0.1. - Assume that M is a finitely generated locally left
Gaussian monoid. Then M is of type FL, in the sense that Z admits a finite
free resolution over ZM.

(See Proposition 4.9 for an explicit bound for the length of the
resolution in terms of the cardinality of a generating set.)

COROLLARY 0.2. - Every Garside group G is of type FL, i.e., Z
admits a finite free resolution over ZG.

The paper is organized as follows. In Section 1, we list the needed basic
properties of (locally) Gaussian and Garside monoids, and, in particular,
we introduce word reversing. We also recall that the homology of a monoid
satisfying Ore’s embeddability conditions coincides with the one of its
group of fractions. In Section 2, we consider a (locally) Gaussian monoid M
and we construct an explicit resolution of Z by a graded free ZM-module
relying on word reversing and on the greedy normal form of [28]. We give
a natural geometrical interpretation involving n-cubes in the Cayley graph
of M. In Section 3, we extract from the resolution of Section 2 a smaller

resolution, and we establish a precise connection between the latter and the
resolution considered in [14]. Finally, in Section 4, we consider a locally left
Gaussian monoid M (a weaker hypothesis), and we construct a new free
resolution of Z, relying on a well ordering of the cells. A few examples are
investigated, including the first Artin and Birman-Ko-Lee braid monoids.

The results in Sections 2 and 3 are mainly due to the first author,
while the results in Section 4 are mainly due to the second author. The
authors thank Christian Kassel for his comments and suggestions, as well as
Ruth Charney, John Meier, and Kim Whittlesey for interesting discussions
about their independent approach [14]. They also thank the referee, who,
by asking for a clarification of the connection with the latter paper, has
induced the results of Section 3.

1. Gaussian and Garside monoids.

The material in this section is mostly classical. However, the key
result, namely Proposition 1.10 which connects the greedy normal form
and the word reversing process, receives a new, slighty shorter proof than
the one of [23], while the result is stated in a more general framework,
namely locally Gaussian monoids instead of Garside monoids.
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1.1. Gaussian and locally Gaussian monoids.

Our notations follow those of [42] on the one hand, and those of [25]
and [23] on the other hand. Let M be a monoid. We say that x is a left
divisor (resp. a proper left divisor) of y in M, denoted

if y - xz holds for some z (resp. for some z 1). Alternatively,
we say that y is a right multiple of x. Right divisors and left multiples are
defined symmetrically (but we introduce no specific notation).

DEFINITION. - We say that a monoid M is left Noetherian if left

divisibility is Well-founded in M, i.e., there exists no infinite descending
sequence... C x2 C Xl-

Note that, if M is a left Noetherian monoid, there is no invertible
element in M but 1, and, therefore, the relation C is a strict ordering on M

(and so is the symmetric right divisibility relation). For x, y in M, we say
that z is a least common left multiple, or left lcm, of x and y, if z is a left

multiple of x and y, and every common left multiple of x and y is a left

multiple of z. If z and z’ are two left lcm’s for x and y, then we have z C z’
and z’ C z by definition, hence z = z’ whenever M is left Noetherian. Thus,
in a left Noetherian monoid, left lcm’s are unique when they exist.

DEFINITION. - We say that a monoid M is left Gaussian if it is right
cancellative (i.e., zx = zy implies x = y), left Noetherian, and any two
elements of M admit a left lcm. We say that M is locally left Gaussian if
it satisfies the first two conditions above, but the third one is relaxed into:

any two elements that admit a common left multiple admit a left lcm.

If M is a locally left Gaussian monoid, and x, y are elements of M
that admit at least one common left multiple, we denote by x V y the left
lcm of x and y, and by x~y the unique element z satisfying zy = x V y; the
latter is called the left complement of x in y. Thus we have

whenever x and y have a common left multiple. Observe that, if y happens
to be a right divisor of x, then x/y is the corresponding quotient, i.e., we
have x = x~y ~ y: this should make the notation natural. It is easy to see
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that, in a locally left Gaussian monoid M, any two elements x, y admit
a right gcd, i.e., a common right divisor z such that every common right
divisor of x and y is a right divisor of z; then M equipped with right
division is an inf-semi-lattice with least element 1.

The notion of a (locally) right Gaussian monoid is defined symme-
trically in terms of right Noetherianity, left cancellativity and existence of
right lcm’s. If M is a (locally) right Gaussian monoid, and x, y are elements
of M that admit a common right multiple, we denote by xBy the unique
element of M such that xxBy is the right lcm of x and y, and call it the right
complement of x (we shall need no specific notation for the right lcm
in this paper).

Finally, we introduce Gaussian monoids as those monoids satisfying
the previous conditions on both sides:

DEFINITION. - We say that a monoid M is (locally) Gaussian if it is
both (locally) left Gaussian and (locally) right Gaussian.

Roughly speaking, Gaussian monoids are those monoids where a
good theory of divisibility exists, with in particular left and right lcm’s
and gcd’s for every finite family of elements. Locally Gaussian monoids
are similar, with the exception that the lcm’s operations, and, therefore,
the associated complements operations, are only partial operations. The
Artin-Tits monoid associated with an arbitrary Coxeter matrix is a typical
example of a locally Gaussian monoid [9]; such an Artin-Tits monoid is
Gaussian if and only if the associated Coxeter group is finite, i.e., in the
so-called spherical case. We refer to [36] and [24] for many more examples
of (locally) Gaussian monoids. Let us just still mention here the Baumslag-
Solitar monoid (a, b ; ba = ab2 ) +, another typical example of a locally left
Gaussian monoid that is not Gaussian, as the elements ab and a have no
common left multiple.

If M is a Gaussian monoid, it satisfies Ore’s conditions [15] and,
therefore, it embeds in a group of fractions. We say that a group G is

Gaussian if there exists at least one Gaussian monoid M such that G is

the group of fractions of M. The example of Artin’s braid groups Bn,
which is both the group of fractions of the monoid Bn [30] and of the
Birman-Ko-Lee monoid BKLn [7] shows that a given Gaussian group may
be the group of fractions of several non-isomorphic Gaussian monoids-as
well as of many more monoids that need not be Gaussian [36].
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1.2. Garside and locally Garside monoids.

In the sequel, we shall be specially interested in finitely generated
(locally) Gaussian monoids. Actually, we shall consider a stronger condition,
namely admitting a finite generating subset that is closed under some

operations.

DEFINITION. - We say that a monoid M is (locally) Garside(l) if it

is (locally) Gaussian and it admits a finite generating subset X that is
closed under left and right lcm, and under left and right complements, this
meaning that, if x, y belong to x and they admit a common left multiple,
then the left lcm x V y and the left complement x~y, if the latter is not 1,
still belong to X, and a similar condition holds with right multiples.

As is shown in [23], Garside monoids may be characterized by weaker
assumptions: for instance, a sufficient condition for a Gaussian monoid to be
Garside is to admit a finite generating subset closed under left complement.
Another equivalent condition is the existence of a Garside element, defined
as an element A such that the left and right divisors of A coincide, they
are finite in number and they generate M. In this case, the family Do of
all divisors of A is a finite generating set that is closed under left and

right complement, left and right lcm, and left and right gcd. In particular,
D, equipped with the operation of left lcm and right gcd (or of right lcm
and left gcd) is a finite lattice, with minimum 1 and maximum A, and
this lattice completely determines the monoid M. It is also known that

every Gaussian monoid admits a unique minimal generating family, which
implies that it admits a unique minimal Garside element, for instance the
fundamental element On in the case of the monoid Bn of positive braids.
Let us mention that no example of a Gaussian non-Garside monoid of finite
type is known.

Locally Garside monoids need not possess a Garside element A in
general. Typical examples are free monoids and, more generally, FC-type
Artin-Tits monoids [2]. In the case of a free monoid X* (the set of all words
over the alphabet x), the set x is a generating set that is trivially closed
under lcm and complement: any two distinct elements x, y of x admit no
common multiple, so x V y and x/y trivially belong to x when they exist,
i.e., never.

~1~ Garside monoids as defined above are called Garside monoids in [23] and [14], but
they were called "small Gaussian" or "thin Gaussian" in previous papers [25], [37],
where a more restricted notion of a Garside monoid was also considered.
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1.3. Identities for the complement.

In the sequel we need a convenient lcm calculus. As already pointed
out in [25], [23], the main object here is not the lcm operation, but rather
the derived complement operation and the algebraic identities it satisfies.

Thus, the iterated complement operation is defined by the equality

Observe that ( 1.1 ) remains true for n = 0 provided we define x/y to be x
if Y is the empty sequence.

LEMMA 1.1. - The following identities hold:

Proof. Using the associativity of the lcm, we obtain

and we deduce the first equality in (1.2) by cancelling z on the right. The
proof of (1.3) is similar, as multiplying both (x~y )~(z~y ) and x/y,z by y V z
on the right gives x V z. Then one deduces the second equality in (1.2)
easily. Formulas (1.4) and (1.5) are proved by expressing in various ways
the lcm of xy and z. 0

1.4. Word reversing.

The constructions we shall describe in Sections 2 and, partly, 4, rely
on a word process called word reversing. It was introduced in [20], and
investigated more systematically in Chapter II of [22]-see also [24] for

further generalizations.

If is a monoid presentation, i.e., a set of letters plus a list of
relations u = v with u, v words over x, we denote by (X ; TZ) + the associated
monoid, and by (X ; 7Z~ the associated group. If u, v are words over X, we
shall denote by u the element of the monoid (X; R)+ represented by u,
and we write u - v for u = v . We use x* for the free monoid generated
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by X, i.e., the set of all words over X; we use E for the empty word. We
also introduce X -1 as a disjoint copy of x consisting of one letter a-1 for
each letter a of x. Finally, we say that the presentation (x, 7Z) is positive
if all relations in ~Z have the form u = v with u, v nonempty, and that
it is complemented if it is positive and, for each pair of letters a, fl in x,
there exists at most one relation of the form va - u~3 in 7Z, and no
relation ua = va v.

DEFINITION. - Assume that (x, TZ) is a positive monoid presentation.
For w, w’ words over x U X -1, we say that w is TZ-reversible to w’

(on the left) if we can transform w to w’ by iteratively deleting
subwords uu-1 where u is a word over X, and replacing su bwords of
the form uv-1 with where u, v are nonempty words over x and
u’v = v’u is one of the relations of R.

For further intuition, it is important to associate with every reversing
sequence starting with a word w a labelled planar graph defined inductively
and analogous to a van Kampen diagram: first we associate with w a

path labelled by the successive letters of w, in which the positive letters

(those in x) are given horizontal right-oriented edges and the negative
letters (those in X-1) are given vertical down-oriented edges. Then, word
reversing consists in inductively completing the diagram by using a relation
v’u = Ulv of 7Z (or a trivial relation u = u) to close a pattern of the form

Example 1.2. - Let us consider the standard presentation of the
braid monoid namely

Then

is a maximal reversing sequence (the pattern that is reversed is underlined
at each step), and the associated diagram is displayed in Figure 1.
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Figure l. Word reversing diagram for the standard presentation of B4
In general, word reversing is not a deterministic process: starting with

one word may lead to various sequences of words, various diagrams, and,
in particular, to several terminal words, the latter being those words that
contain no pattern aa-1 or ao-1 such that there exists at least one relation
va = uj3 in R. However, it is easily shown (see Chapter II of [22]) that,
if R is a complemented presentation, then there exists a unique maximal
reversing diagram starting with a given word w, and w is reversible to

at most one terminal word, so, in particular, at most one word of the
form with u, v words over X.

DEFINITION. - Assume that (X, R) is a complemented presentation,
and u, v are words over X . Then uTe denote by u/-v and v/-u the unique
words over X such that is reversi ble to if such words

exist.

(The symmetry of the reversing process guarantees that, if u-’v
is reversible to then is reversible to , so there is no

ambiguity in the previous definition.) Observe that, if a and 0 are letters
in x, then and are the (unique) words u, v such that va = uo
is a relation in R, if such a relation exists.

By definition, each step of R-reversing consists in replacing a subword
with another word that represents the same element of the group (x; 
so an induction shows that, if w is reversible to w’, then w and w’
represent the same element of (X; R). A slightly more careful argument
gives the following result, which is stronger in general as it need not be true
that the monoid congruence - is the restriction to positive words of the
associated group congruence, i.e., that the monoid R)+ embeds in the
group (X; R) .

LEMMA 1.3 (cf. [24]). - Assume that u, v, u’, v’ are words in X* and
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uv-l is R-reversible to V,-lU’. Then we have v’u = u’v, i.e., v’u and u’v
represent the same element in the monoid (X; R) + . In particular, if (X, R)
is complemented and u, v are words in X* such that u/-v exists, we have

Thus, we see that (left) reversing constructs common left multiples.
The question is whether all common left multiples are obtained in this way.
The answer is not always positive, but the nice point is that there exists
an effective criterion for recognizing when this happens-and that every
locally left Gaussian monoid admits presentations for which this happens.

PROPOSITION 1.4 (cf. [25]). - (i) Assume that (X, R) is a comple-
mented presentation satisfying the following conditions:

(I) There exists a map v of X* to the ordinals, compatible with =, and
satisfying v(uv) &#x3E; v(u) + v(v) for al1 u, v and v(cx) &#x3E; 0 for a in X ;

(II) We have (cx~*,~)~*~,~~*~) m (cx~*,y)~*(~~*~) for all a, (3, 1 in X, this

meaning that both sides exist and are equivalent, or that neither exists;

Then the monoid (x; R)+ is locally left Gaussian, and, for all u, v
in x2, the word u/*v exists if and only if the elements u and v admit a
common left multiple, and, in this case, u/*v represents u/v; Moreover, for
al1 words u, v, w, uTe have

(ii) Conversely, assume that M is a locally left Gaussian monoid, and
x is an arbitrary set of generators for M. Let R consist of one relation
vcx = u/3 for each pair of letters a, {3 in X such that a and,3 have a common
left multiple, where u and v are chosen (arbitrary) representatives of a//3
and respectively. Then (X, R) is a complemented presentation of M
that satisfies Conditions I and II.

Thus, Proposition 1.4 tells us that, in good cases, left word reversing
computes the left complement operation (and, therefore, the left lcm) in
the associated monoid. If M is a locally left Gaussian monoid, and (x, 7Z)
is a presentation of M as in Proposition 1.4 (ii), then, if ~x and 0 belong
to x and admit a common left multiple, the word a/*/3 of X* represents
the elerrLent a~,~ of M. In particular, if X happens to be closed under
left complement, the word has length 1, and it consists of the unique
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letter a~~. Thus, the operation /* can be seen as an extension of operation /
to words-as the notation suggests. However, it should be kept in mind
that u/*v is a word (not an element of the monoid), and that computing it
depends not only on u, v, and M, but also on a particular presentation.

When M is a Gaussian monoid, then, for every set of generators X,
Proposition 1.4 (ii) provides us with a good presentation of M, one for which
lcm’s can be computed using word reversing. In this case, the lcm always
exists, the complement operation is everywhere defined, and, therefore, the
operation /* on words is everywhere defined as well, which easily implies
that word reversing from an arbitrary word over always terminates
with a word v-lu with u, v words over x.

Example 1.5. - The standard presentation of the braid monoid 
and, more generally, the Coxeter presentation of all Artin-Tits monoids,
are eligible for Proposition 1.4: with a different setting, verifying that
Conditions I and II are satisfied is the main technical task of [30], [9], as
well as it is the task of [7] in the case of the Birman-Ko-Lee monoid 

Assume that M is a locally left Gaussian monoid and x is a generating
subset of M that is closed under left complement (a typical example is
when M is a Garside monoid, and X the set of all nontrivial divisors of
some Garside element A). Then, when applying Proposition 1.4 (ii), we can
choose for each pair a, /3 of letters, the relation

so, here, a/, and /3/Q are words of length 1 or 0, i.e., letters or E. The set
of these relations, which depends only on M and on the choice of x, will
be denoted RX in the sequel. As the left and the right hand sides of every
relation in TZx have length 2 or 1, Rx-reversing does not increase the length
of the words: for all words u, v in x*, the length of the word u/*v is at most
the length of the word u; in particular, for every letter a and every word v,
the word a/*v has length 1 or 0, so it is either an element of x or the empty
word. Another technically significant consequence is:

LEMMA 1.6. - Assume that M is a locally left Gaussian monoid, and
X is a generating subset of M that is closed under left complement. Then
the following strenghtening of Relation ( 1.6) is satisfied by 
for all words u, v, w in x*, we have
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Proof. Condition II gives an equivalence for the words in (1.8);
now, if u has length 1, these words have length 1 at most, i.e., they belong
to x or are empty, and equivalence implies equality for such words. The
general case follows using an induction. 0

1.5. The greedy normal form.

If M is a locally Gaussian monoid, and x is a generating subset of M
that is closed enough, we can define a unique distinguished decomposition
for every element x of M by considering the maximal left divisor of x lying
in x and iterating the process. This construction is well known in the case of
Artin-Tits monoids [26], [28], [45], [27], where it is known as the (left) greedy
normal form, and it extends without change to all Garside monoids [23].
The case of locally Gaussian monoids is not really more complicated: the
only point that could possibly fail is the existence of a maximal divisor of x
belonging to X ; we shall see below that this existence is guaranteed by the
Noetherianity condition. Here we describe the construction in the case of a
locally right Gaussian monoid, i.e., we use right lcm’s, and not left lcm’s as
in most parts of this paper: Proposition 1.10 below will explain this choice.

LEMMA 1.7. - Assume that M is a locally right Gaussian monoid,
and x is a generating subset of M that is closed under right lcm. Then
every nontrivial element x of M admits a unique greatest divisor lying in x.

Proof. Let x = yz be a decomposition of x with g E x and z
minimal with respect to right division among all z’ such that x = y’z’ holds
for some y’ in x: such an element z exists since M is right Noetherian. Let
y’ be an arbitrary left divisor of x lying in X. By construction, g and y’
admit a common right multiple, namely x, hence they admit a right lcm y"
which belongs to x, and we have x = y"z" for some z". Write y" = yt.
Then we have x = yz = y"z" = ytz", hence z = tz", by cancelling g on the
left. The minimality hypothesis on z implies t = l, hence y" = y, i.e., y’ E y.
So every left divisor of x lying in X is a left divisor of y. The uniqueness
of y then follows from 1 being the only invertible element of M, hence the
relation [ being an ordering. 0

We deduce that, under the assumptions of Lemma 1.7, every nontrivial
element x of M admits a unique decomposition x = xl ~ ~ ~ xp such that,
for each i, xi is the greatest left divisor of xi ... xp lying in X. Indeed,
if x 1 is the greatest left divisor of x lying in X, we have x = and the

hypothesis that x generates M guarantees that xl is not 1, hence x’ is
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a proper right divisor of x, so the hypothesis that M is right Noetherian
implies that the iteration of the process terminates in a finite number
of steps.

What makes the distinguished decomposition constructed in this way
interesting is the fact that it can be characterized using a purely local
criterion, involving only two factors at one time. This criterion is crucial in
the existence of an automatic structure [28], and it will prove crucial in our
current development as well.

DEFINITION. - Assume that M is a monoid, and X is a subset of M.
For x, y in M, we define the relation x y to be true if every left divisor

of xy lying in x is a left divisor of x.

LEMMA 1.8. - Assume that M is a locally right Gaussian monoid,
and x is a generating subset of M that is closed under right lcm and right
complement. Then x implies x yz.

Proof. Let t be an element of x dividing xyz on the left. Let

x = xl - - - xP be a decomposition of x as a product of elements of x. By
hypothesis, t and x, have a common right multiple, namely xyz, hence
a right lcm, say and t 1, which is the right complement of t in x 1,

belongs to X by hypothesis. Now we have xiti c xpyz, hence

ti E X2 ... By the same argument, tl and x2 have a right lcm, say
x2t2, with t2 E x, and we have t2 c X3 ... xpyz. After p steps, we obtain tp
in X satisfying xtp, and yz. The hypothesis z implies t E: y,
hence t c xtp c xy, and the hypothesis x then implies x. So we

proved that xyz implies x for t i.e., we proved x xyz. 0

DEFINITION. - Assume that M is a monoid, and x is a subset of M.
We say that a finite sequence (X 1, Xp) in XP is x-normal if, for 1  i  p,

xi+l.

PROPOSITION 1.9. - Assume that M is a locally right Gaussian
monoid, and X is a generating subset of M that is closed under right lcm
and right complement. Then every nontrivial element x of M admits a
unique decomposition x = x1 - - - xp such that (xl, ... , xp) is a X-normal

sequence.

Proof. We have already seen that every element of M admits a
unique decomposition of the form xl - - - xp with xl, ... , xp in x satisfying
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xi 71 &#x3E;X X,+l ... x p for each i. Clearly, xi x2+1 - - - x p implies x, so

the only problem is to show that, conversely, if we have xl x2 C&#x3E;X - - - Dx xp,
then we have xi Dx x2+1 - - - xp for each i: this follows from Lemma 1.8 using
an induction on p. 0

In the sequel, we shall denote by NF(x) the x-normal form of x.
For our problem, the main property of the X-normal form is the following
connection between the normal forms of x and of xa, established in [23] in
the case of a Garside monoid:

PROPOSITION 1.10. - Assume that M is a locally Gaussian monoid
and x is generating subset of M that is closed under right lcm, and left
and right complement. Then, for every x in M and every j3 in X, we have

i.e., the x-normal form of x is obtained by reversing the word 
on the left.

Proof. By hypothesis, the elements x,Q and j3 admit a common left
multiple, namely x,~ itself, so reversing the word on the left

must succeed with an empty denominator. Let (~y1, ... , -yp ) be the x-normal
form of xfl. Let us define the elements cxi and j3i by ,~p = {3, and, using
descending induction,

(Figure 2). The hypothesis that the elements x,Q and 13 admit a common
left multiple, namely x(3 itself, in M guarantees that (3i and 77-1 admit a
common left multiple, and, therefore, the inductive definition leads to no
obstruction, and, in addition, we must have {30 = 1. By definition, the result
of reversing "/i " - to the left is the word 0~1 - - - ap, so the question is
to prove that (0152l,’ .. ap) is the x-normal form of x. First, in M, we have

wxp = qi ... = = x, so the only question is to prove that
the sequence (c~ 1, ... , ap) is x-normal.

We shall prove that, for each i, the relation qi ’"’Ii + 1 , which is true

as, by hypothesis, the sequence (’"’11,... ,’"’Ip) is x-normal, implies 

So, let us assume that some element 6 of x is a left divisor of 
Then we have 6 E = Let (3i-18’ be the right lcm
of 6 and (3i-l, which exists as is a common right multiple of 6
and Then 6’ belongs to x, and we have 6’ c hence 

~X g2+1 holds by hypothesis. Hence 6 is a left divisor of i.e.,
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of Let a.6" be the right lcm of 6 and cxi. Then 6 r- aicxi+1 implies
6" E and 6 c ai/3i implies 6" c 0-. Now, by construction, the only
common left divisor of and Bi is 1, for, otherwise, would not

be the left lcm of and So we have 6" = 1, i.e., 6 is a left divisor
of and a2 ai+ 1 is true. 0

Figure 2. Computing the normal form using reversing

1.6. Group of fractions versus monoid.

Our purpose in the sequel is to compute the homology of a (semi)-
Gaussian monoid starting from a presentation. When the considered

monoid M satisfies Ore’s conditions on the left, i.e., when M is cancellative
and any two elements of M admit a common left multiple, then M embeds
in a group of left fractions G, and every presentation of M as a monoid is a

presentation of G as a group. By tensorizing by ZG over ZM we can extend
every (left) ZM-module into a ZG-module. As in in [42], we shall use the
following result:

PROPOSITION 1.11 (cf. [11]). - Assume that M is a monoid satisfying
the Ore conditions on the left. Let G be the group of fractions of M. Then

the functor R - ZG 0ZM R is exact.

COROLLARY 1.12. - Under the above hypotheses, we have

So, from now on, we shall consider monoids exclusively. When the
monoid happens to be an Ore monoid, the homology of the monoid

automatically determines the homology of the associated group of fractions,
but the case is not really specific.

2. The reversing resolution.

In this section, we assume that M is a locally Gaussian monoid, i.e.,
M is cancellative, left and right Noetherian, and every two elements
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of M admitting a common left (resp. right) multiple admits a left

(resp. right) lcm. Next we assume that x is a generating subset of M not
containing 1 that is closed under left and right lcm, and such that X 
is closed under left and right complement. Special cases are M being
Gaussian (in this case, lcm’s always exist), M being locally Garside (in
this case, x can be assumed to be finite), I and M being Garside (both
conditions simultaneously: then, we can take for x the divisors of some
Garside element A).

Our aim is to construct a resolution by free ZM-modules for Z, made
into a trivial ZM-module by putting x ~ 1 = 1 for every x in M.

2.1. The chain complex.

We shall consider in the sequel a cubical complex associated with
finite families of distinct elements of x that admit a left lcm. To avoid

redundant cells, we fix a linear ordering  on X .

DEFINITION. - For n &#x3E; 0, yve denote by x[n] the family of all strictly
increasing n-tuples (a,,. - -, an) in x such that al, ... , an admit a left lcm.
We denote by Cn the free ZM-module generated by The generator
of Cn associated with an element A of is denoted [A], and it is called
an n-cell; the left lcm of A is then denoted by The unique 0-cell is
denoted [0].

The elements of Cn will be called n-chains. As a Z-module, Cn is

generated by the elements of the form x[A] with x E M; such elements will
be called elementary n-chains.

The leading idea in the sequel is to associate to each n-cell an oriented
n-cube reminiscent of a van Kampen diagram in M and constructed using
the Rx -reversing process of Section 1. The vertices of that cube are elements
of M, while the edges are labelled by elements of X. The n-cube associated
with [al,’ .., an] starts from the vertex 1 and ends at the vertex cxl 
so the lcm of the generators cxl, ... , ap is the main diagonal of the cube, as
the notation rAJ would suggest. We start with n edges labelled al,... , cxn
pointing to the final vertex, and we construct the other edges backwards
using left reversing, i.e., we inductively close every pattern consisting of two

converging edges a, {3 with two diverging edges (3/0’ a/~. The construction
terminates with 2 n vertices. Finally, we associate with the elementary n-
chain x[A] the image of the n-cube (associated with) [A] under the left
translation by x: the cube starts from x instead of starting from 1.
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Example 2.1. - Let BKLt denote the Birman-Ko-Lee monoid for
3-strand braids, i.e., the monoid ~a, b, c; ab = bc = ca)+. Then is

a Gaussian monoid, the element A defined by A = ab = bc = ca is a

Garside element, and the nontrivial divisors of A are a, b, c, and A. Thus,
we can take for X the 4-element set The construction of the

cube associated with the 3-cell [a, b, c] is illustrated on Figure 3; the main

diagonal happens to be A.

Figure 3. The 3-cube associated with a 3-cell, case of BKL+
Similarly, the monoid B4 of Example 1.2 is a Gaussian monoid, and

the minimal Garside element is A4 = 03C3103C3203C3103C3303C3203C31; in this case, we can

take for x the set of the 23 (= 4! - 1) nontrivial divisors of A4. The 3-cube
associated with the cell ~2, U3] is displayed on Figure 4 (left).

Figure 4. The 3-cube associated with the 3-cell [aI, (72, a3] in B+
when the generators are the divisors of A4 (left) and when they
are the (right)

Remark 2.2. - A similar construction can be made even if we do not

assume our set of generators to be closed under left complement: once a

complemented presentation has been chosen, we can associate with every
n-tuple of generators (a 1, ... , an ) the n-dimentional simplex obtained by
starting with n terminal edges labeled and completing each

open pattern consisting of two converging edges a, {3 with edges labeled



507

f (a, (3) and a), where f is the involved complement. The construction
terminates when all open patterns have been closed, and the cube condition,
as defined in [23], is the technical condition that guarantees that this

happens. When the set of generators is closed under left complement, the
construction adds single edges at each step, and we finish with an n-cube.
In the general case, the construction may add sequences of edges of length
greater than 1, and, as a result, the final simplex may be more complicated
than an n-cube, although it remains the skeleton of an n-ball. We display
on Figure 4 (right) the 3-dimensional simplex associated with the 3-cell
~~1, ~2, ~3~ in the standard presentation of the braid monoid Observe

the grey facet starting at Or2: its existence corresponds to the fact
that the words (~2~*~1 )~* ~~3~*~1 ~ ) and (~2~*~3 )~* (~1~*~3 ~, namely a2 ai a3 a2
and are equivalent, but not equal.

With the previous intuition at hand, the definition of a boundary map
is clear: for A an n-cell, we define 0n [A] to be the (n - 1 )-chain obtained
by enumerating the of the n-cube (associated with) [A], which
are 2n in number, with a sign corresponding to their orientation, and
taking into account the vertex they start from. In order to handle such
enumerations, we need to extend our notations.

NOTATION. - (i) in X U ~ 1 ~, we define [a 1, an
to be

. ~(7r)[o;~.(i),...,Q~.~)] if the ai’s are not equal to 1 and pairwise
distinct, a7r(l),’ .. 1 CV7r(n) is their  -increasing enumeration, and ~(~r) is the
signature and to be

. OCn in all other cases.

(ii) For A a cell, say A = [al,’.’, and a an element of X, we
denote by the seq uence we denote by Ai (resp. 
the sequence obtained by removing the i-th term of A (resp. the i-th and
the j-th terms.

DEFINITION (Figure 5). - For n &#x3E; 1, we define a ZM-linear map

for A = (a 1 , ... , an); vve define
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Figure 5. The boundary operator o~

So, in low degrees, the formulas take the following form:

Example 2.3. - For the Birman-Ko-Lee monoid BKL 3+, we read
both on the above definition and on Figure 3 the value

Here the coefficients are ± 1 as the labels of the three initial edges of the
cube are empty words, thus representing 1 in M; the three missing factors
are [a, a], [b, b], [c, c], which are null by definition.

We suggest the reader to check on Figure 4 (left) the formula

when we consider the monoid B4 and take for X the divisors of the minimal
Garside element A4 .

PROPOSITION 2.4. The module (C*, a*) is a complex: for n &#x3E; 1, we
have = 0.
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Assume now

obtain

with e (i, j) = +1 for i  j, and e(i, j) = 0 otherwise.

First, applying (1.3) to ak, cxi, and aj, we obtain

where cxi and aj play symmetric roles, and the first sum in (2.3) becomes

Now, each factor ] appears twice, with coefficients (-I)’+j and
( -1) i+ j + 1 respectively, so the sum vanishes.

When applied to ai , and A’,3, (1.3) gives (o~-/c~)/(A~/~ ) 
It follows that the second and the third sum in (2.3) contain the same
factors, but, as e(i, j ) + e( j, i) = 1 always holds, the signs are opposite, and
the global sum is 0.

Finally, applying (1.2) to cxi, aj, and gives ==

(ai V in which az and cx~ play symmetric roles. So, as for the first
sum, every factor in the fourth sum appears twice with opposite signs, and
the sum vanishes.

Observe that the case of null factors is not a problem above, as we

always have 1/~ = 1 and all = a, and, therefore, Formula (2.1) is true for
degenerate cells. D
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It will be convenient in the sequel to extend the notation an]
to the case when the letters cxi are replaced by words, i.e., by finite sequences
of letters. Actually, it will be sufficient here to consider the case when the
first letter only is replaced by a word, i.e., to consider extended cells of
the form [w, A] where w is a word over the alphabet X and A is a finite
sequence of letters in x.

DEFINITION. - For w a word over X and A in the (n + I)-chain
[w, A] is defined inductively by

if w is the empty word -,
for w - va with a E X.

If w has length 1, i.e., if v is empty in the inductive clause of (2.4) gives
[vA/,] = 0 and = 1, so our current definition of [w, A] is compatible
with the previous one. Our extended notation should appear natural when
one keeps in mind the geometrical intuition that the cell [w, A] is to be

associated with a (n + I )-parallelotope computing the left lcm of w and A
using left reversing: in order to compute the left lcm of 5a and A, we first

compute the left lcm of cx and A, and then compute the left lcm of v and
the complement of A in a, i. e., of A/,. However, the rightmost cell does not
start from 1, but from as shown in Figure 6.

Figure 6. The chain [w, A] for w = va

An easy induction shows that, for w = ~i - " ak, we have for [w] the
simple expression

Also observe that Formula (2.1) for 02 can be rewritten as
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according to the intuition that 02 enumerates the boundary of

The following computational formula, which extends and genera-
lizes (2.1) describes the boundary of the parallelotope associated with [w, A]
taking into account the specific role of the w-labelled edge: as shown in

Figure 7, there is the right face [A] at W-/A, the left face [~4/"], the n lower
faces [w, at and, finally, the n upper faces ~w~*a2 , 

LEMMA 2.5. - For every word w, we have

and, for n &#x3E; 1 and every n-cell A,

Figure 7. Decomposition of [w, A]

Proof. The case n = 0 is obvious, so assume n &#x3E; 1. We use

induction on the length of the word w. If w is empty, the factors 1w, A],
[w,Ai], vanish, we have A /W - A, and the right hand side
reduces to [A] - [A], hence to 0, and the equality holds. Otherwise, assume
w = va. By definition, we have



512

with B - - .A/~. Applying the induction hypothesis
for 0n+1 [v, B] and the definition for 8n+l [a, A], which reads

we obtain

We have by (1.5), so the first factor in (2.7) 
Then, the two medial factors vanish, and, by construction again, we have

so the last factor is There remains the two

negative sums, and the two positive ones. The i-th factors in the negative
sums are

and we claim that this is Indeed, we have
as can be read on 

"I-- _rv,

so (2.4) gives

By (1.3), we have first and, then,

which proves the claim.

The argument for the positive factors in (2.7) is similar. The i-th

factors are

which we claim is ai / W, A ~w, Ai]. Indeed, (2.4) gives

and it remains to check the equalities

and

both can be read on the diagram of Figure 8, whose commutativity directly
follows from the associativity of the lcm operation. D
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Figure 8. Computation of w V Aj with w = va

2.2. A contracting homotopy.

Our aim is to prove

PROPOSITION 2.6. - For each locally Gaussian monoid M, the

complex (C*,8*) is a resolution of the trivial ZM-module Z by free
ZM-modules.

To this end, it is sufficient to construct a contracting homotopy
for (C*,8*), i.e., a family of Z-linear maps sn : Cn - satisfying
8n+lSn + idcn for each degree n. We shall do it using the X-
normal form. Once again, the geometric intuition is simple: as the chain x [A]
represents the cube [A] with origin translated to x, we shall define 
to be an (n + I)-parallelotope whose terminal face is [A] starting at x. To
specify this simplex, we have to describe its n + 1 terminal edges: n of them
are the elements of A ; the last one must force the main diagonal to 
the most obvious choice is to take the normal form of itself, which

guarantees in addition that the initial face will contain only trivial labels,
i.e., labels equal to 1.

DEFINITION. - The Z-linear mapping Cn ---* Cn+l is defined for x
in M by

I /

(Figure 9); we define

So we have in particular

and

for every x in M and every cx in X .
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Figure 9. The contracting homotopy s

Proof. Assume first n = 0, and x E M. Let w = NF(x). We have
[w], hence

and, on the other hand, and

Assume now n &#x3E; 1 (see Figure 10 for the case n = 2). Let w =

Applying the definition of sn and Lemma 2.5, we find

By construction, each ai is a right divisor of w, i.e., of so we have

~A~w ~ _ [E,..., E] = 0. At the other end, we have 16 / A = = x. Then

~xi is a right divisor of w, so we have = 1, and it remains

On the other hand, we have by definition

Now we ai = which, by Proposition 1.10, implies that
the X-normal form of is w/*a2 . Then is equal to 
and, therefore, its normal form is w. Applying the definition of 
we deduce

and, finally,
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Figure 10. Comparing å3s2(x[a, (3]) and slå2(x[a, /3]): in the sum,
there remain only the trivial left face, and {3] itself.

Thus the sequence s* is a contracting homotopy for the com-

plex ( C* , 9~), and Proposition 2.6 is established.

Remark 2.8. - The point in the previous argument and, actually,
in the whole construction, is the fact that the normal form is computed
by left reversing: this is what makes the explicit direct definition of the

contracting homotopy possible. There is no need that the normal form we
use be exactly the x-normal form of Section 1: the only required property
is that stated in Proposition 1.10, namely that, if w is the normal form

of then the normal form of x is obtained from w and {3 by left reversing.
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2.3. Applications.

By definition, the set is a basis for the degree n module Cn in
our resolution of Z by free ZM-modules. If the set x happens to be finite,
then is empty for n larger than the cardinality of x, and the resolution
is finite. By definition, choosing a finite set x with the required closure
properties is possible in those monoids we called locally Garside monoids
in Section 1, so we may state: 

.

PROPOSITION 2.9. - Every locally Garside monoid is of type FL.

Every Garside monoid admits a group of fractions, so, using
Proposition 1.11, we deduce

COROLLARY 2.10. - Every Garside group is of type FL.

As our constructions are explicit, they can be used to practically
compute the homology of the considered monoid (or group). Indeed, let dn
be the Z-linear mapping on Cn such that dn ~A~ is obtained from by
collapsing all M-coefficients to 1. Then we have

Hn(M,Z) = Ker dn /Im dn+1.

Below is an example of such computations.

Example 2.11. - Let us consider the Birman-Ko-Lee monoid 
of Example 2.1 with x We recall that, by Proposition 2.3,
the homology of BKL+ is also that of its group of fractions, here the braid
group B3.

First, we find 01 [a] = (a - 1) [0], hence = 0. The result is similar

for all 1-cells, and Ker di is generated by [a], [b], [c], and ~0~ .
Then, we find ~2 ~a, b] = [a] + a ~b~ - [c] - c[a], hence d2 [a, b] _ ~b~ - [c],

and, similarly, d2 ~b, c] = [c] - [a], d2[a, c] = [b] - [a], d2[a, A] = [A] - [a] - [c],
d2 [b, A] = ~0~ - [b] - [a], and d2[c, A] = [A] - [c] - [b]. It follows that Im d2
is generated by the images of [a, b], [a, c], and [~, A], namely [b] - [a], [c] - [b],
and [A] - [b] - [a], and we deduce

Then, it is easy to check that Ker d2 is generated by ~b, c~ + [a, b] - [a, c],
[a, A] - [b, A] - [a, b], and [c,A] - [a, A] + [a, c]. Next, from the value
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computed in Example 2.3, we deduce

and, similarly,
and Therefore Im d3 is

generated by and

so it coincides with Ker d2, and we conclude

We also see that Ker d3 is generated by

Finally, we compute

So we have Im d4
coincides with Ker d3, and H3(BKLj, Z) is trivial (as will be obvious in the
next sections).

Remark 2.12. - As was observed in Remark 2.2 and illustrated

in Figure 4 (right), it is still possible to associate with every n-tuple of

generators an n-dimensional simplex by using reversing when we consider
an arbitrary set of generators X instead of the divisors of some Garside
element A, provided Conditions I and II of Proposition 1.4 is satisfied. We
can construct in this way a complex C*, and use reversing to define the

boundary: the formulas are not so simple as in (2.1) because the simplex
is not a cube in general, but the principle remains the same, and a precise
definition can be given using induction of where v is a mapping
satisfying Condition I. For instance, we obtain with the standard generators
of B4 :

where the term ~2 ~~1, ~3~ corresponds to the grey facet on Figure 4 (right).
The question of whether this complex is exact will be left open here

(see the end in Section 3 for further discussion).
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3. A simplicial resolution.

In general, the resolution constructed in Section 2 is far from minimal.
In this section, we show how to deduce a shorter resolution by decomposing
each n-cube into n! n-simplexes. In the special case of Garside monoids,
the resolution so obtained happens to be the one considered by Charney,
Meier, and Whittlesey in [14].

3.1. Descending cells.

We keep the hypotheses of Section 2, i.e., we assume that M is a

locally Gaussian monoid, and that x is a fixed set of generators of M not
containing 1 that is closed under left and right lcm, and such that x 
is closed under left and right complement. We start from the complex
(C*, 8*), and extract a subcomplex which is still a resolution of Z.

The point is to distinguish those cells in C* that are decreasing with
respect to right divisibility. In order that our definitions make sense, we
shall assume in the sequel that the linear order on x used to enumerate
the cells is chosen so that c~  0 holds whenever {3 is a proper right divisor
of a: this is possible, as we assume that right division in M has no cycle.

DEFINITION. - We say that an n-cell [c~i,..., an] is descending if ai+1
is a proper right divisor of ai for each i. The submodule of Cn generated
by descending n-cells will be denoted by Cn .

According to our intuition that the cell ~al, ... , an] is associated

with an n-cube representing the computation of the lcm of al, ... , an,
a descending n-cell is associated with a special n-cube with many edges
labelled 1, and it is accurately associated with an n-simplex, as shown
in Figure 11.

D n

Figure 11. The n-simplex associated with a descending n-cell

The first, easy remark is that the boundary of a descending cell

consists of descending cells exclusively.
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LEMMA 3.1. - The differentials Ð* maps C~ to itself; more precisely,
if [A] is a descending n-cell, say A = (a 1, ... , an), uTe have

Proof. If aj is a right divisor of ai, we have = 1 by definition.

So, when (2.1) is applied to compute each factor with i  n

contains which is 1, so this factor vanishes, and the only remaining
factor from the first sum is [An i.e., I a descending
cell as, by Formula (1.3), x being a right divisor implies xl, being a
right divisor of y / z for every z.

Next, the hypothesis that is descending implies that the lcm of Al
is a2, while, for i &#x3E; 2, the lcm of Az is ai, of which each ai is a right divisor,
and (3.1) follows. 0

In particular, we obtain a2 ~a, ,~~ = a/,3 [,3] - [a] + [a/0] for in C2,
and a3 ~cx, ~ ~ ’Y~ - al,~ ~~ ~ ’Y~ - [a, -y] + [~,~] - ~a/-y ~ ~/~y ~ for [a , fl, q] in C3 ~
as can be read on Figure 11.

So it makes sense to consider the restriction 8~ of 8* to C~, and we
obtain in this way a new complex. Our aim in this section is to prove

PROPOSITION 3.2. - For each locally Gaussian monoid M, the

subcomplex (C*, g*) of (C*,8*) is a finite resolution of the trivial ZM-

module Z by free ZM-modules.

In order to prove Proposition 3.2, we shall construct a contracting
homotopy. The section s* considered in Section 2 cannot be used, as sn does
not map Cn to in general. However, it is easy to construct the desired
section by introducing a convenient ZM-linear mapping of Cn into The

idea is to partition each n-cube into the union of n! disjoint n-simplexes.

Starting from an arbitrary n-cell one can obtain a

descending n-cell by taking lcm’s: indeed, by construction, the n-cell

is descending. The n-cell in (3.2) will be denoted

in the sequel. Note that QA~ _ [A] is true whenever [A] is descending.
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If 7r is a permutation of f nl, and A is an n-sequence, say
A = (a1, ... , cxn), we shall denote by A’~ the sequence (a7r(l)’" .,a7r(n»)’
So, for each n-cell [A] in C~ , we have a family of n ! descending n-cells 
in C~. The simplexes associated with the descending cells QA’~~ make a
partition of the cube associated with [A]. For instance, in dimension 2, we
have the decomposition of the square [a, ,3] into the two triangles [a V /3, {3]
and [a V /3, a]. Similarly, in dimension 3, we have the decomposition of the
cube [a, 0, 1] into the six tetrahedra shown in Figure 12.

Figure 12. Decomposition of a cube into six tetrahedra

DEFINITION. - For each n, we define a ZM-linear map C,,
by

The following observation is straightforward:

LEMMA 3.3. - The map fn is the identity on C~.

Proof. Assume that [A] is a descending n-cell, say [A] = ~a 1, ... , an] .
Let 7r be a permutation not equal to identity. Then there exists a least
integer i such that Jr(I) &#x3E; i is true. Then, by construction, we have

which shows that the cell contains twice ai, and, therefore, it is trivial.
Thus the only nontrivial factor in f n ~A~ is (i. e., [A]). 0

The point now is that the boundary operator c~* happens to be
compatible with the decomposition map f * in the following sense:
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Proof (Figure 12 for the case n = 3~. - By definition, we have

According to Lemma 3.1, the contribution of the descending cell 
consists of

When 7r ranges over and 6(7r) is added, the sum of the factors (3.4)
with 03C0(1) = i is

which, by definition, is equal to Then each factor

in (3.5) appears twice, with opposite signs due to E(-x), and the

global contribution of these factors is null. Finally, observing that

a7r(k) V... is always equal to a7r(k) V... and

using Formula (1.2), we see that the sum of the factors (3.6) with Jr (n) = i is

which, by definition, is equal to Summing up, and
applying the definition of an ~A~ , we conclude that is equal to
the image of under D

Proposition 3.2 now follows immediately, as the conjunction of

Lemma 3.3 and Lemma 3.4 shows that f * is a retraction of C* to C~:
defining sn : Cn --~ by s’ = In+lSn, we obtain that s* is a contracting
homotopy for (C*, o~*), and the latter is therefore an exact complex.

Example 3.5. - The interest of restricting to descending cells is

clear: first, the length of the resolution, and the dimensions of the modules
are drastically reduced; secondly, the boundary operator is now given by
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Formula (3.1)-or, equivalently, (3.7) below-which has n + 1 degree n
terms only, instead of the 2n terms of Formula (2.1).

Let us for instance consider the computations of Examples 2.11 again.
As the norm of A, i.e., the maximal length of a decomposition as a

product of nontrivial elements, is 2, there exist no descending 3-cell, and
the triviality of is now obvious. As for H2(BKLj,Z), it is

easy to check that 0’2 is injective, so H2(BKLj, Z) is trivial.

By construction, the maximal length of a nontrivial descending n-cell
is the maximal length of a decomposition of an element of x as a product
of nontrivial elements. So, on the model of BKL+ above, we can state

COROLLARY 3.6. - Assume that M is a locally Gaussian monoid
admitting a generating set X closed under left and right complement and
lcm and such that the norm of every element in x is bounded above by n.
Then the (co)homological dimension of M is at most n.

The resolution of Proposition 3.2 is both smaller and simpler than
the one of Proposition 2.6, so that one could wonder whether the latter is
still useful. We claim it is, as the construction of the contracting homotopy
really relies on the intuition of filling n-cubes: using the decomposition fn,
we could certainly restrict to descending cells from the beginning, but, then,
introducing s* would be quite artificial. Also, we hope that our approach
can be extended in the future as outlined in Remark 2.12, and considering
descending cells in this extended framework remains unclear.

Remark 3.7. - Instead of considering the subcomplex C’ of C*
obtained by restricting to descending sequences, we could also consider
the quotient C* of C* obtained by identifying [A] with fn[A] for every
n-cell [A]. It is easy to check that both 0* and s* induce well-defined

maps on C* , so that (C *, 8*) is also a resolution of Z. This resolution is

equivalent to (C*, c9’) as the classes of descending cells generate C* and
we can use descending cells as distinguished representatives for the classes
in C* (this is standard as we have a retraction of C* to C~).

3.2. Connection with the approach.

Building on Bestvina’s paper [6], R. Charney, J. Meier, and

K. Whittlesey developed in [14] an alternative approach. We shall now esta-
blish a precise connection, actually an equivalence, between their approach
and ours, in the common cases.
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The hypotheses of [14] are more restrictive than the ones we consider
here, as they cover the case of Garside groups and monoids only: in

comparison to our current framework, the additional hypotheses are that
common multiples are always assumed to exist in the monoid, and that
there exists a finite generating set closed under lcm and complement.
Assuming that G is a Garside group, and A is a Garside element in some
Garside monoid M of which G is a group of fractions, the study of [14]
consists in constructing a finite K(7r, 1) for G by introducing a flag complex
whose I-skeleton is the fragment of the Cayley graph of G associated with
the divisors of some fixed Garside element A in M. The main point is that
this flag complex is contractible, which follows from its being the product
of some real line R corresponding to the powers of A and of a more simple
flag complex corresponding to the monoid M. Considering the action of G
on the flag complex leads to an explicit free resolution of Z by ZG-modules.

PROPOSITION 3.8. - Assume that M is a Garside monoid, A is

a Garside element in M, and x is the set of all divisors of A. Then

the resolution of Z constructed in [14] is isomorphic to the resolution
of Proposition 3. 2.

Technically, the connection between the cells considered in [14] and
ours is analogous to what happens when one goes from a standard resolution
to a bar resolution [10] -so it is just a change of variables.

Proof. By definition, the n-cells considered in [14] are of the form
(,~1, ... , ,(3n) with ~31, ... , in M such that the product (3n belongs
to x (which implies that each (3j belongs to X). We map such a cell to Cn
by

The map 0 is injective as the monoid M is right cancellative, and it is

surjective as, if [oz 1, - . - , an is a descending cell, we have

It remains to check that the differentials are homomorphic. The formula for

9(/~i,..., (3n) in [14] is that of a classical bar resolution, namely

and we leave it to the reader to check that applying 0 yields (3.1 ) . 0
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Thus the results of the current sections 2 and 3 may be seen as

an extension of the results of [14] to the framework of locally Gaussian
monoids.

3.3. Topological interpretation.

As mentioned above, the resolution constructed in [14] and, therefore,
the isomorphic resolution C§ (or C* ) defined here are associated with a
topological space (in the case of a Garside group G), namely some flag
complex T’ whose 1-skeleton is the Cayley graph of the lattice of divisors of
some Garside element A (in the particular case of an Artin-Tits group, this
graph is isomorphic to the Cayley graph of the associated Coxeter group).

Similarly, a topological space T can be associated with the

resolution C* of Section 2. Considering the way C* is constructed from C*
makes it natural to introduce T (in the general case of a locally Gaussian
monoid M) as the topological space admitting the Cayley graph of the
set x (i.e., the subgraph of the Cayley graph of M corresponding to
vertices in x) as a 1-skeleton, but containing in addition all the n-cubes
of C* for n &#x3E; 2. The difference between T and the flag complex T’ is that,
typically, if a, 0, a’, (3’ are generators in x satisfying cx V fl = cx’ V 0’, then
the associated squares [a, (3] and [a’, 0’] only share the initial and the final
ends of their main diagonal, namely the two vertices [0] and (aV (3) [0], while,
after quotienting to C*, i.e., after decomposing the squares into triangles,
they share the whole diagonal ~cx V /3] (Figure 13).

Figure 13. Going from T to T’ by pinching common edges

If M is a spherical Artin-Tits monoid, and G is the corresponding
group of fractions, the quotient of T obtained by identifying homonymous
n-faces is the classifying space of G, and the associated resolution is similar
to the Deligne-Salvetti resolution for G [26], [38], [18] (see also [35] for a
description in the case of standard braids), with the difference that, here,
we consider a family of generators x that is supposed to be closed under
complement and lcm. If our construction could be extended to an arbitrary
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family of generators, hence, in particular, to the family of atoms in M, then
we would obtain the Salvetti complex, and deduce in this way a purely
algebraic proof of the exactness of this complex.

4. The order resolution.

The construction of Sections 2 and 3 is simple and convenient, but
it requires using a particular set of generators, namely one that is closed
under several operations. We shall now develop another construction, which
is more general, as it starts with an arbitrary set of generators and does not
require the considered monoid to be locally Gaussian both on the left and on
the right. The price to pay for the extension is that the construction of the
boundary operator and of the contracting homotopy is more complicated; in
particular, it is an inductive definition and not a direct one as in Sections 2
and 3.

In the sequel, we assume that M is a locally left Gaussian monoid,
i.e., that M admits right cancellation, that left division in M has no infinite
descending chain, and that any two elements of M that admit a common
left multiple admit a left lcm. We start with an arbitrary set of generators X
of M that does not contain 1.

4.1. Cells and chains.

Our first step is to fix a linear ordering  on x with the property
that, for each x in M, the set of all right divisors of x in X is well-ordered
by . At the expense of using the axiom of choice, we can always find such
an ordering; practically, we shall be mostly interested in the case when X
is finite, or, more generally, when x is possibly infinite but every element
of M can be divised by finitely many elements of x only, as is the case
for the direct limit Btv of the braid monoids in such cases, any linear

ordering on X is convenient.

NOTATION. - For x and  as above, and x a nontrivial (i.e., not
equal to 1) element of M, we denote by mindiv(x) the  -least right divisor
ofxinx.

As in Section 2, the simplicial complexes we construct are associated
with finite increasing families of generators, but we introduce additional
restrictions.
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DEFINITION. - For n &#x3E; 0, we denote by the family of all
n-tuples (al, - - -, an) with al ...  an E x such that al, ... , an
admit a common left multiple (hence a left lcm), and, in addition,
all = min div (ai V ... V an ) holds for each i . We let gn denote the free
ZM-module generated by 

As above, the generator of gn associated with an element A of X[n]
is denoted [A], and it is called an n-cell; the left lcm of A is then denoted
by ’-Al.

Example 4.1. - In some cases, all increasing sequences of generators
satisfy our current additional hypotheses. For instance, if we consider the
braid monoid and the standard generators ordered by oi  then

there exists an n-cell [ail" .., for each increasing sequence i1  ...  in,
as left lcm always exist in Bj and ail is the right divisor with least index
of ai1 V ... Vain’

On the other hand, if we consider the Birman-Ko-Lee monoid 
of Example 2.1, with the ordering a  b  c, we see that there are three

increasing sequences of length 2, namely (a, b), (a, c), and (b, c), but there
are two 2-cells only, namely [a, b] and [a, c], as we have a = mindiv(b V c),
which discards [b, c].

As in Section 2, we can think of associating with every elementary n-
chain an n-dimensional oriented simplex originating at x,

ending at V...V~~), and containing n terminal edges labelled

a 1, ... , an, i but the way of filling the picture will be different, and, in

particular, the simplex is not a cube in general, and it seems not to be very
illuminating. The main tool here is the following preordering on elementary
chains:

DEFINITION. - For A a nonempty sequence, we denote by A(,) the
first element of A. Then, if x[A], y[B] are elementary n-chains, we say that
x [A] - y[B] holds if we have either and

&#x3E;  B( 1 ) . If£ is an arbitrary n-chain, we say that E xi [Ai] « y[B]
holds y [B] holds for every i.

LEMMA 4.2. - For every n, the relation - on n-dimensional

elementary chains is compatible with multiplication on the left, and it has
no infinite decreasing sequence.
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Proof. Assume -~ ~ ~B~ , and let z be an arbitrary element
of M. Then C implies C and = implies
zx S4--.J = zy .6j, so we have zy ~B~ in all cases.

Assume now... - x2 [A2] « First, we deduce - ’ != x2 S42.J ç
Xl S4l--.J. As M is left Noetherian, this decreasing sequence is eventually
constant, i.e., for some io, we have = for i &#x3E; io. Then,
for i 2: io, we must have  Now, by construction, is a

right divisor of hence of Xi S4i.J’ and, therefore, of Xio provided
i 2: io is true. But, then, the hypothesis that the right divisors of x2o 
are well-ordered by  contradicts the fact that the elements make a

decreasing sequence. D

4.2. Reducible chains.

We shall now construct simultaneously the boundary maps

together with a contracting homotopy sn : Cn - and a so-called

reduction map rn : Cn - Cn . The map an is ZM-linear, while sn and rn
are Z-linear.

DEFINITION. - Assume that x [A] is an elementary chain. We say that
x[A] is irreducible if either A is empty and x is 1, i.e., uTe have = 1, or
the first element of A is the  -least right divisor i.e., we have

otherwise, we say that x[A] is reducible.

Our construction uses induction on n. The induction hypothesis,
denoted (Hn), is the conjunction of the following two statements, where rn
stands for 9~:

(observe that (Qn ) makes our terminology for reducible chains coherent).
In degree 0, the construction is the same as in Section 2: we define
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LEMMA 4.3. - Property (Ho ) is satisfied..

Proof. - The mapping ro is Z-linear and we have

for every x in M. Hence, we obtain

owing to the trivial structure of ZM-module of Z. Thus (Po) holds. Then,
by definition, is irreducible if and only if x is 1. In this case, we have

= [0]. Otherwise, we have - [0] -~ .r[0] by definition of «,
and (Qo) holds. 0

We assume now that o9n and rn have been constructed so that (Hn)
is satisfied. We aim at defining

so that is satisfied. In the sequel, we use the notation [a, A] for

displaying the first element of an (n + I )-cell; we simply write a, A~ for the
associated lcm, i.e., for a V rAJ. Thus we always have

DEFINITION (Figure 14).
. We define the ZM-linear map

. We inductively define the Z-linear map

. Finally, we define
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Figure 14. The boundary operator o9. and the section s*

The definition of is direct (once rn has been constructed). That
of sn is inductive, and we must check that it is well-founded. Now, we
observe that, in (4.4), the chain a/A [A] is reducible, as a  holds by
definition, so (Qn ) gives --,, a/A [A], and, therefore,

Thus, our inductive definition of sn makes sense, and so does that of 

Our aim is to prove that the sequence (C*, a*) is a free resolution

of Z. First, we observe that

automatically holds, as, using (Pn ) , we obtain

LEMMA 4.4. - Assuming (Hn), for every elementary n-chain we

have

Proof. We use «-induction on x[A]. If x[A] is irreducible,
applying (Qn), we find directly
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Assume now that x[A] is reducible. With the notation of (4.4), we obtain

we have « x ~A~, so the induction hypothesis gives

Applying (P,,), we deduce

hence

as expected.

LEMMA 4.5. - Assuming (Hn), (P,,+,) is satisfied.

Proof. Assume that is an elementary n + 1-chain. We find

by applying Lemma 4.4 and Formula (4.6). D

LEMMA 4.6. Assume that A] is a reducible chain. Then, for each
red uci ble chain y ~B~ we have sn ( y ~B~ ) ~ 

Proof. We use «-induction on y ~B~ . By definition, we have

with and

By (4.5), we always have « y[B], hence, in particular, c y ’ lfl
- xra, A.J’ So, the induction hypothesis gives - x [a, A] if ]
is reducible. If zi[Ci] is irreducible, there is no contribution of 
to the sum in (4.8), so, in both cases, it only remains to compare B]
and A].
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Two cases are possible. Assume first C xra, Aj. By construction,
we have z 1, B..J == so we deduce C and therefore

z ~~y, B~ -~ x ~c~, A~ .
Assume now yB = By construction, 1 is the least right

divisor hence and the hypothesis that x ~a, A~ is reducible
means that a is a right divisor of the latter element, but is not its least right
divisor, so we must have 1  a. This, by definition, gives B~ -~ A~ .

m

LEMMA 4.7. - Assuming (Hn), satisfied.

Proof. Owing to Lemma 4.5, it remains to prove Let

A] be an (n + 1)-dimensional elementary chain. By definition, we have

with x rn (a~A ~A~ ) . If x ~a, A~ is irreducible, a is the least right
divisor of x a, the definition of sn gives

and we deduce r,,+ I (x ~a, A]) = x[a, A].
Assume now that x[a, A] is reducible. First, we have 

so applying Lemma 4.6 to gives S,,, (XalA [A]) -- x[a, A].
Then, by hypothesis, the chain a/A [A] is reducible, so Property (Qn ) gives

- a/A [A], hence, by Lemma 4.2, - x a/A [A], i . e. ,
« which implies in particular XalA x ra,A-.J’

Applying Lemma 4.6 to gives Putting this
in (4.9), we deduce x~a, A~, which is Property D

Thus the induction hypothesis is maintained, and the construction
can be carried out. We can now state:

PROPOSITION 4.8. - For M a locally left Gaussian monoid, the

complex (C*, a*) is a resolution of the trivial ZM-module Z by free ZM-
modules.

Proof. First, Formula (4.6) shows that (C* , a* ) is a complex in
each degree. Then Formula (4.7) rewrites into

which shows that s. is a contracting homotopy. 0

An immediate corollary is the following precise version of Theorem 0. l:
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PROPOSITION 4.9. - Assume that M is a locally left Gaussian

monoid admitting a linearly ordered set of generators (X, ) such that n
is the maximal size of an increasing sequence (01,... , an) in X such that
al V ... V cxn exists and cxi is the least right divisor of ai V ... V an for
each i. Then Z admits a finite free resolution of length n over ZM; so,
in particular, M is of type FL.

Example 4.10. - We have seen that the Birman-Ko-Lee monoid
has a presentation with three generators a  b  c, but 2 is

the maximal cardinality of a family as in Proposition 4.9, since (a, b, c)
is not eligible. We conclude that Z admits a free resolution of length 2
over Z (as already seen in Example 3.5).

Remark 4.11. - Squier’s approach in [42] has in common with the
current approach to use the modules Cn (or Cn with order assumptions
dropped). However, the boundary operators he considers is different from an
(and from Roughly speaking, Squier uses an induction on C and not
on -. This means that he guesses the exact form of all top degree factors
in while we only guess one of these factors, namely the least one.
Technically, the point is that, in the case of [42], i.e., of Artin-Tits monoids,
the length of the words induces a well defined grading on the monoid.
Squier starts with a (very elegant) combinatorial construction capturing
the symmetries of the Coxeter relations, uses it to define a first sketch of the
differential, and then he defines his final differential as a deformation of the
latter. It seems quite problematic to extend this approach to our general
framework, because there need not exist any length grading, and we do not
assume our defining relations to admit any symmetry. Due to this lack of
symmetry, Theorem 6.10 of [42], which is instrumental in his construction,
fails in general: a typical example is the monoid (a, b; aba = b2 ) +, which is
Gaussian-the associated group of fractions is the braid group B3-and we
have {a} 9 ~a, b~, and a V b = uv with u = v = b, but there is no way to
factor u = ulu2, v = vlv2 in such a way that U2Vl is equal to a.

4.3. Geometrical interpretation.

We have seen that the construction of Section 2 admits a simple
geometrical interpretation in terms of greedy normal forms and word
reversing. Here we address the question of finding a similar geometrical
interpretation for the current construction. The answer is easy in low

degree, but quite unclear in general.
The first step is to introduce a convenient normal form for the elements
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of our monoid M. This is easy: as in the case of the X-normal form, every
nontrivial element x of M has a distinguished right divisor, namely its least
right divisor mindiv(x).

DEFINITION. - We say that a word w over X, say w = al ... is

the ordered normal form of x, denoted w = NF(x), if uTe l2ave x = w, and
c~i = ai ) for each i.

Once again, an easy induction on C shows that every element of M
admits a unique ordered normal form: indeed, the empty word is the

unique normal form of 1, and, for x # 1, we write x = y . mindiv(x), and
the ordered normal form of x is obtained by appending mindiv(x) to the
ordered normal form of y.

Example 4.12. - Assume that M is a Garside group and x is the set
of all divisors of some Garside element A of M. If  is any linear ordering
on x that extends the opposite of the partial ordering given by right
divisibility, then the ordered normal form associated with  is the right
greedy normal form, i.e., the normal form constructed as the X-normal form
of Section 2 exchanging left and right divisors: indeed, for every nontrivial
element x of M, the rightmost factor in the right greedy normal form of x
is the right gcd of x and A, hence it is a left multiple of every right divisor
of x lying in x, and, therefore, it is the  -least such divisor.

The question now is whether there exist global expressions for 9.
and s* in the spirit of those of Section 2, i.e., involving the normal form
and a word reversing process. We still use the notation of Formula (2.4),
i.e., we write [w] for the chain inductively defined by (2.4) or (2.5).

LEMMA 4.13. - For every x in M and in X, vve have

Proof. The definition gives
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For so, we use C -induction on x. For x = 1, x[0] is irreducible, so

so(x[0]) = 0 holds, while NF(z) is empty, and we find ~NF (x)~ - 0.

Otherwise, let c~ = mindiv(x) and x = ya. We have NF(x) = &#x26;(y).a, hence
~NF(x)~ - [NF(y)] + y[a]. By definition, we have so(x[0]) = y[a] + so(y),
hence y[a] + [NF (y)] by induction hypothesis, and comparing the
expressions gives _ [1~iF(x)].

Next, we obtain

The second relation in (4.12) follows from (4.11) using

Assume now that [a, is a 2-cell, i.e., that a  {3 holds, cx V 0 exists,
and a = min div (a V (3) holds. Applying (4.12), we find

The hypothesis a = mindiv(a V 13) implies that the normal form of a V 13
is and we obtain

as expected. D

So, we see that the counterparts of Formulas (2.1) and (2.6), for 0,
and Q2 and of (2.9) for so are valid: as for a2, the counterpart of (2.1)
has to include normal forms since, in general, the elements and !3/a
do not belong to x, as they did in the framework of Section 2. Observe
that (4.13) would fail in general if we did not restrict to cells [a, {3] such
that cx is the least right divisor of a V {3: this is for instance the case of the
pseudo-cell [b, c] in the monoid BKL+3 with a  b  c.

The next step is to interpret Here, we need to define

a 2-chain [u, v] for all word u, v over X. To this end, we keep the
intuition of Formula (2.4) and use word reversing. First, we introduce the
presentation (X, R) of M by using the method of Proposition 1.4(ii)
and choosing, for every pair of letters a, ~3 in x, the unique relation

a. This presentation is uniquely determined once X
and  have been chosen.
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DEFINITION. - We define the 2-chain [u, v] so that the following rules
are obeyed for all u, v, w: [u, E] = 0, [v, u] = - [u, v], and

The Noetherianity of left division in M implies that [u, v] is well

defined for all u, v; the induction rules mimic those of word reversing, and
the idea is that [u, v] is the sum of all elementary chains corresponding to
the reversing diagram of 

QUESTION 4.14. - Is the following equality true:

In the framework of Section 2, the definition gives
[NF(xa), a]. On the other hand, Formula (4.14) yields

as, by Proposition 1.10, NF(xa)/*a is equal to NF(x), and, therefore,
(4.15) is true. It is not hard to extend the result to our current general
framework provided the extension of Proposition 1.10 is still valid, i.e.,
provided §F(z) holds for every x in M and cx in x. Now, it is
easy to see that this extension is not true in general, for instance by using
the monoid B+ and the generators ~2  ~1  However, even if the

argument sketched above fails, Equality (4.15) remains true in all cases we
tried. This suggests that the considered geometrical interpretation could
work further.

4.4. Examples.

Let us conclude with a few examples of our construction. We shall
successively consider the 4-strand braid monoid, the 3-strand Birman-Ko-
Lee monoid, and the torus knot monoids. We use dn for the Z-linear map
obtained from an by trivializing M, so, again, Ker dn is Hn (M, Z)-
as well as Hn (G, Z) if M is a Ore monoid and G is the associated group of
fractions.

Example 4.15. - Let us consider the standard presentation of B4 .
To obtain shorter formulas, we write a, b, c instead of ~3. We choose



536

I we deduce d 1 [a] - 0, and Ker d 1 is

generated by [a], [b], [c]. Then (4.13) applies, and we find

hence

So Im d2 is generated by - ~a~ + [b] and - [b] + [c], and we deduce

Next, we have a, b, cJ = cbacbc = cba rb, cj, hence

and 5 evaluates to

None of the previous six chains x[A] is irreducible as, in each case, a is a
right divisor of We have a = min div(cbab) and cbab = c(a V b), hence

Using (4.12), we find

hence

Every chain x[a] is irreducible, and so are c[b] and ca[b], as we have

mindiv(cab) = b. We deduce c[a, b]. Similar

computations give
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We deduce the value of r2 (cba [b, c]), and, finally,

, , - .

Triviliazing gives 43 [a, b, c] = - 2 [a, c]. So Im d3 is generated by 2 [a, c] ,
while Ker d2 is generated by [a, c]. We deduce

It can be observed that the values obtained above for a. coincide
with those of [42]-more precisely, the formulas of [42] correspond to what
we would obtain here starting with the initial ordering a &#x3E; b &#x3E; c: this is

natural as the presentation has the property that, for each finite sequence of

generators A in the considered presentation, we have inf A = min div ( S4-1 ).

Example 4.16. - Let us consider the Birman-Ko-Lee monoid 
of Example 2.1. As the minimal divisor of the lcm of a and j3 need not be
a or {3, the computations are slightly more complicated. The reader can
check that Ker d1 is generated by [a], [b], and [c], and that we have

so Im d2 is generated by [a] - [b] and [b] - [c], and we have H1 (M, Z) = Z.

For degree 2, the definition gives 93 [a, b, c] = [b, c] - r2 [b, c]. Then we
have

and [c] are irreducible chains. Now we obtain

and, by (4.12),

hence = 0, and si (b[c]) = [a, c]. Finally, we obtain r2 ~b, c~ =
[a, c], and 9g[a,~c] = [b, c] - [a, c]. We deduce d3 [a, b, c] = [b, c] - [a, c], so
Im d3 is generated by [b, c] - [a, c], as is Ker d2, and, therefore, H2 (M, Z) = 0,
as could be expected since the group of fractions of M is B3.

Example 4.17. - Finally, let M be the monoid (a, b ; aP = bq) +
with (p, q) = 1. Then M is locally left Gaussian, even Gaussian, and the
associated group of fractions is the group of the torus knot Kp,q. One
obtains

whence and i
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