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PARABOLIC BUNDLES, PRODUCTS
OF CONJUGACY CLASSES

AND GROMOV-WITTEN INVARIANTS

by C. TELEMAN and C. WOODWARD

1. Introduction.

An old problem which goes back to Weyl is to determine the possible
eigenvalues of a sum of traceless Hermitian matrices. According to a result
of Klyachko [32], see also [7], [34], there is a finite set of homogeneous
linear inequalities on the eigenvalues, each of which corresponds to a non-
vanishing structure coefficient in the Schubert calculus of a Grassmannian.
The same inequalities turn out to determine the non-vanishing of the
Littlewood-Richardson numbers [33]. Berenstein-Sjamaar [8] and Leeb-

Millson [38] generalize this result to arbitrary type as follows. Let t be
the Lie algebra of K and T a maximal torus with Lie algebra t. The set of
coadjoint orbits in t* is parametrized by a Weyl chamber t+ in the fixed
point set t* of the action of T on t*. For any p E t+, we denote by O, the
corresponding coadjoint orbit C~~ = K ~ p. For any Al, Ab-1 E t+ the
sum

for some set Of Pb in t+ . Which /-Lb’S occur is determined by a finite number of
linear inequalities, each of which corresponds to a non-vanishing structure

Keywords: Moment polytopes - Parabolic bundles - Gromov-Witten invariants -

Quantum cohomology.
Math. classification: 14L30 - 14L24 - 05E99.
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coefficient in the Schubert calculus for a G/P. There are similar results for
other symmetric spaces.

Biswas [11], Agnihotri-Woodward [1] and Belkale [7] generalize Kly-
achko’s result to eigenvalues of products of special unitary matrices. For
any special unitary matrix the logarithms ~1, ... , A, of the eigenvalues may
be chosen so that

There is a finite set of linear inequalities on the Ai’s for a product, each of
which corresponds to a non-vanishing structure coefficient of the quantum
Schubert calculus of a Grassmannian.

In this paper we solve the multiplicative problem for arbitrary type;
this includes as a special case some of the results of Berenstein-Sjamaar and
Leeb-Millson. Let ao E t* denote the highest root. The set of conjugacy
classes in K is parametrized by the Weyl alcove

For any p E 2(, we denote by C~ the conjugacy class of exp(/z). For
~1, ... , the product C~2 ~ ~ ~ is invariant under conjugation;
we wish to identify which conjugacy classes Cilb appear in

More symmetrically, define for b &#x3E; 3,

where e is the group unit. By [37], Corollary 4.13, Ab is a convex polytope of
maximal dimension in ~b . We wish to find the defining inequalities for Ab.

The polytope Ab can also be described as the possible holonomies
of flat K-bundles on the punctured two-sphere. Let ~i,..., Xb be distinct
points on an oriented surface X. For any markings ~1, ... , pb there exists a
symplectic stratified space A 1, - - - , pb) whose points are the isomor-
phism classes of flat K-bundles on X B ~ x 1, ... , with holonomy around
xi in C, . Equivalently, 1-tb) is the moduli space of represen-
tations of the fundamental group mapping a small loop around xi to C, . *
In the case X has positive genus pb) is always non-empty.
In the genus zero case we have

A final interpretation of the problem involves the space of conformal
blocks, or equivalently, fusion products of representations of affine Lie
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algebras. Fix a complex structure on X. The space Jll, ..., /-Lb) may
be identified with the moduli space of semistable parabolic bundles on
X, by a theorem of Mehta-Seshadri [36], Bhosle-Ramanathan [9] and the
discussion in Section 4. Let

be the set of rational points in the Cartan and suppose Jlb) E iQ.
Then there exists n E N such that npg are all dominant weights. The basic
line bundle over RK (X; /-tl, - - - , /-Lb) determines a projective embedding
with Hilbert polynomial given by the dimension of the space of genus
zero conformal blocks A~/~1,..., at level k with markings

knpb, [41], [35], [51], Section 8. Thus
Abn ((pi , ... , ~cb), 3k such that ~o~~.

Our description of the inequalities for Ab involves the small quantum
cohomology Q H* (G / P), a deformation of the ordinary cohomology ring
defined by including contributions from higher degree rational curves in

G/P. For simplicity, we discuss only the case that P is maximal. Recall
that the Schubert basis for H* (G/P) is given by the classes of closures of
orbits of a Borel subgroup on G/P. Let B be the standard Borel subgroup
whose Lie algebra contains the positive root spaces. Let P C G denote a
parabolic subgroup, corresponding to a subset TIp of the simple roots II.
Let Wp C W the subgroup of W generated by simple reflections for roots
a E 1-1p. For any w E W/WP, the Schubert variety

is a normal subvariety of G/P. The classes form a basis for the

cohomology H* (G/P); in this paper we use rational coefficients. Let

wo E W be the long element in the Weyl group. The class of Y2" := Y,,,,,,
is Poincar6 dual to [Y~]. Its degree is deg[Y’] = 21 p(w), where lp(w) is
the minimal length of a representative of w in W. Now let q be a formal
variable. As a Q[q]-module QH* (GIP) is freely generated by H* (GIP). Fix
X = pI and choose distinct points xl, ... , xb E X. For any holomorphic
map p : X - G/P the degree of cp is

Let i = 1, ... , b be general translates of the Schubert varieties Y,,,.
Let nd(Wl, - - -, Wb) be the number of holomorphic maps X - G/P of
degree d such that C if this number is finite and zero otherwise.

Define
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The resulting product is commutative, associative and independent of
the choice of ~ 1, ... , xb and general gl , ... gb, [21], [22]. These Gromov-
Witten invariants of G/P (as opposed to the invariants that appear in the
large quantum cohomology) are computable in practice using formulas of
D. Peterson [42], whose proofs are given in [22] and [54]. An example, for
the case G2, is given at the end of the paper.

For any maximal parabolic subgroup P, let u p denote the fundamen-
tal weight that is invariant under Wp. Our main result is

THEOREM 1.1. - The polytope 4ib is the set of points ... , /-Lb) E
2t b satisfying

R

for all maximal parabolic subgroups P C G and all t~i,..., wb e W/Wp
and non-negative integers d such that the Gromov-Witten invariant

rtd(w1, ... , wb) = 1.

A connection between this problem and the Hofer metric on symplec-
tomorphism groups is discussed by Entov [19].

There are several remaining open questions. We do not know which

inequalities are independent. Also, there is the quantum generalization of
the saturation conjecture [33]: are the inequalities necessary and sufficient
conditions for the non-vanishing of the fusion coefficients, at least in the

simply laced case? There are similar polytopes for products of conjugacy
classes in disconnected groups. These might be related to the twisted quan-
tum cohomology (Floer cohomology for symplectomorphisms not isotopic
to the identity.)

1.1. Index of notation.

K, G simple 1-connected compact group, p. 713

resp. complexification
T, t maximal torus, resp. Cartan subalgebra p. 713

ao, t+, 2t highest root, resp. positive chamber, resp. alcove p. 714

pj marking in t+ with ao(pj)  1 p. 717

B, P Borel, resp. standard parabolic subgroup p. 715

(Pl , P2 ) relative position of parabolics p. 719
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X proper smooth curve /C p. 714

Yw, Ow Schubert variety, resp. Schubert cell p. 715 &#x26; 722

nd(wl, ... , wd) Gromov-Witten invariant p. 715

S - X holomorphic principal G-bundle p. 716

wj parabolic reduction of E at xj p. 717

: X - EIP parabolic reduction p. 719

1r: X - X ramified cover p. 720

U3 ramification point of 7r, p. 720

resp. neighborhood of Xj
L, U Levi, resp. unipotent subgroup p. 721

r : P ~ L projection to L p. 725

~ : L ~ G inclusion of L p. 725

weights of characters of P p. 724

(T,,, 1-tE canonical reduction, slope p. 724

universal space for G-bundles p. 731

x; p) moduli space of parabolic semistable p. 728

G-bundles

RK (X; /-L) moduli space of flat K-bundles p. 729

with fixed holonomy
A, Aoo a connection, resp. its Yang-Mills limit p. 731

2. Parabolic G-bundles.

In this section we develop the general theory of parabolic G-bundles:
equivalence with equivariant bundles for a finite group, canonical reductions
and coarse moduli spaces. Unfortunately, we could not understand the
arguments in Bhosle-Ramanathan [9] which covers similar material so we
chose to employ a different approach, basically switching the order of

embedding G in GL(n) and applying the equivalence with equivariant
bundles. A different approach which is less useful for our purposes but

works in any dimension is given by Balaji, Biswas and Nagaraj [4].

2.1. Definitions.

Let X be a complex manifold. A principal G-bundle over X is a

complex manifold S - X with a right action of G that is locally trivial.
That is, any point in X is contained in a neighborhood U such that Elu
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is G-equivariantly biholomorphic to U x G. For X a scheme, principal G-
bundles over X are required to be locally trivial in the 6tale topology. By
the theorem of Drinfeld and Simpson [17] (another proof is given in [50])
any principal G-bundle over the product X x S of a smooth curve X with
a scheme ,5’ is trivial locally in the product of the Zariski topology for X
and the 6tale topology in S. The results of this section are mostly valid in
both the analytic and algebraic categories.

The following definition of parabolic vector bundle is slightly more
general than the original one given by Mehta and Seshadri. Let X be a
proper smooth curve with distinct marked points xl, ... , xb and E 2013~ X a

holomorphic vector bundle of rank r. A parabolic structure for E at xi is
a partial flag

together with a set of markings

corresponding to the type of the partial flag. That is, for all j = 1,..., r,

Note that Mehta-Seshadri require that the markings be non-negative, so
that the /-Li = (/-ti, 1, ... , pi,,) lie in a fundamental domain for the affine

Weyl group of gl(r).
A parabolic vector bundle over a pointed curve (X; xl, ... , Xb) is a

holomorphic vector bundle E - X together with parabolic structures
at the points xi, i = l, ... , b. Usually we drop the parabolic

structures from the notation.

We define a parabolic SL(r)-vector bundle to be a parabolic vector
bundle J5’ 2013~ ~ with degree zero and

Hence the markings pi lie in the Weyl alcove (1) for the Lie algebra 51(r).
There is an equivalent definition of parabolic structure in terms of the
bundle £ of frames for E. For any p E t+, there is a unique standard

parabolic subgroup P C SL(r) such that the Wp is the stabilizer of p in
W. We say that P is the standard parabolic subgroup corresponding to
p. Let Pi denote the standard parabolic subgroup corresponding to the
marking Jli. The data of the filtration of E,,, is equivalent to a reduction of
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Sx~ to the parabolic subgroup Pi . Explicitly, let pz denote the set of frames
for such that vl E E~2 for I x lim(Ei ). Then Pi acts

transitively on that is, cpi is a reduction of ~x2 to structure group Pi.

be a principal G-bundle.

DEFINITION 2.1. - A parabolic structure at xi consists of

(a) marking pi E 2l with  1;

(b) a reduction pz E where Pi is the standard parabolic
subgroup corresponding to Mi.

A parabolic bundle on (X; xl, ... , xb) is a bundle E with parabolic struc-
tures at xl, ... , xb. A family of parabolic bundles parametrized by a com-
plex manifold S is a principal G-bundle over X x S with sections of £ / Pi
over x S and markings A morphism of bundles £1 -&#x3E; E2 defines a

morphism of parabolic bundles if the bundles have the same markings and
parabolic reductions for £1 are mapped to parabolic reductions for £2.

We remark that one can replace the condition  1 with

1, by working with torsors (non-abelian cohomology classes)
for a group sheaf which is locally a standard parabolic subgroup of the
loop group; see [50] for definitions. However, we do not know any intrinsic
formulation of the semistability condition in this language. In the case
G = SL(r), all parabolic subgroups of the loop group are conjugated to
subgroups of G[[z]] by outer automorphisms. That is why this case does
not need to be considered for moduli spaces of vector bundles.

The parabolic degree of a parabolic vector bundle E is defined by

Here deg(E) denotes the first Chern class cl (E) E H2 (X ) r--" Z. The

parabolic slope of E is

The parabolic structure on E induces a parabolic structure on any holo-
morphic subbundle F. Define a flag in by removing repeating terms
from the sequence

Define markings v2 by - where k is the smallest integer such
that c Ex2. The parabolic bundle E is semistable if and only if the
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inequality

holds for all subbundles F C E.

In order to generalize these definitions to arbitrary type we give a
definition of ordinary semistability using the frame bundle £ for E. Let
Pk denote the standard maximal parabolic subgroup of GL(r) stabilizing
a subspace of dimension k. Let a : X - £ / Pk be the parabolic reduction
with o-(x) equal to the set of frames for Ex whose first k elements are in
Fx. Let £(Wk) denote the line bundle E Clk where Clk is the weight
space for the k-th fundamental weight Wk of GL(r). A little yoga with the
definition of Chern classes shows that

If E is an SL-vector bundle, then E is ordinary semistable if and only if

for all k = 1, ... , r -1. The definition of the marking v can be rephrased in
terms of the Schubert cell decomposition of the Grassmannian. Let V be a
vector space of dimension r and

a complete flag in V. Let Gr(k, V) denote the Grassmannian of k-planes in
V. For each sequence of integers J == {jl ...  ik I the Schubert variety
corresponding to I is

Let CI denote the interior of YI, that is, CI = YIB U YJ, where the union
is over Yj contained in YI. We say that U is in relative position I to V’
if U lies in CI. Now let E - X be a parabolic vector bundle and F C E
a holomorphic sub-bundle. The marking for Fx2 is where Ji
is the relative position of Fx~ and E~Z . We can write this in the language
of principal bundles as follows. The quotient is isomorphic to the
flag variety for of type corresponding to pg, so the flag E~2 defines a
point cpi E The quotient is isomorphic to the Grassmannian

and any subspace C V defines a point C The

quotient of Weyl groups W IW Pk maps bijectively to the set of elements of
size 1~ r~, by
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We say that u(x,) is in relative position to cp2 if U~Z is in relative

position 7([t~]) to Ex2 . Hence E is parabolic semistable if and only if

v-i

for all k = 1, ... , r - 1 and reductions p : : where E

is the relative position of a(x.) and cpi and wi is any repre-

sentative of in W.

For arbitrary simple G and parabolic subgroups P1 = P2’
Ad(g2)P2 C G given as conjugates of standard parabolics PI and P2, define
the relative position (Pi, P2) E W P1 BW/Wp2 to be the image of (gl, g2)
under the map

Note that ( for any parabolic
subgroup P’.

DEFINITION 2.2. - A parabolic principal G-bundle (E; fil, - - -, fib;
~01, - - -, is stable (resp. semistable) if for any maximal parabolic sub-
group P and reduction a : X - SIP we have

where wi E Wp,BWlWp is the relative position ofa(xi) and CPi.

By we mean independent of the choice of
representative wi of wi. We call the left-hand-side of (2) the parabolic
degree of a.

If G = SL(r) and E is a parabolic principal G-bundle, then the
parabolic structure induces on the associated vector bundle E the structure
of a principal SL(r)-vector bundle. For any smooth curve X with marked
points xl, ... , xb, let Par Vector; xl, ... , xb) denote the functor which
assigns to any complex manifold S the set of isomorphism classes of families
of parabolic SL(r)-vector bundles on (X; xl, ... , parametrized by S. Let

ParBun(X; xl, ... , xb; G) denote the functor that assigns to any complex
manifold ,S’ the set of isomorphism classes of families of parabolic principal
G-bundles on (X; xl, ... , xb) parametrized by S. The map E - S defines
an isomorphism of functors
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mapping families of semistable bundles to families of semistable bundles.
There are similar statements in the algebraic category.

We warn the reader that a homomorphism G ~ H does not in general
map the Weyl alcove for G into the Weyl alcove for H. This makes directly
associating a morphism of functors to any such homomorphism problematic
and we will avoid doing so.

2.2. Equivalence with equivariant bundles.

Parabolic principal bundles are equivalent to bundles equivariant for
a finite group, just as in the vector bundle case.

Let r denote a finite group acting generically freely on a curve X and
let X = Suppose that the projection 7r : X - X has ramification
points X 1, - - - , Xb - We denote the inverse image of xi in X by Xi. The
stabilizer of xi under r is denoted We fix a generator of 

so that its action in a neighborhood of xi is given by multiplication by a
primitive root of unity.

Let E - X be a r-equivariant vector bundle. Define E to be the
vector bundle whose sheaf of sections is sheaf of r-invariant sections of

E. The parabolic structures are the filtrations of E~2 induced by order of
vanishing at the ramification points. The markings pg are the logarithms
of the eigenvalues of the generator of r, acting on for any Xi in

the fiber over xi. Let Vectr denote the functor which assigns to any
complex manifold S, the isomorphism classes of r-equivariant bundles
E - X. The map E - E defines an isomorphism of functors, Vectr (X ) ~
ParVect(X; Xl,’ .. , Xb), [36], [23], [12], [10].

Let be the functor which assigns to any complex
manifold S, the isomorphism classes of T-equivariant principal G-bundles
¿ ~ X. We will sketch a proof of the following theorem:

THEOREM 2.3. - There exists an isomorphism of functors

mapping families of semistable bundles to semistable bundles and a similar

isomorphism in the algebraic category.

That is, there is a natural bijection between isomorphism classes of F-
equivariant bundles (resp. semistable bundles) on ,S’ x X and isomorphism
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classes of parabolic bundles (resp. semistable bundles) on ,S’ x X. Parabolic
bundles with parabolic weights pi at the points xi are mapped to T-
equivariant bundles with action at xi in the conjugacy class given by ~i .

Let be a F-equivariant principal G-bundle. We suppose for
simplicity there is a single fixed point x = 3ij with marking p - pj and
stabilizer Fi~, = r. Choose a neighborhood U - U with local coordinate
z so that the projection is given by z H zN and the action of r by
z H By the equivariant Oka principle of Heinzner and
Kutzchebauch [29], Section 11, after shrinking U we may assume that ~
is T-trivial over U. That is, there exists a r-equivariant biholomorphic
map 7: ¿Iv -7 U x G such that the action of F is given by g) -

exp(p)g). Consider the one parameter subgroup,

Let denote the set of r-invariant meromorphic sections s : (i I
such that is regular on U. contains the section given
locally by so (z) = 

We wish to show that there is a parabolic bundle (E, p) isomorphic
to rB~ over such that is the set of sections of ~ over U.

Form a bundle E-NJ-L by patching together with 8 x G, using the
transition map The action of F extends to and is trivial

near x. Define E = Since F acts trivially in the fiber at the
ramification point, E is a principal G-bundle. Let p E denote the

parabolic reduction given as Pj in the trivialization at We leave it to the

reader to check that the definition of (E, p) is independent of the choices
(this depends essentially on the assumption  1) and defines an
isomorphism of functors.

We construct a one-to-one correspondence between parabolic reduc-
tions of ~ and S, which maps the degree to a multiple of the parabolic
degree. Let £. -7 X be a r-equivariant bundle and S = Any
parabolic reduction : X - EIP induces a T-invariant parabolic reduc-
tion 3 of ~ and vice-versa, since G/P is complete. Fix a local trivialization
Ui x G near so that the action of r is given by exp(pi) on the fiber.
The bundle E is formed by twisting by near xi and taking the

quotient by F. Using this local trivialization, the fixed point set of F on
has components indexed by the double coset space of the Weyl group

l
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where L is the standard Levi subgroup of P.

LEMMA 2.4. - LwP, if and only if the relative position of

~w~.

Proof. - Let Ow c G/P be the open cell containing Ad(w)P, that
is, Ow = wB- P, where B- is the Borel opposite to B. Let Cw - BwP
be the Schubert cell containing Ad(w)P. The set of elements g C G/P in
relative position [w] is Cw. Let R- (P) be the set of weights of 9/p, i.e.

roots of the negative unipotent complementary to P. Let f : Ow ~ x ga
be the T-equivariant isomorphism of the open cell Ow with the product of
root spaces ga for a E wR- (P). The image f (Cw ) is the product of ga for
a c wR- (P) n I-~+ (B) . Therefore it suffices to show that each component

is regular at z = 0 and = 0 unless a E R+ (B). Since ð is
Y-invariant, &#x26;, (-y - z) = a))6a(z). Hence

Therefore

It follows that I and is regular in any
case.

We compute the parabolic degree of a as follows. In the local triv-
ialization of ~ near Xi, the reduction cr is given by 3g(z)P for some map
: Ui ~ G. By the previous paragraph we may assume 3g(0) = ni,
for some representative ni of wi the relative position and pg.

By equivariant Oka [29] applied to the r-equivariant P-bundle corre-

sponding to ~, we may assume that = ni is constant. The bundle

formed by gluing cr~BU5’~ with using the

maps This implies that the gluing maps

gree of the line bundle is therefore

the degree of times the degree of
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That is, the parabolic degree is deg(~)/N.

2.3. Modifications for the algebraic case.

To prove the correspondence in the algebraic category one has to re-
place the equivariant Oka principle by a non-abelian cohomology argument
and the gluing by formal gluing.

LEMMA 2.5. - Let 8 - X x S be a F-equivariant principal G-
bundle. For any s E S, there exists a neighborhood that is the product of
an 6tale neighborhood in S and formal neighborhood of x in X, such that
the action of r on the restriction of ~ is of product form.

Proof. Over the formal disk D = Spec(C[[z]] ) at x, the bundles
is trivial and the action of F is given by -y(z, ~) _ z) () for some
g : r -~ G[[z]]. Since -yN= 1 we have

In particular, g(-y, 0)’ = e. More generally, if E- is a F-equivariant bundle
over DR , where R is any C-algebra, then the action
is given by an automorphism g E Let ~ be a r-equivariant
bundle over DR- We wish to show that there exists an automorphism
T E G(R[[z]]) which transforms the r-action DR x G to the

product action, that is, 1 Consider the element

of G(R[[z]])) defined g(7, z). Since

g ( ~ , z ) is a cocycle in the cohomology of F with values in G [ [z] ]. Similarly
g(., 0) E Z1 (r, G(R)) which maps to Z1 (r, G (R [ [z] ])) - We claim there exists
a 0-chain T such that (6T) : g(-, z) - g(., 0). We construct T order-by-
order. Let Gl = 0). Let Nl be the kernel of the truncation
map Gl. The exact sequence of groups

induces an exact sequence of pointed sets in non-abelian cohomology (see
e.g. [46], p. 49)

Since N, is a nilpotent, is trivial, by induction on the length
of the central series which reduces to the case that N, is a r-module.
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Therefore, injects into for all l. The complexes
satisfy the Mittag-Leffler condition: the image of

(resp. in resp. stabilizes as

l’ - oo . Indeed, let f, : . Spec(Rl) --+ G. Extending f L to a map

G is equivalent to extending the map the

latter extends because G is isomorphic to g near the identity. Therefore,
Gl is surjective, which implies the same result for the chain

complexes. The Mittag-Leffler condition implies that

(see [28], 11.9.1 for the abelian case) and therefore also injects into

The claim follows since g(.,z) and g(~, 0) both map to g(-10)
in = G(R)). 0

Recall the description of bundles on X by formal gluing data [5],
[35], Section 3. For any algebra R, let XR . := X x Spec(R). Let T

denote the functor from algebras to sets which associates to R the set
of isomorphism classes of triples (~, p, ~), where S is a G-bundle over XR,
p is a trivialization over (X B ~x~ ) R and a is a trivialization over the formal
disk DR. Then T is represented by G(R((z))) [35], 3.8. Choose a set of

trivializations of E in formal neighborhoods of the form DR as described
above. Let denote the bundle obtained from twisting by 
G(R((z))). The bundles are canonically isomorphic away from X,
the canonical isomorphisms extend to X and the extension preserves the
parabolic structures at the ramification points. By a simple case of etale
descent, the bundles E R J-L patch together to a bundle ~’~ 2013~ ,S’ x X.
Since the gluing data for £-NJ-L are F-invariant, they define a G-bundle
~ -~ ,S’ x X with parabolic structure.

2.4. Canonical reductions.

If a parabolic vector bundle E is unstable, the Harder-Narasimhan
filtration is a canonical sequence of sub-bundles violating the semistability
condition. There is a unique sub-bundle El C E such that the slope I-t(El)
is maximal among all sub-bundles and the rank of El is maximal among
sub-bundles with that slope. The Harder-Narasimhan filtration

is defined inductively by = (E / Ei)l. It follows from the definition
that the quotients of the canonical filtration are semistable, the
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slopes pg = decreasing and E. is the unique filtration with
slopes pg and ranks ri = dim(Ei ) .

Atiyah-Bott ([3], Section 10) construct a canonical parabolic reduc-
tion a~E : X -~ SIP generalizing the Harder-Narasimhan filtration, using
the adjoint bundle of E. The Harder-Narasimhan filtration

of E(g) has a term E(g)o such that E(g)o/E(g)_1 has degree zero and £(g)o
is a bundle of parabolic Lie algebras for some parabolic subgroup P and
defines a reduction X -~ E/P. The value of the reduction at

x E X is the unique fixed point for E(g)o acting infinitesimally on the fiber
ex/p.

The canonical reduction as is functorial for homomorphisms § : G -
G’ such that the associated Lie algebra map - g’ is injective. That
is, for any principal G-bundle E --4 X, there is a parabolic subgroup P’ of
G’ such that P is the inverse image of P’ under 0 and as is the inverse

image of a cp* E under the map.E/P --4 E’/P’. Indeed, the image of E(g)o in
4&#x3E;*£(g’) is contained in 4&#x3E;*£(g’)o, for reasons of degree and maximality of
S (g)o among sub-bundles with the same degree implies that £( g)o contains
the inverse image of 4&#x3E;*£(g’)o. Hence p = 

Define a notion of slope for parabolic reductions as follows. Let l1 p
denote the abelian group of weights of characters of P and Ap its dual. For
a principal and parabolic reduction a : the

slope p(a) E Ap is given by

for A E Ap. The type of E is the slope JL( a E) of its canonical reduction.
p(as ) lies in the interior of the open face of t+ corresponding to P.

LEMMA 2.6. - The canonical reduction as is the unique parabolic
reduction with slope p(as).

Proof. Consider an embedding § : G -&#x3E; G1(V) and let 
X - denote its canonical reduction. Let a : X --+ be

another reduction with slope and (~~cr be the parabolic reduction
of 4&#x3E;*£ to P’ induced by a. Since 
for any weight A E ApI’ = P(0-9)- Since the Harder-Narasimhan
filtration is the unique filtration of its slope, O.o-- = 0,, as. This implies that
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Using the equivalence of parabolic bundles with equivariant bundles
one can extend the theory of the canonical reduction to parabolic bundles.
Let 7: X -7 X be an automorphism of the curve X. If E is an -y-equivariant
bundle, then the canonical reduction is y-invariant, since it is the unique
reduction with its slope. Let F be a group of automorphisms of ~. We will
call h-stable (resp. F-semistable) if

for all r-invariant parabolic reductions o- : X - ~/P and weights
A E Since the canonical reduction is the unique reduction of its

slope, a principal G-bundle is F-semistable if and only if it is ordinary
semistable. For any parabolic bundle E - (~, ~ (~pi, ~2 ) ~ ) , let as denote

its canonical reduction, defined by the one-to-one correspondence between
invariant parabolic reductions of ~ and parabolic reductions ofE. Define
the slope of a parabolic reduction a : X -7 £ j P by

The type of E is the slope of a£; by the discussion above as is the unique
reduction of this slope.

2.5. Grade equivalence.

The rest of this section is included for the sake of completeness, and
is not needed for the main result.

We extend Ramanathan’s notion of grade equivalence to parabolic
bundles. First, let £ -7 X be a G-bundle and a : X - E/P be a parabolic
reduction. Let r : P - L the projection to a Levi subgroup L C P
and t : L - G the inclusion of L in G. The reduction a- is admissible if

0 for all weights A. The equivalence relation on semistable
bundles generated by

as a ranges over all admissible reductions, is called grade equivalence [44],
[45]. For any semistable X, there is a semistable bundle

Gr(~), unique up to isomorphism, defined by the condition that there is
an admissible reduction a : X - EIP such that is stable and

Gr(~) ’~-_’~’ The set of isomorphism classes of semistable G-bundles
S such Gr(S) form a set of representatives for the equivalence
classes of semistable G-bundles over X. That is, two bundles 
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are grade equivalent, if and only if their grade bundles Gr(£2) are
isomorphic.

For equivariant bundles we define grade equivalence to be the equiv-
alence relation generated by S - where a : X - is r-

invariant.

Let S - S x X be a family of r-equivariant principal G-bundles and
So a bundle such that Ss is r-isomorphic to So for s varying in a dense

open subset of S. The equivalence relation generated by Ss -~ So for any
s E S’ is called S-equivalence. By [44], Proposition 3.24, this is the same as
grade-equivalence.

To define grade equivalence for parabolic bundles, first let E be a

parabolic vector bundle, with filtration E~2. If F C E is any sub-bundle,
the filtrations El induce filtrations on the fibers of the graded bundle
F 0 E/F at the points xi and we say that F EB E/F is parabolic grade
equivalent to E.

This construction generalizes to arbitrary type as follows. Let

(El ... , cpb, Ali ..., be a parabolic bundle, a : X - £ / P a parabolic
reduction and r*a*S the associated L-bundle. Let denote the

group of G-equivariant automorphisms of Ex2 . is isomorphic to
G and the stabilizer P’ - is isomorphic to P. Similarly, the
stabilizer P’ - is isomorphic to Pi. In the vector bundle case,
PI is the group of automorphisms preserving the filtration Ex2. The in-
tersection P’ n PI is a subgroup isomorphic to n P, where wi is the
relative position of cpi Its image in is a parabolic
subgroup, isomorphic to Therefore, it has a unique closed orbit in

Since injects into we

get a reduction of we denote by ira’Pi’ Let parabolic grade
equivalence be the equivalence relation generated by

We claim this equivalence relation corresponds to grade equivalence
for equivariant bundles. Let S - X be a r-equivariant bundle and
(El ... , cpb, ... JLb) the corresponding parabolic bundle. Let 6 be a
r-invariant parabolic reduction to a parabolic subgroup P and the cor-
responding parabolic reduction of S. Let Ui x G be a local trivialization
near xi, so that the action of F is (z, g) H and

3(z) = wi 1 P, for some w2 E Wp)W. The local trivialization of 3*S in-
duces a local trivialization of r* 3* S near x2 . The action of F is given in this
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local trivialization by

Let JlL,i be the unique point in the positive chamber for L conjugate
to wgpg. The parabolic bundle corresponding to r* ~* ~ is 

where ~L - (r*3*£)~’~"L /r. Define WL,i E WL the Weyl group for L
by By definition the gluing maps for (r*3*£)~’~"L are
given The gluing map for
Since z i is regular at z = 0, the bundles

(r* o~* ~) -N~‘L and are isomorphic. Therefore, their quo-
tients by r are isomorphic. The parabolic structure for (r*~*~)-N~L at xi
is r(P n in the trivialization near xi . This completes the proof of
the claim.

2.6. Coarse moduli spaces.

Let Bun ss (X) denote the functor which associates to any scheme S
the set of grade equivalence classes of semistable algebraic principal G-
bundles over ,S’ x X. The main result of Ramanathan’s thesis [45] (see also
[20]) is the existence of an irreducible, normal projective variety MG(X)
and a morphism Hom(., A4G(X)) that is a coarse moduli

space for Bun By definition, a coarse moduli space for a functor F is
a scheme M and a morphism p : .F 2013~ Hom(~, M) such that (i) p induces a
bijection of points p(*) : F(*) ~ Hom(*, M), where * = Spec(C) and (ii)
for any scheme N and morphism x : .F 2013~ Hom(., N), there is a unique
morphism 0 : Hom(-, N) such that X = ~ o p. Usually, we
omit the morphism p from the notation.

Let denote the functor that assigns to any scheme (or
complex manifold, in the analytic category) ,S’ the set of grade-equivalence
classes of r-equivariant bundles over ,S’ x X.

THEOREM 2.7. - There is a normal projective variety 
s -

that is a coarse moduli space for Bunrs (X ) .

Sketch of Proof. We realize Ma,r(X) as a subquotient of the
moduli space of bundles with level structure. Recall that a level structure

on E at a point y E X is a point ey in the fiber £y. Semistable bundles with
level structure have no automorphisms, since the map Aut (~) -7 Aut(£y) is
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injective. A morphism of bundles with level structure
morphism cp :
denote the functor which associates to any scheme S’ the set of isomor-

phism classes of G-bundles over S’ x X with level structures at points
Let denote the open subfunc-

tor defined by the condition that the underlying bundle is semistable.

Bun yl, ... , y,,,; G) is represented by a smooth quasi-projective moduli
space YM) see [47], Part 4, [30]; for arbitrary G one needs
the embedding arguments in [44], 4.8.1. The right action of G on the fiber
at each marked point induces an action of G"2 on y1, ... , Ym), with
good quotient A4G (X) .

Suppose that the is invariant under F and the

stabilizers are trivial. An equivariant bundle with level structure

is an equivariant bundle E with level structure such that

~y(ey2) - e,y~y2~. Let -A4G,r(.kiYl, ..., Ym) denote the set of isomorphism
classes of equivariant bundles with level structure whose underlying bundle
is semistable. Since bundles with level structure have no automorphisms,
forgetting the equivariant structure defines an injection

The image is the fixed point set of the action of F, which is a smooth quasi-
projective variety. Let Gr denote the subgroup of invariant under the

action of T on G’ induced by the action of T on the set lyl, ... , y,,, 1. An
observation of Ramanathan is that if f : X - Y is an affine morphism of
G-varieties and Y has a good quotient, then so does X [40], 3.12. Note that

are affine G-morphisms; it follows that the action of Gr on

Ym) has a good quotient, which we denote A

good quotient is a categorical quotient, hence MG,r(X) is normal.
We will show that is a coarse moduli space for the

functor of equivalence classes of F-equivariant bundles. Let E be a r-
equivariant semistable bundle over S x X and s any point in S. In a

neighborhood S’1 of s, E admits equivariant level structures at y1, ... , Ym
and defines ,S’1 - MG,r(X, yl , ... , Yn)- If Es are equivariantly isomor-
phic for s in an open subset So C S, then the image of So rl 81 in

Yl,... , yr,.t) is contained in the closure of a single orbit. Con-
versely, if E lies in the closure of the orbit of

, then forgetting the level structure shows that
£o and El are equivalent. Hence the points of A4G,r(X) are equivalence
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classes of semistable bundles. For any family £ -7 S x X of equivariant
semistable G-bundles which admits equivariant level structure over S1 C S,
let ~ denote the map induced by adding some level struc-
ture, ,S’1 -&#x3E; M G,r (X , y1, ... , Ym) and then composing with the projection.
It is clear that does not depend on the choice of level structure, so that

patches together to a map ps and S - ps defines a morphism of
functors

Part (ii) of the definition of the coarse moduli space follows from the

properties of YI, ... , as in [45], 4.5.

Let V) - be the determinant line bundle associated

to a faithful representation V of G, see [6]. This is an ample line bundle;
let Le,r(X, V) denote its pull-back under the forgetful morphism

We claim that Lc,r(X, V) is ample. Indeed Hom(F, L)/L is finite for finite
r and linear algebraic L; this is essentially a result of A. Weil [53], see
Slodowy [49]. By Zariski’s main theorem [27], 4.4, any proper morphism
with finite fibers is a finite morphism ( 1 ) . By [26], 6.6, the pull-back of an
ample line bundle under a finite morphism is ample. This completes the
proof of the claim. We remark that in the case A4G,r(X) is smooth, the
claim follows from Kodaira’s theorem. By the correspondence theorem in
Section 4, is compact. It follows that .JlilG,r (X ) is projective.

be the moduli

space of equivalence classes of parabolic G-bundles on (X; xl, ... , xb) with
markings By the equivalence with equivariant bundles this is

a normal projective variety and a coarse moduli space for the functor

ParBun(X;x;p;G) of grade-equivalence classes of semistable parabolic
bundles with markings ~C 1, ... , 

3. Narasimhan-Seshadri correspondence
for parabolic G-bundles.

In this section we prove the correspondence between flat K-bundles
and semistable holomorphic G-bundles, for markings pg satisfying ao(JLi) 
1. A related result for projective varieties X of any dimension is proved in

(1 ) Mumford [39], p. 124 credits this result to Chevalley.
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[4]. A different approach to this correspondence in the case SU(r) has been
given by Simpson [48].

The moduli space of flat K-bundles on a punctured surface can be
constructed as in Atiyah-Bott as a symplectic quotient of the affine space
of connections by the gauge group. Let X be a compact oriented surface
with boundary 9X. Since K is connected, any principal K-bundle on X is
trivial. Let

be the space of connections on X x K - X and gauge group for X x K.

Choose an invariant inner product Tr(, ) : t x t ~ R on t. The affine
space has a symplectic form

The action of K(X) on is Hamiltonian, with moment map given by
the curvature plus restriction to the boundary

The symplectic quotients of by K(X) may be identified with moduli
space of flat connections on A(X), with fixed holonomy around the bound-
ary [37]. Let b denote the number of components of The orbits of K(X )
on 01(aX, t) are parametrized by b-tuples p = (~1, ... , E Let

denote the holonomy around the i-th boundary component. Then two
connections AI, A2 E are in the same orbit of K(8X) if and

only if is conjugate to Holg (A2) , for z = 1,..., b. The symplectic
quotient

is the moduli space of flat connections on X x K, with fixed holonomy. Up
to symplectomorphism := 7ZK (X ; ~c1, ... , JLb) does not depend
on the choice of marked points Xi, which justifies dropping them from the
notation.

The spaces RK (X ; p) may be identified with moduli spaces of repre-
sentations of in K. Any flat connection A determines a holonomy
representation Hol(A) : K. The i-th boundary component (0X)g
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determines a conjugacy class [(0X)g] C Two flat bundles are iso-

morphic if and only if their holonomy representations are conjugate by the
action of K. Therefore, there is a bijection

Now suppose that X is a compact, oriented two-manifold without

boundary and xl, ... , xb E X distinct marked points. Then the moduli
space of flat bundles on X B ~ x 1, ... , with holonomy around xi in Ci
is Pb), where X’ is the manifold obtained by removing a
small open disk containing each marked point xi . We denote this space by
7(X; Jl). In the case X = PB the fundamental group of X B ~x1, ... , xb)
is

By (5), the moduli space of flat bundles is given by

The moduli spaces on the punctured surface are homeomorphic to
moduli spaces of r-invariant flat connections on a ramified cover X.
Suppose r acts on £ x K, so that the generator of F* acts on
the fiber ~x2 by an element in the conjugacy class C,,,. Any invariant
connection A on X x K descends to a connection A on the quotient
bundle x with holonomy around xi in C,,,. Let

K (X Jll, 1-1b) denote the moduli space of F-equivariant flat bundles
on X up to h-equivariant isomorphism, such that the action of F on ~~2
is identified (up to conjugacy) with exp(pi). If  1 for i = 1,..., b,
the map (~, A) - (~, A) defines a bijection

Indeed, any h-equivariant isomorphism of flat bundles on X induces an
isomorphism of bundles on Conversely, given a flat bundle on

one may pull-back to a flat bundle on In polar coordinates
near xi the connection has the form pid0j. It follows that one may

glue in the trivial flat bundle using the gluing map exp(8gpg) to obtain
a h-equivariant flat bundle on X. Any isomorphism of flat bundles on

lifts to an isomorphism of flat bundles on In the local

trivializations near the marked points xi the isomorphism is given by a
constant gauge transformation in the centralizer of exp(/-ti), which is
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equal to the stabilizer of pg since ao (lti)  1. Therefore the isomorphism
extends over the points xi .

3.1. The Yang-Mills heat flow.

According to Donaldson [16], the Narasimhan-Seshadri correspon-
dence can be constructed by minimizing the Yang-Mills functional on the
space of connections. Throughout this section we identify the space A(X)
of connections on X x K with the space of holomorphic structures on X x G.
For any connection A E A(X), let

denote the corresponding covariant differentiation operator and dA its

formal adjoint. The Yang-Mills functional is Let 8 be

its contragradient, O(A) - -dAFA. The connection A is Yang-Mills if
O (A) = 0. The following summarizes results of Donaldson, Daskalopolous
and Rade for Gl(n), extended to arbitrary structure groups.

THEOREM 3.1.

(a) For any 10 E A(X), there exists a trajectory At E 
A(X)) satisfying (

(b) At converges in the Sobolev space H1 to a Yang-Mills connec-
tion 

(c) Aoo is a flat connection if and only if A is semistable;

(d) the map A H ACX) defines a continuous retract of the space
of semistable connections onto the space of flat connections, in the Hl -

topology ; and

(e) the map [A] H defines a homeomorphism A4G(X)
RK(X).

The results of [16], [13], [43] prove (a)-(e) for vector bundles. Fix

an embedding 0 : K - U(n) and let the metric on t be the pull-back
of an invariant metric on U(n). The Yang-Mills flow on U (n)-connections
pulls back to the Yang-Mills flow on K-connections. This implies parts (a)
and (b). Semistable holomorphic structures on X x G map to semistable
holomorphic structures on X x Gl(n), by functoriality of the canonical
reduction. This implies (c) and (d). It remains to show (e).
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We must show that two connections A1, A2 are grade equivalent if

and only if the connections A,,,,, A2,CXJ are in the same K(X)-orbit. First,
we show that S-equivalence is equivalent to topological S-equivalence,
that is, S-equivalence where instead of algebraic or holomorphic families
of connections we require only that the family be continuous, say in

the Sobolev topology. By [44], 4.15.2, there exists a universal space for
semistable G-bundles on X, which we call UG(X) (Ramanathan’s R3 . )
What we want to check is that UG(X) has the universal property for
topological families, at least locally. That is, a continuous family As
of semistable G-bundles defines a continuous family Bs in UG(X), in a
neighborhood of any so C S. Choose an embedding i : G - Gl(V) and
a line bundle L ~ X, such that any bundle ¿* (£) 0 L is generated by
globally sections and the higher cohomology of ~* (~) ~ L vanishes. A point
in UG (X) is a set of generating sections for ¿*(£) 0 L, together with a G-
structure on ~* (~). Since higher cohomology vanishes, the global sections of
¿* (As) 0 L form a topological vector bundle over the parameter space S. We
can choose a continuous family of sections fl(s), ... , that generate

c* (As ) for any s in a neighborhood So of so. Together with the G-structure
on these give the family Bs. Because is a good quotient
of UG(X), the family ~As~ is a continuous path in M. This shows that
Ao and As are S-equivalent, for any s C S. In fact is a coarse

moduli space in the topological category, that is, represents the functor
from topological spaces to sets that assigns to any topological space S the
set of continuous families Ss, s C ,S’ of equivalence classes of semistable
holomorphic G-bundles over X. This implies that the holomorphic bundles

corresponding to are S-equivalent. Hence, if AI,oo are isomorphic
then AI, A2 are S-equivalent.

Conversely, suppose Ai, A2 are semistable and S-equivalent. The
grade bundles for AI, A2 are isomorphic, by [44], 3.12.1. Also, the grade
bundles for Ai, A2 are isomorphic to the grade bundles of =

1, 2, since these bundles are S-equivalent. Since Ai,oo is flat, it is its

own grade bundle [44], 3.15. Flat connections isomorphic by a complex
gauge transformation are related by a unitary gauge transformation [16],
Proposition 6.1.10. Hence and A2,,, are in the same K(X)-orbit,
which completes the proof of (e).



737

3.2. Narasimhan-Seshadri theorems for equivariant
and parabolic bundles.

Let RK,r (X ) denote the moduli space of r-equivariant flat bundles
on X, up to equivariant isomorphism. Fix an action of F on X x K. If
A is a r-invariant connection on X x K, then the tangent vector @(A) is
also r-invariant. The Yang-Mills limit Aoo is therefore a r-invariant flat

connection. If A is semistable, then is flat, by 3.1 (c). The map

is a homeomorphism; the proof is essentially the same as in the non-
equivariant case. This equivariant correspondence theorem implies a cor-
respondence theorem for parabolic bundles. We need the following lemma
on existence of finite ramified covers.

LEMMA 3.2 ([18], 5.2). - If N is odd or b is even, then there exists

a vr : X -7 X totally ramified at ~i,.... xb.

Therefore, we can assume that X exists, at least after adding a marked
point with marking 0.

THEOREM 3.3. - Let G be a connected simple, simply-connected
Lie group with maximal compact subgroup K and X a curve with distinct
marked points xl, ... , xb. Let be markings with  1.

There is a homeomorphism

For rational markings, this follows from Theorem 2.3 and the bijec-
tions (7) and (6). We extend it to irrational markings by perturbation. We
note that Simpson’s method [48], see also [14] works just as well for the
non-rational case.

THEOREM 3.4. - For any (~1, ... , 1-1b) C there exists a rational

affine subspace C(JLl, ... , pb) such that for (u1, ... , ft) sufficiently close to
(~.cl, ... , in C(PI, - - -, there exist homeomorphisms
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is contained in an open face

For each maximal parabolic P, there exists a finite

These equalities define a rational affine subspace

Since W/Wp is finite and 2( is compact, m is non-zero. For (
sufficiently close to (~cl, ... , pb) in C (JLl, ... , we have

since the semistability condition for the two sets of markings is the same.

To prove the bijection for flat K-bundles, consider the manifold

with action of (

and group valued moment map (see [2]; one could use loop group actions
here as well)

The moduli space of flat bundles is the symplectic quotient

We claim that for v E TC(I-ii, . - . , and E sufficiently small, there exists
a homeomorphism

The quotient (9) can be taken in stages, first a quotient by U(1)v and then
a quotient by (K,,, x - - - K J-Lb) I U (1) v. As in the Duistermaat-Heckman the-
orem, it suffices to show that the one-parameter subgroup generated
by (vl, ... , vb) acts locally freely on ,JLb). Suppose (a, b, c, d) E

is fixed by



739

Since vl , ... , vb E t, we have 1,i = for some wl , ... , wb E W and

ci is a representative of wi, up to multiplication by K lb - We may assume
vb E t+. The fixed point set of is

Its image under the moment map is equal to

The stabilizer Kvb has roots a with (a, vb) = 0. Therefore, the Cartan tvb
of the semisimple part of KVb is

where are the fundamental weights corresponding to simple
roots al, ... , am with (aj , 0. Let us identify the Weyl alcove % with
a subset of K, using the exponential map. The torus T lb C KVb intersects
2l in the subset defined by the equations

The intersection of ( 11 ) with 2( b is therefore

belongs to this set then so does p + ev, for E sufficiently small,
which implies

Hence vb is a combination of simple roots vanishing on vb which is a

contradiction. 11

Working in the analytic category we can define a canonical homeo-
morphism for non-rational markings

as follows. X denote the ramified cover with covering group
7rl (X). Any flat bundle on with holonomies ~cb

defines a 7T1(X)-equivariant bundle on X. The corresponding Jri(X)-
equivariant holomorphic G-bundle E - X defines a parabolic G-bundle
E - X. The resulting map (12) is continuous and injective, since the ar-
gument that two flat bundles related by a complex gauge transformation
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are unitarily isomorphic [16], 6.1.10 does not use compactness of the curve.
Now consider the map

where U(~1, ... , JLb) is a closed neighborhood of (,ul, ... , J1b) in C (JLl, ... , JLb)
given by Theorem 3.4. Since this map is a homeomorphism for rational v
the image is dense. It follows that the map is a homeomorphism, since the
domain is compact and the image is Hausdorff. This completes the proof
of Theorem 3.3.

In this paper we do not deal with wall-crossing, that is, the change
in the topology of A4 (X; x; p) as the markings vary, see [15], [52] for the
vector bundle case.

4. Existence of parabolic bundles on the pro jective line.

We now turn to the question of which moduli spaces of parabolic bun-
dles are non-empty. We continue to identify the space of connections A(X)
on X x K with the space of holomorphic structures on X x G. Let x)
denote the set of holomorphic structures together with parabolic reduc-
tions at the marked points x1, ... , ~b and let A(X; x; be the subset

corresponding to parabolic semistable bundles with 
The moduli space JL) is the quotient of the A(X; x; JL)SS by grade
equivalence. Let f : - denote the map forgetting the
reductions. A(X; x; JL)SS is dense, if non-empty, in A(X; x). For the case
without markings, this follows from Ramanathan’s [44], 5.8 or properties
of the Shatz stratification [3]. The general case follows from the equiva-
lence with equivariant bundles. Indeed, the equivalence shows that for any
finite-dimensional complex submanifold S C A(X; x; /-t), Sss is open and

dense in S. Any two points A2 of x; JL) are contained in some S.
By taking A, E A(X; x; one sees that A2 C SSS C A(X; x; p)SS.

LEMMA 4.1. - For any markings the moduli space

JL) is non-empty if and only if the general element of .JlilG (X ; x; JL)
has a representative whose underlying principal bundle is ordinary semi-
stable.

Proof. The intersection of a dense set with an open dense set is

dense, hence x ; JL)SS is open and dense in x ; 
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Since the image of a dense set under a surjective map is dense, the image
of .4(X; x; n is dense in A4G (x; x ; D

We warn the reader that it is not true that the grade bundle of a
general element in the moduli space x; JL) (that is, the holomor-

phic bundle corresponding to a general element in is ordinary
semistable. For example, let X = P~, G = SL(2) and p = (PI, JL2, /-t3)
with 1-tl + p2 + I~3 = 1. Let E = I~l x C2 be the trivial bundle with general
parabolic reductions at xl, X2, X3. E admits a parabolic reduction with ordi-

nary degree -1 and parabolic degree 0. Hence Gr (E) has underlying bundle
C7 ( 1 ) EB O( -1), which is unstable. The moduli space in this case is a single
point, with unitary representative Gr(E) which is not ordinary semistable.
Nevertheless, a general element of ,A(X; x)ss is ordinary semistable.

PROPOSITION 4.2.

(a) If X has genus g &#x3E; 0, then Mc(X;x;JL) is non-empty.

(b)If X has genus g = 0, then .,Ilif G (X ; x; JL) is non-empty if and only
if the trivial bundle E = X x G with general parabolic structures at the
marked points xl, ... , xb is parabolic semistable.

Proof

(a) follows from the holonomy description (5) and surjectivity of the
commutator map K x K - K [24].

(b) By Lemma 4.1, Mc(X;x;JL) is non-empty if and only if a

semistable bundle E with general parabolic structures wg is parabolic
semistable. By the Birkhoff-Grothendieck theorem [25] any principal G-
bundle admits a reduction of the structure group to Tc . Since G is simple,

= 0. A principal Tc-bundle E with ci (S) = 0 is semistable if and only
if E is isomorphic to the trivial bundle, which completes the proof. 11

The trivial bundle X x G with parabolic structures (cpi, is parabolic
stable (resp. semistable) if and only if

for all maximal parabolics P and such that

there exists a reduction : X - G/P with
in position wi relative to cpi for each i = 1,..., b.
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Remark 4.3. - If is sufficiently close to zero, then

is isomorphic to the geometric invariant theory quotient
(G/B)b//G. More precisely, if

G-1

for any maximal parabolic P and any (w1, ... , Wb), then any reduction
a : X - S/P with deg &#x3E; 0 violates semistability. Therefore,
in this case consists entirely of parabolic bundles whose
underlying bundle (forgetting the parabolic structure) is trivial. Restricting
the condition (13) to constant reductions a gives precisely the stability
condition for an element of [8]. A symplectic argument for this fact
is given in Jeffrey [31].

Since Ab, for b &#x3E; 3, is a polytope of maximal dimension, it suffices to
consider the case that ~1, ... , pb are rational and lie in the interior of 2l.

In this case, Pi = B for all xi . Suppose cpi = giB for some gl , ... , gb E G.
The element a(xg) e G/P lies in position wi relative to Spi E G/B only if

lies in the Schubert cell gicw,. Therefore,

PROPOSITION 4.4. - The polytope Ab is the set of points
(Al, - - -, JLb) E 2( b satisfying

for all maximal parabolics P and (wl, ... , wb) E (W/Wp)b such that there
exists a holomorphic curve a : G"/P with u(xi) E for general
gi E G.

We call an inequality (13) essential if it actually defines a facet (codi-
mension one face) of Ab. It remains to show that the essential inequalities
are those corresponding to the structure coefficients nd (Wl, - - - , Wb) = 1.

The argument is the same as that of Belkale [7] in the vector bundle case.
Let (P; w1, ... , wb; d) define an essential inequality and let (A 1, - - - , pb) E 2(b
be a point which violates that inequality and no others. Let £ be a triv-
ial G-bundle over PB with general parabolic structures cpi and markings
Jli. Since £ is unstable, the canonical parabolic reduction as is non-trivial
and defines an inequality which is violated by (~c 1, ... , Since only one
inequality is violated, as must be a reduction to a maximal parabolic and
the corresponding inequality must be given by the data (P; wl , ... , wb; d).
The slope of as is -d -f- pi). Since the canonical reduction is
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the unique reduction of this slope, we must have Wb) = 1. This
completes the proof of Theorem 1.1.

5. The inequalities for type G2.

We compute the small quantum cohomology for the generalized flag
varieties G/P with G of type G2 and P maximal, using a variation on the
quantum Chevalley formula of D. Peterson [42], [22].

5.1. The quantum Chevalley formula.

Let Cl(Gj P) E Z be the first Chern class of G/P. For any
root (3, let h,~ denote the corresponding co-root. Let a denote the unique
simple root, non-vanishing on up.

THEOREM 5.1. - For any u E W/Wp with minimal length repre-
sentati ve u,

where the first sum is over positive roots ~3 with i
and the second is over positive roots ,C3 with

5.2. Small quantum cohomology for G2/P, P maximal.

Let G be the group of type G2, with simple roots a 1, a2 and positive
roots

The highest root is We fix the inner product on t* so that (/34, (34) = 2
and use it to identify t with t*. The fundamental weights are ui = (35, c~ =
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,34. The coroots and their pairings with the fundamental weights are

Let Pl , P2 denote the corresponding maximal parabolics, so that the
generalized flag varieties G / Pj, j = 1, 2 have dimension 10. The Weyl
groups Wpl , Wp2 are isomorphic to ~2 . Therefore, the rational cohomology
of GIPI is generated by a single generator y1 in degree 2, with the single
relation y6= 0. The first Chern classes in H2 (G/Pi ) ^-_J Z are

We denote by yi E the unique Schubert class of codegree 2i,
with ~o = l. The multiplication tables are given below. The second row in
the table is given by Peterson’s formula. Since the cohomology is generated
by H2, the remaining rows in the table may be computed recursively from
the previous rows.

From the second row of the tables one may also compute the presen-
tation of the quantum cohomology rings, in terms of the generator y = yi.
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First, one obtains the following Giambelli-type expressions for the Schubert
classes. In we have

From the last entry in the first row in the tables one obtains

PROPOSITION 5.2. - is generated by a single gener-
ator y of degree 2, with relation y 6 I = 4qyl . QH* (G/P2) is generated by a
single generator y of degree 2, with relation y 6 9q2.

In particular, both of these rings are semisimple at q = 1, since

the relations have no multiple roots. Neither the classical integral nor
quantum rational cohomology of G/Pl and GIP2 is the same as that of

complex projective space CP , although the classical rational cohomology
is the same.

5.3. The inequalities.

From the tables, one may read off 33 classical and 40 quantum
inequalities. Some of the quantum inequalities do not define facets; it would
be interesting to determine which ones. For example, the last entry in the
table for G/Pl gives the inequality + /~3 )  2 which does not
define a facet since (WI, WI) = 2/3 for any p 
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