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SMOOTHNESS AND GEOMETRY OF BOUNDARIES

ASSOCIATED TO SKELETAL STRUCTURES I:

SUFFICIENT CONDITIONS FOR SMOOTHNESS

by James DAMON (*)

Introduction.

There are a number of constructions which begin with a (piecewise)
smooth object and associate to it a singular set which contains information
regarding the relative position, geometry and shape for the original object.
Examples are the "conflict set" (Maxwell set) associated to a parametrized
family of smooth functions, the Voronoi set (skeleton) associated to a

collection of regions with (piecewise) smooth boundaries, the caustic set for
wave front evolution, and the shock set for hyperbolic equations. Several
of these methods are used for analyzing shapes in computer imaging and
vision, e.g. the Blum medial axis [BN], chordal locus of Brady and Asada,
[BA] and arc-segment medial axis of Leyton[Le].

Figure 1. Skeletal structure and associated boundary.

(*) Partially supported by National Science Foundation, grant DMS-0103862.
Keywords : Skeletal structures - Whitney stratified sets - Shock set - Radial shape
operator - Grassfire flow - Radial flow.
Math. classification : 57N80 - 58A35 - 68U05 - 53A07.
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Of these the prominent method introduced by Blum identifies the
locus of centers of circles in 2D (or spheres in 3D) which are contained
in the object and are tangent in at least two points (or having a single
degenerate tangency). This locus is called the Blum medial axis (also
called the "central set" in mathematics literature, see Yomdin [Y]). It can
alternately be described as the Maxwell set (conflict set) for the family of
distance functions on the boundary as in Mather [M2], or the shock set
for the "grassfire flow" as in Kimia-Tannenbaum-Zucker [KTZ]. Weakening
the inclusion requirement leads to a more general "symmetry set" of

Bruce-Giblin-Gibson [BGG]. The definitions naturally extend to higher
dimensions.

The medial axis is a prototype for the examples we consider. In the

generic case it is a Whitney stratified set on which are defined associated

geometric structures containing additional geometric information. There is
a multivalued radial vector field U from points of the medial axis M to the

corresponding points of tangency on the boundary and the radial distance
function r As well there are differential geometric properties of M;
and in 2D and 3D there is associated a natural frame field on M defined

using a normal vector field and the gradient of r (see [P3]).

To treat the medial structure (i.e., medial axis and its associated

structure(s)) as an intrinsic object of interest, we must be able to perform
operations on it and obtain medial-like structures which have associated
smooth boundaries for which we can deduce geometric properties. For

example, we would like: to replace the medial axis by an approximation
(using e.g. Kimia et al. [KTZ], Szekley et al. [SN], or Siddiqi et al. [SB]);
to be able to deform the medial structure (rather than the entire object)
for comparison with that of another object; to replace the medial axis by a
simpler structure which emphasizes certain features (e.g. the "M-rep"
representation of Pizer and coworkers or in combination with

statistical methods for medical and biological problems, to determine

for a population of objects an "average medial structure" which exhibits

averages and principal components of properties of the individual medial

structures, and from which they can be obtained as perturbations [P2].

However, there is no guarantee that beginning with medial structures
of smooth boundaries, that the resulting structure will be a medial structure
of an associated boundary, nor that the associated boundary need be smooth

(see Fig. 2). Furthermore, we ask how can we determine the geometric
properties of the resulting associated boundary? In this paper our goal is
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to give answers to these questions.

Figure 2. Failure of smoothness for the boundary associated to a
skeletal structure.

We introduce as a fundamental object a skeletal structure (M, U)
in lRn+1. It consists of an n-dimensional skeletal set M C lRn+1 (which will
be a special type of Whitney stratified set) and multivalued vector field U
on M. We relax many of the conditions usually satisfied by Blum medial
axes such as, for example, not requiring that all vectors from a point in M
have the same length; nor do we require that M only exhibit the properties
normally exhibited by generic medial axes.

Associated to such a skeletal structure we define an associated

boundary ,~3 via a radial map on M. To determine the smoothness and

geometric properties of B, we define for a skeletal structure a radial

shape operator Srad and on edge points of M an edge shape operator S E.
A compatibility condition for U is introduced using a compatibility
1-form qu which relates the direction of U with the gradient of its

magnitude r (as U is multivalued so is The shape operators we
define are not shape operators in the usual differential geometric sense but
rather measure how U bends relative to M, resp. 8M, without explicitly
introducing the differential geometry of M or 8M. Our shape operators
need not be self-adjoint.

In this first part of the paper, we provide (necessary and) sufficient
conditions in terms of the radial and edge shape operators and a

compatibility condition that the boundary B is smooth. In the second

part [Dl], we use the same shape operators to determine in the Blum case
the differential geometric shape operator for the boundary. This allows us
to compute all of the intrinsic geometry of the boundary in terms of the
medial data. In the last part [D2], we apply the results to give for 1D and 2D
medial axes, specific formulas for the geometry of the boundary of objects
in terms of medial data. In particular, we define on the medial axis using
only the unit radial vector field a "geometric medial map" which reveals
the main geometric features of the boundary at the corresponding points.
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This includes both intrinsic differential geometry and geometry relative to
the medial axis and allows comparison of boundary geometry purely from
medial data.

The sufficient conditions for smoothness involve three conditions. For

the first, we let Kr i denote the principal radial curvatures which are the
eigenvalues of the radial shape operator. Second, we also consider the
principal edge curvatures KE i which are generalized eigenvalues of the edge
shape operator.

We consider a skeletal structure (M, U) which satisfies the following
three conditions:

9 Radial curvature condition: for all points of M off 8M

(1) r  for all positive principal radial curvatures 
KR Z

. Edge condition: for all points of OM (closure of 0M)

(2) r  for all positive principal edge curvatures 
z J

. Compatibility condition:

(3) qu = 0 for all singular points of M (which includes edge points).

The radial curvature, edge, and compatibility conditions involve

choices of values for U and hence are multi-valued conditions at each

point. In the radial curvature condition it is to be understood that the r

value associated to a given value of U satisfies the inequality for the shape
operator associated to that value. Thus, at smooth points of M, we have
inequalities corresponding to each side of M.

Then, we show (Theorem 2.5) that the associated boundary B is an
immersed topological manifold which is smooth at all points except possibly
those corresponding to singular points of M (the set of singular points is
denoted Msing ) ; and at those points B is weakly C1 (which means that it has
a unique well-defined limiting tangent plane at these points - this implies
it is C1 at points coming from strata of M of codimension 1). Furthermore,
the map from smooth points of B by projection along the lines of U will
be a local diffeomorphism onto the smooth part of M. Also, B will only
fail to be an embedded manifold due to the nonlocal intersection of points
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corresponding to distant parts of M. Hence, if there are no such nonlocal
intersections, ,t3 is an embedded submanifold.

To establish the smoothness, we consider a "radial flow" which is a

type of "backward flow" of the grassfire/level-set flow. However, neither the
flow nor its level sets are smooth but rather they are "stratified". While the
radial flow can be defined locally on one side of M, to define the flow globally,
we introduce the "double of M" on which is defined a "normal bundle"

to M. We then use the global radial flow defined on the normal bundle to
prove that the skeletal set M has a "tubular neighborhood" (Theorem 5.1).
The boundary ,L3 is obtained from the boundary of the tubular neighborhood
by flowing out by the radial flow.

The radial flow is an important part of the total geometric structure
and reveals the role of the three conditions. The first two conditions allow

us to control the local behavior of the radial flow, ensuring that singularities
do not develop from smooth points (as in Fig. 2), nor further singularities
from singular nor edge points. These conditions are necessary to ensure the
level sets of the flow project diffeomorphically along the direction of U onto
the smooth points of M. These conditions are shown to be necessary in the
Blum case.

While the first two conditions are open conditions and hence robust,
the third compatibility condition is not and reveals an essential feature

about the level hypersurfaces of the flow. For any time t  1 the level

hypersurfaces are singular at points coming from the singular points
of M (including edge points). The compatibility condition ensures that
only at t = 1 when the flow reaches the boundary do the singularities
simultaneously disappear so the boundary becomes weakly C1 at the

points corresponding to singular points of M.

In the second part of this paper we shall determine the geometric
properties of the boundary in the Blum case. Earlier work sought to relate
the differential geometry of the boundary with that of the medial axis
modified by differential properties of r. We shall see that a more direct
approach follows from analyzing the evolution of these radial and edge
shape operators under the radial flow, yielding simple expressions for the
differential geometric shape operator on the boundary. As well this allows
us to determine the effect of "distorting" diffeomorphisms of the medial
structure on the associated boundary via its modification of these operators.

This author would like to thank Stephen Pizer, his coworkers including
Sarang Joshi, and students Paul Yushkevich, Andrew Thall, and Tom
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Fletcher, whose work concerning the geometric and smoothness properties
of boundary in terms of the differential geometry of the medial axis in the
Blum case, raised questions for more general "medial structures", leading
to the methods and results the author introduces here.
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1. Skeletal structures.

Skeletal sets. - We begin by defining exactly what we mean
by "skeletal structures". These will include the Blum medial axes in

the generic case (as well as many nongeneric cases). We consider

Whitney stratified sets satisfying extra conditions. We recall a Whitney
stratified set M may be represented as a union of disjoint smooth
strata Ma satisying the axiom of the frontier: if M,~ n M, =,4 0, then
M,~ C Ma ; and Whitney’s conditions a) and b) (which involve limiting
properties of tangent planes and secant lines). For example, for generic
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boundaries, the Blum medial axis is a Whitney stratified set. This follows
from basic properties of Whitney stratified sets (see e.g. [M1] or [Gi])
together with results of Mather [M2] on the distance to the boundary
function.

We let Mreg denote the points in the top dimensional strata (this is
the dimension n of M and these points are the "smooth points" of M).
Also, we let Msing denote the union of the remaining strata, and 8M
denote the subset of Msing consisting of points of M at which M is locally
an n manifold with boundary, with the points being boundary points. We
refer instead to these points as edge points to not confuse them with the
"boundary associated to M", that we will shortly define. The points of
closure of 8M will be called edge closure points. The closure of 8M will be
denoted 8M. An example of an edge closure point is a "fin creation point"
for the Blum medial axis (see Fig. 6).

Three important consequences of M being a Whitney stratified set
are:

(i) for xo E Msing and a closed ball of radius E about xo for

sufficiently small E &#x3E; 0, the pair (B~ (xo ), M n BE(xo)) is homeomorphic
to the cone on M n SE (xo)), for ,S’~. (xo ) the sphere of radius E
(also M r1 SE (xo) is again a Whitney stratified set and is called the lank
of M at xo) ;

(ii) the local topological structure of M in a sufficiently small

neighborhood of xo is independent of points xo in a given connected

component of a stratum Ma of M; and

(iii) M can be triangulated (see e.g. Goresky [Go] or Verona [V]).
As a consequence, the connected components of B~. (xo ) BM are well-

defined and will be called the complementary local components for xo. Also,
the connected components of Mreg ) are also well-defined. We
refer to these as the neighboring local components of xo. By adding the
complement of M and refining the strata of M into connected components,
we obtain a Whitney stratification of JRn+1. Then, in a sufficiently small
open neighborhood W of xo, the boundary of a complementary local

component Ci for xo will locally be a union of neighboring local components
of xo. We denote this by We will assume from now on that we have a

Whitney stratification with these properties.

If T = exists for x2 E Mreg and xo, then we refer

to T as a limiting tangent space at xo.
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Figure 3. Blum medial axis in R 2 and associated radial vector held.

DEFINITION 1.1. - An n-dimensional compact Whitney stratified set
M C JRn+1 is a skeletal set if

1) for each local neighboring component Ma of xo E Mj3, there is a
unique limiting tangent space from sequences of points in Ma (by
properties of Whitney stratified sets C Ta Xo M) ;

2) locally in a neighborhood of a singular point xo, M may be
expressed as a union of (smooth) n-manifolds with boundaries and

corners Mj, where two such intersect only on boundary facets (faces,
edges, etc.) ;

3) if xo E 8M then those Mj in 2) meeting 8M meet it in an

(n - l)-dimensional facet.

We refer to the Mj as local manifold components for xo. If Mj
meets OM in an (n - I) -dimensional facet, we call it an local edge manifold
component for xo.

Example 1.2. - In JR2, a skeletal set which exhibits the generic
properties for the Blum medial axis only has simple branching as shown
in Fig. 3. A general skeletal set M in R 2 can consist of any finite collection
of smooth curve segments which only meet at their end points, as in Fig. 4.
Two consecutive curve segments meeting at a branch point separate off a

complementary component Ci.

In R~, models for the generic local behavior for Blum medial axes
at nonsmooth points are given in Fig. 6. To illustrate the terminology
we consider a fin creation point xo as in Fig. 6.c. There are two local
complementary components, one above and one below M. The local

components of xo are decomposed into five local manifold components,
four curved retangular components and a curved triangular component,
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Figure 4. Example of general skeletal set in R 2

which is the only edge manifold component for xo. Possible more general
skeletal sets are given in Fig. 7.

For a general skeletal set M C R~, the link of a singular point xo is
a one dimensional Whitney stratified set in a two sphere, L C ,S’2. Here L
consists of a finite number of smooth curve segments which only meet at
the ends, i.e., it is a skeletal set in S’2.

The connected components Ci of correspond to the local

complementary components Ci of xo.

Smoothness of vector fields and functions on skeletal sets. -

To define smooth mappings and vector fields on a skeletal set M, we have
to vary somewhat from standard definitions. Usually smooth mappings or
vector fields on a (Whitney) stratified sets are obtained as restrictions of
the corresponding smooth objects defined on the ambient space. This will
not be the case here. To define smoothness of a mapping, resp. vector field,
f : M -~ N from a skeletal set M C JRn+1 to a manifold N (N = JRn+1 for
a vector field f), we require that at regular points of M, f is smooth in the
usual sense. At non-edge singular points xo, we require for each neighboring
local component Ma that liMa is smooth as a function on manifold with

boundary and corners; so in particular Ma can be extended to a smooth
manifold in a neighborhood of xo and f can also be extended to be smooth.

Lastly, at edge points we must deviate from the standard definition
of smoothness on a manifold with boundary to be able to include examples
such as the Blum medial axis.

DEFINITION 1.3. An edge coordinate parametrization at an edge
point xo E 8M consists of an open neighborhood W of xo in M, an

open neighborhood W of 0 in R’ ... , xn) E Xn &#x3E; 01
and a differentiable homeomorphism W such that : both

~ and are diffeomorphisms.

An edge coordinate parametrization for a edge manifold component
Mj of an edge closure point xo consists of an edge coordinate parametrization
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for an extension of Mj to a smooth manifold with boundary containing xo
in its boundary.

Then, by smoothness of a mapping or vector field on a skeletal
set M at an edge (or edge closure) point xo we will mean that the

composition with an edge parametrization is smooth. As usual the edge
parametrization must be compatible with coordinate charts on Mreg (and
for edge parametrizations at other edge points). It follows that a vector

field or function on M which is smooth at an edge point when viewed as
being on a manifold with boundary, then they are also smooth for the edge
parametrization (but not conversely, see Example 1.4).

For a multivalued vector field U on M, by a smooth value of U at
a point xo E Mreg, we mean a neighborhood W of xo in M and a choice
of values of U at points of W which together form a smooth vector field
on W. This extends to a local component Ma of a point xo E Msing. We use
analogous notation for multivalued functions such as the radial function.

Example 1.4 (Smoothness of the radial vector field of the medial axis).
The Blum medial axis M of an object/region Q C JRn+1 with smooth
boundary ,l3 is the Maxwell set (or conflict set) of the family of distance
functions on the boundary

viewed as a function of x with parameters y (see [M2], [BGG], [Brz] and
more recently [Gb]). The Maxwell set consists of parameter values y for
which f, as a function of x, has two local minima with the smallest local
minimum value.

Along with the distance to the boundary function is the canonical
vector field U(x, y) = (0, x - ~) defined on JRn+1 x If S denotes the

set of critical points with common minimum value lying above the Maxwell
set, then the restriction of U to ,S’ projects to the multivalued Blum radial
vector field U on M.

In the generic case, the regular points of M correspond to

"Ai = points of f ; the branch points, to "A 3 A1 A1 A1" points;
the edge points, to "A3" points; fin creation points, to "A1 A3" points; and
"6- junction" points, to points. For dim M = n  2, these describe
all of the generic behavior. In ,S’ the corresponding sets are the transverse
intersection of some combination of A1 and A3 critical sets which are

smooth manifolds. The projections to JRn+1 of the Ai, and A4 sets
are diffeomorphisms onto the smooth, resp. branch points of M, and the
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composition of U with the projection is U, so U smooth on M. For A1A3
points, on the local components other than the edge component, the two

singular behaviors are and A3 behavior. For the portion of the boundary
corresponding to A1 singularities, in a neighborhood in JRn+1 of the fin
creation point, there are unique minimum vectors to this portion of the

boundary which vary smoothly with the points. The radial vectors on this
side are those coming from points on the medial axis. Hence, the radial
vector field on the one side for the non-edge local components is smooth. As
the radial vector pointing in the other direction is the orthogonal reflection
of this vector field through the tangent spaces of M, we conclude the radial
vector fields on both sides are smooth.

There remain edge points (A3 ) and edge closure points (edge
components for A1 A3-points) . Because the edge component for a fin creation
point continues smoothly through the fin creation point (although not on
the medial axis), this case reduces to the case of an edge point. For an edge
point (A3), we consider the projection to JRn+1 of the A3 singular set. Unlike
smooth and branch points, this projection is not a local diffeomorphism. In
the generic case for A3 points, f is given, after change of coordinates in y
and parametrized change of coordinates in x, by the standard model

For this model equation,

which maps by a 2 -1 fold map onto the Maxwell set M. Then, an edge
coordinate parametrization is given by the projection restricted to half of S.

Specifically, it is defined by (t1, ... , tn) with t1 &#x3E; 0 mapping into ,S’ by

which then projects onto M (see Fig. 3) The Blum (multivalued) radial
vector field U is the projection of U on S, and it is smooth when composed
with the edge parametrization (as the projection on one half of ,S’ is obtained
by composing the diffeomorphism sending x 1 H -x 1 with the projection
on the other half). For A1 A3 (fin creation) points, the edge parametrization
for A3 is intersected with the Al submanifold so U composed with the edge
parametrization is again smooth.

Hence, for edge points U is also smooth on M using edge coordinates

(hence, so also is the radial function r 
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Figure 5. Edge parametrization for neighborhood of an edge
point on a skeletal set.

Radial vector fields on skeletal sets

DEFINITION 1.5. - Given an n-dimensional skeletal set M C 

a radial vector field U on M is a nowhere zero multivalued vector held

satisfying the following conditions:

1) (Behavior at smooth points). For each smooth point xo E Mreg,
there are two values of U which are on opposite sides ofTxo M (i.e., their dot
products with a normal vector are nonzero with opposite signs). Moreover,
on a neighborhood of a point of Mreg, the values of U corresponding to one
side form a smooth vector field.

2) (Behavior at non-edge singular points). Let xo V 8M, be a singular
point, with Ma a local component of xo. Then, both smooth values of U
on Ma extend smoothly to val ues U(xo) on the stratum of xo. If Ma
does not intersect 8M in a neighborhood of xo, then U(xo) ~ 
Conversely, to each value of U at a point xo E Msing, there corresponds a
local complementary component Ci of M at xo such that the value U(xo)
locally points into Ci in the following sense. The value U(xo) extends
smoothly to values U(x) on the local components of M for xo in 8Ci. For
a neighborhood W of xo and an E &#x3E; 0, x + tU(x) E Ci for 0  t  E and

for x E 

3) ( Tangency behavior at edge points). At points xo E 8M, there is a
unique value for U which is tangent to the stratum of Mreg containing xo
in the closure and points away from M.

Because of the properties of the radial vector field, we shall see that
the singular points of M are naturally subdivided into edge points, edge
closure points and the remaining singular points. The tangency of the
radial vector field at edge points contrasts with the transverse behavior at

non-edge closure points. At edge closure points such as fin creation points,
there will be a mixture of both conditions.

For a radial vector field U, we may represent U = r - Ul , for a positive
multivalued function r, and a multivalued unit vector field U1 on M.
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Figure 6. Local generic structure for Blum medial axes in 1R3 and the
associated radial vector fields.

Figure 7. Possible nongeneric skeletal structures in JR3 and associated
radial vector fields.

These satisfy analogous properties to U, namely Ul is a radial vector field
on M, and on small neighborhoods of points in Mreg, there are two smooth
nonvanishing choices for values of r, and r extends smoothly to points
xo (E Msing along local components of Mreg containing xo in the closure.

Remark 1.6. - For a radial vector field U to be a Blum radial

vector field it satisfies additional properties: at each smooth point xo, the
two values U(l) and U~2) must satisfy JIU(1)11 - II U(2) II and U (1) _ U (2)
is orthogonal to However, neither of these properties are necessary
for smoothness of the boundary nor to determine the geometry. Instead,
we shall see the key relevant Blum condition is given by a compatibility
condition via the compatibility 1-form (see §§2 and 6).

We introduce additional "initial conditions" necessary for a radial

vector field on a skeletal set to ensure that near singular points the radial
flow we shall define is initially well behaved. Some such conditions are
necessary as illustrated in Example 1.8.

DEFINITION 1.7. A radial vector field U on a skeletal set M satisfies

the local initial conditions if it satisfies the following:
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1) (Local separation property). For a local complementary compo-
nent Ci of a non-edge point xo ~ 0M, let 0Cz = UMi denoting the local
decomposition of OCi into closed (in W) n-manifolds with boundaries and
corners. Then the set

is an embedded Whitney stratified set such that distinct int(Mi) and
int(Mj) lie in separate connected components of the complement of Ci BX .

2) (Local edge property). For each edge (closure) point xo E OM,
there is a neighborhood W of xo in M and an E &#x3E; 0 so that for each smooth

value of U, the radial t) = x + t . U is one-one on W x [0, ~~ .

Example 1.8. - The tangency behavior of radial vector fields at

edge points xo E 8M require the special "local edge property" which is

unnecessary for other singular points. It is necessary because there are

manifolds such as the graph M of the function f (x ) = exp ( -1 /x2 ) cos ( 1 /x)
for x  0 and f(0) = 0. The tangent line to M at 0 is the x-axis. However,
there are radial vector fields on M whose angle decreases faster than

so that on no neighborhood of 0 is the local edge property
satisfied (see Fig. 8.a).

Also, the "local separation property" for singular points is illustrated
in Fig. 8.b. That it is also necessary is illustrated in Fig. 8.c, where we
exhibit a vector field which satisfies all of the properties of a radial vector
field except for the local separation property. The associated boundary can
then have unavoidable singularities.

Figure 8. a) Failure of local edge property. b) Illustration of the local
separation property. c) Failure of local separation property.

We shall see that the conclusion of Theorem 2.5 already follows for
a skeletal structure (M, U) consisting of radial vector field U on a skeletal
set M of dimension  2 and satisfying the local initial conditions. However,
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for higher dimensional skeletal sets M subtle points from geometric topology
prevent us from deducing the full theorem without further restictions on
the local structure of M. We address this issue next.

Abstract boundaries and the topology of local complemen-
tary component. - Suppose Ci is a local complementary component of
a singular point xo E Msing. We may then express the local boundary of Ci
in a sufficiently small open neighborhood W of xo as a union of n-manifolds
with boundaries and corners i = 1,.... (which are closed in W).
We introduce an "abstract version of the boundary" of Ci. It consists of a
copy of Mi for each smooth value of U on Mi pointing into Ci (there are,
thus, at most two copies of a given Mi ) . We then make identifications on
facets mi rl Mj of boundaries of copies of Mi and Mj if the corresponding
smooth values for these copies agree on mi n We denote the resulting
space by aCi .

DEFINITION 1.9. - The space 013j just constructed will be called
the abstract boundary of Ci.

For example, Fig. ll.b shows the abstract boundary for the upper
complementary component of a fin creation point. In the case xo E the

abstract boundary of the single complementary component is a "double" of
the local manifold with boundary near xo in the usual sense of differential
topology, (see e.g. [Mu]).

Figure 9. a) Link for a boundary of a complementary component of a
singular point. b) Link of the associated abstract boundary for the same
complementary component.

Example 1.10 (Abstract boundaries in ]R2 and ]R3). - For a general
skeletal set M C ]R2, which consists of a finite collection of smooth curve
segments only meeting at their end points, two curve segments meeting at
a branch point separate off a complementary component Ci. As only one
smooth value on a curve segment can locally point into C2, the abstract

boundary agrees with o9C,.
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By our earlier discussion, for a general skeletal set M C R~, the link L
of a singular point xo is a one dimensional Whitney stratified set in a two
sphere, L C ,S’2 ; and the connected components Ci of correspond to
the local complementary components Ci of xo. Then, the properties of the
abstract boundaries in terms of Ci are given by Lemma 1.12. It follows that
for skeletal sets with radial vector fields in R~, the abstract boundaries will
be homeomorphic to 2-disks.

More generally for a skeletal set which supports a radial vector field
satisfying the local initial conditions, the complementary components are
contractible.

LEMMA 1.11. - Let M C JRn+1 be a skeletal set with radial vector
field U satisfying the local initial conditions. Both the complementary
component Ci of any point in M and the associated complementary
component Ci are contractible.

The proof of this lemma will be given in §5. We deduce a consequence
for skeletal sets in R 3

LEMMA 1.12. - Let M C JR3 a skeletal set with radial vector

field U satisfying the local initial conditions. Let CZ be a complementary
component of xo E M, with associated complementary component Ci, then
the associated abstract boundary of Ci is homeomorphic to a 2-disk. If
instead some complementary component Ci of M is not simply connected,
then M does not support a radial vector field satisfying the local initial
conditions.

Proof. By Lemma 1.11 CZ is contractible. However, its closure C’
may not be contractible. Also, its topological boundary will consist of:

the piecewise smooth boundary of 0’ along with a finite number of tree
structures extending into the interior of C’ (see, for example, Fig. 9.a).
As one follows the boundary Ci, choosing at branch points so the inward
pointing vector field varies continuously, we follow the entire boundary
(except branch points) exactly once. Hence, the boundary of C’ is the

image of an and hence, C-’ is the image of a 2-disk identified at a
finite number of points on the boundary. The construction of the abstract
boundary will first remove the intersection points on the boundary. Second,
for each segment of tree structure inward from the boundary, it will cut

it replacing it by a pair of unidentified edges (see Fig. 9.b). The resulting
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object is still a two disk with boundary. After a finite number of such cuts,
we obtain the link of the abstract boundary. Thus, the abstract boundary
is the cone on this link and hence homeomorphic to a 2-disk.

For the second part, by Lemma 1.11 if the skeletal set supports a
radial vector field, then any Ci is contractible. 0

We include this as a restriction on M in higher dimensions as part of
our definition of a skeletal structure.

DEFINITION 1.13. A skeletal structure (M, U) in JRn+1 consists of
an n-dimensional skeletal set M C JRn+1 and a radial vector field U on M

satisfying the local initial conditions, such that all abstract boundaries of
local complementary components are homeomorphic to n-disks.

Remark 1.14. - We note that for regions with piecewise smooth

boundary, the Blum medial axis ends at "corners of the boundary" and the
radius function r becomes 0 at such points. We are specifically excluding
from consideration behavior at such points as our radial vector field is

always nonzero.

DEFINITION 1.15. - Given a skeletal structure (M, U), ure define the 
associated boundary

where the definitions includes all values of U(x) for a given x.

Example 1.16. - By our discussion in Example 1.4 if Q c I~2 or R 3
is a region with a generic smooth boundary B, the Blum medial axis M
is a skeletal set. Moreover, the associated radial vector field U consisting
of vectors from points in M to the associated points of tangency to B is a
radial vector field satisfying the local initial conditions. Thus, in the generic
case, (M, U) is a skeletal structure. Furthermore, the original boundary B is
the boundary of the skeletal structure obtained from the Blum medial axis.

On the other hand, there are also many circumstances where a

nongeneric medial axis with its radial vector field is a skeletal structure.
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2. Shape operators and smoothness of
associated boundaries.

We are now ready to introduce the shape operators associated

to skeletal structures which will be fundamental for understanding the
structure of the boundary.

Radial shape operators and principal radial curvatures.-
Given a skeletal structure (M, U) in JRn+1, we define for a regular point
xo and each smooth value of U defined in a neighborhood of xo, with
associated unit vector field Ul , a radial shape operator

for v E Txo M. Here proju denotes projection onto Txo M along U (which in
general is not orthogonal to Txo M) . We observe that Srad : 
is linear. However, because U1 is not necessarily normal and the projection
is not orthogonal, it does not follow that Brad is self-adjoint as is the case
for the usual differential geometric shape operator. However, this operator
does measure how U bends relative to M.

First, we choose a basis ~vl , ... , vn ~ for Txo M and for each i represent

We write this and other equations in vector form. We let v denote the
column vector with i-th entry vi, Av with i-th entry a2, 8U1/8v with i-th
entry Also, Sv is the matrix with i j-th entry s2~ and is a matrix
representation for Srad with respect to the basis ~vl , ... , vn ~ . Then, (2.1)
can be written in vector form by

In this equation we interpret Av - Ul as the column vector with t-th entry
the vector ai ~ Uni ; while ST - v denotes the column matrix obtained by
matrix multiplication of the scalars in SJ (the transpose of times the

vectors in v.

Although Ul not being orthogonal to M prevents Sv from being self-
adjoint, IIU11! = 1 implies 8U1/8vi . U1 = 0. Applying dot product with U1
to each entry in (2.2) allows us to solve

where v - Ul denotes the column vector with i-th entry v2 - Ul.
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DEFINITION 2.1. - For a point xo and a given smooth value of U,
we call the eigenvalues of the associated operator Brad the principal radial
curvatures at xo, and denote them by xr i.

Remark 2.2. - We emphasize that because there are two smooth
values of U at smooth points, we obtain two shape operators at each
point. Moreover, near a non-edge point xo E Msing, for each local smooth
component of Mreg for xo, each smooth value of U will extend smoothly
to xo. Thus, to each value of U and each local component, such a

shape operator will be defined at xo. Hence, any statement involving
the shape operator will involve all of these for each point.

Edge shape operators on aM. Next, we define an edge-shape
operator at points of 8M which will measure how Ul bends relative to 8M.
Given a point xo E OM and a smooth value U at xo, we let n be the unit
normal vector field to M in a neighborhood of xo. Then, we define the
edge-shape operator by

for v E Txo M. Here proj’ denotes projection onto (n) along Ul .

Alternately if xo is an edge closure point with Mj an edge manifold
component of xo, we can define an edge shape operator using the smooth
value of U defined on Mj. To simplify the discussion, we concentrate on the
case of an edge point with the appropriate substitution of notation to be
understood for an edge closure point.

Given a basis of we also choose a vector v,,
in the edge coordinate system at xo so that is a basis

Txo M in the edge coordinate system and so that vn maps under the edge
parametrization map to c ~ where c &#x3E; 0 (the specific value of c is
immaterial). Then, we can compute a matrix representation SE v for S’E in
a manner analogous to (2.2). Let n be a unit normal vector field to M on a
neighborhood W of xo.

" 

3=1

As in (2.2), this equation can be written in vector form
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where the vectors AU and CU are again n-dimensional column vectors,
Bu v is an n x (n - 1)-matrix, and v is the (n - 1)-dimensional vector with
entries vi, - - . , vn_ 1. Then, SE v - 

To define the principal edge curvatures of M at xo, we use generalized
eigenvalues of SE V. Recall that the generalized eigenvalues of an ordered
pair (A, B) of n x n-matrices consists of A such that A - ~ ~ B is singular.
We let denote the n x n-diagonal matrix with 1’ s in the first n - 1
diagonal positions and 0 otherwise. We call the generalized eigenvalues of
(SE v, the principal edge curvatures of M and denote them by 

Remark 2.3. - The matrix representation is unusual in that we

change the basis in the source to the target by replacing vn by n. We shall
see that this is exactly what is needed. Also, we note that had we multiplied
vn by a nonzero constant, this would only change the last column of 
However, this would not alter the generalized eigenvalues of (SE v, In-1,1).
Finally, for the edge condition we are only really interested in the real

(positive) generalized eigenvalues.

Compatibility 1-forms. - We now have defined two of the three
invariants needed for the conditions introduced at the beginning of this
paper. For the third condition, we define the compatibility 1-form. Given
a smooth value for U, (possibly at a point of MSirlg), we write U = r - U1
for a unit vector field Ul and define v . Ul . Then, the compatibility
1-form

This is a multivalued 1-form.

Remark 2.4. - The compatibility condition requires that qu vanish
at all points of Msing - We shall see in Lemma 6.1 that the vanishing of r~U
at xo implies that U(xo) is orthogonal to the tangent space of the associated
boundary B at the corresponding point.

Three conditions implying the smoothness of the boundary.
The main result of this first part of the paper is the following theorem.

THEOREM 2.5. - Let (M, U) be a skeletal structure which satisfies: the
principal curvature condition, edge condition, and compatibility condition.
Then,
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1 ) the associated boundary B is an immersed topological manifold
which is smooth at all points except those corresponding to points of Msing ;

2) at points corresponding to points of Msing, it is weakly C1 (this
implies that it is C~ on the points which are in the images of strata of
codimension 1) ;

3) at smooth points, the projection along the lines of U will locally
map B diffeomorphically onto the smooth part of M ;

4) also, if there are no nonlocal intersections, B will be an embedded
manifold.

Remark 2.6. - In all that we do, we assume that the strata of M
and U are C°. However, if we have weaker differentiability assumptions
of Ck for k &#x3E; 1, then corresponding Ck statements hold for 3.

Example 2.7. - In [D2] we shall consider in much greater detail the
conditions for (M, U) a skeletal structure in I1~2 or R 3

For now we just remark on the simplest case of a 1-dimensional
skeletal structure (M, U) in I1~2. If is a local parametrization of one of
the smooth components of M, then write

The radial shape operator is multiplication by the principal radial

curvature xr, and the radial curvature condition becomes (for each side
of M):

and no condition otherwise.

At a singular point xo, this condition must hold for each side of each local

component of xo. We constrast this with the necessary condition at smooth

points obtained for the Blum case by Pizer and Yushkevich which makes
use of the differential geometry of the medial axis (see [P3, §2])

where primes denote derivatives and is the radius of curvature of the

medial axis.
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3. Radial flow and tubular neighborhood for a
skeletal structure.

Consider a skeletal structure (M, U) satisfying the conditions of
Theorem 2.5. As a first step to proving the smoothness of the boundary
associated to (M, U), we begin by defining a global radial flow. We recall
that one way to view the formation of the medial axis is as the shock

set resulting from the Grassfire/level-set flow from the boundary (see e.g.
Fig. 10.a) Kimia et al. [KTZ], (and also Siddiqi et al. [SB] and [P3] for

further discussion). This flow is from points on the boundary along the
normals until shocks are encountered. The radial flow we will consider is

essentially a "backward flow" along U to relate the skeletal set M with the
boundary B. However, this does not give a well-defined flow (or function)
since U is multivalued. In addition, we measure distance along U radially
from M so the level hypersurfaces do not correspond to those obtained by
flowing from the boundary. In fact, the radial hypersurfaces are no longer
nonsingular nor are they orthogonal to the lines of flow.

Figure 10. a) Radial flow. b) Grassfirelevel-set flow in ]R2.

Nonetheless, we define and investigate the properties of this "radial
flow" . We can intrinsically define the level sets for each 0  t  1, defined by

so 80 = M and 81 = 8. Locally if we choose a smooth value of U

defined on a neighborhood W of xo E M, we can define a local radial flow

,O(x, t) = x + t - U(x) on W x I, which flows through the level hypersurfaces.
We cannot use such local radial flows to define a global one on M because
the radial vector field U is multivalued on M. We overcome this problem by
introducing a form of "normal bundle" for (M, U), except that it is defined
on the "double" M of M which we will also define.

The double and the normal bundle of M and the global radial
flow. - For a closed smooth submanifold, the tubular neighborhood is

defined using the normal bundle. A skeletal set does not have a normal
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bundle in the usual sense. We get around this problem by first introducing
the double of M.

Let (M, U) be a skeletal structure. We consider

To put a topology on M, we describe a system of neighborhoods for

each point. If xo C Mreg, with a value U(xo), then neighborhoods of
(xo, U(xo)) consists of the intersection of M with W where W

is a neighborhood of xo in Mreg and {Uo} denotes the set of values

for a continuous extension Uo of U(xo) to W. If XO C Msing, then

U (xo ) points into some complementary component Ci of xo. Then, a

neighborhood system for (xo, U(xo)) is defined as follows: given a neigh-
borhood W of xo, we define a neighborhood as the intersection of M
with a set of the form (W’ n x where W’ C W is an open

neighborhood of xo in JRn+1 and Uo is a continuous extension of U(xo)
to W’ n aci. If x 1 E W’ n 8Ci and x1, E Msing, then for a neigh-
borhood WI of xl with Wl C W’, the complementary component Ci
for Xl for the value pointing into Ci satisfies 8C§ C OCi, so

(Wl n C (W’ n If U1 denotes the restriction of Uo to Wl n 8C§
then (Wl n 8C§) C (W’ n 8Ci) Thus, these neighborhoods
give a well-defined topology. We will refer to these neighborhoods as abstract
neighborhoods of points in M. An example is shown in Fig. 11 for the case
of a "fin creation point". In general, an abstract neighborhood corresponds
to the abstract boundary aCi of a complementary component Ci of a

point because the values of U on an abstract boundary of Ci and pointing
into Ci are uniquely determined. For an edge point xo c 8M, there is a
unique point corresponding to it, and a neighborhood
of (xo, U(xo)) in M is a "double of the local manifold with boundary"
in the sense of [Mu].

Figure 11. a) Neighborhood of a "hn creation point".
b) Corresponding abstract neighborhood.
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The natural projection p: M - M, sending (xo, Uo) H xo is

continuous and is to 1 covering of any connected stratum of M
with K values at each point. We can naturally introduce a smooth structure
v i

on Mreg = p-1 (Mreg ) , and p is smooth on Mreg. Moreover, on M we have a
canonical line bundle N which at a point (xo, Uo ) is spanned by Uo.

DEFINITION 3.1. - For a skeletal structure (M, U), uTe call M the
double of M, and N the normal line bundle to M (strictly speaking they
are the double and normal line bundle for (M, U)).

As usual, M embeds as (and will be identified with) the zero section
of N. Also, given an E &#x3E; 0 we have the positive é neighborhood of the zero
section Né == f(xo, tUo) E N : 0  t  El.

Now, for (M, U), with normal line bundle N, we can define the global
radical flow as a map Q : i

The tubular neighborhood of a skeletal structure. - Now we
define an associated tubular neighborhood of a skeletal structure.

DEFINITION 3.2. - By a tubular neighborhood INI of a skeletal

structure (M, U) in JRn+1 we mean there is an E &#x3E; 0 so that the global
radial flow is a homeomorphism on with image disjoint from
M, and Q (Ng ) is a topological neighborhood of M in JRn+1.

The tubular neighborhood consists of the level hypersurfaces
f x + tU(x) : x E M~ for 0  t :S c and has the property: on INIBM

the radial flow gives a well-defined flow defined for 0  t  t’ :S c by
10 (x, t - Uo, t - t’) ~-4 0 (x, t’ - Uo). it defines a homeomorphism 
which is a smooth diffeomorphism on the points coming from Mreg under
the radial flow. We shall later use this flow and abuse terminology by also
referring to it as the radial flow on 

We do not require that the level hypersurfaces be topological
manifolds. However, we shall deduce this when we prove existence, as well
as proving smoothness of the image off Msing. However, the boundary of
the tubular neighborhood will typically be nondifferentiable on the points
which are images of Msing. Also, we shall show each Bt is still a Whitney
stratified set.

We shall prove the existence of a tubular neighborhood for a skeletal
structure (M, U) in §5.



1965

4. Properties of the radial flow.

We consider the local behavior of the radial flow on neighborhoods of
the various types of points in M.

Local properties of the radial flow. - We begin by considering V)
in a neighborhood of a regular point xo . It corresponds to a regular point xo
of M together with a value U (xo ) . Thus, we can consider a smooth extension
of U on an open neighborhood W of xo C Mreg. Then, ~ can be represented
by the smooth map t) = x + t . U(x) : W x [0,1] -~ JRn+1 which we refer
to as the local radial flow. For fixed t we obtain a W~ 2013~ JRn+1.

First we compute the derivative of the local radial flow. For xo c W,
let {~i,..., be a basis for Then, as U = r . Ul , we compute

and using (2.1 ) and 9r/(9vi - dr (vi )
n

We can rewrite these equations for i = 1, ... , n in vector form as

where and dr(v) are column vectors with i-th entries resp.

dr(vz ) , and I is the n x n identity matrix. We also trivially note

Local nonsingularity of the flow from smooth points. - Using
the preceding, we can deduce the local nonsingularity of ~.

PROPOSITION 4.1. - Suppose that for the smooth value of U in a
neighborhood W of xo E Mreg, the associated radial operator Srad satisfies

(4.4) r  min {1/KRI } for all positive radial principal curvatures 
Kr i

Then,

1) ~ : W x R - R’+ 1 is a local diffeomorphism at (xo, 0) ;

2) Ot W - JRn+1 is a local embedding at xo for any 0  t  1;

3) is transverse to the line spanned by U for each 0  t  1.
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Remark 4.2. - Then, 2) guarantees that the portion of coming
from a neighborhood of xo is nonsingular at 1/J( Xo, t). However, if the tangent
space of contains the line spanned by U the projection
from back to M along U will develop singularities (generically 1/Jt (W)
will foldback as t further increases). However, by 3) this does not happen.

Proof. We consider the Jacobians of both 0 and 1/Jt, using the basis
VI,..., in the source for W x R at (xo, t) VI,..., vn ~

for JRn+1 at t) by translation along U. By 4.2 and 4.3, the transpose
Jacobian matrix of 0 has the form

When t = 0, as r(xo) &#x3E; 0, we immediately deduce from (4.5) and the
inverse function theorem that 1P is a local diffeomorphism at (xo, 0).

For 2), we note that the transpose Jacobian matrix of 1Ptwith respect
to the basis {v1 , ... , vn } for VI,..., vn } for R’+ 1 is

, .,

By the immersion theorem, a sufficient condition that ~t is a local

embedding is that the matrix (4.6) has rank n, and then 
is spanned by the rows of (4.6). We note, however, that if this matrix (4.6)
has rank n but the n x n matrix I - tr . 5v is singular, then the tangent
space of will contain the line spanned by U. Thus, to also
avoid this, we consider instead the matrix I - tr . Sv. Then,

m ,

Hence, (4.7) will be nonsingular for 0  t  1 if and only if is not an

eigenvalue of Sv for 0  t  1. Since f 1/tr: 0  t  1) = [1/r, (0), this is
equivalent to all positive eigenvalues xr of Sv being less than 1 /r, which is
equivalent to (4.4).

Then, not only do we have the local embedding of 1/Jt at xo, but

also by (4.5), ~ is a local diffeomorphism at (xo, t) so the tangent space
transverse to U(xo). This implies the nonsingularity of the

projection from along the lines of U to M at 0
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Consider next a point xo E Msing which is not an edge point,
and a value U(xo) pointing into the complementary component Ci. The
abstract neighborhood is formed from local manifold components 
containing xo (Mj have boundaries and corners). For such a non-edge local
manifold component Mj with a smooth value U determined by U(xo),
we can define a local radial flow using U and repeat the argument for a
local extension of Mj and the smooth value U. We obtain the conclusions
of Proposition 4.1 for this extension (see Fig. 12).

Figure 12. Partial radial floul near a singular point.

Of course the extension does not agree with the rest of the Skeletal

structure; however, we can then restrict back to Mj to obtain the following.

COROLLARY 4.3. - Let xo E Msing be a non-edge point. Also, let U
be a smooth value on a local ( but non-edge) manifold component Mj of xo.
Then, provided the associated radial shape operator for this smooth value
satisfies (4.4), then in a neighborhood W of xo in Mj, the associated radial

(and satisfy the three conclusions of Proposition 4.1.

This analysis thus allows us to partially define the flow at singular
points which are not edge points. Next we take the first step in analyzing
the radial flow for edge points.

Nonsingularity of the radial flow on 9M. 2013 We describe how to
extend the preceding to the properties of the radial flow on aM (or to local
edge manifold components Mj of an edge closure point). We concentrate
on an edge point xo ; the argument can be easily adjusted to a local edge
manifold Mj of an edge closure point. By assumption, U has a unique
value at xo E 8M which extends smoothly to either a smooth vector field
on a neighborhood of xo and corresponding to one side of M near xo . We
consider the radial flow map in the following local form 0 (x, t) = x -f- t - U(x)
for xo ; also for fixed t, we let = 0 (x, t). As for smooth points, we
compute the derivative of the radial flow. For xo E W, we choose a basis
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for edge coordinates near xo, VI,..., basis for TxoåM, and
vn mapping by the edge parametrization to c - Ul with c &#x3E; 0. We compute
as in (4.1),

Using (2.4) we obtain

We can rewrite these equations for i = 1,..., n in vector form as

where (Buv CU)T and as earlier, the column vectors are n-

dimensional, with Cu, Buv, v, and v as defined in §2, and lastly

Then, with respect to the basis VI, ... , vn~ in the source
for edge coordinates about xo Vn-1 , n} in the target, the
transpose Jacobian matrix of 0 as a function of (x, t) is

Then, analogous arguments given for Proposition 4.1 can be repeated to
yield the following.

PROPOSITION 4.4. - For a skeletal structure (M, U), let U be a smooth
value in a neighborhood W of xo E 8M (or on a local edge manifold Mj of
an edge closure point Suppose the edge conditions are satisfied on this
neighborhood. Then, the radial map satisfies the following three properties
(see Fig. 13 ) :

1) ~ : W x (0, 1] - JRn+1 is a local diffeomorphism at (xo, t).

Hence, for each t with 0  t  1

2) Ot : W - JRn+1 is a local embedding at xo,

3) is transverse to the line spanned by U.
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Figure 13. The radial flow from an edge.

Proof. We computed in (4.11) the matrix representation of the
transpose Jacobian of 1P with respect to the basis vi, - ..., Vn-1, 

for edge coordinates about xo, in the target.
Provided the matrix is nonsingular the inverse function theorem implies 0
is a local diffeomorphism. This then implies 1); also 2) and 3) follow for
0  t  1 as 1/Jt is the restriction of the diffeomorphism 0 to W x ~t~ and
the tangent space of at must be transverse to Ul by the form
of the matrix in (4.11). The remaining case t = 0 trivially holds.

It remains to see that (4.11) has rank n + 1; or equivalently that (4.12)
has rank n.

If not then 1 /tr is a generalized eigenvalue of In-1,1)’ However, just
as for the radial curvature condition, the edge condition implies 1 /tr is not
a generalized eigenvalue for 0  t  1, a contradiction. 0

As a corollary we obtain

COROLLARY 4.5. - In the situation of Proposition 4.4, for any

1) ~ : 8M x ~0, 1~ -~ JRn+1 is a local embedding at (xo, t),

2) 1ft : aM --4 JRn+1 is a local embedding at xo, and

3) 1ft(aM) is transverse within 0(o9M x [0, 1]) at 1ft(xo) to the line
spanned by U(xo) (see Fig. 13).

Proof. Again the restriction of the diffeomorphism 1f to 9M x [0, 1]
or the diffeomorphism 1ft to 9M is again a diffeomorphism. Thus, we can

apply Proposition 4.4 to conclude that 1) and 2) hold for 0  t  1, while 2)
is trivially true for t = 0.
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For 1) at t = 0, we examine the transpose Jacobian matrix 
This is obtained from (4.11) by removing the bottom row. When t = 0,
it becomes

which is nonsingular; hence 1) holds for t = 0. Lastly, for 3) we know
from Proposition 4.4 that the restriction Ylamx[o,l] is an embedding
at (xo, t). The tangent space of the image can be identified with the
first n rows of (4.11) (by multiplying them by the column vector with
entries Ul, ~i,..., Vn-1), while that for Qt (8M) can then be identified with
rows 2 through n. It is immediate from the form of (4.11) that the latter is
transverse to Ul within the former. 0

Relation between the grassfire flow and the radial flow. -

Suppose we are given the Blum medial axis M with radial vector field U
of a region with smooth boundary which is generic. Then, M is a Whitney
stratified set. We show that (M, U) must satisfy both the radial curvature
and edge conditions.

PROPOSITION 4.6. If (M, U) is the medial axis and radial vector

field of a region SZ C with generic smooth boundary B, then (AI, U)
satisfies both the radial curvature and edge conditions.

Proof. We compute the grassfire flow in terms of the radial

representation and show that the condition of the medial axis forces the
radial curvature and edge conditions to hold. We consider the radial

curvature condition with the computation for the edge condition being
analogous.

Let xo be a smooth point of M where a smooth value of U is chosen
on a neighborhood W of xo (if xo E Msing then we would instead consider
a local component Ma of xo extended in a neighborhood so xo becomes an
interior point). The distance from a point x’ = Qt (xo) = xo + tU (xo ) to the
point on the boundary xo = xo + U(xo) corresponding to xo is given by

The grassfire flow at time t’ - ( 1 - t)r(xo) will consist of points that are a
distance ( 1 - t)r(xo) from the boundary along U. Thus, we can represent
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the grassfire flow, but in terms of local coordinates on W by

where we let r = r(x) and ro - r(xo). From (4.14), we compute the
derivative in an analogous manner as for the radial flow:

- - ---

Using (2.2) we can rewrite these equations for i = 1, ... , rt in vector form
as

where 1 is a column vector with all entries equal to 1. Also, 
so the transpose Jacobian matrix of X with respect to the basis

(8 /8t, the source vl , ... , in the target is given by

At the point xo (4.17) becomes

This matrix is not identical to that for the radial flow 1/J. However, it is

nonsingular iff (I - tro . Sv ) is, i.e., if and only if is not an eigenvalue
of Sv. For the grassfire flow, x is nonsingular except at the shock points, i.e.,
on the medial axis. Hence, for the grassfire flow, 1/tro is not an eigenvalue
of Sv for 0  t  1. This is exactly the radial curvature condition. D

5. Existence of a tubular neighborhood for a
skeletal structure.

In this section, we prove the existence of a tubular neighborhood for

any skeletal structure.
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THEOREM 5.1. - A skeletal structure (M, U) has a tubular

neighborhood.

Remark 5.2. - In fact, the proof for the existence of a tubular
neighborhood that we shall give will work if we only assume that M
is a skeletal set and U is a radial vector field on M satisfying the
local initial conditions (without requiring that the abstract boundaries
are homeomorphic to n-disks). However, then in the conclusion, we no
longer assert the stronger conclusion that near a point of coming from a

singular point of M, that need locally be a topological manifold.

To prove the theorem, we adapt the argument from differential topo-
logy that a smooth submanifold (without boundary) has a tubular neighbo-
rhood, see e.g. [Mu] or [Hi]. We use the local properties of the radial flow for
smooth points, non-edge singular points, and edge (closure) points analyzed
in §4 to prove that ~ is a local diffeomorphism in a neighborhood of a regular
point or a piecewise differentiable local homeomorphism in a neighborhood
of either a singular point, or from the "double" of a neighborhood of a
point in We show these local homeomorphisms imply by a point set
topology argument that the global radial flow is a global homeomorphism,
yielding the resulting tubular neighborhood of the skeletal structure.

We begin by completing the analysis of the local radial flow in a
neighborhood of a point in Msing.

Radial flow on a neighborhood of a point in aM. First we
consider xo E aM. By the local edge condition, there is a neighborhood W
of xo in M such that for a smooth value of U extending to xo, there is an
E &#x3E; 0 such that the radial flow x [0, E] - JRn+1 is one-one. By
shrinking W and E we may assume this holds for each of the two smooth
values of U near xo, and that it continues to hold on the closure of W

which we may assume to be compact. Hence, each such local flow is a

differentiable homeomorphism which is a diffeomorphism off W n aM. If xo
is an edge point, an abstract neighborhood W for (xo, U(xo)) is formed

from two copies Wl and W2 of W, by identifying the same point of 8M in
the two copies of W (this is the "double" of W, see e.g. [Mu] ). Then, the
global radial flow ~ : W x [0, E] -~ JRn+1 is defined using a copy of the radial
flow for each smooth value of U near xo.

PROPOSITION 5.3. - For a possibly smaller neighborhood W and
E &#x3E; 0, the homeomorphism onto its image. Hence, for
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each t with 0  t  ~, the image Q (W x {t}) is a topological manifold which
is smooth off the image of 8M. This is a neighborhood in L3t.

Proof. - In fact, we claim that, after possibly further shrinking W,
the map ~ is still one-one on W x (0, ~~ . Given this, it follows that 0-
restricted to each copy of W is a homeomorphism, and then we deduce
from the one-one property that ~ itself is a homeomorphism.

To establish the one-one property, we note from Proposition 4.5 that
the radial flow from aM in a neighborhood W of a point xo for small E &#x3E; 0

defines a smooth embedded manifold M’ with boundary ~M such that
the tangent spaces of M and M’ agree on Hence, W n (M U M’) is
a piecewise smooth manifold which is weakly C’ on 8M. Then, we use a
lemma which is stronger than is needed here but which will be of use again
shortly in this stronger form.

LEMMA 5.4. - Let M1 and M2 be smooth n-manifolds with boundaries
in R’. Suppose there is a neighborhood W of xo E 8M1,8M2, such
that W n 9M2, and for x E W n TxMl - TxM2.
Then, W r1 (Mi U M2 ) is C 1 on W r1 aMi .

Before proving this lemma, we first use it to complete the argument
regarding ~. By the lemma, L = W n (M U M’) is a C1 submanifold.

Hence, in a neighborhood V of xo in JRn+1, VBL consists of two

connected components. We may shrink W to Wl and E to E1 such tat

’l/;(W1 x [0,6’i]) C V. Then, for fixed x 1 E W1, begins for small t
on one side of L and 0 is one-one on W x [0, ~~ , t) does not intersect L
for 0  t  ~ 1. remains on one side of L for 0  t  ~ 1.
As this is true for all xi E Wi, we conclude the image ’l/;(W1 x ~0, ~ 1 ~ ) is one
side of L. Thus, on a smaller neighborhood WI and smaller 6-1 &#x3E; 0, the two

radial flows for each smooth value map to opposite sides of L, Hence, the
map ~ is one-one on W x (0, E] for appropriately smaller W and E. 0

Proof of Lemma 5.4. - Let Hn denote the half space {x E Rn : Xn &#x3E; 0~.
There are coordinate charts xi : v2 -~ Hn on neighborhoods of xo in
each Mi, where we assume Vi n aM2 agree. By assumption, the vector field

on Hn corresponds to a smooth vector field on Y1, which on 8M1
is tangential to llil2 and points into M2 transverse This corresponds
via x2 to a vector field on JRn-1 of the form
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for with ai &#x3E; 0 on x2(Y2) = Y2. Then, we can extend ~ to a neighborhood
in Hn by translation in the xn direction. Now, we may choose flow box
coordinates x’ corresponding to ~ for Hn, so that (xi, ... , xn_1) are local
coordinates for We shrink Y2 so we may view these coordinates as a
local diffeomorphism pi : V2’ --~ Hn. Let

Then, we define a local coordinate chart x’ : Vl U by Xi

and = p2 . They agree on ami n Also, x’ is differentiable
with respect to the original coordinates in the JRn-1 direction, and the
normal derivatives are continuously differentiable, so it is C1. 0

Radial flow on a neighborhood of a singular point. - Next,
we consider the radial flow in a neighborhood of a point (xo, Uo) of M
corresponding to a singular point xo E Msing which is not an edge point.
This means we also possibly allow xo to be an edge closure point. Suppose
Uo points into a complementary component Ci, then by property 2) for the
radial vector field, there is a neighborhood W of xo and an E &#x3E; 0 so that the

map (W n 8Ci ) x [0, E] -~ JRn+1, sending (x, t) ~-4 x + tU(x) maps into Ci.

Locally in the neighborhood W of xo, we let {M0152l’ ... , denote

the finite set of local manifold components for xo having smooth values
pointing into Ci. If necessary, we subdivide each so any such has at

most a single boundary edge which is also an edge of 8M. Also, by the
Whitney conditions, M is stratified trivial along the stratum M-, of XO,
hence, we may assume that in a neighborhood of xo, each contains M-,
as a boundary facet.

For any with a boundary edge which is an edge of M, both smooth
values on will point into Ci. Then, in an abstract neighborhood W
of xo each will have one copy unless its boundary contains an edge
of M extending into the interior of the closure of Ci. We denote the smooth
manifold components in W by M, .

Then, we establish an analogue of Proposition 5.3.

PROPOSITION 5.5. - For a possibly smaller neighborhood W and
E &#x3E; 0, the map y|W x (0, E] is a homeomorphism onto its image. Moreover,
for each t with 0  t  é, the image x f tl) is a topological manifold
which is smooth off the image of Msing . This is a neighborhood of Ot (xo)
in L3t.
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Proof. First we establish the homeomorphism property and then
deduce that the image for fixed t is a topological manifold in a neighborhood
of the image of xo.

First, by the local diffeomorphism properties from Propositions 4.1,
4.5, 5.3, and Corollary 4.3, we know that for sufficently small c &#x3E; 0, the
restriction of ~ to any is a diffeomorphism. Hence, we can choose a
single small c &#x3E; 0 so that this is simultaneously true for all M, .

We claim that we may shrink IV and c so that these piecewise
homeomorphisms fit together to give a homeomorphism in a neighborhood
of (xo, Uo ) . First, we show 0 is locally one-one. It is enough for this

to show that for each pair M, and M~~ , that there is an c &#x3E; 0 such

that (Nc UMøJ)) is one-one off W. Then we choose a minimum E for
all pairs.

If M, and M(3J 3 are both copies of the same then they meet
along an edge of M. Then, by Proposition 5.3, there is an E &#x3E; 0 so the

restriction to u M, is one-one off W. Second, suppose instead that
M,~2 and M(3J correspond to different Ma2 and in W. Then, Ma2 FtMo;
is a facet of each which contains the stratum of xo. By the local separation
assumption for skeletal structures, for E &#x3E; 0, the flow on Ui defines an

n-dimensional embedded Whitney stratified set L which separates the Ma2
into distinct components. Hence, we can choose a neighborhood of xo in Ma2
such that its intersection with the interior of Wi is path-connected.
Then, Wi x [0, E] is path-connected, and intersects the component of 
To also intersect the component of M, .7 it would have to pass through
the L. In particular, for a small enough Wi by continuity it would have

to pass through the image of o9M,,. However, the flow is one-one on 
a contradiction.

Thus, for small enough W and E &#x3E; 0, the radial flow is one-one

on Then, the restriction of the flow to each M, x (0,E] is

a diffeomorphism, and each M, is closed in W. Then, the M, x (0, c]
give a finite decomposition of by closed subsets and the

restriction is closed. It follows that

7j; maps homeomorphically onto its image.

Then, for each 0  t  E, the restriction of ~ to each

is also a homeomorphism onto its image. Also, St is homeomorphic to the
abstract boundary aCi, which by assumption is homeomorphic to an n-disk.



1976

However, this is exactly the image of in proving that its image
in is locally a topological manifold near 1/Jt (xo).

Lastly, we assert that the image of Ng j I w is a neighborhood of xo E Ci.
We choose a small ball and intersect it with each component
of the complement of L. As M,, is a manifold with boundary and U
extends smoothly up to the boundary, both extend smoothly in a small
neighborhood of the boundary. Hence, the flow defines a diffeomorphism
in a neighborhood of xo, so for sufficiently small 6 &#x3E; 0 the neighborhood
contains the intersection of 85(xo) with the component corresponding
to M,, in Ci. Taking the mininmum of 6 over all Ma2 in aCi, I and then
over all Ci for xo, we conclude that is in the union of 

completing the proof of the proposition. D

Construction of a tubular neighborhood of a skeletal struc-
ture. - We are now prepared to prove the existence of the tubular

neighborhood. Given the local results we have already established, we
reduce to the following lemma from point set topology.

LEMMA 5.6. - Suppose that f : X x Z --~ Y is a continuous map,
with X, Y, and Z metric spaces, and X compact and Z locally compact.
Let zo E Z. Suppose the restriction f : X x - Y is a finite to one

map. Also, suppose that for each y E Y, if

then there are open neighborhoods Wi of xi in X and an E &#x3E; 0 ( that depends
on y) such that f : (Ui Wi) x (B~(zo)B~zo~) ~ Y is a homeomorphism onto
its image and is in the complement of f (X x f zo 1). Then there exists
an E &#x3E; 0 such that f : X x homeomorphism onto
its image which is in the complement of f (X x f zo I).

Before proving the lemma, we complete the proof of the existence of
the tubular neighborhood.

Proof of Theorem 5. l. - We apply the lemma with X = M, Z = [0, E]
with zo = 0, and Y = R"+ ~ , to conclude that 0 is a homeomorphism.
Then the restriction is a homeomorphism onto Bt . Then, we can
apply Proposition 5.3 and Lemma 5.4 as no other points outside of a
neighborhood W map to a neighborhood of it follows that Bt is a

topological manifold in a neighborhood of the images of points from Msing
as well as from points in Mreg.
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Finally, we have shown that contains a neighborhood
of any singular point as well as any smooth point of M. Hence, ]N] I is a

topological neighborhood of M, completing the proof. 0

Proof of Lemma 5.6. - We first claim there is an E &#x3E; 0 such that the

map f : X x - Y is one-one. If not then there are sequences
of points xi, x2 E X, zi, z’ E such that zi),
but (xi, Zi) i=- z’) for all i. Then, by compactness of X and restricting to
subsequences, we may assume ixi I converges to xo and converges to xo .
Since converges to zo, by the continuity of f, f (xo, zo) = f (xo, zo) = yo,
say. By assumption, there are neighborhoods Wl of xo and W2 of xoand
an E &#x3E; 0 such that the map (Wi U W2 ) x Y is a

homeomorphism. This is a contradiction as for sufficiently large i, xi E Wl ,
xi E W2, zi E BE; (zo ), but f (xi, zi ) = z’). Thus, there is an E &#x3E; 0 such

that is one-one.

Furthermore, by a similar argument we can show that f : X x
C YBf((X x 

Finally to see f : X x is a homeomorphism onto its

image, we show it is a closed map. Choose 0  E 1  E. Then, f I x x B~1 (zo)
is a closed map. Also, by f being one-one on X x BE (zo) with image disjoint
from- f (X x ~zo~,

f (X x (B£1 (zo)))) n .f (X x B£1 (zo)B~zo~) - 0.

Hence, for any (relatively) closed subset A C X x B~1 f (A) -
). Thus, . is a closed map, so we

replace E D

Lastly, we use results from the proof of the preceding to prove
Lemma 1.11.

Proof of Lemma 1.11. - We recall that Ci is a complementary
component for xo with Ci the associated complementary component to the
link of M at xo in a small sphere about xo. We let cp : Ci x (0, E] - Ci denote
the diffeomorphism which is the restriction of the stratified homeomorphism
of the cone L) ~ (B.s(xo), M n B.s(xo)) following from the conical
structure of the Whitney stratified set M about xo. Thus, Ci is contractible
if and only if C~ is.

Then, from the proof of the existence of tubular neighborhoods, there
is a 6 &#x3E; 0 such that C ]N] I (by Remark 5.2, this applies to our
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given (M, U) ) . Then, there is an £’ &#x3E; 0 used for the tubular neighborhood,
so that the radial flow map ~: aCi x (0, E/] -~ Ci maps homeomorphically
to INI n Ci. Now, by assumption, aCi is homeomorphic to a cone with
vertex xo. Hence, x (o, ~’~ is contractible.

Then, we first use the cone structure to give a deformation retract
of Ci to Ci n Then, we use the contraction of IN n Ci restricted
to Ci rl 85 (xo) to construct a contraction of Ci n to a point within

~l Ci C Ci. This gives the required contraction of Ci to a point. 0

6. Smoothness of the boundary of the
skeletal structure.

We are ready to prove the smoothness of the boundary using the
global radial flow from the tubular neighborhood. It follows that the radial
flow is a well-defined mapping from any level set of The second step
in the proof of smoothness of the boundary is to apply the results on the
radial flow as a for any t with 6’  t  1. Then, under the

assumptions that the three conditions for smoothness hold, we will show
that the radial flow is:

(i) smooth and a local diffeomorphism on points which do not come
from the image of Msing ;

(ii) a local piecewise differentiable homeomorphism on a neighborhood
at points in Msing ; and

(iii) at t = 1, ~i = ,l3 is weakly C’ on points which are images of Msing.
To establish (i), we use the radial curvature condition. To establish (ii),

we also use the radial curvature conditions for points in Msing but not in aM;
while we use the edge conditions for points in Lastly, for (iii), we use
the compatibility condition.

We first establish a consequence of the compatibility condition.

LEMMA 6.1. - Let (M, U) be a skeletal structure. Suppose that Ma is
a local manifold component of xo on which is defined a smooth value of U.

Suppose that either 1 /r is not an eigenvalue of Srad if Ma is a nonedge
component or 1 /r is not a generalized eigenvalue of (BEv, In-1,1 ) if Ma
is an edge component. If the associated compatibility 1-from q vanishes
at xo, then U(xo) is orthogonal to the portion of the boundary 8 (given

at ’l/J1 (xo).
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Proof. By the proofs of Proposition 4.1 or 4.4, as 1/r is not an
eigenvalue of Srad or generalized eigenvalue of (,5’E , In-1,1 ) , then ’Ø1 is a

local diffeomorphism on Ma in a neighborhood W of xo. For v E Tx,) M, we
compute the dot product Ul using the first line of (4.1),

since differentiating Ul - Ul = 1 implies 8U1/8v . Ul = 0, we obtain

Thus, being orthogonal to U1(xo) is equivalent to 7JU(xo)(v) = 0.

Hence, the translate of along the line spanned by U(xo)
is orthogonal to where x’ 0 = (xo ) . 0

Let (M, U) be a skeletal structure, with a tubular neighborhood IN I
which is the image of Ng. By the properties of tubular neighborhoods,
given xo E M with value Uo, there is an Eo with 0  Eo  c and a 6 &#x3E; 0

such that if Uo ) then C Then, the radial
flow can be defined on because each point in has a unique
value U associated to it via the radial flow on NE. We still write this radial
flow by t) = xl -+- (t -f- t 1) U where x[ = U). Also, as earlier,
we let 1/Jt ( x) == 1/J ( x, t).

To prove Theorem 2.5 we will use the following proposition.

PROPOSITION 6.2. - Suppose (M, U) is a skeletal structure which

satisfies the three conditions: radial curvature condition, edge condition,
and compatibility condition. Let xo E M be as in the preceding situation
so X’ = ~ (xo, ~o ~ Uo). Then, for each t, 0  t  1 - Eo, the map

1/Jt : B~ (xo ) --~ JRn+1 is a local homeomorphism ; and hence for fixed t,
the restriction 1/Jt I BEo nB8 is a homeomorphism onto its image.

We first see how the proposition implies the theorem.

Proof of Theorem 2.5. - We first consider the restriction of the radial

flow from BEo ~ B. By Proposition 6.2, the restriction of to a

sufficiently small neighborhood of a point xo E a homeomorphism to
its image in B. In the case xo comes from a point in Mreg, then by the radial
curvature condition and Proposition 4.1, is a local diffeomorphism.
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Next, suppose xo comes from a point in Msing. We claim the

compatibility condition ensures that the limiting tangent planes from
different directions will agree, establishing weak C1 regularity of B at such
points. We show that the limiting tangent planes are orthogonal to Uo. For
a smooth value of U at a point x’ of Mreg, and v E Tx, M, we computed the
dot product (6.1) in the proof of Lemma 6.1

Hence, when t = 1, as x’ then by the continuity of que
on a local component of xo, limTJu(x’)(v’). Thus, the limiting
tangent plane lim d’l/J1 (Tx, M) will be orthogonal to Uo if TJu (xo) (v) - 0 for
all v in the limiting tangent plane. This will be true for all limiting tangent
planes from all neighboring components of the stratum of xo. Hence, we
conclude the limiting tangent planes from all neighboring components
agree; so that ’l/J1 is weakly C1 at each such xl - ’l/J1 (xo). By Lemma 5.4,
,t~ is C~ on the strata of codimension 1.

Next, we remark that the radial flow globally one-one if
and only if the radial flow o : M x (1) - ,13, sending (xo, Uo) - xo + Uo
is one-one. In this case these are global homeomorphisms as both Z3~o
are compact.

Finally we consider the global failure of -&#x3E; L3 (or
N

equivalently ’l/J1 : At -&#x3E;_ ,t3) being one-one. We know aft : M - is one-

one for 0  t  E. Hence, if C x is the diagonal, then
sending (

satisfies

Then, (~ x ~)-’(AR’+’) is closed. Also, by Proposition 6.2, there is

a neighborhood V of AM x (o,1~ such that (7p x ~) -1 (DII~n+1 ) n V =
AM x (0, 1]. Thus, if is not one-one, then there is a smallest t &#x3E; E

such that 1/Jt is not one-one, and moreover, there must be (x, x’) E M x M
which is outside a neighborhood of AM such that 1/Jt (x) == This

corresponds to the radial flow of x’ first intersecting the radial flow in a

neighborhood of x for the first time at time t, but not meeting in another
neigborhood before then. This completes the proof. D

Proof of Proposition 6.2. We first make several preliminary remarks.
Let (M, U) satisfy the three conditions: radial curvature condition, edge
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condition, and compatibility condition. Suppose xo E Ma, a local manifold
component. If Ma is not an edge manifold component, then the radial
curvature condition is satisfied at xo for any smooth value. By the
continuity of both r and Srad for a the smooth value of U, there is a

neighborhood W of xo and a r1 &#x3E; r so that the radial curvature condition

still holds with r1 in place of r at all points of W. Then, by the continuity
of the radial flow, there is a T &#x3E; 0 such that the radial flow on W still

satisfies the conclusion of Proposition 4.1 for t  1 ~ T. Similarly, if Ma
is an edge manifold component, then the edge condition is satisfied at xo
for the smooth value which extends to the edge. There is again a neighbor-
hood W of xo and a r1 &#x3E; r so that the edge condition still holds with r1
in place of r at all points of W n Likewise, there is a T &#x3E; 0 such

that the radial flow on W still satisfies the conclusion of Proposition 4.4
for t  1 + T.

In either case, for xo, we can choose a single T &#x3E; 0 which satisfies

the preceding for all local manifold components for xo. Then, we can
choose E1 _ ~o  E and then a 6 &#x3E; 0 small enough so that also

C and if x’ = t. Uo) E then t  Eo + T.

As the radial flow ~t : B~ (xo ) --~ JRn+1 is continuous and B~ (xo ) is

open, the proof will follow from invariance of domain by showing that

7/Jt is one-one for 0  t  1 - E. We will establish this by induction
on the codimension of the stratum of xo. We first show that 7/Jt is one-one

on the image of each local manifold component in and then show

that when these individual pieces are put together it remains one-one.

We will make use several times of the following consequence of

Lemma 5.6. We assume that the skeletal structure (M, U) satifies the three
conditions. We consider xo E M belonging to the stratum M,y with value Uo
which extends smoothly to My and a local manifold component M~ .
We let T and W be given by the preceding discussion.

LEMMA 6.3. - After possibly shrinking W,

is one-one. An analogous result holds for M-, in place of Ma .

Proof. The map o : [~i? 1+~] -~ R’+ 1 is the parametrization
of the straight line £ = fxo + ~ - U: t E ~~1,1 ~ and hence is

one-one. Furthermore by either Proposition 4.1 or 4.4 ~ is a local
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diffeomorphism at each point of ~xo ~ x [EI, 1 + T]. Then, we can apply
Lemma 5.6 (with X and Z denoting [~i,1 + T~ and W n Ma respectively)
to to conclude there is a neighborhood W’ of xo in W
such that V): (W’ n x [E 1, 1 + T~ ~ JRn+1 is one-one with image
disjoint from .~. Thus, after adding xo x ~~ 1,1 + T], 0 will remain one-one. D

We return to the proof of Proposition 6.2.

If xo is a smooth point of M, then we can choose xo E Hence,
in Lemma 6.3 W is a neighborhood of xo, implying the result in this case.

Next suppose xo belongs to a stratum of codimension one. First

suppose xo E 8M. We apply Lemma 6.3 to the stratum o~M to conclude
there is a neighborhood W’ of xo in aM such that 0: W’ x 1+T~ -~ JRn+1
is a global diffeomorphism. Let L denote the image, which is an embedded n-
manifold (with boundary), with line £ = 0 (Ixo I x [E1 1 +7-]) a submanifold
(recall Fig. 13). Second, we apply Lemma 6.3 to xo viewed as a point in M
for smooth values of U corresponding to each side of M. We obtain one-one
maps Oi : Wi x 1 +- T~ ~ JRn+1, for i = 1, 2, corresponding to the smooth
values for each side. Let Ki - x + T]). Then, on any point
x which is not an endpoint, there is a neighborhood of x in each KZ
homeomorphic to a closed half space with boundary in L. Thus, the union of
these neighborhoods is a neighborhood of x in JRn+1. Hence, K = Kl U K2 is
a neighborhood in JRn+1 for the sub-line segment f’ _ ~xo+t ~ U : t C ~~o, 
We can choose a cylindrical neighborhhood C of £’ in K such that CBL has
two connected components. Choose a small 6 &#x3E; 0 so that C C

for 0  t  1 - ~o . If is not one-one, then there must be

xi E Ki r1 B~ (xo ) for which = The are in different

components of CBL , and cannot cross L (as ’l/Jt is one-one on each Ki)
so they must remain on opposite sides of L, a contradiction.

The other codimension one strata consist of non-edge closure singular
points xo E M.y. Let Uo be a value at xo which points into a local

complementary component Ci. As M,y has codimension one, the abstract
boundary consists of two local manifold components M1 and M2, with
intersection the stratum My of xo in a sufficiently small neighborhood W
of xo (see Fig. 14).

Now, we repeat the argument used for edge points by applying
Lemma 6.3 to construct L from the flow on My, and Ki from the flows
on Mi. On each piece, the flow is one-one by Lemma 6.3. We can repeat the
argument with the cylindrical neighborhood C of .~’. By the local separation
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Figure 14. Radial flow on strata of codimension 1.

property (i.e., local initial condition 1) of Definition 1.7), the components
of Ki n C are initially on opposite sides of L and hence must remain so.

Lastly, we assume that the result holds for xo in strata of

codimension  k, and let xo be in a statum M-, of codimension and Uo a
value at xo. Uo points into a local complementary component Ci. Let M, ,
i = 1,..., m, be the local manifold components belonging to the abstract
boundary of Ci. We may apply Lemma 6.3 to each individual local manifold
component and to the stratum To obtain Ki for each Mi and L
from with the radial flow one-one for each Mi and for L. The Ki and L
are manifolds with boundaries and corners. Suppose 1Pt is not one-one

on the union for some t with 0  t  1 - Fo, then there are xi in two

distinct Ki, which we call Kl and K2 for which = If Xl
were a boundary point of Kl , then by the induction assumption, YT is a

local homeomorphism at each xi so there are other points, not boundary
points of Ki which map to the same point. Hence, we may assume ~1 is an
interior point of K1 rl Then, by the local separation property again,
the boundary of Ki separates it from the images of the other Mi. Hence,

begins outside this boundary when t = 0, and hence must remain
outside it, a contradiction. El

Thus, the proof of Proposition 6.2 and hence Theorem 2.5 are

complete.

Remark 6.4. - We also can see from the proof that for those values t
for which Ot remains one-one, the level set is a Whitney stratified set. We
have seen that the strata of M are mapped diffeomorphically to manifolds
in As closures are preserved, the axiom of the Frontier is satisfied.

It is enough to see Whitney’ s condition b) is satisfied. Let xo C I and

let xi E M~ be a sequence converging to xo. A neighborhood of xo consists
of a finite number of local manifold components whose boundaries

contain the positive codimension strata near xo. Thus, we can find a
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subsequence xi~ contained in a single component Then, both and

the smooth value U on MaR extend to an open manifold W’ containing xo
and a smooth vector field U’ on it. By Lemma 6.3, on a smaller neighborhood
of xo, Ot is a diffeomorphism. Hence, the pair consisting of the component
of the stratum M(3 in MaR and M-, satisfies Whitney condition b). Thus,
under V)t so do their images. Hence, the condition b) is also satisfied for the
image strata on Bt . Hence, is also a Whitney stratified set.
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