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BOUNDARY VOLUME AND LENGTH SPECTRA

OF RIEMANNIAN MANIFOLDS:

WHAT THE MIDDLE DEGREE HODGE SPECTRUM

DOESN’T REVEAL

by C.S. GORDON and J.P. ROSSETTI (1)

To what extent does spectral data associated with the Hodge
Laplacian dd* + d*d on a compact Riemannian manifold M determine
the geometry and topology of M? Let specp (M) denote the spectrum of
the Hodge Laplacian acting on the space of p-forms on M, with absolute
boundary conditions in case the boundary of M is non-empty. (We will
review the notion of absolute and relative boundary conditions in Section 1.)
For each p, the spectrum spec(M) is known to contain considerable

geometric information. For example, under genericity conditions, the p-
spectrum of a closed Riemannian manifold M determines the geodesic
length spectrum of M.

In this article, we will focus on even-dimensional manifolds and give a
very simple method for obtaining manifolds with the same Hodge spectrum
in the middle degree. Through examples, we will discover that this middle
degree spectrum contains a perhaps surprising lack of topological and
geometric information.

Among the examples of manifolds that we will construct with the
same middle degree spectrum are:

. a cylinder, a Mobius strip, and a Klein bottle;

. pairs of cylinders with different boundary lengths;

(1) The first author is partially supported by a grant from the National Science
Foundation. The second author is partially supported by Conicet.
Keywords : Spectral geometry - Hodge Laplacian - Isospectral manifolds - Heat
invariants.

Math. classification : 58J53 - 53C20.
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. a hemisphere and a projective space;

. products S(r) x P(s) and P(r) x S(s), where P(t), resp. S(t), denote
a projective space, respectively sphere, of radius t (for generic r and s, the
length spectra differ);

. non-orientable closed hyperbolic surfaces with different injectivity
radius and length spectrum;

. pairs of surfaces, one with an arbitrarily large number of boundary
components and the other closed. The metrics can be chosen to be

hyperbolic.

We also obtain examples in all even dimensions exhibiting similar
properties.

These examples prove:

THEOREM. - The middle degree Hodge spectrum of an even-

dimensional Riemannian manifold M does not determine :

(i) the volume of the boundary or even whether M has boundary;

(ii) the geodesic length spectrum or injectivity radius. In particular, it
does not determine the length of the shortest closed geodesic.

The result (i) is new. Concerning (ii), R. Miatello and the second
author [MR3] recently constructed examples of flat manifolds, p-isospectral
for various choices of p, such that the length of the shortest closed geodesic
differed. (Here, we say two manifolds are p-isospectral if they have the same
p-spectrum. )

Note that all the closed manifolds that we construct are non-

orientable. For orientable surfaces, the 1-spectrum completely determines
the 0-spectrum (which coincides with the 2-spectrum). Thus the behavior
exhibited by our examples cannot occur for 1-isospectral orientable surfaces.
For non-orientable surfaces, the 0-spectrum and 2-spectrum no longer
coincide and the I-spectrum is the join of the two (except for the 0-

eigenspace). Our examples show that the join of the two spectra contains less
geometric information than either one individually. In higher dimensions,
it is perhaps surprising that all our examples are non-orientable. The

Hodge * operator intertwines the exact and co-exact middle degree forms
and commutes with the Laplacian; thus the "exact" and "co-exact spectra"
coincide. Hence the m-spectrum of a 2m-dimensional orientable closed

manifold, m &#x3E; 1, contains half the information contained in the (m - 1)-
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spectrum and nothing more (except for the dimension of the space of

harmonic forms). In contrast, for non-orientable manifolds, the "exact"
and "co-exact spectra" no longer coincide, so the middle degree spectrum
obstensibly contains the same amount of data as the other spectra.

One of the primary tools for recovering geometric and topological
information from the spectra is through the small time asymptotics of
the heat equation. See, for example, [Gi] or [BBG1], [BBG2]. For closed
manifolds, the trace of the heat kernel associated with the Hodge Laplacian
on p-forms has an asymptotic expansion of the form

The coefficients ai (p) are spectral invariants and are given by integrals, with
respect to the Riemannian measure, of expressions involving the curvature
and its covariant derivatives. The first three heat invariants are given as
follows:

. al (p) - T, where T is the scalar curvature and CZ (p),
i = 0, 1, is a constant depending only on p; and

. a2 (p) is a linear combination, with coefficients depending only on p,
of fM T 2, f M IlRiCII2 and fM IIR 112.

For manifolds with boundary, the expansion is instead in powers of t 2.
The coefficient a 2 (p) is given by c(p) vol(8M), where c(p) = ( np 1 ) - ( p-1 ) .

A very difficult open question is whether the heat invariants are the

only integral invariants of the spectrum, i.e., the only invariants which
are integrals of curvature expressions either over the manifold or over the
boundary. This article and work of Dorothee Schueth lend support (albeit
in a small way) towards an affirmative answer since:

. The coefficient a 2 (p) - c(p) vanishes precisely when

dim(M) is even and p = 2 dim(M). Our examples show in this case that
the p-spectrum indeed does not determine the volume of the boundary.

. Dorothee Schueth [Sl] showed that the three individual integral
terms in the expression for a2 (o) are not spectral invariants.

A secondary theme of this paper is the spectrum of Riemannian
orbifolds. Riemannian orbifolds are analogs of Riemannian manifolds but
with singularities. They are locally modelled on quotients of Riemannian
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manifolds by finite effective isometric group actions. The singularities in
the orbifold correspond to the singular orbits. One can define the notion
of Laplacian on p-forms on orbifolds. A natural question is whether the
spectrum contains information about the singularities. We will see:

THEOREM. - The middle degree Hodge spectrum cannot distinguish
Riemannian manifolds from Riemannian orbifolds with singularities.

For example, we will see that the mutually 1-isospectral cylinder,
Klein bottle and Mobius strip are also 1-isospectral to a "pillow", a 2-
dimensional orbifold with four singular points, so named because of its
shape. In dimension 2m, m &#x3E; 1, we will also construct orbifolds that are

m-isospectral to a projective space and to a hemisphere. To our knowledge,
the examples given here are the first examples of orbifolds p-isospectral
to manifolds for some p. We do not know whether the spectrum of the

Laplacian on functions can distinguish orbifolds from manifolds, although
we will give some positive results in §3 and we will verify that none of
the middle degree isospectral orbifolds and manifolds we construct are 0-
isospectral.

We will also construct orbifolds, isospectral in the middle degree,
having singular sets of arbitrarily different dimensions.

In this paper we have concentrated on m-isospectrality of 2m-

manifolds and orbifolds. However, for various choices of p, one can also
obtain p-isospectral orbifolds with singular sets of different dimensions.
This phenomenon may be discussed in a later paper.

We conclude these introductory remarks with a partial history of
the isospectral problem for the Hodge Laplacian. For a general survey
of isospectral manifolds, see [Go3]. Most known examples of isospectral
manifolds, e.g., those constructed by the method of Sunada [Sun], are
strongly isospectral; in particular, the manifolds are p-isospectral for all p.
Thus they do not reveal possible differences in the geometric information
contained in the various p-spectra. The article [Gol] gave the first example
of 0-isospectral manifolds which are not 1-isospectral; further examples
were given in [Gtl], [Gt2]. (The 0-spectrum, i.e., the spectrum of the

Laplacian acting on smooth functions, is frequently referred to simply as
the spectrum of the manifold.) Ikeda [Ik] constructed, for each positive
integer k, spherical space forms which are p-isospectral for all p less than
1~ but not for p - k. In the past decade, many examples have been
constructed of 0-isospectral manifolds with different local as well as global
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geometry, e.g., [Szl], [Sz2], [Go2], [Go4], [GW], [GGSWW], [GSz], [Sl],
[S2], [S3], and [Gtl] ; at least in those cases in which comparisons of the
higher p-spectra have been carried out, these manifolds are not p-isospectral
for p &#x3E; 1. The first examples of manifolds which are p-isospectral for some
values of p but not for p = 0 were flat manifolds constructed by R. Miatello
and the second author in [MR1], [MR2], [MR3]. R. Gornet and J. McGowan
(private communication) recently constructed examples of spherical space
forms which are simultaneously p-isospectral for p - 0 and for various
other, but not all, p.

The second author wishes to thank the mathematics department at
Dartmouth College for its great hospitality during the time this paper was
written.

1. Method for constructing manifolds isospectral
in the middle degree.

1.1. DEFINITION. - Suppose M is a compact Riemannian manifold
with boundary. Let w be a smooth p-form on M. For x E 8M, write
wx where w~ E uAp urith a E 
and p a vector in Tx (M) normal to the cotangent space of 8M at x. The
form w is said to satisfy absolute (resp. relative) boundary conditions if

everywhere on 8M. If M is orientable, observe that w satisfies the relative
boundary conditions if and only if *cv satisfies the absolute boundary
conditions, where * is the Hodge duality operator.

1.2. Notation and remarks. - Let M be a compact Riemannian
manifold of dimension n = 2m.

(i) If M is closed let spec~(M) denote the spectrum of the Hodge
Laplacian of M acting on smooth m-forms.

(ii) If M has boundary, we denote by specm (M) the absolute spectrum
of M. If M is orientable, then since the Hodge * operator carries Am(M)
to itself and commutes with the Hodge Laplacian, we see from 1.1 that
the absolute m-spectrum coincides with the relative m-spectrum. However,
this coincidence of the spectra does not in general occur when M is
non-orientable.
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(iii) Suppose that M is closed and T is an orientation reversing isometric
involution. If T does not act freely, then (r)BM is a Riemannian orbifold.
Its m-spectrum is defined to be the spectrum of the Hodge Laplacian of M
acting on the space of T-invariant m-forms. We denote this spectrum by
spec ( (T) )M) . (In this article we will be concerned only with orbifolds of
this form. For a more general discussion of orbifolds, see for example [Sc]
or [T].)

If the fixed point set of T is a submanifold of codimension one, then
the underlying space of the orbifold (T~ BM is a Riemannian manifold with
boundary. The boundary corresponds to the singular set of the orbifold.

(E.g., if M is a sphere and T is reflection across the equator, then ~T~ BM
is an orbifold whose underlying space is a hemisphere.) Since the orbifold
m-spectrum just defined agrees with the m-spectrum of the

underlying manifold with absolute boundary conditions, we will ignore the
orbifold structure and view ~T) BM as a manifold with boundary in what
follows. This point of view allows us to obtain manifolds with boundary as
quotients of closed manifolds.

1.3. THEOREM. - Let M be a 2m-dimensional orientable closed

Riemannian manifold. Suppose that T is an orientation reversing involutive
isometry of M. Then consists precisely of the eigenvalues
of specm (M) but urith all multiplicities multiplied 

Proof. Let A be an eigenvalue in spec (M) , say of multiplicity 
Both T and the Hodge * operator commute with the Hodge Laplacian
and thus leave the A-eigenspace Hx C invariant. Letting H~ ,
respectively HA , denote the space of T-invariant, respectively T-anti-

invariant, forms in Ha, then Hx = H - . The A-eigenspace in

corresponds to H+ °
The Hodge * operator interchanges H~ and H~. To see this, let Q

denote the Riemannian volume form of M. For a E we have

and

since T is an orientation reversing isometry. Thus * interchanges 7~
and ~f~.

Consequently, Hi: and HA both have dimension )Tnx, and the
theorem follows. D

1.4. COROLLARY. Let MI and M2 be 2m-dimensional orientable
closed Riemannian manifolds with spec (Mi ) = spec (M2 ) . Suppose that
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Ti and T2 are orientation reversing involutive isometries of MI and M2,
respectively. Then

Moreover, if N is a 2k-dimensional closed Riemannian manifold, then

For the second statement, observe that Ti extends to an involutive
orientation reversing isometry of Mi x N.

Remark. - The conclusion fails to hold if we drop the hypothesis
that the involutions be orientation reversing. For example, let MI = M2 =
(Z x 2Z)BR 2, and let T1 and T2 be the translations (x, y) - (z + ~ , y) and
(x, y) ~ (x, y + 1), respectively. Then the quotient tori are not 1-isospectral.

In our applications of Corollary 1.4 below, we will take Ml = M2.

A useful special case of Corollary 1.4 is the following:

1.5. COROLLARY. - Let M and M’ be manifolds of dimension k

and k’, respectively, with k + k’ even, say k -+- k’ = 2m. Suppose 0 and 0’
are orientation reversing involutive isometries of M and M’ respectively.
Then ( ~~) BM) x M’ is m-isospectral to M x ( (~’~ BM’) .

Given a Riemannian manifold M and a non-negative integer
k  dim(M), let be the spectrum of the Laplacian acting on k- forms
on M. The complexified heat trace is given by 
for z E C. Recall that Y. Colin de Verdi6re [C] obtained an expansion of
the complexifed heat trace as a sum of oscillating terms whose periods
are related to the lengths of the closed geodesics in M. The authors are
grateful to the referee for pointing out the following additional corollary of
Theorem 1.3.

1.6. COROLLARY. - Suppose that N is a nonorientable closed

Riemannian manifold of dimension 2m. Let 1 be an isolated, nondegenerate
simple closed geodesic such that the holonomy about -y is orientation

reversing. Then -y does not contribute to the complexified heat trace

associated with the Laplacian acting on m-forms.

Proof. Let M be the orientation covering of N with the lifted
Riemannian metric. By Theorem 1.3, the complexified heat traces of M
and N associated with the Laplacian on m-forms coincide except for a
factor of -1. Since the lift of 1 to M is not closed, it does not contribute to
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the complexified heat trace of M and hence -y does not contribute to that
of N. m

1.7. Remarks In the setting of Corollary 1.6 with m = 1, it was

already known that the contribution of q to the complexified heat trace
on 1-forms must be zero up to principal order since the principal order
coefficient is the trace of the holonomy map about the geodesic.

2. Examples of manifolds isospectral in
the middle degree.

2.1. Remark. - Most, though not all, of the examples we construct
below will be surfaces. However, by taking products of the manifolds in
these examples with a closed manifold N and applying the second statement
of Corollary 1.4, one obtains examples in arbitrary even dimensions.

We begin with manifolds of positive curvature.

2.2. Hemispheres and projective spaces. - Let M be the 2m-sphere,
m &#x3E; 1, let T denote the antipodal map and let a denote reflection about
an equatorial sphere. Then Corollary 1.4 implies that the projective
space (T)BM is m-isospectral to the hemisphere (~) BM. (I.e., the m-

spectrum of the projective space coincides with the absolute m-spectrum
of the hemisphere.)

2.3. Half ellipsoids with different boundary volume. - Let M be a
2m-dimensional ellipsoid (not round) and let a and T denote the reflections
across two different hyperplanes of symmetry. Then (T)BM and (cr)BM are
m-isospectral manifolds with boundary, but their boundaries have different
volume.

2.4. Products of spheres and projective spaces with different length
spectra and injectivity radius. - Let S’~ (r~) and P~(r) denote the sphere
and projective space, respectively, of radius r and dimension k. Then

by Corollary 1.5, for m, n &#x3E; 1 and for any r, s &#x3E; 0, the manifolds

x JID2n(s) and JID2m(r) X have the same (m + n)-spectrum.
However, for generic choices of r and s, the lengths of the shortest closed
geodesics in the two manifolds differ.

These closed manifolds are also isospectral to the product of a
hemisphere and a sphere, as can be seen by taking an involution of

x ,S’2n (s) given by the equatorial reflection in one factor.
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We next consider flat manifolds.

2.5. Cylinders, Klein bottles, and M6bius strips. - The following,
with appropriately chosen sizes, are mutually 1-isospectral:

(i) a Klein bottle;

(ii) a cylinder, say of perimeter p;

(iii) a Mobius strip of perimeter 

Indeed each of these is a quotient of T = by an involution T
arising from an involution T of R given as follows: For the Klein bottle, T is
the composition of translation by ( 2 , 0) with reflection R about the x-axis.
For the cylinder, T is the reflection R just defined. For the Mobius strip, T
is reflection across the line x = y.

Thus by Corollary 1.4, the Klein bottle, the cylinder and the Mobius
strip all have the same 1-form spectrum.

2.6. Cylinders of different shapes. - Let C(h,~,) denote the flat

cylinder of height h and circumference w, hence of perimeter 2w. Then for
all a, b &#x3E; 0, we have

since both cylinders are quotients by a reflection of a rectangular torus of
height a and width b. Thus cylinders of arbitrarily different perimeters can
have the same 1-form spectrum.

2.7. Remarks. - (i) One similarly obtains pairs of non-isometric
Klein bottles with the same I-spectra and with different lengths of closed
geodesics.

(ii) By taking M to be a rhomboidal torus and letting T1 and T2 be
reflections across the "diagonals" one similarly obtains pairs of 1-isospectral
Mobius strips of arbitrarily different perimeters.

(iii) By taking products of the various 1-isospectral flat manifolds in 2.5,
2.6 and in these remarks with a torus of dimension 2m - 2 and recalling
Remark 2.1, we obtain pairs of m-isospectral 2m-dimensional flat manifolds
with the same boundary behavior as the surfaces in these examples.

Finally we consider hyperbolic surfaces.
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2.8. THEOREM. - In each genus g &#x3E; 1, there exist non-orientable
hyperbolic closed surfaces ,S’1, ,5’2, S3, and ,S’4 of genus g such that

(a) All four surfaces have the same Hodge spectrum on 1-forms.

(b) They have different length spectra (different in the strong sense
that different lengths occur, not just different multiplicities), and S4 has a
smaller injectivity radius than Sl, ,S’2 , and ,S’3 .

(c) The Laplacians acting on functions on these surfaces are not

isospectral.

These surfaces are also 1-isospectral to each of four hyperbolic
surfaces with boundary having 2, 4, 2g - 2, and 2g boundary components,
respectively.

We remark that (b) implies (c), since the 0-spectrum determines the
weak length spectrum (i.e., the spectrum of lengths of closed geodesics,
ignoring multiplicities) in the case of hyperbolic manifolds. (Aside: For
Riemann surfaces, it is a classical result of Huber that the 0-spectrum
and the strong length spectrum, i.e., the spectrum of lengths, counting
multiplicities, determine each other. This result has been extended to non-
orientable hyperbolic surfaces by Peter Doyle and the second author in an
article in preparation.)

Figure 1. Right-angled hexagon and the associated pair of pants.

Proof. We construct an orientable surface ,S’ as follows: Let Y be a

pair of hyperbolic pants, as shown in Figure 1; the boundary geodesics of the
pant legs have the same length, while the waist may have a different length.
The pants are formed by gluing together two identical right-angled geodesic
hexagons along three sides. The hexagon is also pictured in Figure 1. Choose
a positive integer t and glue together 4t isometric copies Yi, ... , Y4t of Y to
obtain a Riemann surface ,5’ of genus 2t + 1. To describe the symmetries,
we will visualize ,5’ (as shown in Figure 2 in case t = 1 ) as obtained from a
surface N with boundary in R 3with appropriate identifications of boundary
edges. The three symmetries TH, TVI, and Tp of N given by reflection across
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the xy-plane, the xz-plane and the yz-plane, respectively, define commuting
involutive isometries of S. (We are using the indices H, V, and P here to
indicate reflection across planes that are horizontal, vertical, or the plane of
the paper.) There are additional isometric involutions of ,5’ (not of N) given
by reflections across vertical planes passing through the waists of two of the
pants. Choose such a symmetry and denote it by Tv2. E.g., in case t = 1,
a choice of Tv2 interchanges pants YI with Y2 and Y3 with Y4 in Figure 2.
Finally, let p be the orientation preserving isometric involution (rotation)
p sending the pair of pants Y to the pants Yi+2t mod 4t, for each i. Note
that TH and Tp commute with p. Thus the isometries Tl : - TH o o Tp,

T2 : = Tp o p, T3: - TH o p, and T4 : - TH o TV2 o Tp are involutive,
orientation-reversing, fixed-point-free isometries of S. We set ,S’i = 
for i = 1, 2, 3, 4. The surfaces are depicted in Figure 3 in case t = 1.
These non-orientable surfaces have genus g - t + 1, and, topologically,
they are spheres with t - 1 handles and two cross handles, or equivalently,
spheres with t -~- 1 cross handles.

Figure 2. Four congruent pants glued to form S.

For generic choices of the hyperbolic pants Y used to build the
surfaces above, the four surfaces will have different geodesic length spectra.
For concreteness, we will make a specific choice of Y to guarantee that
one of the surfaces has a strictly smaller injectivity radius than the others.
There exists a unique right-angled hexagon as in Figure 1 for each given
choice of a and q. (See Buser [B], Theorem 2.4.2.) We choose a and
to be less than arcsinh(l) and to satisfy -y  2a. Since the waist of the

resulting pants has length 2-y and the boundary geodesics of the legs have
length 2a, the resulting surface ,S’ has 2t closed geodesics of length 2~
and 4t of length 2a. By Theorem 4.1.6 of [B], a surface of genus g can
have at most 3g - 3 simple closed geodesics of length less than or equal
to 2arcsinh(l). Thus the geodesics in ,S’ corresponding to the boundary
geodesics of the pants are the only simple closed geodesics satisfying this
bound on their lengths.
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Now for i = l, 2, 3, 4, consider the shortest "new" closed geodesic in
the surface i.e., the shortest closed geodesic that does not lift to a closed
geodesic of the same length in S. These geodesics are depicted in Figure 3
in case t = 1. (The relative lengths of the geodesics in the figures are
distorted.) The surface ,S’4 contains a geodesic of length q. This geodesic is
shorter than any closed geodesic in the orther surfaces. Thus S4 has smaller
injectivity radius than the others. Thus statement (b) of the Theorem is
satisfied.

Figure 3. The non-orientable surfaces ,S’Z; the shortest "new"
geodesics are thicker.

For the final statement of the theorem, we use Corollary 1.4 to

observe that the surfaces are also 1-isospectral to the four surfaces

(Tp)B6’, (Tvl)BS, and (TY2 ) B,S‘ with boundary. These surfaces have
2g, 2g - 2, 4 and 2 boundary components, respectively. 0

2.9. Remark. - Letting ,S’ be the surface of genus 2n, n &#x3E; 1, pictured
in Figure 4, one may take the quotient of ,S’ by each of the three visual
symmetries (reflection across a vertical plane, horizontal plane, and plane
of the paper) to obtain 1-isospectral surfaces with boundary. The first has
only one boundary component, while the others have 2n + 1.

2.10. Surfaces with boundaries of arbitrarily different shapes. - This
final example involves manifolds of mixed curvature. Let M be a 2-sphere
with a non-standard metric, symmetric with respect to reflection across
two orthogonal planes. The quotients of M by these isometric involutions
are 1-isospectral manifolds with boundaries. By choosing the metrics on M
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Figure 4. A Riemann surface and a reflection plane.

appropriately, one can more or less arbitrarily prescribe independently the
geodesic curvatures of the boundary curves.

3. Examples of orbifolds and manifolds isospectral
in the middle degree.

Does the spectrum distinguish orbifolds with singularities from

smooth manifolds? We will see below that the middle degree Hodge
spectrum cannot detect the presence of singularities. We do not know
whether the 0-spectrum always detects singularities. However, we will show
in Propositions 3.4 and 3.5 that it does in many situations, including all
the examples we will give of orbifolds and manifolds which are isospectral
in the middle degree.

3.1. THEOREM. - The cylinder, Klein bottle and M6bius strip of
Example 2.5 are also 1-isospectral to a four pillow O.

Proof. The four pillow is the quotient of T = Z2 BR2 by the
involution p induced from the pillow-shaped
orbifold with isolated singularities at the four corners. Since p is not

orientation reversing, we cannot apply Corollary 1.4. Instead we will

compare the spectra directly.

Every 1-form on T may be written in the form f dx + g dy, where dx
and d~ are the forms induced on T by the standard forms on R~. Since

Spec, (T) consists of two copies of speco (T). Hence each of the manifolds in
Example 2.5 has 1-spectrum equal to the 0-spectrum of T.
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Since both dx and dy are p-anti-invariant, the space of p-invariant
one-forms on T is given by

Thus spec, (0) is formed by two copies of the spectrum of the Laplacian
of T acting on the space of p-anti-invariant smooth functions. By Fourier
decomposition on the torus, one sees that the Laplacian of T restricted
to the p-anti-invariant smooth functions has the same spectrum as the
Laplacian restricted to the p-invariant smooth functions. Consequently
spec, (C~) = speco (T) and the theorem follows. 0

3.2. THEOREM. - (i) For each positive integer m &#x3E; 1, there exists
a collection of m - 1 distinct mutually m-isospectral 2m-dimensional flat
orbifolds having singular sets of dimension 1, 3, 5,..., 2m - 3, respectively.
Moreover, these orbifolds are also m-isospectral to the direct product of a
cubical (2m - 2)-torus with each of the manifolds of Example 2.5.

(ii) For each positive integer m &#x3E; 1, there exists a collection of m - 1
distinct mutually m-isospectral 2m-dimensional spherical orbifolds having
singular sets of dimension 1, 3,..., 2m - 3, respectively. Moreover, these
orbifolds are also m-isospectral to a 2m-dimensional projective space and
to a 2m-dimensional hemisphere.

Remark. - One can also incorporate into the family in Theorem 3.2 (i)
of mutually m-isospectral orbifolds and manifolds a 2m-dimensional

analogue of the pillow, obtained as the quotient of under the action

of minus the identity. This orbifold has only isolated singularities; i.e., the
dimension of its singular set is zero. The proof of isospectrality is similar to
that of Theorem 3.1.

Proof. (i) For k odd with 1  k  2m - 3, let Tk be the orthogonal
involution of JR2m given by the 2m x 2m diagonal matrix

Then Tk induces an orientation reversing involution, which we also denote
by Tk, of the 2m-dimensional cubical flat torus T. Let Ok be the quotient
of T by Tk. By Corollary 1.4, these orbifolds are mutually m-isospectral.
Since the direct product of a cubical (2m-2)-torus with any of the manifolds
or orbifolds in Theorem 3.1 may also be viewed as a quotient of T by an
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involution, the final statement of the theorem follows. (Aside: One could also
take k = 2m - 1 to obtain an orbifold with singular set of dimension 2m - 1.
However, under the identification described in Remark 1.2 (iii), this orbifold
is identified with the product of the cyliner in Theorem 3.1 with the cubical
torus and thus is redundant.)

(ii) We now let Tk, for k even with 2  k  2m - 2, be the orthogonal
involution of JR2m+I given by the (2m + 1) x (2m + 1) diagonal matrix

The quotient of the 2m-sphere by Tk is an orbifold with singular set of
dimension k - 1. Again by Corollary 1.4, these orbifolds are mutually
m-isospectral and are also m-isospectral to the projective space and

hemisphere of Example 2.2. (Aside: If we take k = 2m, we obtain the

hemisphere under the identification in 1.2.) 0

In [MR1], [MR2], R. Miatello and the second author computed all the
various p-spectra of flat manifolds. Their method extends to flat orbifolds
and can be used to give an alternative proof of Theorem 3.2 (i) as well as of
the earlier examples of flat manifolds and/or orbifolds.

We next show that the orbifolds and manifolds in Theorems 3.1

and 3.2 are not 0-isospectral. The orbifolds in these examples belong to the
class of so-called "good" Riemannian orbifolds; that is, they are quotients
of Riemannian manifolds by discrete, effective, properly discontinuous
isometric group actions.

3.3. LEMMA (see [D l] , [D2]). Let 0 be a good Riemannian orbifold,
and let Ai, A2, .. be the 0-spectrum of the Laplacian. Then there is an
asymptotic expansion as t 1 0 of the form

where S varies over the strata of the singular set and where BS (t) is of the
form 

C)O

with 0. The coefficients ak in the first part of the expansion are given
by the same curvature integrals as in the heat expansion for manifolds; in

particular, ao = vol(O) . 
°
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Remarks. (i) There is an apparent typographical error in the statement
of this result as Theorem 4.8 in the article [D2] in that the power

(41Tt)-! dimeS) is missing. However, the proof makes the expression clear.
(ii) S. Greenwald, D. Webb, S. Zhu and the first author recently

generalized Lemma 3.3 to arbitrary Riemannian orbifolds. An article is

in preparation. With this generalization, the hypothesis that 0 be good in
the first statement of Proposition 3.4 below can be dropped.

3.4. PROPOSITION. - Let 0 be a good Riemannian orbifold with

singularities. Then

(i) If o is even-dimensional (resp., odd-dimensional) and some strata
of the singular set is odd-dimensional (resp., even-dimensional), then 0
cannot be 0-isospectral to a Riemannian manifold.

(ii) If N is a manifold such that 0 and N have a common Riemannian

cover, then M and 0 are not 0-isospectral.

Proof. (i) In the two cases, the fact that 0 is an orbifold can
be gleaned from the presence of half-integer powers, respectively integer
powers, of t in the asymptotic expansion in Lemma 3.3.

(ii) Suppose N and C7 have a common covering. By Lemma 3.3, the
spectrum of o determines its volume. The first part of the heat expansion
in Lemma 3.3 (involving the ak ) depends only on the volume of the orbifold
and the curvature of the covering manifold; thus it must be identical for N
and C7. The second part of the expansion vanishes for N but not for C7.
Hence the trace of the heat kernels of N and 0 have different asymptotic
expansions, so N and 0 can’t be 0-isospectral. D

3.5. PROPOSITION. - None of the manifolds and orbifolds in

Theorems 3.1 and 3.2 are 0-isospectral.

Proof. By Proposition 3.4 (ii), the closed manifolds in these

theorems are not 0-isospectral to the orbifolds. As discussed in Remark 1.2,
the manifolds with boundary in these theorems are the underlying spaces
of (closed) orbifolds; the boundaries of the manifolds form the singular sets
of the orbifolds. Moreover the Neumann spectrum of each such manifold
coincides with the 0-spectrum of the associated orbifold. Thus we are
reduced to comparing the 0-spectra of various orbifolds, each of which has
a singular set consisting of a single strata. Moreover, the orbifolds in each
collection have the same constant curvature and have a common covering
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as orbifolds. In particular, the first part of the heat expansion in Lemma 3.3
is identical for the various orbifolds. However, since their singular strata
have different dimensions, the second part of the expansion differs. Thus
they cannot be 0-isospectral. 0
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