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, 1581-

STAR PRODUCTS AND LOCAL LINE BUNDLES

by Richard MELROSE

Introduction.

If M is a symplectic manifold, Lecomte and DeWilde ([3], see also
Fedosov’s construction, [7]) showed that M carries a star product. That is,
the space of formal power series in a parameter, t, with coefficients being
smooth functions on M, carries an associative product

where each is a bilinear differential operator and

Here the second term is the Poisson bracket on the symplectic manifold;
note that the normalization of the non-zero coefficient is arbitrary, since it
can be changed by scaling the formal variable t.

The star product is pure if = only depends on the
’change of order’. This means that it can be written

Ceywords: Deformation quantization - Star product - Toeplitz algebra - Local line bun-
Ile - Gerbe - Szego projection - Contact manifold - Index formula - Real cohomology.
/lath. classification: 47L80 - 53D55.
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Boutet de Monvel and Guillemin had an alternate approach to ’formal
quantization’ in this sense, but it was limited to the pre-quantized case,
in which the symplectic form is assumed to be a non-vanishing multiple
of an integral class and hence arises from the curvature of a line bundle.
The corresponding circle bundle is a contact manifold and the quantization
of M arises from the choice of an S-invariant Toeplitz structure on this
contact manifold; note that this gives much more than the star product.
This construction is reviewed below and extended to the general case using
the notion of a local line bundle. In a certain sense the construction here is

intermediate between that of Boutet de Monvel and Guillemin and that of

Fedosov (which for the sake of brevity is not discussed) but still gives more
than the latter in so far as the star algebra is shown to be the quotient of an
algebroid of Toeplitz-like kernels near the diagonal, where composition is
only restricted by the closeness of the support to the diagonal. The quotient
is by the corresponding algebroid of smoothing operators. This carries the
usual trace functional and the unique (normalized) trace on the star algebra
is shown to arise as a residue trace in this way, with the trace-defect formula

used to prove the homotopy invariance of the index as in [12].

1. Toeplitz operators.

Under the assumption that (M, w) is a symplectic manifold with
[w] E H2 (M, Z) an integral class, Guillemin, in [9], exploiting his earlier
work with Boutet de Monvel ([2]) used the existence of a Toeplitz algebra
on the circle bundle with curvature w to construct a star product on M.
This construction is first sketched and then extended to the non-integral
case.

Let L be an Hermitian line bundle over M with unitary connection
having curvature wl27r; this exists in virtue of the assumed integrality of w.
Let Z be the circle bundle of L. The connection on L induces a connection

1-form, 1] E on Z, fixed by the two conditions

(1) 1]( 8()) == 1 for the derivative of the circle action and

(2) For each p E Z, r~P is normal to any local section of Z over M which
is covariant constant, at p, as a section of L.

It follows that 1] is S-invariant and dr~ = w is a basic form. Since w is
assumed to be symplectic, 1] is a contact form on Z.
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Any contact manifold, Y, carries a natural space of ’Heisenberg’
pseudodifferential operators, see [1], [17] and [8] and [5]. If the contact

manifold is compact these form an algebra, in general the properly
supported elements form an algebra. Let us denote by To (Y) the space of
Heisenberg pseudodifferential operators of order 0 on Z. This also has two
ideals, corresponding to the two orientations of the contact bundle, namely
the upper and lower Hermite ideals (Y) C (Y). The intersection of
these ideals is the space of (properly supported) smoothing operators.

Although working more from the point of view of complex Lagrangian
distributions, Boutet de Monvel and Guillemin introduced the notion of
a ’quantized contact structure’ which is the choice of a generalized Szego
projector P C Tk,+(Y). Assuming Y to be compact, P2 = P, otherwise it
is properly supported and such that P2 - P is a smoothing operator. The
defining property of such a projector is that its symbol, in the sense of the
Heisenberg algebra, should be the field of projections, one for each point
of Y, onto the null space of the field of harmonic oscillators arising from
the choice of a compatible almost complex structure. It is shown in [4] that
the set of components of such projections is mapped onto Z by the relative
index, once a base point is fixed.

Having chosen such a projector, the associated space of Toeplitz
operators consists of the compressions of pseudodifferential operators (or
Heisenberg pseudodifferential operators) to the range of P, i.e. the operators

If Y is compact this is again an algebra; otherwise the properly supported
elements form an algebra if the smoothing operators are appended. In either
case, the quotient by the corresponding algebra of smoothing operators is
the ’Toeplitz full symbol algebra’

Here the formal power series parameter is the inverse of the homogeneous,
length, function on the contact line bundle over Y.

Returning to the case that the contact manifold, now Z, is a circle

bundle with S-invariant contact structure we may choose the projection P
to be S-invariant and then consider the subspace of S-invariant Toeplitz
operators

For this subalgebra
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THEOREM 1 (Guillemin [9]). - If (M, w) is a compact integral
symplectic manifold then W9Tp(Z), the S-invariant part of the Toeplitz
operators for a choice of S-invariant generalized Szeg6 projector on the
circle bundle of an Hermitian line bundle with curvature is an

algebra and this algebra structure induces a star product on M through
(1.4).

In case M is non-compact, but still with integral symplectic structure,
the choice of a properly supported S-invariant projection, up to smoothing,
leads to the same result for the properly supported Toeplitz operators, with
properly supported smoothing operators appended.

For the proof see [2] or [5].

2. Closed 1-forms.

As a slight guide to the discussion of local line bundles below we first
discuss the analogous ‘geometric model’ for 1-dimensional real cohomology.
This result is not used anywhere below.

As is well-known, the closed 1-forms inducing integral 1-dimensional
cohomology classes on a manifold M can be realized in terms of functions
into the circle. Thus,

1

is an isomorphism onto the real closed integral 1-forms. One can get a
closely related realization of the cohomology with real coefficients in terms
of ’local circle functions’ on M.

DEFINITION 1. - A local circle function on M is a smooth map
defined on a neighbourhood of the diagonal in M2, A E Coo (W; S), W C M2
open, Diag C W, such that

where V is some neighbourhood of the triple diagonal in M3.

In fact we will only consider germs of such functions at the diagonal,
i.e. identify two such functions if they are equal in some neighbourhood
of the diagonal. If a C then A(x, ~) - satisfies

(2.2). Setting x = y = z in (2.2) shows that A). = 1. Similarly
A(x, y)A(y, x) = 1 near the diagonal. If U C M is a small open set so
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that U x U C W and U x U x U c V then choosing p E U and setting
ap (x) = A (x, p), x E U, gives ap : U - S and ~4(.r,~) = 
on U x U. Thus A does define such a map, a, locally. Changing the base
point p to another q C U changes ap to A(x, q) = A(x, p)A(p, q) =
A(p, q)ap(x), i.e. only by a multiplicative constant. It follows that the

1-form

is well-defined on U independently of the choice of p E U and hence is

globally well-defined on M. From the local identification with it

is clearly closed. Furthermore, the vanishing of a implies that ap is locally
constant and hence A -= 1 near the diagonal. Thus we have proved

PROPOSITION 1. - The group of germs at the diagonal of local
circle functions is isomorphic to the space of closed 1-forms.

Similarly, if we consider real functions, /3 E C’ (W, R), defined near
the diagonal which satisfy the additivity condition

and identify the local circle functions A and then we arrive at a

geometric realization of H’(M, R).

3. Local line bundles.

The problem with extending Theorem 1 to the general case is, of

course, that in the non-integral case there can be no line bundle over
M with curvature the symplectic form. Nevertheless there is a ’virtual

object’ which plays at least part of the same role. This is closely related
to, but rather simpler than, Fedosov’s theorem on the classification of star
products, up to isomorphism, in terms of H2 (M; R).

We give a ’geometric realization’ of H2 (M; R) on any manifold,
possibly with corners. The construction here of ’local line bundles’ over
M is related to ideas of Murray concerning bundle gerbes ([15]) and more
particularly to the discussion of extensions of Azumaya bundles in [12].

Consider the diagonal
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which is naturally diffeomorphic to M under either the left or right
projection from M2 to M. Similarly consider the triple diagonal

There are three natural projections from M3 to M2 which we label nF, 7rS
and 7rc (for ’F’irst, ’S’econd and ’C’entral or ’C’omposite):

DEFINITION 2. - A local line bundle over a manifold M is a

(complex) line bundle L over a neighbourhood of Diag C M2 together with
a smooth ’composition’ isomorphism over a neighbourhood of Diag3 C M3

with the associativity condition that for all (x, y, z, t) sufficiently close to
the total diagonal in M4, the same map

arises either by first applying H in the left two factors and then on the
composite, or first in the right two factors and then in the composite, i.e.
the following diagramme commutes:

We will really deal with germs at the diagonal of these objects.

Over the triple diagonal itself I~ necessarily gives an isomorphism

If ez # 0 is an element of then HDiag maps ez 0 ez to cez for some
0 ~ c E C. Thus, corresponding to the two square-roots of c there are
exactly two local sections of such that H(c 0 c) - c. On the other
hand ,C(~,~) acts on the right on each £(t,x) for t sufficiently close to x as
the space of homomorphisms. The associativity condition (3.6) means that
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is identified with the linear space of homomorphisms on in a

way consistent with its product. Thus either e or -e must be locally the
identity. Hence Id must exist as a global section so there is a canonical
identification

consistent with the action of on the left or right on ,C through H.

Now, consider local trivializations of ,C. Choosing a sufficiently fine
open cover {Ui} of M, the products Ui x Ui give an open cover of Diag C M2
and are contained in a given neighbourhood of the diagonal. Thus, for some
such open cover, ,C is defined over each Ui x Ui. Choose a point pz E Ui and
consider the bundles

The composition law H gives an identification

and also an identification

since over the diagonal ,C has been canonically trivialized.

LEMMA 1. - Any local line bundle over M has a multiplicative
connection, i.e. a connection V such that if u is a local section of ,C near

(Xl Y) with Vu = 0 at (x, y) and v is a local section near (y, z) with
w = 0 at (y, z) then H(u, v) is locally constant at (x, y, z). Similarly £ has
a multiplicative unitary structure, so

and has a multiplicative Hermitian connection.

Proof. Using an open cover as described above, choose pi E Ui
for each i and a connection Vi i on L2,P2. If we make a different choice,
qi, of point in Ui then the composition law H gives an identification of

Li,q2 - 0 The second factor is a fixed complex
line, so a connection on Li,p2 induces, through H, a connection on 
Now, choose a partition of unity subordinate to the cover, pi E 
with Ei pi = 1. We shall modify the connection on and replace it by
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Here we use the fact that over Uij = ui n Uj the line bundles Li,p2 and 
are identified by H after tensoring with the fixed line as discussed

above, so Vj is well-defined on over Uij which contains the support
of pj in U2. Directly from the definition, this new connection is consistent
with the identification of and over Uij.

Now the connection on ,C over Ui x Ui induced by taking the dual
connection to V on R,,P,, using the identification (3.11), and then the
tensor product connection on £ using (3.10) is independent of i. That is, it
is a global connection on ,C and from its definition has the desired product
property.

The same approach allows one to define a multiplicative Hermitian
structure by taking as Hermitian structure (-, each Li,p,. This induces
Hermitian structures on the inverses L-1 and hence on L over Ui x Ui.
Then if pi is a partition of unity subordinate to the cover, the inner product
on ,C over Ui x Ui

i

is consistent with the inner products over the other Uj x Uj. Unitary
metrics on each of the Li,p2 then induce a connection on L which is both
multiplicative and unitary, i.e. is consistent with the Hermitian struc-

ture. 0

PROPOSITION 2. - The left curvature of a product Hermitian
connection, i.e. the restriction of the curvature at the diagonal to the left
tangent space, is an arbitrary real closed 2-form on M lying in a fixed class
in determined by the local line bundle and product Hermitian
structure. Two local line bundles are isomorphic in some neighbourhood
of the diagonal under a unitary isomorphism intertwining the product
structures if and only if the left curvatures define the same cohomology
class; all cohomology classes arise in this way.

Proof. Two product connections on a fixed local line bundle differ

(in a small neighbourhood of the diagonal where they are both defined) by
a 1-form ia. The multiplicative condition on the connections implies that

(3.15) a(~~y&#x3E; (v~ w) - a(~~z) (v~ u) ~ a(y~z) (u~ w)
for all points (x, z, y) in a small enough neighbourhood of the triple diagonal
and all v E E TyX and w E TzX. In particular a(~,x) - 0 and

(u, w) + (w, v) = 0 so the 1-form defined locally on M by
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for y fixed close to x is actually globally well-defined and satisfies

Similarly the curvature of a product connection is locally the curvature of a
connection on L:-p1 coming from a connection on Li,p,. It is therefore
locally of the form 7r*w for a closed 2-form on M. Again it follows
that the 2-form w is well-defined, as the restriction of the curvature to left

tangent vectors at the diagonal.

Thus it remains to show that any real closed 2-form, w, on M arises
this way. Consider a good cover of M, so each of the open sets Ui and all of
their non-trivial intersections are contractible. Then on each Ui there exists
a smooth 1-form, az E C’ (Ui; such that

On non-trivial overlaps there exists a smooth function Øij such that

It follows that on non-trivial triple intersections

Now, consider Li which is the trivial line bundle over with the connection

d + icx2 which is unitary for the standard Hermitian structure. Over the
open neighbourhood of the diagonal

use the product isomorphism x to identify with 

over the intersection (Ui n x ( Ui n Us ) . The constancy of the Oijk means
that these unitary isomorphisms satisfy the cocycle condition on triple
overlaps, so this gives a well-defined bundle ,C over U. That this is a local
line bundle follows immediately from its definition and the connections
patch to give a global unitary connection with curvature w. 0

Thus the collection of Hermitian local line bundles modulo unitary
multiplicative isomorphisms in some neighbourhood of the diagonal is

identified with H 2(M; R) and the collection of Hermitian local line bundles
with unitary product connections modulo isomorphisms identifying the
connections is identified with the space of real closed 2-forms on M. By
extension from the standard case we call the cohomology class

the first Chern class of L and exp (w /2Jr) E Heven(M; R) its Chern character.
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4. Atiyah-Singer index formula.

The Atiyah-Singer formula expresses the analytic index, the difference
of the dimension of the null space and the null space of the adjoint, for an
elliptic pseudodifferential operator in terms of topological data determined
by the principal symbol. Namely if A E E, F) is a pseudodifferential
operator acting between sections of the two (complex) vector bundles E
and F then its principal symbol E C°° (S’*X ; hom(E, F) 0 Nm)
defines a homomorphism between the lifts of E and F to the cosphere
bundle, up to a positive diagonal factor; ellipticity of A is by definition
equivalent to invertibility of this homomorphism. This in turn fixes a
compactly supported K-class on T * X, or equivalently a K-class for the radial
compactification T * X of the cotangent bundle relative to its boundary, the
cosphere bundle

The Atiyah-Singer formula is

Here B F, E) is a parametrix for A, so is such that AB - IdF,
BA - IdE are smoothing operators, Ch : K(M,8M) - H*(M,8M) is

the Chern character and Td(X) is the Todd class of the cotangent bundle.

We wish to generalize this formula to include twisting by a local line
bundle as discussed above. To do so, recall the definition of the space of

pseudodifferential operators of order m. If Diag C X2 is the diagonal in the
product then in terms of Schwartz’ kernels

Here Im(M, Y; G) is the space of conormal distributions of order m,
introduced explicitly by Hormander in [11] for any embedded submanifold
Y of a manifold M and any vector bundle G over M. In the particular
case (4.3), Hom(E, F) - 7r*F 0 is the ’big’ homomorphism bundle
over the product and nR*Q is the right-density bundle, allowing
invariant integration; here 7rR : X2 - X are the two projections. The
symbol for A E T’ (X; E, F) is then the leading asymptotic term
in the Fourier transform, in directions transversal to the diagonal, of the
kernel and is naturally identified with a section of the ’little’ homomorphism
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bundle hom(E, F) = Hom(E, F) I Diag lifted to the conormal bundle of Diag,
which is to say the cotangent bundle of X.

As in [12] we can general this space of kernels by twisting with a
vector bundle, even if this bundle is only defined in a neighbourhood of the
diagonal. In this way we will obtain a space of ’kernels’ with supports in a
sufficiently small neighbourhood of Diag C X2. In [12] this was considered
in the case of the homorphism bundle for a projective vector bundle and
also for local line bundles which are Nth roots of line bundles over X. Here

we can allow the more general case of a local line bundle as discussed above
and define

where BE is a sufficiently small neighbourhood of the diagonal over which
the local line bundle L exists. For definiteness, and because it is related to
Weyl quantization, we will take BE to be the points of X2 distant less than
E from the diagonal with respect to a metric on X on the two factors of ~~.

In general the elements if W£,E(X; E, F) do not compose freely as
do those of rather it is necessary for the supports to be

sufficiently close to the diagonal. Thus suppose E, F and G are three vector
bundles over X. Composition

in the standard case, reduces to a push-forward operation on the kernels.
Namely

This push-forward result, and correspondingly the composition (4.5),
can be localized on X2 in each factor. Thus, localizing away from the
diagonal gives a smooth term and this results in a smoothing operator.
Localization near a point on the diagonal in either factor allows the

vector bundles to be trivialized and then the result reduces to the

scalar case for open sets in Euclidean space. There, or even globally, the
elements of ¡m(x2; Diag), which are the classical (so polyhomogeneous)
conormal distributions may be approximated by smooth functions within
the somewhat larger class of conormal distributions ’with bounds’ (i.e. of
type 1, 0.) In the smoothing case, i.e. for m == rrz’ = -oo, (4.6) becomes
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Here the three projections 7rL, 7rM, 7rR : X3 - X are used and for the
second map the pairing between E and E’ leads to a density in the middle
factor which is integrated out. Thus (4.7) is a more explicit, and invariant,
version of the composition formula

In particular to extend (4.5) to the kernels in (4.4) it is only necessary to see
that the smooth composition makes sense as in (4.7) since the singularities
of the kernels behave exactly as in the standard case. In fact in the presence
of a local line bundle ,C, (4.7) is replaced by

Here 7rs,7rp,7rc : X3 ~ X2 are the projections from (3.3) and give, over
a sufficiently small neighbourhood of the triple diagonal, an identification

Notice that if BE and BE are sufficiently small neighbourhoods of the
diagonals then is indeed an arbitrarily small neigbourhood
of the triple diagonal, projecting under 7rc to a neighbourhood of the
diagonal BE, small with E + c’.

Thus, when the product (4.9) is localized near a point on the diagonal
in each factor, and these points can always be taken to be the same, ,C

reduces to 7r1L 0 7rnL -1 and it becomes (4.7) with E, F and G all replaced
by E 0 L, F 0 L and G 0 L. Thus indeed we arrive at the restricted, but
associative, product

for E + 6~ small compared to q. This product can still be written as in (4.8)
but with the associative product H giving the pairing on ,C. Notice that
the symbol is well-defined, as it is in the standard case, and since it is just
a section of the restriction to the diagonal of the bundle it leads to a short
exact sequence

in which the twisting local bundle £ does not appear in the symbol.

THEOREM 2. - If A E is elliptic, in the sense that
is invertible, and c &#x3E; 0 is sufficiently small then there is a parametrix
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B E IQ-’ (X ; F, E), for any E’ &#x3E; 0 sufficiently small, such that AB - Id and
BA - Id are smoothing operators and then the index

is independent of the choice of B, is log-multiplicative for elliptic operators

is homotopy invariant under elliptic deformations, is additive under direct
sums and so defines an additive map

which is given by a variant of the Atiyah-Singer formula

where C H2 (X ; is the first Chern class of the local line bundle ,C.

Proof. The proof of this result is essentially the same as that of
the twisted index theorem in [12]; we recall the steps.

First we recall that the symbol calculus for the twisted pseudodiffe-
rential operators has the same formal properties as in the untwisted case -
it is the smoothing part which is restricted by support conditions. Thus the
standard proofs of the existence of a parametrix, B, for an elliptic element
carry over unchanged. Furthermore the set of parametrices is affine over
the smoothing operators (with restricted support).

First we consider the special case that E = F. The smoothing
operators are only constrained away from the diagonal and the trace
functional is well-defined as usual as the integral of the Schwartz kernel
over the diagonal

When the composition of smoothing operators is defined,

and this identity extends, by continuity as indicated above, to the case
where one of the operators is a pseudodifferential operator.

Now, from this it follows that the definition, (4.13), of ind(A)
is independent of the choice of parametrix B since if B, B’ are two

parametrices then Bt = (1 - t)B + tB’ is a family of parametrices and
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since B’ - B is smoothing.

It is vital to establish the homotopy invariance of this index. To do
so we use the trace-defect formula from [13]; it is very closely related to
the proof of the Atiyah-Patodi-Singer index theorem in [14]. First we may
define the residue trace on E) following the idea of Guillemin [10].
Namely, the residue trace can be defined as the reside at z = 0 of the
meromorphic function

provided Q(z) is a family of pseudo differential operators of complex order
z which is everywhere elliptic and satisfies Q (o) = Id. Even in the twisted
case we can find such a family. One approach, indicated in [12], is to take
a generalized Laplacian, L E construct the singularity of its
formal heat kernel and then take the Laplace transform. The construction
of the singularity, at ~t = 01 x Diag of the heat kernel e-tL is known to be
completely local and symbolic (see for example [14] where this is done in a
more general case) and hence can be carried out in the twisted case, up to a
smoothing error term and with support in any preassigned neighbourhood
of the diagonal. The virtue of this construction is that it gives an entire
family of operators Q(z) of complex order z such that
(4.21)

The vanishing of R’ (0) follows by direct differentiation of the defining
identity.

The proof that the function F(z) in (4.20) is meromorphic is again the
same as in the standard case, as in the (corrected version of) the original
argument of Seeley ([16]) and F(z) has at most a simple pole at z = 0.
Furthermore the residue at z, defining TrR (A) is independent of the choice
of Q(z) since if Q’ (z) is another such family then Q’(z) - Q (z) - zE(z)
where E(z) is also an entire family of operators of complex order z. Since
the residue reduces to the same local computation as in the untwisted case,
it is given by the same formula, namely the integral over the cosphere
bundle of the trace of the term of homogeneity -n in the full symbol
expansion. In particular

The regularized trace of A,
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does depend on the choice of the family Q(z). However once a choice is
made, it gives a functional extending the trace. In the special case that we
are considering where A E E) ’acts on a fixed bundle’ this allows
the index to be rewritten 

The family Q also defines a derivation on the algebroid 1 Namely

Notice that the family on the right is an entire family of fixed order, one
less than that of T (since Q(z) is principally diagonal) so

if E and 6 are small enough. This is a derivation in the sense that

provided all supports are small enough. In fact D~ is independent of the
choice of Q up to an interior derivation. Notice that for any T C E)

since this is the residue at T = 0 of

where W (z, T) is entire in both variables with values in the smoothing
operators. Thus there is no singularity at T = 0.

The trace-defect formula now follows directly. If T, S E E)
with 6 &#x3E; 0 (and 6 &#x3E; 0 from Q) small enough then

Indeed using the trace identity when Re z   0,

The last term here is the trace of an entire family of smoothing operators,
vanishing at z = 0. Furthermore, Q(z)TQ(-z) - T is an entire family of
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operators of fixed order, vanishing at z = 0 so can be written 
and we arrive at (4.29).

Now the residue trace vanishes on operators of low order so is a trace
on the symbolic quotient

in which an elliptic operator is, by definition, invertible. Thus the index of
an invertible element a in (4.31) is

which is also independent of the choice of Q. In this case the homotopy
invariance follows directly, since if at is an elliptic family depending
smoothly on a parameter t then

where dt denotes the t-derivative and (4.28) has been used.

This proof only covers directly the case of elliptic operators on a fixed
bundle E. However, for A E E, F), elliptic between two different
bundles, only relatively minor modifications are required. Namely we need
to choose entire families as above, QE (z) and for the two bundles.

The definition of the index is modified to

where TrE and TrF are the regularized traces defined by QE and QF on
twisted operators on E and F. Independence of choice follows as before.

To see homotopy invariance we define the operator

for any bundles with a fixed choices of the regularizing families. From
the vanishing of dz QE (z)QE (-z) at z = 0 it follows that these are again
derivations in a module sense. From (4.34) the index is the regularized
value at z = 0 of
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The second term vanishes at z = 0 and evaluating the first gives

where we have replaced A by its image in the quotient by the smoothing
operators. From this the homotopy invariance follows as before.

Not only does the formula (4.37) lead to the homotopy invariance
of the index, but it also shows the multiplicativity. Given three bundles
E, F, G with Al E and A2 C elliptic with full
symbolic images a2 we see that

The index of the direct sum of two operators is trivially the sum of
the indexes, so from (4.38) and the homotopy invariance we conclude that
the index actually defines a group homomorphism from K-theory as in the
untwisted case

Here, any class in the K-theory of T*X, the radial compactification of the
cotangent bundle, relative to its bounding sphere bundle, is represented
by an elliptic symbol a E hom(E, F) over S*X, for bundles E and F over
X and the discussion above shows that the index is the same for two

representatives of the same class.

Now, from (4.39) we deduce that the map is actually vanishes on
torsion elements of K-theory, i.e. is well defined on K’(T*X, S*X) 0 R.
Thus, to prove the desired formula (4.16) it suffices to check it on a set of

elements of which span the K-theory, over R (or Q). If X is even-dimensional
the original observation of Atiyah and Singer is that the bundle-twisted

signature operators are enough to do this. This argument applies directly
here and the arguments of [12] again apply to show that the local index
theorem for Dirac operators gives the formula in that case, and hence proves
it in general in the even-dimensional case. For the odd-dimensional case it
is enough to suspend with a circle to pass to the even-dimensional case. D
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5. Star products.

Notice that in the construction of the star product in Theorem 1 only
the S-invariant part of the Heisenberg, and Toeplitz, algebra is used. There
is a close connection between the notion of a local line bundle and the

S-invariance; this is enough to allow the invariant part of the algebroid to
be constructed directly.

PROPOSITION 3. - Let L be an Hermitian line bundle over a

manifold M with S the circle bundle of L then there is a canonical

isomorphism between distributions on S x S which are invariant under
the conjugation S-action and distributions on the circle bundle, Q, of

(g) 7rRL -1 = Hom(L).

Proof. - The map from the total product to the exterior tensor

product

is a circle bundle with fibre action of S given by the conjugation action on

7r* L x 7r* L. Thus the invariant distributions on ,S’ x ,S’ are precisely the
pull-backs of distributions on Q. 11

Still in the integral case, under this identification, the S-invariant
Heisenberg operators are identified with the space of parabolic conormal
distributions on the ’diagonal’

with A being the contact form on Q.

So, in the general case of a possibly non-integral symplectic form we
simply define

PROPOSITION 4. - The kernels (5.3) form an algebroid with

composition restricted only by supports:

for all sufficiently small E, E’ &#x3E; 0.
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Proof. This is a local result once the composition formula is

written down invariantly and therefore follows from the standard theory of
Heisenberg operators. 0

THEOREM 3. - For any symplectic manifold there exists PE E
modulo smoothing and the fiend of projections

for a positive almost complex structure on M and the associated invariant
Toeplitz algebroid

induces a star product on the quotient

Again, the global setup having been defined, this is in essence a local
result and hence follows as in the integral case.

Note that only ’pure’ star products arise directly this way, those
classified by H2 (M, R). As in Fedosov’s original construction, one can
pass to the general star product by twisting asymptotic sums of pure star
products.
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