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SIGN FUNCTIONS OF IMAGINARY QUADRATIC

FIELDS AND APPLICATIONS

by Hassan OUKHABA

1. Introduction.

In this paper we introduce the concept of a sign function of a
imaginary quadratic field. As we will prove below this concept is very
helpful in the study of some arithmetical problems. Classically by sign
we mean the extension to R× of the continuous homomorphism s : Q× →
{−1, 1} satisfying s(−1) = −1. Here A× is the multiplicative group of the
ring A. In 1985 David R. Hayes introduced the concept of a sign function
of a global function field and used this notion to normalize Drinfel’d
modules of rank one, cf. [7]. The torsion points of these modules have many
important arithmetical properties. They are essential in the construction
of Stickelberger elements, Stark units, Euler systems, groups of cyclotomic
units in characteristic p, etc. To recall this definition we let K be a global
function field. We denote by ∞ a fixed place of K, and by K̂ the completion
of K at ∞. Let us also denote by Fq both the finite field of q elements and
the constant field of K̂. Then a sign function, with respect to (K,∞), is
a continuous homomorphism s : K̂× → F×q satisfying s(a) = a for all
a ∈ F×q . See [7] and [8] for more details. Our definition of a sign function
in the case of a imaginary quadratic field k ⊂ C is as follows. Let H ⊂ C
be the Hilbert class field of k. Then a sign function of k is a surjective

Keywords: Sign function, narrow ray class field, Shimura reciprocity law, ordinary s-
distributions, Anderson’s resolution, spectral sequences.
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group homomorphism s : Λ6 → µH satisfying s(U12) = 1 and such that
s(ξ) = ξ for all ξ ∈ µk (see the notation below). As one may check the
homomorphism κ̃ : Λ6 → µH induced by κ−1, where κ is the character
defined by Hajir-Villegas in [6], satisfies all these properties. Hence κ̃ is a
sign function of k.

In section 2 below we associate to each couple (s,m), where s is a sign
function and m is a non zero integral ideal of k prime to 6, a finite abelian
extension km,s ⊂ C of k. The field km,s is well described by class field theory.
In particular km,s contains the ray class field modulo m, which we denote by
km. The extension km,s/km is cyclic of degree wH (resp. wH/wk) if m 	= (1)
(resp m = (1)). As explained below the properties of the ramification in
the extension km,s/Hs, where Hs = k(1),s lead us to consider km,s as the
analog of a cyclotomic number field or a cyclotomic function field as well.

In section 3 we associate to each integral ideal c of k prime to 6N(m)
an algebraic integer Γm(c), which is a root of the Ramachandra invariant,
see definition 3.1. The construction of Γm(c) involves the Klein function and
the eta function of Hajir-Villegas. In Theorem 3.1 we describe the Galois
action on Γm(c). This is essentially done by using the Shimura reciprocity
law. In particular we prove that Γm(c) ∈ km,s, where m = N(m) and s is
the sign defined by the formula (3.2). In Theorem 3.2 and Corollary 3.1
below we describe the behavior under the norm map of a certain power of
Γm(1). In this we use the distribution law of the Siegel function stated in
[12] §2. The result we get is a refinement of the well known Theorem 2 of
[17] that gives the norm formulas satisfied by the Ramachandra invariants.

In section 4 we define the level m universal ordinary s-distribution
Us(m), in spirit of those considered in [11], [1] or [24]. We give the structure
of Us(m) as an abelian group and compute the Tate cohomology groups
Ĥn(J, Us(m)), where J = Gal(km,s/km). In this we follow the method of
Ouyang, cf. [16], which essentially uses Anderson’s resolution and related
spectral sequences. These cohomology groups naturally appear in many
settings. See for instance Anderson’s theory of epsilon extensions and it’s
analog for function fields in [2] and [3]. Let us remark that Us(m) is
naturally a Gal(km,s/k)-module. It’s Galois module structure is closely
related to a certain group of elliptic units. This connexion will be made
clear in a forthcoming paper in which we extend some results of Ouyang’s
paper [16] to our case and use them to improve Theorem B of [14].
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1.1. Notations.

In this subsection we give some of the notation we will use in this
paper.

kab:= the maximal abelian extension of k in C.

µ∞:= The group of roots of unity in C and µk = µ∞ ∩ k.

Ok:= the ring of integers of k and Dk < 0 the discriminant of k.

T0:= the monöıde of non-zero integral ideals of Ok prime to 6.

T 0:= the group of fractional ideals of k prime to 6.

Λ6:= the group of elements x ∈ k∗ that are prime to 6

U12:={x ∈ k∗ such that x ≡ 1 mod× 12}
Further if n ∈ T0 then we call n primitive if it is not of the form tu, with
u ∈ T0 and 2 � t ∈ N. It is always possible to write n = n1n

′, where
n1 ∈ N∗ and n′ primitive. This decomposition is unique. We will denote
the primitive part n′ by pr(n). Let L ⊂ kab be a finite abelian extension of
k. Then we let µL = µ∞ ∩ L. If a ∈ T0 is prime to the conductor of L/k
then we denote by (a, L/k) the automorphism of L/k associated to a by
the Artin map.

In:= the group of fractional ideals of k prime to 6n.

Un:={x ∈ Λ6 such that x ≡ 1 mod× n}
Rn:= the sub-group of In formed of those principal ideals xOk with
x ∈ Un

kn:=the ray class field modulo n

en:=the positive generator of n∩Z and N(n):= the cardinal of Ok/n.

n:= the image of n by the complex conjugation.

deg(n):= the number of non zero prime ideals dividing n

2. The narrow ray class fields km, s.

Let s be a sign function. Then for all m ∈ T0 we define Rm,s to be
the group of fractional principal ideals xOk such that x ∈ Λ6 ∩ Um and
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s(x) = 1. By class field theory there exists a unique finite abelian extension
km,s ⊂ C of k such that the Artin map gives the isomorphism

Gal(km,s/k) � Im/Rm,s.

If m 	= (1) then the map xOk �→ s(x), where x ∈ Λ6 ∩ Um induces an
isomorphism from Rm/Rm,s into µH . In particular the tautologic exact
sequence

1 −→ Rm/Rm,s −→ Im/Rm,s −→ Im/Rm −→ 1

clearly shows that km,s is a cyclic extension of km of degree wH . Let us
put Hs = k(1),s. Since R(1)/R(1),s is isomorphic to µH/µk via the map
xOk �→ s(x)µk for x ∈ Λ6 we see that Hs/H is a cyclic extension of degree
wH/wk. Moreover for m ∈ T0 and m 	= (1) we have

Gal(km,s/Hs) � Im ∩R(1),s/Rm,s � (Ok/m)×.

The inertia group of a prime ideal q|m in km,s/k is isomorphic to (Ok/q
e)×,

where qe is the exact power of q that divide m. In particular Gal(km,s/Hs)
is the direct product of the inertia groups of the prime ideals q|m. We
call km,s the narrow ray class field of k modulo m relative to s. One may
consider km,s as the analog of a cyclotomic number field or the analog of
the narrow ray class field of Hayes. See for instance [8] page 27.

3. A fundamental example.

Let us recall the definition of the character κ : (Ok/12Ok)× → µH
constructed in [6] definition 11. If λ ∈ Ok∩Λ6 is such that λOk is primitive
then

(3.1) κ(λ) = (−1)
N(λ)−1

2
1
λ

η2(λOk)
η2(Ok)

where N(λ) = N(λOk) and a �→ η(a) is the eta function on primitive ideals
a ∈ T0, cf. [6] definition 8.

If x ∈ Ok ∩Λ6 then we denote by q(x) the class of x in Ok/12Ok. We
extend multiplicatively this definition to obtain a group homomorphism
q : Λ6 → (Ok/12Ok)×. In this section we investigate some aspects of the
abelian extensions km,s where s is the sign function satisfying

(3.2) s(x) = (−1)
N(x)−1

2 κ(q(x))−1, for all x ∈ Ok ∩ Λ6,

Using the properies of κ one may easily prove that s(t) = (−1)
t−1
2 for all

positive integer t prime to 6.
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Let a ∈ T0 be a primitive ideal of Ok. Let λ ∈ Λ6 and denote by σλ
the automorphism of kab/k associated to λOk by the Artin map. Then by
Proposition 10 (i) of [6] we have

(3.3)
η2(Ok)
η2(a)

∈ kab and
(η2(Ok)
η2(a)

)σλ−1

= s(λ)N(a)−1.

Thus η2(Ok)/η2(a) ∈ Hs and Hs is the extension of H generated by all
these quotients. Let a, b ∈ T0 be primitive ideals of Ok, prime to Dk and
such that N(a) and N(b) are coprime. Then ab is primitive. Let us put

(3.4) η(a, b) =
η(a)η(b)

η(Ok)η(ab)
.

Then we have

(3.5) η(a, b) ∈ Hs and η(a, b)σλ−1 = s(λ)
1
2 (N(a)−1)(N(b)−1),

thanks to Theorem 19 (i) of [6].

Let L be a lattice of C and let (ω1, ω2) be a positive Z-basis of
L, which means that Im(ω1/ω2) > 0, then we denote by f(z, L) and
g(z, ω1, ω2) respectively the Klein function and Siegel function as defined
in [12], formulas (2.8) and (2.12).

Definition 3.1. — For all m, c ∈ T0 such that m 	= (1) and c is

prime to 6N(m) we put

Γm(c) =
−2πf

(
N(c),mc

)
η2

(
pr(m c)

)
emc

s(c1),

where c1 ∈ N∗ is defined by c = c1pr(c)

Proposition 3.1. — Let us set m = N(m). If (c, k(m),s/k) =
(c′, k(m),s/k) then Γm(c) = Γm(c′).

Proof. — Let λ, µ ∈ Λ6 ∩ Ok be such that λ ≡ µ modulo N(m),
s(λ) = s(µ) and λc = µc′. Then we have

λλf(N(c),mc
)

= f(λλN(c), λλmc
)

= f(µµN(c′), λµmc′
)

= µ f(µN(c′), λmc′
)

But since λ, µ are prime to 2 and λ ≡ µ modulo N(m) we also have the
equality f(µN(c′), λmc′

)
= f(λN(c′), λmc′

)
, thanks to the transformation

law (K3) of the Klein function in [12] page 232. Thus we have

(3.6) λf(N(c),mc
)

= µ f(N(c′),mc′
)
.

let us set c2 = pr(c), c′2 = pr(c′), λ = λ1λ2 and µ = µ1µ2 where λ1 and
µ1 are positive integers, moreover, λ2Ok and µ2Ok are primitive integral
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ideals. Let us denote by d the ideal pr(λ2c2) = pr(µ2c
′
2). In particular we

have

(3.7)
η2

(
pr(m)c2

)
η2

(
pr(m)c′2

) =
[η2

(
c2

)
η2

(
d
) η2

(
d
)

η2
(
c′2

)]τ
,

where τ = (pr(m), Hs/k). Let a be a primitive integral ideal of Ok prime to
6DkN(λ2c2) and such that ac2 = αOk for some α ∈ Ok. Then Proposition
10 (i) of [6] give

(3.8)
[η2

(
c2

)
η2

(
d
) ](a,Hs/k)

=
η2

(
αOk

)
η2

(
(λ2α/t)Ok

) = s(λ2/t)t/λ2,

where t is the positive integer defined by λ2c2 = td. In the same manner
we have

(3.9)
[η2

(
c′2

)
η2

(
d
) ](c′2,H/k)

−1

= s(µ2/t
′)t′/µ2,

with µ2c
′
2 = t′d. Now to complete the proof we have just to use the

definition 3.1 and the equations (3.6), (3.7), (3.8) and (3.9). ��

Theorem 3.1. — Let m, c ∈ T0 be such that m 	= (1) and c is

prime to 6N(m). Put m = N(m) and σc = (c, k(m),s/k) then

Γm(c) ∈ k(m),s and Γm(c) = Γm(1)σc .

If c = λOk, with λ ∈ U(m) then Γm(1)σλOk = s(λ)−mΓm(1).

Proof. — By the above proposition 3.1 and Chebotarev theorem we
may assume without loss of generality that c is a prime ideal p of residual
degree 1 in k/Q and such that p � 6DkN(m). Let us write m = m1pr(m),
where m1 is a positive integer. Let u ∈ Z be such that u ≡ Dk modulo 4
and u ≡ −

√
Dk modulo pr(m)p. Put α = (u +

√
Dk)/2, m2 = N(pr(m))

and p = N(p) then (α, 1) is a positive Z-basis of Ok. Moreover we have

pr(m) = Zα+ Zm2, p = Zα+ Zp and pr(m)p = Zα+ Zpm2.

On the other hand recall that

2πiη2(pr(m)p) = e24(pm2(−u+ 3ω̃))η2(
α

pm2
),

where en(z) = e
2πiz
n and ω̃ = gcd(wH2 , 2), cf. [6] definition 8. The Dedekind

η2 function is given in [12] formula (2.11). Thus we have the identity

(3.10) Γm(p) = ig(p,m1α, emp)e24(pm2(−u+ 3ω̃)).

ANNALES DE L’INSTITUT FOURIER
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Let us also remark that Γm(1) = ig(1,m1α, em)e24(m2(−u+ 3ω̃)). Now we
may use the Shimura reciprocity law as stated in [21] Theorem 3. Indeed,
it is well known that h1 : z �→ ig( 1

em
, z, 1) is in F12e2m

, that is the set of
modular functions of level 12e2m with Fourier coefficients in Q(ζ12e2m) at
every cusp. Hence by Theorem 3 of loc.cit. we have

ig(1,m1α, em) = h1(θ) ∈ k12e2m
and

(
ig(1,m1α, em)

)σ̃p = [h1 ◦ (pB−1)](Bθ)

where θ = α/m2, σ̃p = (p, k12e2m
/k) and B =

(
1 0
0 p

)
. The operation f ◦A for

f ∈ F12e2m
and A an integral matrix of determinant prime to 12e2m is defined

in loc.cit. pages 210 and 211. Now we have pB−1 =
(

0 −1
1 0

)(
1 0
0 p

)(
0 1
−1 0

)
.

Moreover h1◦
(

0 −1
1 0

)
= h2 : z �→ g( z

em
, z, 1). On the other hand the function

z �→ g(u1z + u2, z, 1) has the q-expansion

g(u1z+u2, z, 1) = −qB2(u1)/2
z e1(u2(u1−1)/2)(1−qu)

∞∏
n=1

(1−qnz qu)(1−qnz /qu),

where u = u1z + u2, u1, u2 ∈ R, qz = e1(z), qu = e1(u) and B2(x) =
x2 − x + 1/6, cf. [13] page 29. In particular the q-expansion of h2 has
rational coefficients. Thus we have h2 ◦

(
1 0
0 p

)
= h2 and h1 ◦ (pB−1) = h1.

Now since e24(m2(−u+ 3ω̃)) ∈ k12e2m
our first conclusion is

Γm(1) ∈ k12e2m
and Γm(c) = Γm(1)σ̃c ,

for all integral ideal c prime to 6N(m). In order to complete the proof
of the theorem we must compute Γm(1)σ̃λOk for λ ∈ Ok ∩ U(m). Let
c = λOk = c1pr(c). The equation (K2) and the transformation law (K3)
of the Klein function in [12] give

Γm(1)σ̃λOk = Γm(λOk) =
−2πf

(
λλ, λm

)
η2

(
pr(λm)

)
ecem

s(c1)

=
−2πc1f

(
λ,m

)
η2

(
pr(λm)

)
λem

s(c1)

=
−2πc1f

(
1,m

)
η2

(
pr(λm)

)
λem

s(c1)

=
c1
λ

η2(pr(λm))
η2(pr(m))

Γm(1)s(c1)

=
( 1
µ

η2(µOk)
η2(Ok)

)τ
s(c1)Γm(1) = s(λ)−mΓm(1)

where τ = (pr(m), Hs/k) and µ = λ/c1. The sixth equality is an application
of Proposition 10 (i) in [6]. The proof of the theorem is now complete. ��

Remark 3.1. — Here we draw the attention of the reader that the
computation of the congugates of g(1, ω1, ω2), where (ω1, ω2) is any Z-basis
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of the ideal m with �(ω1/ω2) > 0, is already made by several authors even
in the case m is not prime to 6. See for instance Satz(1.1) in [19] or the
Corollaire in page 228 of[18]. Perhaps the most recent such computations
are those made by A. Hayward in his thesis, cf. [9] Proposition 5.2 and
Corollary 5.3. What is really new here is the fact that we succeded
in defining invariants by using the algebraic numbers g(1, ω1, ω2) which
depend on the Z-basis of m.

Let us put
(3.11) Γ̂m(c) =

(
Γm(c)

)em
,

where m and c are as in the above theorem 3.1.

One may prove that
(3.12) Γ̂m(1) ∈ km,s and Γ̂m(1)σλOk = s(λ)−m1 Γ̂m(1),
for all λ ∈ Ok ∩ Um prime to N(m). The proof is similar to that of
theorem 3.1. One has just to remark the following. If λ ∈ Ok ∩ Um then
f(λ,m)em = f(1,m)em . In particular we have
(3.13) k(N(m)),s = k(N(m))

(
Γm(1)

)
and km,s = km

(
Γ̂m(1)

)
.

Let us remark that (3.12) is the analog of formula (16.4) of [8].

Theorem 3.2. — Let n and q be ideals in T0 such that q is a prime

ideal. Let us put m = nq, E = km,s and F = kn,s. Then we have

(3.14) NE/F

(
Γ̂m(1)

)
=


s(eq)

(
Γ̂n(1)

) em
en if q|n,(

Γ̂n(1)
)(1−(q,F/k)−1)

em
en if q � n and n 	= (1)

s(eq)
(
eq

η2(Ok)
η2(pr(q))

)eq
if n = (1)

Proof. — Let us choose α = (u +
√
Dk)/2 ∈ Ok, as we did in the

proof of theorem 3.1, such that
Ok = Zα+ Z, pr(n) = Zα+ Zn2 and pr(m) = Zα+ Zm2.

Also let us fix X a set of elements λ ∈ Ok prime to 6N(m) such that λ ≡ 1
modulo 12n, and λOk is primitive. Moreover the map λ �→ (λOk, E/k) is a
bijection from X to Gal(E/F ). If λ ∈ X then we have

Γm(1)σλOk = Γm(λOk) =
−2πf

(
λ,m

)
η2

(
λpr(m)

)
λem

=
1
λ

(η2(λOk)
η2(Ok)

)τ −2πf
(
λ,m

)
η2

(
pr(m)

)
em

= s(λ)−m ig(λ,m1α, em)e24(m2(−u+ 3ω̃))

= ig(λ,m1α, em)e24(m2(−u+ 3ω̃))
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where τ = (pr(m), H/k). Now, for each λ ∈ X there is unique non negative
integers aλ and bλ satisfying 0 � aλ < m1/n1, 0 � bλ < em/en and
such that λ − (1 + aλn1α + bλen) ∈ m. Let us put ν(aλ, bλ) = −1 if
2|aλ and 2 � bλ, and ν(aλ, bλ) = 1 otherwise. Then we have f(λ,m)em =
f(1 + aλn1α + bλen,m)emν(aλ, bλ) by the transformation law (K3) in [12].
This implies

(3.15) NE/F (Γ̂m(1)) = (i)em[E:F ]ΥΘ
∏
λ∈X

g(1 + aλn1α+ bλen,m1α, em)em ,

where Υ =
∏
λ∈X ν(aλ, bλ) and Θ =

(
e24(m2(−u+ 3ω̃))

)em[E:F ]. We have

Θ =

{(
e24(n2(−u+ 3ω̃))

)em if q|n,(
e24(n2(−u+ 3ω̃))

)em(1−(q,F/k)−1) if q � n.

Moreover, if q|n then the map λ �→ (aλ, bλ) is a bijection from X to the set
Σ of couples (x, y) with x ∈ {0, . . . , m1

n1
− 1} and y ∈ {0, . . . , emen − 1}. In

particular we have∏
λ∈X

g(1 + aλn1α+ bλen,m1α, em) = ε(1)g(1, n1α, en)

thanks to Theorem 2.2 (b) of [12], where ε(1) is the root of unity defined
in Theorem 2.2 (a) of loc. cit. We have

(3.16) (ε(1))em = e8

(
em

(
3N(q) +

m1

n1
− em

en
− 3

))
e4

(em
en

−N(q)
)
.

On the other hand the integers U = m1
n1

and V = em
en

are such that

Υ =
∏

(x,y)∈Σ

ν(x, y) = (−1)
(
U+1

2

)(
V−1

2

)
(3.17)

= e8

(
em

(
N(q)− m1

n1
+
em
en

− 1
))
.

This completes the proof of the theorem in case q|n. If q � n there exists
a unique (x0, y0) ∈ Σ such that µ := 1 + x0n1α + y0en ∈ q. The map
λ �→ (aλ, bλ) is a bijection from X to Σ− {((x0, y0)}. Let us put

A = Υ
∏
λ∈X

g(1 + aλn1α+ bλen,m1α, em).

Then we have

A =


Υν(x0, y0)ε(1) g(1,n1α,en)

ν(x0,y0)g(µ,m1α,em) if n 	= (1)

Υε(1) lim
z→1

f(z,Ok)
f(z+µ−1,q)

η2(α)

η2(
m1α
em

)
1
em

if n = (1)
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by Theorem2.2 (b) of [12]. Now suppose n 	= (1) and fix an ideal c of Ok

prime to 6N(n) such that qc is principal generated by λ ∈ Ok satisfying
λ ≡ 1 modulo 12n. Moreover, if q � n we suppose that λ ∈ eqOk and λ/eq
is prime to 6N(q). Let us also choose our α such that u ≡ −

√
Dk modulo

pr(nc) and put ρ = (q, F/k). The two identities

f(µ,m)em = f(λ,m)emν(x0, y0) and λf(λ,m) = N(q)f(N(c), nc),

which are easy to check then imply(
ig(µ,m1α, em)ν(x0, y0)

(
e24(n2(−u+ 3ω̃))

)ρ−1)em
= Γ̂n(c)

em
en Qem

where

Q = s(c1)
N(q)enc

λem

η2(pr(m))
η2(pr(n c))

=
{
s(eq) if q � n

1 if q|n.

Since Υν(x0, y0) is equal to the term on the right of (3.17) the theorem
is proved in case n 	= (1) and q � n. If n = (1) then we deduce from (K3)
and Proposition 2.5 of [12] the limit lim

z→1

f(z,Ok)
f(z+µ−1,q)

= ν(x0, y0), and this
concludes the proof of the theorem in all cases. ��

Let us associate to a prime ideal q in T0 the number χ(q) = s(eq).
Then extend χ by multiplicativity to all ideals m ∈ T0 and set

(3.18) Γ̈m(c) = χ(m)Γ̂m(c).

Then we have

Corollary 3.1. — Let n and q be ideals in T0 such that q is a

prime ideal. Let us put m = nq, E = km,s and F = kn,s. Then we have

NE/F

(
Γ̈m(1)

)
=


(
Γ̈n(1)

) em
en if q|n,(

Γ̈n(1)
)(1−(q,F/k)−1)

em
en if q � n and n 	= (1)

s(eq)
(
eq

η2(Ok)
η2(pr(q))

)eq
if n = (1).

4. The universal ordinary s-distribution Us.

Let s be a sign function. Then the map ξx �→ ξs(x) for ξ ∈ µH and
x ∈ Λ6, is a well defined homomorphism from µHΛ6 to the group µH .
It coincides with s (resp. the identity map) when restricted to Λ6 (resp.
µH). This homomorphism will also be noted s. In this § we define both
the universal ordinary s-distribution Us and the level m universal ordinary
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s-distribution denoted by Us(m), where m ∈ T0. We give some of their
properties. The first definition we propose below for Us and Us(m) follows
the construction of G. Anderson in [1], section 3. Recall that the main goal
of [1] is to study the Galois-module structure of the sign-cohomology of
the modules appeared in the course of Yin’s calculation of the unit index,
cf. [22]and [23]. The approach of G. Anderson is based on the use of Farrell-
Tate theory which extends the theory of Tate cohomology of finite groups
to groups of finite virtual cohomological dimension. He also introduces
a certain double complex to compute this cohomology. The Anderson’s
double complex turns out to be a powerful means for other cohomological
computations like those made in [15].

Of course we have to make some adaptation of the definitions used
in [1] subsections 3.2 and 3.3. But we will keep almost all the notations of
Anderson.

By a lattice we mean a set W = ξc, where ξ ∈ µH and c ∈ T 0 . Two
lattices W1 and W2 are homothetic if W2 = λW1, with λ ∈ µHΛ6 and is
positive, i.e. such that s(λ) = 1. A lattice translate is a set x + W , where
x ∈ µHΛ6 and W is a lattice. Two lattice translate x1+W1 and x2+W2 are
homothetic if there exists a positive α ∈ µHΛ6 such that W2 = αW1 and
αx1 − x2 ∈W2. We say that x+W is torsion if the ideal m = x−1W ∩Ok

is nonzero. In this case x + W is said to be torsion of order m. Note that
m is necessarily prime to 6. We let Ξ be the set of homothety classes of
torsion lattice translates. We denote the homothety class of a torsion lattice
translate x+W by [x+W].

For each ideal m ∈ T0 we put Gm,s = Gal(km,s/k) and Jm,s =
Gal(km,s/km). Let us consider the inverse limits

Gs = lim←−Gm,s and G∞ = lim←−Dm,s.

Also in our case we have a left action of Gs on Ξ and an isomorphism
G∞ → µH , cf. [1] Proposition 3.4.3 and Proposition 3.5.3. Let As be the
free abelian group generated by Ξ. We may view As as a Z[Gs]-module by
extending linearly the action of Gs on Ξ. By definition Us is the quotient
of As by the Z-module generated by the sums

ξ −
∑

η∈Y −1
m (ξ)

η

where m ∈ T0, ξ ∈ Ξ and Ym : Ξ → Ξ is the Gs-equivariant map defined
in [1] Proposition 3.3.1. Let us recall that Ym([x + W ]) = [x + m−1W ]. In
fact Us is also a Z[Gs]-module. In the same manner if m ∈ T0 we define
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As(m) to be the free abelian group generated by Ξ(m), which is the set
of homothety classes of torsion lattice translates of order dividing m. Its
quotient by the Z-module generated by the sums

ξ −
∑

η∈Y −1
n (ξ)

η,

where n divides m and ξ ∈ Ξ(m/n), is denoted Us(m). The reader may also
check that Us(m) is a Z[Gs]-module and even a Z[Gm,s]-module.

There is an other way to define Us and Us(m) (here we take our
inspiration from both [4] and [16]). Indeed, let Ωs (resp. Ωs(m)) be the free
abelian group generated by the disjoint union

∐
f∈T0

Gf,s (resp.
∐

f|m Gf,s).
Let U ′s be the quotient of Ωs by its Z-submodule generated by

S(f, g, σ) = σ −
∑
n|g

(n,f)=1

∑
τ∈Zg,n(σ)

τ

for all f, g ∈ T0 and all σ ∈ Gf,s. Here Zg,n(σ) is the set of the automor-
phisms τ ∈ Gfg/n,s such that τ coincides with σ(n, kf,s/k)−1 on kf,s. Then
U ′s is Gs-isomorphic to Us. Let U ′s(m) be the quotient of Ωs(m) by its Z-
submodule generated by S(f, g, σ), for all f, g ∈ T0 such that fg|m and all
σ ∈ Gf,s. Then U ′s(m) is Gm,s-isomorphic to Us(m).

Let Σm be the set of the ideals n dividing m such that the
gcd(n,m/n) = 1. Let Ω0

s(m) be the free abelian group generated by
Υm =

∐
f∈Σm

Gf,s. Let D0
m be the Gm,s-submodule of Ω0

s(m) generated
by

S0(f, pe, σ) = σ − σ(p, kf,s/k)
−1 −

∑
τ∈Zpe,(1)(σ)

τ

for all f, pe ∈ Σm such that p is a prime ideal not dividing f. It is easy
to prove that Ω0

s(m)/D0
m and U ′s(m) are isomorphic as Gm,s-modules. Let

us put U0
s (m) = Ω0

s(m)/D0
m. Our next step now is to prove that U0

s (m) is
Z-free and give an explicit basis. But let us first fix some notation. If p is a
prime ideal dividing m then we denote by p̂ the p-power satisfying p̂ ∈ Σm.
We associate to p a Gm,s-operator

Xp : Ω0
s(m/p̂) −→ Ω0

s(m)

such that Xp(σ) = S0(f, p̂, σ) for all f ∈ Σm and all σ ∈ Gf,s. Let us put
X(1) = 1 and Xg =

∏
p|g Xp for g ∈ Σm. This is a Gm,s-operator from

Ω0
s(m/g) to Ω0

s(m).

For a ideal g ∈ T0 we fix S(g) ⊂ Gg,s such that 1 ∈ S(g) and the
restriction map S(g) → G(1),s is a bijection. Let σ ∈ Gg,s. Then there
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exists a unique τ ∈ S(g) such that στ−1 is the identity on Hs = k(1),s.
Moreover στ−1 can be uniquely written as

στ−1 =
∏
p|g

σp

where for each prime ideal p dividing g the automorphism σp ∈ Gg,s and
is the identity on kg/pt,s, with pt being the exact power of p dividing g.
Indeed, Gal(kg,s/Hs) is equal to the direct product

Gal(kg,s/Hs) =
∏
p|g

Gal(kg,s/kg/pt,s).

We say that σ ∈ Bn if there exist exactly n prime ideals p such that σp = 1.
By definition G(1),s ⊂ B0. Thus we have∐

f∈T0

Gf,s =
∐
n�0

Bn.

Theorem 4.1. — Let m ∈ T0. Then the set

Xm =
{
Xg(σ) such that g ∈ Σm and σ ∈ B0 ∩Υm/g

}
is a Z-basis of Ω0

s(m). Moreover U0
s (m) is Z-free of rank #Gm,s with basis

the set B0 ∩Υm.

Proof. — This result is nothing both Theorem 4.1.1. assertion 1 and
Theorem 4.3.1 assertion 3 of [1]. See also Proposition 3.1 (i) and (ii) of [16].
For the convenience of the reader we repeat the proof here. Let σ ∈ Gg,s

for a certain g ∈ Σm. Suppose that σ ∈ Bn, with n > 0. Let σ′ be the
restriction of σ to kf,s, where f = g/p̂. Then, by considering Xp(σ′) we see
that

σ ∈ Xp

(
Ω0
s(f)

)
+ Ω0

s(f) +Bn−1(g).

Here Bn−1(g) is the Z-module generated by the automorphisms τ ∈
Gg,s ∩ Bn−1. This allows us to conclude by induction that Xm generates
Ω0
s(m). On the other hand we have

#(B0 ∩Gg,s) = #G(1),s

∏
p|g

( #Gg,s

#G
g/̂p,s

− 1
)

=
∑
f∈Σg

(−1)deg(g/f)#Gf,s.

In particular #(B0 ∩ Υg) = #Gg and #Xm = #Υm. Thus Xm is indeed a
Z-basis of Ω0

s(m). Now the second claim of the theorem is a straightforward
consequence of the first one. ��
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Our goal now is to compute the Tate cohomology groups
Ĥi(G∞, U0

s (m)) for m 	= (1). Let us point out that these groups are use-
ful in many purposes. See for instance the index calculation of Sinnott in
[20]. They are naturally equipped with a Gm,s action. Let us identify G∞
with the group J = gal(km,s/km). As mentioned in the introduction we
will use Anderson’s method introduced in [1] and improved by Ouyang
in [16] and also in [15]. The first step is to define the Anderson’s resolu-
tion of U0

s (m). Let supp(m) be the set of prime ideals dividing m and let
≺ be a total order of supp(m). If g ∈ Σm and p ∈ supp(g) then we let
ω(p, g) = #{q ∈ supp(g) such that q ≺ p and q 	= p}. Now consider the
free abelian group Lm generated by the symbols

[σ, g], σ ∈ Υm/g and g ∈ Σm.

If x =
∑

nσ(σ) ∈ Ω0
s(m/g) then some times we will write [x, g] instead

of
∑

nσ[σ, g]. It is easy to see that Lm is a graded Gm,s-module with the
definition of degree given by deg[x, g] = −deg(g). We define a differential
d on Lm as follows

d([σ, g]) =
{

0 if g = (1)∑
p|g(−1)ω(p,g)[S0(f, p̂, σ), g/p̂] if g 	= (1) and σ ∈ Gf,s.

It is easy to check that d2 = 0. Moreover the 0-cohomology group
H0(Lm, d) � U0

s (m). The isomorphism is induced by [σ, (1)] �→ σ.

Proposition 4.1. — The complex (Lm, d) is acyclic in nonzero

degree.

Proof. — We refer the reader to the appendix by Greg W. Anderson
in [15]. ��

As in [16] Anderson’s resolution (Lm, d) can be used to compute the
cohomology groups Ĥi(J, U0

s (m)) for m 	= (1). Indeed let

(P, ∂) : · · · −→ Pi −→ · · · −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · ·
be a complete resolution for J , cf. [5] page 132, and consider the double
complex C and its total cochain complex Tot C defined by

Cp,q = HomJ(Pq, L
p
m) and (Tot C)n =

⊕
u+v=n

Cu,v

Here we consider the differential D on Tot C whose restriction to Cp,q is
the sum d+ (−1)p∂. Also recall the classical filtrations of Tot C

′F p(Tot C)n =
⊕

u+v=n
u�p

Cu,v and ′′F p(Tot C)n =
⊕

u+v=n
v�p

Cu,v.
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Since we have Cu,v = 0 for u� 0 or u� 0 each one of these two filtrations
is finite, cf. [10] page 267, and hence gives rise to a spectral sequence which
converges finitely to the cohomology of Tot C, see Theorem 3.5. of loc. cit.
The E1-term and the E2-term of the first filtration are

′Ep,q
1 = Ĥq(J, Lpm) and ′Ep,q

2 = Hp
d

(
Ĥq(J, L•m)

)
.

Moreover the E1-term of the second filtration is ′′Ep,q
1 =Hp

d

(
HomJ(Pq, L•m)

)
.

But since Pq is projectif we have ′′Ep,q
1 = HomJ(Pq, H

p
d (L•m)). On the other

hand we have

′′Ep,q
2 = Hq

∂(
′′Ep,q

1 ) =
{

0 if p 	= 0
Ĥq(J, U0

s (m)) if p = 0.

It is easy to check that the spectral sequence ′′E degenerates at ′′E2.
In particular the convergence ′′Ep,q

2 → Hp+q(TotC) gives the identity
Hp+q(TotC) = Ĥp+q(J, U0

s (m)). Let us compute ′Ep,q
1 and ′Ep,q

2 . If f ∈ Σm

is such that f 	= (1) then Z[Gf,s] is Z[J ]-free. Moreover if q is odd
then Ĥq(J,Z[Gal(Hs/k)]) = 0. We deduce from these two remarks that
′Ep,q

2 =′ Ep,q
1 = Ĥq(J, Lpm) = 0 if q is odd. If q is even then

′Ep,q
1 = Ĥq(J, Lpm) =

⊕
g∈Σm

deg(g)=−p

[
A, g

]
.

where A = Z/wkZ[Gal(H/k)] and
[
A, g

]
= {[x, g], x ∈ A}. Let us denote

by d̄ the differential on ′E1 induced by d. We have

d̄([σ, g]) =


0 if g = (1)∑
p|g

(−1)ω(p,g)[σ − σ(p, H/k)−1, g/p̂] if g 	= (1).

Theorem 4.2. — Let (1) 	= m ∈ T0. Let D be the subgroup of

Gal(H/k) generated by the Frobenius automorphims (p, H/k) = τp at the

prime ideals p ∈ supp(m). Then for q even we have an isomorphism

′Ep,q
2 �

⊕
g∈Σm

deg(g)=−p

[
Ā, g

]
.

where Ā = Z/wkZ[Gal(H/k)/D].

Proof. — The Theorem is obvious if wk = 4 or wk = 6 because in
these two cases we have d̄ = 0. Let us suppose wk = 2. If S ⊂ supp(m)
is not empty then we denote by DS the subgroup of D generated by the
Frobenius automorphims τp, p ∈ S. Also we set D∅ = 1. In the following
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we will use the group algebra AS = Z/2Z[Gal(H/k)/DS ] and the graded
AS-module

MS =
⊕
g∈Σm

supp(g)∩S=∅

[
AS , g

]
, deg[x, g] = −deg(g)

on which we define the differential d̄S naturally induced by d̄. Let Zp
S

and Bp
S be the kernel and the image of d̄S in degree p. Thus we have

Hp(MS , d̄S) = Zp
S/B

p
S and #S − deg(m) � p � 0. These groups satisfy

some interesting properties that we give below

1) Hp(MS , d̄S) is naturally an Ā-module.

2) If S ⊂ S′ then the natural map λS,S′ : AS → AS′ induces a
morphism (MS , d̄S) → (MS′ , d̄S′) (which sends [x, g] to 0 if supp(g) ∩
S′ 	= ∅). This gives us an Ā-homomorphism

λpS,S′ : Hp(MS , d̄S) −→ Hp(MS′ , d̄S′).

3) The map λ0
S,S′ is an isomorphism of Ā-modules.

4) If S ⊂ S′ and #S′ = deg(m) + p then the homomorphism λpS,S′
is onto. To prove this claim we may take S = ∅ without loss of generality.
On the other hand the sum

∑
σ, where σ ∈< τq,S′ | q|m and q 	∈ S′ >, is

an Ā-basis of Hp(MS′ , d̄S′). Here τq,S′ is the image of τq in Gal(H/k)/DS′ .
One may easily prove that

∑
σ may be lifted to a element of Hp(M∅, d̄∅).

5) Let S ⊂ S′ and let u be the unique ideal in Σm such that supp(u) =
S′−S. Then we have a well defined morphism µS,S′ : (MS′ , d̄S′) → (MS , d̄S)
satisfying

µS,S′([x, g]) = [t(S, S′)x′, gu].

where t(S, S′) is the sum in AS of the elements of the group generated by
τp,S , p ∈ S′−S and x′ is any element of AS whose image is x via the natural
map AS → AS′ . Let us remark that x �→ t(S, S′)x′ is a homomorphism of
the Z/2Z-vector spaces AS′ and AS . We also denote it by µS,S′ and we let
µpS,S′ be the Ā-homomorphism

µpS,S′ : Hp+deg(u)(MS′ , d̄S′) −→ Hp(MS , d̄S)

induced by µS,S′ .

6) Suppose we have S′ = S ∪ {p}. Then it is not hard to prove that
the sequence

Hp+1(MS′ , d̄S′)
µp
S,S′−−−→ Hp(MS , d̄S)

λp
S,S′−−−→ Hp(MS′ , d̄S′)
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is exact whenever these groups exist.

7) Let us prove by induction that λpS,S′ is onto for all S ⊂ S′. The
induction is initialized by remarks 3) and 4). Suppose we have proved that
λiX,X′ is onto for all i > p and all X,X ′ such that λiX,X′ is defined. Suppose
also we have proved that λpS,S′∪{p} is onto. Let us put U = S ∪ {p} and
U ′ = S′ ∪ {p}. We deduce from 8) and our hypotheses that the following
commutative diagram

Hp+1(MU , d̄U )
µp
S,U−−−→ Hp(MS , d̄S)

λp
S,U−−−→ Im(λpS,U ) −→ 0�λp+1

U,U′

�λp
S,S′

�λp
U,U′

�
Hp+1(MU ′ , d̄U ′)

µp
S′,U′−−−→ Hp(MS′ , d̄S′)

λp
S′,U′−−−→ Hp(MU ′ , d̄U ′) −→ 0

has exact rows. Moreover λpU,U ′ and λp+1
U,U ′ are epimorphisms. Hence by the

four lemma λpS,S′ is also an epimorphism.

8) Let us prove that µpS,S′ is injective whenever it is defined. Actually
since µpS,S” = µpS,S′ ◦ µ

p+i
S′,S” for all S ⊂ S′ ⊂ S” and i = #(S′ − S)

we may take S′ = S ∪ {p}. Let X ∈ Zp+1
S′ and Y ∈ MS be such that

µpS,S′(X) = d̄S(Y ). We have

X =
∑
g∈G

[Xg, g] and Y =
∑
f∈F

[Yf, f].

where F and G are defined as follows

F = {f ∈ Σm | supp(f) ∩ S = ∅ and deg(f) = −p+ 1}
G = {g ∈ Σm | supp(g) ∩ S′ = ∅ and deg(g) = −p− 1} .

Further, for a fixed u ∈ US′ = {u ∈ Σm| supp(u)∩S′ = ∅ and deg(u) = −p}
we must have

(4.1) (1− τ−1
p,S)Y

ûp
=

∑
r �∈S′∪ supp(u)

(1− τ−1
r,S )Y

ûr

Let us set H = {h ∈ Σm| supp(h) ∩ S′ = ∅ and deg(h) = −p + 1}. Then
the image of

∑
h∈H[Yh, h] in MS′ gives us a element of Hp−1(MS′ , d̄S′).

But we have proved in 9) that λp−1
S,S′ is an epimorphism. Thus there exist

Z =
∑

f∈F [Zf, f] ∈ Zp−1
S and Z ′ =

∑
h∈H[Z ′

h
, h] ∈MS such that

Yh = Zh + (1− τ−1
p,S)Z ′h,

for all h ∈ H. Moreover we deduce from (4.1) the identity

(4.2) Y
ûp

= Z
ûp

+
∑

r �∈S′∪ supp(u)

(1− τ−1
r,S )Z ′

ûr
+ t(S, S′)Z ′′u ,
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where Z ′′u ∈ AS . Now (4.2) and the equation µpS,S′(X) = d̄S(Y ) clearly
show that

Xg =
∑

q �∈S′∪ supp(g)

(1− τ−1
q,S′)λS,S′(Z

′′
ĝq

).

In particular X ∈ Bp+1
S′ .

9) Now we are ready to prove by induction that Hp(MS , d̄S) is
isomorphic (as an Ā-module) to a direct sum

⊕
u∈US

[
Ā, u

]
. This is easy to

check if p = 0 or −p = deg(m) − #S. On the other hand if this property
is satisfied for all Hi(MS , d̄S) with i > p and for all Hj(MS′ , d̄S′) with
S′ = S ∪ {p} and j � p then the exact sequence

0 −→ Hp+1(MS′ , d̄S′)
µp
S,S′−−−→ Hp(MS , d̄S)

λp
S,S′−−−→ Hp(MS′ , d̄S′) −→ 0

of Ā-modules splits and this gives us the desired property for Hp(MS , d̄S).
The proof of the theorem is now complete since we have ′Ep,q

2 =
Hp(M∅, d̄∅). ��

Lemma 4.1. — The spectral sequence ′Ep,q
2 → Ĥp+q(J, U0

s (m))
degenerates at ′E2. In other words we have ′Ep,q

r = ′Ep,q
2 for all r � 2.

Proof. — Since J is cyclic we can use the following complete resolu-
tion of J

· · · N−→ Z[J ] = P1
j−1−−−→ Z[J ] = P0

N−→ Z[J ] = P−1
j−1−−−→ · · ·

where j is a fixed generator of J and N = 1 + j + j2 + · · ·+ jwH−1. On the
other hand we consider the double cochain complex Ĉ, with

Ĉp,q =
⊕
g∈Σm

deg(g)=−p

[
B, g

]
,

where B = νZ[Gal(H/k)/D] and ν = wH/wk, equipped with the unique
differential D̂ whose restriction to Ĉp,q is given by

D̂(x) =
{

0 if q is even
(−1)pwkx if q is odd.

If ϕ ∈ HomJ(Pq = Z[J ], Lpm) then νϕ(1) has a component in⊕
g∈Σm

deg(g)=−p

[
νZ[Gal(Hs/k)], g

]
.

Let us denote by F(ϕ) the projection of this component in Ĉp,q. This
gives us a filtration-preserving cochain map F : Tot C → Tot Ĉ. The
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corresponding family of maps Fr : ′Er → ′Êr from the spectral sequence
(′Er) into (′Êr) is such that F2 is an isomorphism. Therefore Fr is an
isomorphism for all r � 2. Now it is clear that ′Êr � ′Ê1, for all r � 1. ��

Theorem 4.3. — Suppose m 	= (1) then Ĥi(J, U0
s (m)) is isomorphic

as a Gm,s-module to (
Z/wkZ[Gal(H/k)/D]

)2deg(m)−1

Proof. — Since the two filtrations are finite in each dimension the
theorem follows from Theorem 4.2 and Lemma 4.1. ��
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[18] G. ROBERT, La racine 12-ième canonique ∆(L)[L:L]/∆(L), in Séminaire de Théorie
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