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1. Introduction.

The aim of this work is to provide new methods for proving uniform
elliptic and parabolic Harnack inequalities on Riemannian manifolds, hence
providing new classes of Riemannian manifolds satisfying these inequalities.

A celebrated theorem of Moser [39] says that if u(x) is a non-
negative (weak) solution to a uniformly elliptic equation (with measurable
coefficients)

Lu :=
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0
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Math. classification : 58J35, 31C12.



826 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

in a ball B(x0, R) in RN , then u satisfies the Harnack inequality

(1.1) sup
B(x0,

1
2 R)

u ≤ C inf
B(x0,

1
2 R)

u,

where C = C(N,λ) and λ is the constant of ellipticity of the operator L

(that is, all the eigenvalues of the symmetric matrix (aij) are bounded
between λ−1 and λ). In [40], Moser improved this result by showing that
if a non-negative function u(t, x) solves the parabolic equation ∂tu = Lu in
a cylinder (0, T ) ×B(x0, R) with T = R2, then

(1.2) sup
( 1

4 T,
1
2 T )×B(x0,

1
2 R)

u ≤ C inf
( 3

4 T,T )×B(x0,
1
2 R)

u,

where C again depends only on N and λ. Obviously, the elliptic Harnack
inequality (1.1) follows from the parabolic one (1.2).

Moser’s results have proven to be extremely useful for the development
of the theory of elliptic and parabolic equations. In particular, Aronson [1]
used (1.2) to show that the heat kernel pL(t, x, y), i.e., the fundamental
solution of the parabolic equation ∂tu = Lu , satisfies the inequalities

C2

tN/2
exp

(
− |x− y|2

C2t

)
≤ pL(t, x, y) ≤ C1

tN/2
exp

(
− |x− y|2

C1t

)
.

One of the goals of this paper is to obtain uniform Harnack inequalities
beyond the realm of uniform ellipticity. As a simple example that illustrates
this point, consider the operator

(1.3) Lu =
1

a(x)
div

(
a(x)∇u

)
=

1
a(x)

N∑
i=1

∂

∂xi

(
a(x)

∂u

∂xi

)
,

where a is a smooth positive function in RN . Deciding whether or not L

satisfies the elliptic and/or parabolic Harnack inequalities seems to be a
difficult question (if not hopeless in full generality). When a and 1/a are
bounded, L satisfies the elliptic and parabolic Harnack inequalities (the
latter follows from a slight extension of Moser’s theorem; see, e.g., [42]).
Now, assume instead that there exists a constant C such that for all R > 0

(1.4) sup
{R≤|x|≤2R}

a(x) ≤ C inf
{R≤|x|≤2R}

a(x).

Then it follows from our Theorem 6.10 that the elliptic Harnack
inequality (1.1) for the operator (1.3) is satisfied without further
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STABILITY RESULTS FOR HARNACK INEQUALITIES 827

assumptions, whereas Theorem 5.7 shows that the parabolic Harnack
inequality (1.2) holds if and only if for all R > 0

(1.5)
∫ R

0

a(r)rN−1 dr ≤ Ca(R)RN ,

where a(r) := sup{a(x) : |x| = r}. Moreover, under the conditions (1.4)
and (1.5) the heat kernel associated with the operator (1.3) satisfies the
estimate

(1.6)
C2

W (x, y, t)
exp

(
− |x− y|2

C2t

)
≤ pL(t, x, y) ≤ C1

W (x, y, t)
exp

(
− |x− y|2

C1t

)
,

where W (x, y, t) = tN/2
[
a(|x| +

√
t) a(|y| +

√
t)

]1/2 (see Corollary 5.12).
For example, if a(r) is of order rα for large r where α ∈ R, then (1.5)
is satisfied if and only if α > −N .

This example is a particular case of one of our main results,
Theorem 5.7, which treats similar questions on Riemannian manifolds.
In the setting of complete Riemannian manifolds, denote by (EHI)
and (PHI) the elliptic and parabolic Harnack inequalities analogous respec-
tively to (1.1) and (1.2). In this case, L = ∆ is the Laplace-Beltrami
operator and the balls B(x0, r) are geodesic balls (see Section 2.1). Let us
briefly describe two more applications of our techniques, to model manifolds
and to manifolds with ends.

Given a suitable function ψ on R+, denote by Mψ a model manifold,
that is the Riemannian manifold (RN ,ds2) where ds2 is a complete
rotationally invariant Riemannian metric defined in polar coordinates (r, θ)
by ds2 = dr2 + ψ(r)2dθ2 (see Section 3.3 for more details). Assume that ψ

satisfies for all r > 0

(1.7) sup
[r,2r]

ψ ≤ C inf
[r,2r]

ψ.

Then Proposition 4.10 (respectively, Proposition 6.7) characterizes those ψ

for which Mψ satisfies (PHI) (resp. (EHI)). For example, if ψ(r) = rα

for large r where α ∈ R, then

(EHI) ⇐⇒ α ≤ 1 and (PHI) ⇐⇒ − 1
N − 1

< α ≤ 1.

TOME 55 (2005), FASCICULE 3



828 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

Hence, for α ≤ −1/(N − 1), we obtain a collection of Riemannian manifolds
for which (EHI) holds but (PHI) does not. Earlier examples satisfying (EHI)
but not (PHI) are described in [2], [3] and [12] but our examples are by far
the simplest and most explicit.

To put our results on manifolds with ends in perspective, let us
recall that Cheng and Yau [9] and Li and Yau [34], respectively, show
that complete Riemannian manifolds with non-negative Ricci curvature
satisfy (EHI) and (PHI). It is a natural question to ask when (EHI)
and/or (PHI) hold assuming that the Ricci curvature is non-negative only
outside a compact set. One can also ask the same question under other
similar hypotheses, for example under the assumption of asymptotically
non-negative sectional curvature (see Section 7.5 for the definition). Any of
these hypotheses ensures that the manifold has finitely many ends (see [5],
[33], [35]). Harmonic functions on such manifolds have been studied, e.g.,
by Li and Tam [32], [33] and by Kasue [28], but the literature seems to
contain no results on (PHI).

Let M be a complete Riemannian manifold with a finite number of
ends E1, E2, . . . , En (see Section 7 for definition). Fix a point o ∈ M and
denote by V (r) the volume of the ball B(o, r) and by Vi(r) the volume
of B(o, r) ∩ Ei. The following result absorbs all the techniques developed
here and can be considered as a culmination of this work.

THEOREM 1.1 (= Corollary 7.14). — Let M be a complete non-

compact Riemannian manifold having either (a) asymptotically non-

negative sectional curvature or (b) non-negative Ricci curvature outside

a compact set and finite first Betti number. Then M satisfies (PHI) if and

only if it satisfies (EHI). Moreover, (PHI) and (EHI) hold if and only if

either M has only one end or M has more than one end and the functions V

and Vi satisfy for large enough r the conditions Vi(r) ≈ V (r) (for all

indices i) and

(1.8)
∫ r

1

sds
V (s)

≈ r2

V (r)
·

(Here the relation f ≈ g means that the ratio of positive functions
f and g is bounded between two positive constants, for a specified range
of the arguments.) For example, if V (r) ≈ rα, then (1.8) holds if and only
if α < 2. The conclusion of Theorem 1.1 is new even for manifolds with
non-negative sectional curvature outside a compact set, despite the fact
that harmonic functions on such manifolds have been intensively studied.

ANNALES DE L’INSTITUT FOURIER



STABILITY RESULTS FOR HARNACK INEQUALITIES 829

Let us briefly describe the structure of the paper. For the sake of
various applications, we work in the more general setup of weighted ma-
nifolds introduced in Section 2. A weighted manifold is a Riemannian
manifold (M, g) equipped in addition with a measure µ. Elliptic and para-
bolic Harnack inequalities are stated for a weighted Laplace operator ∆µ

using the balls defined in terms of the Riemannian distance.

Section 3 develops one of the main technical tools used in this paper –
a discretization procedure. Let an open set U ⊂ M be covered by open
sets A1, A2, . . . , An, and let Γ be a graph that describes in a certain way
the combinatorial structure of the covering. Then Theorem 3.7 provides an
estimate of the spectral gap of U in terms of the spectral gaps of the Ai’s
and the discrete spectral gap of the graph Γ.

Section 4 introduces another useful tool – the notions of remote and
anchored balls, which play a crucial role in this paper. A ball B(x, r) is
remote with respect to a fixed point o ∈ M if the distance d(o, x) is much
larger than r, and is anchored if x = o. We show that a number of
interesting properties (used in proofs of Harnack inequalities) hold for all
balls whenever they hold for remote and anchored balls.

Section 5 contains our main technical result – Theorem 5.2. Given a
point o ∈ M , we consider two geometric hypotheses relative to o, called the
relative connectedness of annuli (RCA) and the volume comparison (VC)
(see Definitions 5.1 and 4.3, respectively), which can be effectively verified
in many cases of interest. The condition (VC) was introduced by Li and
Tam [33] where it also played a significant role. Theorem 5.2 asserts
that if M satisfies (VC), (RCA), as well as the parabolic Harnack
inequality (PHI) in remote balls, then (PHI) holds in all balls. Note
that, in fact, (VC) is a necessary condition for (PHI) whereas (RCA) is
close to be necessary.

A major difficulty in the proof of Theorem 5.2 lies in obtaining a
spectral gap estimate for anchored balls, assuming that such an estimate
holds for all remote balls. This is done by exploiting the discretization
technique of Section 3 and condition (RCA).

We use Theorem 5.2 to prove the stability of (PHI) under a change of
measure given by dµ̃ = σ2 dµ where σ is a smooth positive function on M .
For example, if M = R

N , µ is the Lebesgue measure and σ2 = a, then
the operator (1.3) coincides with ∆

µ̃
. In general, given (RCA) and (PHI)

for ∆µ, we obtain (PHI) for ∆
µ̃

provided the function σ2 satisfies conditions
similar to (1.4) and (1.5) (Theorem 5.7).

TOME 55 (2005), FASCICULE 3



830 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

Section 6 develops results similar to Theorems 5.2, 5.7, but for the
elliptic Harnack inequality (EHI). The methods here are elementary and
do not require the discretization tools.

Section 7 contains results concerning manifolds with ends. Theo-
rem 7.1 states necessary and sufficient conditions for (PHI) on manifolds
with ends assuming that each end satisfies (PHI) and (RCA). The proof is
quite involved and uses the results of Section 6. Combining Theorems 7.1
and 5.2 with known results about (VC) and (RCA), we obtain Theorem 1.1.

The dependencies between sections are given on the following diagram
(apart from some additional cross-links between subsections):

2 3 4
↘ ↓ ↙ ↘

5 6
↘ ↙

7

2. Preliminaries.

2.1. Harnack inequalities on weighted manifolds.

Let (M, g) be a smooth Riemannian manifold of dimension N ,
possibly with boundary δM (we denote the boundary of manifold by δM

rather than ∂M since the letter ∂ is reserved to denote a boundary in
the topological sense). Given a smooth positive function σ on M , define a
measure µ on M by dµ = σ2 dµ0 where µ0 is the Riemannian measure of
the metric g . Depending on the context, we will use various notation for
weighted manifold, such as (M, g , µ), (M,µ), or even M .

The weighted Laplace operator ∆µ is a second order differential
operator on M given by

(2.1) ∆µf := σ−2 div(σ2∇f) = divµ(∇f),

where ∇ is the Riemannian gradient, div is the Riemannian divergence,
and divµ is the weighted divergence defined by divµ 'v = σ−2 div(σ2 'v ).
For example, if σ ≡ 1, then ∆µ coincides with the Laplace-Beltrami
operator ∆ = div ◦∇. Note that for all u, v ∈ C2

0(M) we have

(2.2)
∫
M

v∆µu dµ = −
∫
M

g(∇u,∇v) dµ−
∫
δM

∂u

∂n
v dµ′,

ANNALES DE L’INSTITUT FOURIER



STABILITY RESULTS FOR HARNACK INEQUALITIES 831

where n is the inward normal unit vector field on δM , and µ′ is the
surface area on δM having the density σ2 with respect to the Riemannian
surface area.

The metric g induces a geodesic distance function d(x, y) which
turns M into a metric space. We say that a weighted manifold (M, g , µ)
is complete if the metric space (M,d) is complete. Let B(x, r) = {y ∈ M :
d(x, y) < r} be the open d-ball centered at x ∈ M and of radius r > 0.
Note that M is complete if and only if all balls are precompact.

We say that a function u(x) defined in a region Ω ⊂ M is harmonic
if ∆µu = 0 in Ω. If the boundary δM is non-empty, then we require in addi-
tion that u satisfies the Neumann boundary condition on δΩ := Ω ∩ δM ,
that is

(2.3)
∂u

∂n δΩ
= 0.

(Observe that by (2.2) the operator ∆µ is symmetric with respect to the
measure µ for functions satisfying the Neumann boundary condition
on δM .) Let I ⊂ R be an interval. We say that a function u(t, x) defined
in I×Ω satisfies the heat equation if ∂tu = ∆µu in I×Ω and u satisfies (2.3)
in I × δΩ.

In this context, Harnack inequalities relate the properties of solutions
of elliptic and parabolic PDE’s on M to its metric properties.

DEFINITION 2.1. — Let F be an arbitrary family of balls in a weighted
manifold M . Fix η ∈ (0,1). We say that F satisfies the elliptic Harnack
inequality (EHIη) if there exists a constant CH such that for any ball
B(x,r) ∈ F , any positive harmonic function in B(x,r) satisfies

(2.4) sup
B(x,ηr)

u ≤ CH inf
B(x,ηr)

u.

We will use the notation (EHI) when the value of the parameter η is
unimportant. If F is the family of all balls in M , then we say that (M,µ)
satisfies (EHIη) (or simply (EHI)).

Clearly, (EHIη) ⇒ (EHIη′) when η′ < η for any family F . If we
assume that for any ε ∈ (0, 1) there is an integer Qε such that any ball of
radius r can be covered by at most Qε balls of radius εr, then the Harnack
inequalities (EHIη) with different η are all equivalent if F is the family of
all balls in M . This follows from a simple covering argument. This applies
in particular when (M,µ) satisfies the doubling volume property (VD)
(cf. Definition 2.4 and Example 3.2).

TOME 55 (2005), FASCICULE 3



832 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

DEFINITION 2.2. — Let F be an arbitrary family of balls in M . We
say that F satisfies the parabolic Harnack inequality (PHI) if there exists a
constant CH such that for any ball B(x,r) ∈ F , any positive solution u of
the heat equation in the cylinder Q := (0,t) ×B(x,r) with t = r2 satisfies

(2.5) sup
Q−

u ≤ CH inf
Q+

u,

where Q− = ( 1
4 t,

1
2 t)×B(x, 1

2 r) and Q+ = ( 3
4 t,t)×B(x, 1

2 r) (see Figure 1).
If F is the family of all balls in M , we say that (M,µ) satisfies (PHI).

t

3
4 t

1
2 t

1
4 t

Q+

Q−

B(x, 1
2 r)

B(x, r)
︸ ︷︷ ︸︸ ︷︷ ︸

Figure 1. Cylinder Q = (0, t) ×B(x, r)

Remark 2.3. — One can introduce shrinking parameters (in time and
space) in (PHI) in a way that mimics (EHIη) (see, e.g., [46, Theorem 5.4.3]).
It turns out that any two choices of shrinking parameters in (PHI) leads to
equivalent inequalities when they are considered for all balls. This follows
from Theorem 2.7 below. Clearly, (EHIη) follows from the proper version
of (PHI) involving the same shrinking parameter η in space. Hence (PHI)
implies (EHIη) for any fixed η ∈ (0, 1).

It is well known that (EHI) and (PHI) hold on any complete
Riemannian manifold M with non-negative Ricci curvature (see [9]
and [34]). In fact, the parabolic Harnack inequality (PHI) can be
characterized in terms of the volume doubling property and Poincaré
inequality.

DEFINITION 2.4. — Let F be a family of d-balls in M . We say that
F satisfies the volume doubling property (VD) with constant CD if, for any
ball B(x,r) ∈ F ,

(2.6) µ
(
B(x,r)

)
≤ CDµ

(
B(x, 1

2
r)

)
.

If all balls in M satisfy (2.6), then we say that (M,µ) satisfies (VD).

ANNALES DE L’INSTITUT FOURIER



STABILITY RESULTS FOR HARNACK INEQUALITIES 833

DEFINITION 2.5. — Let U ′ ⊂ U be open subsets of M . The Poincaré
constant Λ(U ′ ,U) of the couple (U ′ ,U) is the smallest positive number such
that, for all f ∈ C1(U),

(2.7) inf
ξ∈R

∫
U ′

(f − ξ)2 dµ ≤ Λ(U ′ ,U)
∫
U

|∇f |2 dµ.

DEFINITION 2.6. — Let F be a family of d-balls in M . We say that
F satisfies the Poincaré inequality (PI) with parameter 0 < δ ≤ 1 and with
constant CP > 0 if, for any ball B(x,r) ∈ F ,

(2.8) Λ
(
B(x,δr),B(x,r)

)
≤ CP r2.

If all balls in M satisfy (2.8), then we say that (M,µ) satisfies (PI).

For a precompact open set U , the second Neumann eigenvalue (or the
spectral gap) λ(U) is defined by

(2.9) λ(U) := inf
{ ∫

U
|∇f |2 dµ∫

U
|f |2 dµ

: f ∈ C1(U) \ {0},
∫
U

f dµ = 0
}
.

Comparing with the Definition 2.5, we see that Λ(U,U) = 1/λ(U). Hence,
a family of balls F satisfies (PI) with parameter δ = 1 if and only if, for any
ball B(x, r) ∈ F , λ(B(x, r)) ≥ 1/(CP r

2).

It is known (see for example [14] , [6] , [8]) that the heat equation on
a weighted manifold M always admits a well defined heat kernel p(t, x, y)
which, by definition, is the unique minimal positive fundamental solution
of the heat equation (if δM is non-empty, then the heat kernel satisfies in
addition the Neumann boundary condition on δM).

The notions introduced above are related as follows.

THEOREM 2.7. — For any complete weighted manifold (M,µ) the

following properties are equivalent.

1) (M,µ) satisfies the parabolic Harnack inequality (PHI).

2) (M,µ) satisfies the doubling property (VD) and the Poincaré

inequality (PI) for some/all δ ∈ (0,1].

3) The heat kernel of (M,µ) satisfies the following two-sided estimate

(2.10)
c

V (x,
√
t )

exp
(
− C

d2(x,y)
t

)
≤ p(t,x,y) ≤ C

V (x,
√
t )

exp
(
− c

d2(x,y)
t

)
for all x,y ∈ M, t > 0 and some C,c > 0, where V (x,r) = µ(B(x,r)).

TOME 55 (2005), FASCICULE 3



834 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

Remark 2.8. — The term V (x,
√
t ) in the both sides of (2.10) can be

replaced by (V (x,
√
t )V (y,

√
t ))1/2, using the symmetry of the heat kernel.

The main part of Theorem 2.7 — the implication 2) ⇒ 1) — was
proved in [17] and [43]. The implication 1) ⇒ 2) was proved in [43].
The equivalence 1) ⇔ 3) goes back to [15] (see also [44] and [46]).
The equivalence of the cases δ < 1 and δ = 1 in 2) was proved in [26]
(see also [37], [46]).

Theorem 2.7 implies easily that the parabolic Harnack inequa-
lity (PHI) is stable under changes of measure dµ̃ = h2dµ provided h, h−1

are positive and bounded, and under changes of metric as long as the
new metric g̃ satisfies g̃ ≈ g , that is, g̃ is quasi-isometric to g . In fact,
under some weak bounded geometry assumptions, (PHI) is preserved under
rough-isometries (see e.g., [11]). Whether or not such a stability holds true
for (EHI) is not known yet.

2.2. Technical results concerning volume, Poincaré and
Harnack inequalities.

Throughout this section (M,µ) is a weighted manifold. We collect
here some useful technical results. The next two lemmas are well known
(see, e.g., [17], [46] for proofs). For any set U and r > 0 set

F(U, r) =
{
B(z, s) : z ∈ U, s ≤ r

}
.

If U = {x}, we write F(x, r) = F({x}, r).

LEMMA 2.9. — Fix x ∈ M , r > 0. Assume that the family of balls

F(x,r) satisfies (VD) with constant CD. Set α = log2 CD. Then, for all

0 < s < t ≤ r,

(2.11)
V (x,t)
V (x,s)

≤ CD

( t

s

)α
and, for all y ∈ B(x,r) and all 0 < s < t such that B(y,t) ⊂ B(x,r),

(2.12)
V (y,t)
V (x,s)

≤ CD

( t + d(x,y)
s

)α
.

LEMMA 2.10. — Fix x ∈ M , r > 0 and assume that B = B(x,r) �= M .

Assume that the family of balls F(B,r) satisfies (VD) with constant CD.

ANNALES DE L’INSTITUT FOURIER



STABILITY RESULTS FOR HARNACK INEQUALITIES 835

Then, for all 0 < s < t ≤ r,

(2.13)
V (x,t)
V (x,s)

≥ c1

( t

s

)β
where c1 = (1 + 1/CD)−1 and β = log3(1 + 1/CD).

Let U ⊂ M be a precompact open set, and consider the Dirichlet
form DN

U (u, v) obtained as the closure of the form∫
U

g(∇u,∇v) dµ, u, v ∈ C1(U).

Denote by pNU (t, x, y), t > 0, x, y ∈ U , the heat kernel of the infinitesimal
generator of DN

U . If U has smooth boundary, then the infinitesimal generator
of DN

U can be identified as the weighted Laplacian ∆µ with the Neumann
boundary condition on δU ∪∂U . Then pNU is the heat kernel of the weighted
manifold U with the boundary δU ∪ ∂U .

The following lemma is taken from [30] (see also [46]).

LEMMA 2.11. — Let U ′ ⊂ U ⊂ M be precompact open sets. Assume

that, for some fixed t > 0 and all x,y ∈ U ′, we have pNU (t,x,y) ≥ c/µ(U ′).
Then Λ(U ′ ,U) ≤ 2t/c.

Finally, we will need the following local version of the equiv-
alence 1) ⇔ 2) in Theorem 2.7.

THEOREM 2.12. — Fix a ball B = B(x,r) ⊂ M and set B′ = B(x, 1
2 r),

B∗c = {z : d(x,z) ≤ 2r}.
(i) Assume that (PHI) holds for the family {B,B′} made of the two

balls B,B′, with constant CH . Then the ball B satisfies (VD) with constant

CD = C4
H and (PI) with parameter δ = 1

2 and constant CP = 5
2 C

5
H .

(ii) Assume that the closed ball B∗c is compact and that the family

F(B∗c ,r) satisfies (VD) with constant CD and (PI) for parameter 0 < δ < 1
and constant CP . Then F(B,r) satisfies (PHI) with constant CH depending

only on CD ,CP ,δ.

Proof. — These results follows from [17], [43], [44] although they
are not stated explicitly in this form there. The proof of (ii) is technical
and relies on some iteration scheme ([43] uses Moser’s well-known scheme
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whereas [17] uses a different argument, originated from [31]). We only
sketch the proof of (i). Consider the function

u(t, z) =
{ ∫

B′ p(t, z, .) dµ, if t > 0,

1 if t ≤ 0.

One can show that u is a solution of the heat equation in (−∞,+∞) ×B′.
Applying (PHI) in (

−1

4
t,

3

4
t
)
×B′ and

(1

2
t,

3

2
t
)
×B′

with t = ( 1
2 r)

2 yields

1 = u(−0, x) ≤ C2
H

∫
B′

p
(3

2
t, x, .

)
dµ.

Applying (PHI) in (0, 4t) ×B to the function (s, z) �→ p(s, x, z) gives∫
B′

p(3

2
t, x, .) dµ ≤ CH p(3t, x, x)V

(
x,

1

2
r
)
.

As the function s �→ p(s, x, x) is non-increasing, we obtain

(2.14) p(t, x, x) ≥ C−3
H

V (x, 1
2 r)

·

Now, applying (PHI) in (0, 4t) ×B to the heat kernel, we also have

V (x, r) p(t, x, x) ≤ CH

∫
B(x,r)

p(3t, x, .) dµ ≤ CH .

This, together with (2.14), gives V (x, r) ≤ C4
HV (x, 1

2 r) as desired.

The first part of the proof above also applies to the Neumann heat
kernel pNB and gives

pNB (t, x, x) ≥ C−3
H

V (x, 1
2 r)

=
C−3
H

µ(B′)
·

Applying (PHI) in (0, 4t) ×B and (2t, 6t) ×B, we get for all y, z ∈ B′

pNB (5t, y, z) ≥ C−5
H

µ(B′)
·

The desired Poincaré inequalities then follow from Lemma 2.11.
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3. Discretization.

3.1. Good coverings.

This section presents a very general discretization scheme. The main
result is Theorem 3.7.

DEFINITION 3.1. — Let (M,µ) be a weighted manifold. Let U ,U#

be two subsets of M with U ⊂ U#. Let A = {(Ai ,A
∗
i ,A

#
i )}i∈I be a

finite family of triplets of sets such that Ai ⊂ A∗i ⊂ A#
i for any i ∈ I,

where I is an index set. We say that A is a good covering of U in U# with
constants Q1 ,Q2 if the following properties are satisfied:

(d0) U ⊂
⋃

i∈I Ai and
⋃

i∈I A
#
i ⊂ U#.

(d1) There exists Q1 such that, for each i ∈ I

(3.1) card
{
j ∈ I :A#

j ∩A#
i �= ∅

}
≤ Q1.

(d2) If d(Ai ,Aj) = 0, then there exists k = k(i,j) ∈ I such that
Ai ∪Aj ⊂ A∗k.

(d3) There exists Q2 such that, for all i,j ∈ I, if d(Ai ,Aj) = 0 and
k = k(i,j) as in (d2), then

(3.2) µ(A∗k) ≤ Q2 min
{
µ(Ai),µ(Aj)

}
.

Some comments are in order. Condition (d1) implies, in particular,
that no more than Q1 of the sets A#

i can overlap at a given point. The
measure µ plays a role only in (d3). Note that if d(Ai, Aj) = 0, then Ai, Aj

are contained in A∗k(i,j) and (d3) implies that µ(Ai) ≈ µ(Aj) ≈ µ(A∗k(i,j)).

Example 3.2. — Let U be a precompact set in M . Fix s > 0 and set
Ai = B(xi, s) where {xi}ni=1 is a maximal set of points of U at distance at
least s from each other (i.e., an s-net in U). Clearly, all sets Ai cover U .
Fix constants b ≥ a ≥ 3, set

A∗i = B(xi, as), A#
i = B(xi, bs)

and observe that A = {(Ai, A
∗
i , A

#
i )}ni=1 is a good covering of U in any

set U# containing the set {x ∈ M : d(x, U) < bs} (see Figure 2).
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U

U#

A#
i

A∗i

Ai

Figure 2. A good covering by balls

This is a classical discretization procedure (see e.g., [11], [23], [27]).
The constant Q1 depends on further geometric information, and Q2 depends
of course on the unspecified measure µ. For example, if (M,µ) satisfies (VD),
then both Q1 and Q2 are bounded in terms of the constant from (VD).
Indeed, (3.2) follows immediately from (VD) and Lemma 2.9 since we
can set k(i, j) = i. To verify (3.1) observe that all balls A#

j = B(xj , bs)
such that A#

j ∩ A#
i �= ∅ are covered by the ball B(xi, 3bs). On the other

hand, all balls B(xj , 1
2 s) are disjoint, and by (VD) and Lemma 2.9,

µ(B(xi, 3bs)) ≤ CB(xj , 1
2 s), where C depends only on the doubling

constant and b. Therefore, the number of balls B(xj , 1
2 s) is at most C,

which implies (3.1) with Q1 = C.

Example 3.3. — Fix a point o ∈ M and let {ρi}∞i=1 be an increasing
sequence of positive numbers. Extend the sequence {ρi} by setting ρi = 0
for all i ≤ 0, and define the sets Ai, A

∗
i , A

#
i for all i by

Ai = B(o, ρi) \B(o, ρi−1),

A∗i = A#
i = Ai−1 ∪Ai = B(o, ρi) \B(o, ρi−2).

Then A = {(Ai, A
∗
i , A

#
i )}ni=1 is a good covering of U = B(o, ρn) in U . Note

that A#
i ∩ A#

j �= ∅ implies |i− j| ≤ 1. Hence we can take Q1 = 3. Clearly,
one can take k(i, i− 1) = i but the value of Q2 will depends on the choice
of the measure µ.

A modification of this construction gives another good covering
with Ai as above whereas

A∗i = Ai−1 ∪Ai ∪Ai+1 = B(o, ρi+1) \B(o, ρi−2),

A#
i = A∗i−1 ∪A∗i ∪A∗i+1 = B(o, ρi+2) \B(o, ρi−3)

(see Figure 3). This covering will be used in the proof of the main
Theorem 5.2.
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︸︷︷︸

︸ ︷︷ ︸
Ao
i

A#
i

A∗i

ρi

Figure 3. A good covering by annuli

DEFINITION 3.4. — Given a good covering A = {(Ai ,A
∗
i ,A

#
i )}i∈I of a

set U in U#, define the continuous Poincaré constant Λc(A) of A by

(3.3) Λc(A) = max
{
Λ(Ai ,A

∗
i ),Λ(A∗i ,A

#
i ): i ∈ I

}
.

In words, Λc = Λc(A) is the smallest constant such that, for all i ∈ I,
the Poincaré inequalities∫

Ai

|f − fAi |2 dµ ≤ Λc

∫
A∗
i

|∇f |2 dµ for any f ∈ C1(A∗i ),(3.4) ∫
A∗
i

|f − fA∗
i
|2 dµ ≤ Λc

∫
A#
i

|∇f |2 dµ for any f ∈ C1(A#
i ),(3.5)

hold true. Here fA stands for the µ-mean of f over the set A, that is,

fA :=
1

µ(A)

∫
A

f dµ.

When dealing with Poincaré inequalities, it is useful to note that, for
any precompact open set A and any f ∈ L1(A), we have the identities∫

A

|f − fA|2 dµ =
1

2µ(A)

∫
A

∫
A

∣∣f(x) − f(y)
∣∣2 dµ(x) dµ(y)(3.6)

= inf
c∈R

∫
A

|f − c|2 dµ.

In particular, one can replace the left hand sides of (3.4)–(3.5) by the
equivalent expressions from (3.6).

Let (V,E) be a finite graph, that is,V is a finite set of vertices, and
E ⊂V ×V is a set of edges, each edge being a pair of vertices. Let m(x)
be a positive function on V considered as a measure on V by setting
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m(U) =
∑

x∈U m(x) for any set U ⊂V. Let m(x, y) be a positive function
on edges (x, y), which is similarly extended to a measure on E (although
we denote the measure on V and on E by the same letter m, a priori
these two measures may not be related to each other). It is convenient
to extend m(x, y) to a function on all pairs (x, y) by setting m(x, y) = 0
whenever (x, y) /∈ E . We refer to the structure (V,m) as a weighted graph,
where m here stands for the both measures (note that the function m(x, y)
contains information about the edges).

Denote by ‖f‖p the norm of a function f in the space 8p(V,m), that is

‖f‖p =
( ∑
x∈V

|f(x)|pm(x)
)1/p

.

Define an energy form in 82(V,m) by

(3.7) E(f, f) := 1
2

∑
x,y∈V

∣∣f(x) − f(y)
∣∣2m(x, y).

Analogously to (2.9), the spectral gap λ
(
V,m) is defined by

(3.8) λ(V,m) = inf
{ E(f, f)

‖f‖2
2

: f ∈ 82(V,m) \ {0}, m(f) = 0
}
,

where

(3.9) m(f) =
1

m(V )

∑
k∈V

f(k)m(k)

is the mean value of f with respect to the weight m.

With any good covering we associate a weighted graph (V,m) as
follows.

DEFINITION 3.5. — Given a good covering A = {(Ai ,A
∗
i ,A

#
i )}i∈I of a

set U in U#, define the associated graph (V,E) by setting

V = I and E =
{
(i,j) ∈V ×V : d(Ai ,Aj) = 0

}
.

Define measures on V and E (both called m) as follows:

m(i) = µ(Ai) onV,(3.10)

m(i,j) = max
{
m(i),m(j)

}
on E .(3.11)
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DEFINITION 3.6. — Given a good covering A = {(Ai ,A
∗
i ,A

#
i )}i∈I

of a set U in U#, define the discrete Poincaré constant Λd(A) of A to
be the smallest constant such that the following Poincaré inequality holds
on the associated graph (V,m):

(3.12)
∑
i∈V

∣∣f(i) −m(f)
∣∣2m(i) ≤ Λd(A) E(f ,f),

where E(f ,f) and m(f) are given by (3.7) and (3.9).

Clearly, the discrete Poincaré constant is related to the spectral gap
λ(V,m) by

(3.13) Λd(A) =
1

λ(V,m)
·

THEOREM 3.7. — Let A be a good covering of a set U in U#. Then

(3.14) Λ(U ,U#) ≤ Q1Λc(2 + Q2
1Q2Λd),

where Λc and Λd are respectively the continuous and discrete Poincaré

constants of A (see Definitions 3.4 and 3.6), and Q1 ,Q2 are defined

by (3.1), (3.2).

The importance of this statement is that it allows us to “glue”
Poincaré inequalities. Indeed, (3.14) means that the Poincaré constant of
the pair (U,U#) is estimated in terms of the Poincaré constants of all pairs
(Ak, A

∗
k) and (A∗k, A

#
k ) which form a covering of U in U#, and in terms of

the Poincaré constant of the graph (V,m) that describes the combinatorics
of the covering.

Proof. — We need to prove that for any φ ∈ C1(U#)

(3.15)
∫
U

|φ− φU |2 dµ ≤ Q1Λc(2 + Q2
1Q2Λd)

∫
U#

|∇φ|2 dµ.

Fix a function φ ∈ C1(U#) and set

(3.16) f(8) =
1

µ(A#)

∫
A�

φdµ.

For a constant c to be chosen later, write∫
U

|φ− c|2 dµ ≤
∑
#∈V

∫
A�

|φ− c|2 dµ

≤ 2
∑
#∈V

∫
A�

|φ− f(8)|2 dµ + 2
∑
#∈V

|f(8) − c|2m(8).(3.17)
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The first sum can be estimated using the Poincaré inequality on each A#.
Namely, we have by (3.4) and (3.1)

(3.18)
∑
#∈V

∫
A�

∣∣φ− f(8)
∣∣2 dµ ≤

∑
#∈V

Λc

∫
A∗
�

|∇φ|2 dµ ≤ Q1Λc

∫
U#

|∇φ|2 dµ.

To estimate the second sum in (3.17), define c = m(f) by (3.9). Using
successively the discrete Poincaré inequality (3.12), definitions (3.16),
(3.10), (3.11), condition (3.2), the continuous Poincaré inequality (3.5)
with the identities (3.6), we obtain

2
∑
#∈V

∣∣f(8) − c
∣∣2m(8)(3.19)

≤ Λd

∑
(i,j)∈E

∣∣f(i) − f(j)
∣∣2m(i, j)

= Λd

∑
(i,j)∈E

∣∣∣ 1
µ(Ai)

∫
Ai

φdµ− 1
µ(Aj)

∫
Aj

φdµ
∣∣∣2m(i, j)

= Λd

∑
(i,j)∈E

∣∣∣ 1
µ(Ai)µ(Aj)

∫
Ai

∫
Aj

[
φ(x) − φ(y)

]
dµ(x) dµ(y)

∣∣∣2m(i, j)

≤ Λd

∑
(i,j)∈E

m(i, j)
m(i)m(j)

∫
Ai

∫
Aj

∣∣φ(x) − φ(y)
∣∣2 dµ(x) dµ(y)

≤ Q2Λd

∑
(i,j)∈E

1
µ(A∗k(i,j))

∫
A∗
k(i,j)

∫
A∗
k(i,j)

∣∣φ(x) − φ(y)
∣∣2 dµ(x) dµ(y)(3.20)

≤ Q2Λd

∑
(i,j)∈E

Λc

∫
A#
k(i,j)

∣∣∇φ
∣∣2 dµ

≤ Q2
1Q2ΛdΛc

∑
k∈V

∫
A#
k

|∇φ|2 dµ(3.21)

≤ Q3
1Q2ΛdΛc

∫
U#

|∇φ|2 dµ.(3.22)

To obtain (3.20) we have used (3.11) and (3.2), which yield

m(i, j)
m(i)m(j)

=
max(m(i),m(j))

m(i)m(j)
=

1
min(m(i),m(j))

≤ Q2

µ(A∗k(i,j))
·

To obtain (3.21) we have used that (3.1) implies that each A#
k intersects

at most Q1 of the sets Ai, which shows that each A#
k covers at most Q2

1
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unions Ai ∪ Aj . In (3.22) we have used another consequence of (3.1) that
at most Q1 of all A#

k overlap at any given point.

By (3.6), (3.17), (3.18) and (3.22), we obtain∫
U

|φ− φU |2 dµ ≤ (2Q1Λc + Q3
1Q2ΛdΛc)

∫
U#

|∇φ|2 dµ,

which was to be proved.

Example 3.7. — Let us show that Λ(U,U#) < ∞ whenever U is a non-
empty connected precompact open set and U# is an open set containing
the closure U . Indeed, let A = {(Ai, A

∗
i , A

#
i )}ni=1 be the following good

covering of U (cf. Example 3.2): Ai = B(xi, s) and {xi} is a maximal s-net
in U , and A∗i = A#

i = B(xi, 3s). If s is small enough, then each ball A∗i is
nearly a Euclidean ball. Hence, Λ(Ai, A

∗
i ) < ∞ and Λ(A∗i , A

#
i ) < ∞, which

by (3.3) implies Λc(A) < ∞.

The connectedness of U implies that the union ∪iAi is connected,
whence it follows that the associated graph (V,E) is connected and hence
λ(V,m) > 0. Therefore, Λd(A) < ∞ and by Theorem 3.7 Λ(U,U#) < ∞.
A modification of this argument shows that Λ(U,U) < ∞ whenever U is as
above and has a smooth boundary.

3.2. The spectral gap of some finite graphs.

In order to apply successfully our discretization scheme, we need to
have at our disposal some Poincaré inequalities on finite graphs. There is
by now a large literature on this subject, but we will only need very simple
examples.

Let (V,m) be a finite weighted graph. Given a subset U of V, the
boundary of U is the set of all edges that meet both U and its complement.
The Cheeger constant h(V,m) is defined by

(3.23) h(V,m) := inf
{ m(∂U)

m(U)
:U ⊂V, 0 < m(U) ≤ 1

2
m(V )

}
.

By a well-known argument (see e.g., [45, Lemma 3.3.3]), the Cheeger
constant h can be equivalently defined by

h(V,m) = inf
f

{ ∑
x,y |f(x) − f(y)| ·m(x, y)

infα
∑

x |f(x) − α| ·m(x)

}
.

TOME 55 (2005), FASCICULE 3



844 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

Moreover, the two constants h(V,m) and λ(V,m) (see (3.8)) compare as
follows

(3.24)
h2(V,m)

8m0
≤ λ(V,m) ≤ h(V,m)

where
m0 := max

x∈V

{ 1
m(x)

∑
y∈V

m(x, y)
}
.

The lower bound is a generalization of the Cheeger inequality (see e.g., [45,
Lemma 3.3.7], [10]).

The notion of a weighted graph contains finite reversible Markov
chains as the particular case where the measure m(x) on vertices be related
to the measure m(x, y) on edges by m(x) =

∑
y∈V m(x, y). However, in our

examples, weighted graphs will not be associated with reversible Markov
chains. Typically we will first be given the measure m(x) on vertices and
then define the measure m(x, y) on edges by

(3.25) m(x, y) = max{m(x),m(y)}

as in (3.11). The following simple examples will be used in this paper.

Example 3.9. — Let m :N → (0,+∞) be a function such that there
exist two constants c0, η0 > 0 for which

(3.26)
{
c0 m(k) ≤ m(k + 1) ≤ c−1

0 m(k), for any k,

m(8) ≥ c0(1 + η0)#−km(k), for all 8 ≥ k,

(in other words, m(k) is an exponentially growing function). Consider the
weighted graph (V,m) with the vertex setV = {0, 1, . . . , n}, the edge set

(3.27) E =
{
(i, j) ∈V ×V : |i− j| ≤ 1

}
,

and define the measure on edges by (3.25).

We claim that there exists a constant c = c(c0, η0) > 0 such that

λ(V,m) ≥ c

(observe that this estimate does not depend on n). Indeed, by (3.24) it
suffices to show that there exists a constant C > 0 independent of n

such that

(3.28) m(U) ≤ Cm(∂U)
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for any set U ⊂ V such that m(U) ≤ 1
2 m(V ). Now, (3.26) implies for

any 8 ∈ N

(3.29) m
(
[0, 8]

)
=

#∑
i=0

m(i) ≤ 1
c0

( #∑
i=0

(1 + η0)−(#−i)
)
m(8) ≤ Cm(8)

where C := c−1
0 η−1

0 (1 + η0). Setting

8 := max
{
i ∈V : (i, i + 1) ∈ ∂U

}
and noticing that either U orV\U is contained in [0, 8], we obtain by (3.29)

m(U) ≤ min
(
m(U),m(V \ U)

)
≤ m

(
[0, 8]

)
≤ Cm(8) ≤ Cm(8, 8 + 1) ≤ Cm(∂U).

Example 3.10. — Set V = {0, · · · , n} and let m :V → (0,+∞) be a
function such that, for some constant c0 > 0 and for any k = 0, 1, . . . , n−1,

(3.30) c0 m(k) ≤ m(k + 1) ≤ c−1
0 m(k).

Assume further that m is a function with at most one local maximum, that
is there exists k0 ∈ {0, 1, . . . , n} such that

(3.31)
{
m(k) ≤ m(k + 1), if k < k0,

m(k) ≥ m(k + 1), if k ≥ k0.

If k0 = 0, then the function m(k) is decreasing on V, if k = n, then m(k)
is increasing, and if 0 < k0 < n, then m(k) is increasing on [0, k0] and
decreasing on [k0, n].

Consider the weighted graph (V,m) with the edge set defined by (3.27)
and the measure on edges defined by (3.25). It was proved in [13, Propo-
sition 6.3] that

λ(V,m) ≥ c0
2(n + 1)2

,

which gives a very general Poincaré inequality for unimodal distribution.

Remark 3.11. — Note that instead of (3.31) it suffices to assume that
m ≈ m̃ where m̃ satisfies (3.31).

TOME 55 (2005), FASCICULE 3



846 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

3.3. Two typical examples.

This section illustrates the results of Sections 3.1 and 3.2 by proving
some Poincaré inequalities on two simple classes of weighted manifolds.

Example 3.12. — Consider RN equipped with the Euclidean metric
and the measure

(3.32) dµα(x) =
(
1 + |x|2

)α/2 dx,

where α ∈ R. Let us show that the family of all balls centered at the
origin o satisfies the Poincaré inequality (PI) with parameter δ = 1 (see
Definition 2.6). For r > 1, let n be the non-negative integer such that
r ∈ [2n, 2n+1). Set U = B(o, r), ρi = 2i−nr for 0 ≤ i ≤ n. Consider the
good covering A = {(Ai, A

∗
i , A

#
i )}ni=0 of U in U defined by

(3.33)


A0 = A∗0 = A#

0 = B(o, ρ0),

Ai = B(o, ρi) \B(o, ρi−1), 1 ≤ i ≤ n,

A∗i = A#
i = Ai−1 ∪Ai, 1 ≤ i ≤ n.

Clearly, all the conditions of Definition 3.1 are satisfied with constants
Q1, Q2 independent of n. Since in each Ai the function (1 + |x|2)α/2 is
comparable to a constant, the continuous Poincaré constant Λc(A) is of the
same order as the one for the Lebesgue measure, that is Λc(A) ≈ r2. The
weighted graph (V,m) of the covering A (see Definition 3.5) has the vertex
set V = {0, 1, . . . , n} and the edge set (3.27). The weight m(i) is defined
by (3.10), which implies that

m(i) = µα(Ai) ≈ 2i(α+N).

Under the assumption α > −N , the graph (V,m) satisfies all the conditions
of Example 3.9 and hence

Λd(A) =
1

λ(V,m)
≤ C,

where the constant C does not depend on n. By Theorem 3.7 we conclude
that Λ(U,U) ≤ Cr2, which yields (PI) for the central balls.

Remark 3.13. — In fact, the inequality Λ(U,U) ≤ Cr2 holds for all
real α but the proof in the case α ≤ −N requires a certain refinement
of Theorem 3.7 that will be developed elsewhere.
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Example 3.14. — Let Mψ be a model manifold, that is RN with
a complete Riemannian metric ds2 given in polar coordinates (r, θ) by
ds2 = dr2 + ψ(r)2 dθ2. This class of examples is considered in more detail
in Section 4.4. Here, we study Poincaré inequalities on central balls in Mψ,
in the special case

ψ(r) ≈ rα for all r > 1.

Let us set λψ(r) := λ(B(o, r)) where o is the origin, and show that for any
real α and all r > 1

(3.34) λψ(r) ≈ r−2 max{α,1}.

First consider the case α > −1/(N − 1). Fix r > 1 and let n be an integer
such that such that r ∈ [2n, 2n+1). Setting U = B(o, r) , we obtain a good
covering A = {(Ai, A

∗
i , A

#
i )}ni=0 of U = B(o, r) in U by using the same

notation as in (3.33).

Observe that each Ai, i > 0, is essentially a piece of a flat cylinder of
height 2i and radius 2αi, which implies

(3.35) Λc(A) ≤ Cα max{r2, r2α}.

The associated graph (V,m) has the vertex setV = {0, 1, . . . , n}, edge set
(3.27), and the weight m

m(i) = µ(Ai) ≈ 2(1+α(N−1))i.

Using Example 3.9 and the fact that 1 + α(N − 1) > 0, one checks
that Λd(A) ≤ Cα. This, together with (3.35) and Theorem 3.7, yields
Λ(U,U) ≤ CN,α max{r2, r2α}, which gives the lower bound in (3.34). Tests
functions easily yield a matching upper bound.

Consider now the case α ≤ −1/(N − 1). We will use a different good
covering of B(o, r) that in fact works for all α ≤ 1

3 . Fix a constant cr and
define a sequence {ρi}i≥1 by

ρi := cr

i∑
k=1

k1/2 ≈ cri
3/2.

Let n be the integer such that

n−1∑
k=1

k1/2 < r ≤
n∑

k=1

k1/2,
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and choose cr so that ρn = r. Obviously cr ≈ 1. Define a good covering
A = {(Ai, A

∗
i , A

#
i )}ni=1 of B(o, r) in itself by

A1 = A∗1 = A#
1 = B(o, ρ1),

Ai = B(o, ρi) \B(o, ρi−1), 1 < i ≤ n,

A∗i = A#
i = Ai−1 ∪Ai, 1 < i ≤ n.

Note that for this covering Q1 ≤ 4, Q2 ≤ 6N . The associated graph (V,m)
has the vertex setV = {1, . . . , n}, edge set (3.27), and the weight m

m(i) = µ(Ai) ≈ i1/2 × (i3α/2)N−1 ≈ i[1+3α(N−1)]/2.

We claim that
Λc(A) ≤ Cn and Λd(A) ≤ Cn2,

for some constant C = CN,α. The bound on Λc(A) comes from the fact
that the sets Ai, A

∗
i are essentially cylinders of height i1/2 and radius i3α/2,

which implies that, as long as α ≤ 1
3 ,

Λ(Ai, A
∗
i ) ≈ i and Λ(A∗i , A

#
i ) ≈ i.

The bound on Λd(A) comes from Example 3.10 (cf. Remark 3.11). Hence,
by Theorem 3.7 we obtain

Λ(U,U) ≤ Cn3 ≈ Cr2,

whence the lower bound in (3.34) follows. Again, a matching upper bound
is easily obtained by test functions.

4. Remote and anchored balls.

The next definition introduces the notions of remote and anchored
balls with respect to a closed set.

DEFINITION 4.1. — Fix a parameter 0 < ε ≤ 1 (the remote parameter)
and a closed set Γ ⊂ M in a metric space (M,d).

1) We say that a ball B(x,r) is remote to Γ if r ≤ 1
2 εd(Γ,x).

2) We say that a ball B(x,r) is anchored to Γ if x ∈ Γ.

The aim of this section is to draw conclusions from hypotheses
concerning remote and anchored balls.
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4.1. Poincaré inequalities.

We start with Poincaré inequalities for which the result is straightfor-
ward.

PROPOSITION 4.2. — Let (M,µ) be a weighted manifold and let Γ ⊂ M

be a closed set. Assume that the Poincaré inequality (PI) holds for all

anchored and remote balls, with parameter 0 < δ0 ≤ 1 and constant

CP > 0; that is, for any anchored or remote ball B(x,r)

Λ
(
B(x,δ0r),B(x,r)

)
≤ CP r

2.

Then (PI) holds for all balls with parameter δ = εδ2
0/8 and constant CP ;

that is for any ball B(x,r)

Λ
(
B(x,δr),B(x,r)

)
≤ CP r

2.

Here 0 < ε ≤ 1 is the remote parameter.

Proof. — By definition of the Poincaré constant, we need to prove
that for any ball B(x, r) and all functions f ∈ C1(B(x, r))

inf
ξ∈R

∫
B(x,δr)

(f − ξ)2 dµ ≤ CP r
2

∫
B(x,r)

|∇f |2 dµ.

Consider first the case when ρ := d(Γ, x) ≤ 1
4 δ0r. Choose a point o ∈ Γ

such that d(o, x) = ρ. It follows from the inequalities δ < 1
4 δ0 < 1

2 that

B(x, δr) ⊂ B
(
o,

1

2
δ0r

)
and B

(
o,

1

2
r
)
⊂ B(x, r)

(see Figure 4).

Γ

ρ ≤ 1
4 δ0r

rB(x, δ )

B(o, 1
2 δ0r)

o x

Figure 4. The balls B(o, 1
2 δ0r) and B(x, δr)

TOME 55 (2005), FASCICULE 3



850 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

Thus, applying the Poincaré inequality in the anchored ball B(o, 1
2 r)

we obtain

inf
ξ∈R

∫
B(x,δr)

(f − ξ)2 dµ ≤ inf
ξ∈R

∫
B(o, 1

2 δ0r)

(f − ξ)2 dµ

≤ CP r
2

∫
B(o, 1

2 r)

|∇f |2 dµ

≤ CP r
2

∫
B(x,r)

|∇f |2 dµ.

Consider now the case ρ > 1
4 δ0r. Set s = 1

8 εδ0r and notice that B(x, s) is
a remote ball (see Figure 5).

B(x, δ )x

ρ > 1
4 δ0r

r

B(x, s)

Γ

Figure 5. Remote ball B(x, s) and the ball B(x, δr) = B(x, δ0s)

Observing that δr = 1
8 εδ

2
0r = δ0s and s < r, and applying the

Poincaré inequality in the remote ball B(x, s), we obtain

inf
ξ∈R

∫
B(x,δr)

(f − ξ)2 dµ = inf
ξ∈R

∫
B(x,δ0s)

(f − ξ)2 dµ

≤ CP s
2

∫
B(x,s)

|∇f |2 dµ ≤ CP r
2

∫
B(x,r)

|∇f |2 dµ,

which finishes the proof.

4.2. The volume comparison condition.

The following condition which was introduced in [33] plays an
important role in our analysis.

DEFINITION 4.3. — Fix a remote parameter 0 < ε ≤ 1 and a closed
set Γ ⊂ M as in Definition 4.1. We say that a weighted manifold (M,µ)
satisfies the volume comparison condition (VC) with respect to Γ if there
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exists a positive constant CV such that, for all x ∈ M and o ∈ Γ with
d(Γ,x) = d(o,x) = : ρ, we have

(4.1) µ
(
B(o,ρ)

)
≤ CV µ

(
B(x, 1

64
ερ)

)
,

Note that the ball B(o, ρ) is anchored to Γ, whereas the ball B(x, s)
with s = 1

64 ερ is remote.

LEMMA 4.4. — If a weighted manifold (M,µ) satisfies (VD), then it

also satisfies (VC) with respect to any closed set Γ ⊂ M and any remote

parameter 0 < ε ≤ 1. Conversely, fix a remote parameter 0 < ε ≤ 1 and a

closed set Γ ⊂ M . If (M,µ) satisfies (VD) for anchored and remote balls as

well as condition (VC), then (M,µ) satisfies (VD) for all balls.

Proof. — The first assertion follows immediately from (2.12). Let us
prove the second assertion. Given a ball B(x, r) in M , set ρ = d(Γ, x) and
consider three cases.

Case 1. — If r ≤ 1
2 ερ, then the ball B(x, r) is remote and hence

satisfies (VD) by hypothesis.

Case 2. — If r ≥ 3ρ, then choose a point o ∈ Γ such that d(o, x) = ρ.
Using (VD) for anchored balls we obtain

(4.2) µ
(
B(x, r)

)
≤ µ

(
B(o, 4

3
r)

)
≤ C3

Dµ
(
B(o, 1

6
r)

)
≤ C3

Dµ
(
B(x, 1

2
r)

)
,

that is (VD) for B(x, r).

Case 3. — If 1
2 ερ < r < 3ρ, then (VD) for anchored balls implies

(4.3) µ
(
B(x, r)

)
≤ µ

(
B(o, 4ρ)

)
≤ C2

Dµ
(
B(o, ρ)

)
whereas by (VC)

(4.4) µ
(
B(o, ρ)

)
≤ CV µ

(
B(x, 1

64
ερ)

)
≤ CV µ

(
B(x, 1

2
r)

)
,

whence (VD) for B(x, r) follows.

The following result shows that, given the volumes of anchored and
remote balls, one can estimate the volume of any ball.
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COROLLARY 4.5. — Fix a remote parameter 0 < ε ≤ 1 and a closed

set Γ ⊂ M . If (M,µ) satisfies (VD) for anchored and remote balls and also

(VC), then for any non-remote ball B(x,r) in M we have

(4.5) µ
(
B(x,r)

)
≈ µ

(
B(o,r)

)
,

where o is a point in Γ such that d(o,x) = d(Γ,x).

Proof. — In Case 2 of the previous proof, we have (4.2) which together
with (VD) for anchored balls yields µ(B(x, r)) ≈ µ(B(o, r)).

In Case 3 of the previous proof, (4.3) and (4.4) imply µ(B(x, r)) ≈
µ(B(o, ρ)) ≈ µ(B(o, r)).

DEFINITION 4.6. — Let us say that a point o ∈ Γ of a closed set Γ ⊂ M

is accessible if for any r > 0 there is x ∈ M such that d(Γ,x) = d(o,x) = r.
We say that Γ is fully accessible if Γ is closed and any point o ∈ Γ is
accessible.

For example, if (M,d) is complete and non-compact length space,
then any set Γ that consists of a single point is fully accessible. Another
example of a fully accessible set is a linear submanifold in RN of a positive
codimension.

PROPOSITION 4.7. — Fix a remote parameter 0 < ε ≤ 1 and a fully

accessible set Γ ⊂ M . Assume that (M,µ) satisfies (VD) for remote balls

and (VC). Then (M,µ) satisfies (VD) for all balls.

Remark 4.8. — The difference between this statement and the second
part of Lemma 4.4 is that (VD) is no longer assumed for anchored balls but
instead we require that Γ is fully accessible. Without the latter condition,
the volume doubling may fail for balls deeply inside Γ.

Proof. — By Lemma 4.4, it suffices to prove (VD) for anchored balls,
that is for all r > 0 and any o ∈ Γ

(4.6) µ
(
B(o, r)

)
≤ Cµ

(
B(o, 1

2
r)

)
.

Let 0 < ε ≤ 1 be the remote parameter. Observe that for all 0 < s ≤ 1
64 εr

and for any x ∈ Γ′ := {d(. ,Γ) ≥ 1
8 r} the ball B(x, 4s) is remote to Γ.

Applying hypothesis (VD) for remote balls we obtain, for all s as above and
for any two intersecting balls B(x′, s), B(x′′, s) centered in Γ′ ,

(4.7) µ
(
B(x′, s)

)
≤ µ

(
B(x′′, 4s)

)
≤ C2

Dµ
(
B(x′′, s)

)
.
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Since Γ is fully accessible, for any o ∈ Γ and r > 0 there exists a point
x ∈ M such that d(Γ, x) = d(o, x) = r. By hypothesis (V C), we have

µ
(
B(o, r)

)
≤ CV µ

(
B(x, 1

64
εr)

)
.

Let γ be a shortest line joining o to x and let y be the point on γ at
distance 1

4 r from o. Since B(y, 1
4 r) ⊂ B(o, 1

2 r), (4.6) will be proved if we
show that

(4.8) µ
(
B(x, 1

64
εr)

)
≤ Cµ

(
B(y, 1

4
r)

)
.

o x

B(o, 1
2 r)

1
4
r

B(y, 1
4 r)

B(x, 1
64 εr)

y︸ ︷︷ ︸Γ

Figure 6. Comparisons of µ(B(x, 1
64 εr)) and µ(B(y, 1

4 r))

Indeed, covering the segment of γ from y to x by at most 64ε−1 remote
balls of radius s = 1

64 εr each (see Figure 6) and applying (4.7) for any pair
of consecutive balls (note that their centers are in Γ′) we obtain (4.8).

4.3. Radial power weights on RN .

This section illustrates the use of remote and anchored balls for
a simple class of examples. Consider the weighted manifold (RN , µα)
where RN is equipped with its Euclidean metric and the measure µα is
defined by (3.32), i.e., dµα(x) = (1 + |x|2)α/2 dx where α ∈ R. Set Γ = {o}
where o is the origin in R

N and fix a remote parameter 0 < ε ≤ 1.
Observe that (1 + |x|2)α/2 is comparable to a constant on any given remote
ball. Hence, for remote balls in (RN , µα), the Poincaré inequality (PI)
follows from that for the Euclidean metric. For anchored balls, (PI) follows
from Example 3.12 provided α > −N . Hence, by Proposition 4.2, the
space (RN , µNα ) satisfies (PI) on all balls, for any α > −N (in fact, as
follows from Remark 3.13, (RN , µNα ) satisfies (PI) for all real α but we will
not use this).
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Similarly, the family of remote balls in (RN , µα) satisfy (VD).
Moreover, for any remote ball B(x, r), we have

V (x, r) := µα
(
B(x, r)

)
≈ rN (1 + ρα),

where ρ := d(Γ, x). If B(o, r) is an anchored ball, then a simple computation
shows that

(4.9) V (o, r) ≈


rN if r ≤ 1,
rN+α if r ≥ 1 and α > −N,

log(1 + r) if r ≥ 1 and α = −N ,
1 if r ≥ 1 and α < −N .

Therefore, condition (VC) holds true if and only if α > −N . By Propo-
sition 4.7, (RN , µα) satisfies (VD) for all balls if and only if α > −N .
Thus (RN , µα) satisfy (PI) and (VD) if and only if α > −N . This
and Theorem 2.7 yields the following result.

PROPOSITION 4.9. — The weighted manifold (RN ,µα) satisfies (VD),
(PI) and (PHI) if and only if α > −N .

Consider the differential operator

Lα :=
(
1 + |x|2

)−α/2 N∑
i=1

∂

∂xi

(
(1 + |x|2)α/2 ∂

∂xi

)
= ∆ +

αx · ∇
1 + |x|2

,

which by (2.1) is the Laplacian of the weighted manifold (RN , µα). By
Proposition 4.9, (PHI) holds for Lα if and only if α > −N . For such α,
Corollary 4.5 and (4.9) give that, for any ball B(x, r),

µα
(
B(x, r)

)
≈ rN

(
1 + r + |x|

)α
.

By Theorem 2.7, the heat kernel pα(t, x, y) of Lα satisfies the estimate

(4.10) pα(t, x, y) ≈ e−c|x−y|
2/t

tN/2(1 +
√
t + |x|)α(1 +

√
t + |y|)α

,

where the constant c > 0 may take different values in the upper and lower
bounds.

Consider now a matrix valued measurable function x �→ (aij(x))
defined on RN . Assume that (aij) is symmetric and uniformly elliptic,
that is, all its eigenvalues are contained in [λ−1, λ], for some λ ≥ 1. Then,
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by Proposition 4.9 and the stability results of [SalHar,SalSurv] in the spirit
of Theorem 2.7, it follows that the parabolic Harnack inequality (PHI) and
the heat kernel bound (4.10) hold true for the operator

(
1 + |x|2

)−α/2 N∑
i,j=1

∂

∂xi

((
1 + |x|2

)α/2
aij(x)

∂

∂xj

)
.

4.4. Model manifolds.

This section develops in detail the case of model manifolds. Here, by
a model manifold we mean RN equipped with the Riemannian metric given
in polar coordinates (r, θ) ∈ (0,+∞) × SN−1 by

(4.11) ds2 = dr2 + ψ(r)2 dθ2,

where dθ2 is the standard metric on SN−1 and ψ is a smooth positive
function on (0,+∞). Clearly, (4.11) defines the metric only away from the
origin o ∈ RN . The necessary and sufficient conditions under which ds2 can
be smoothly extended to a metric on the entire space RN are as follows:

(4.12) ψ(0) = 0, ψ′(0) = 1, and ψ′′(0) = 0

(see [29], [16, p. 60]). Given a function ψ satisfying (4.12), we denote by Mψ

the model manifold (RN , ds2) and by µ its Riemannian measure, defined
by dµ = ψ(r)N−1 dr dθ. From the point of view of the present paper, the
values of ψ for small r are irrelevant, while for large values of r there is no
restriction on the function ψ(r) except for being positive and smooth.

For any r > 0 denote by K(r) the sectional curvature at a point
x = (r, θ) in the direction of any plane in TxM containing ∂/∂r. It is
well known that K(r) satisfies the equation ψ′′ + Kψ = 0 (see [16] and
references therein), which allows to use model manifolds for curvature
comparison techniques (see [16], [8], [7]).

Set Γ = {o} where o ∈ Mψ is the origin, and use this Γ in the
definition of anchored and remote balls (see Definition 4.1). Assume that
in addition to (4.12) the function ψ satisfies (1.7), that is, for all r > 0,

(4.13) sup
[r,2r]

ψ ≤ C inf
[r,2r]

ψ.

The volume V (o, r) of an anchored ball B(o, r) is given by

(4.14) V (o, r) = ωN

∫ r

0

ψ(s)N−1 ds,
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whereas a remote ball B(x, r) admits the volume estimate

V (x, r) ≈
{

rN if r ≤ ψ(ρ),

rψ(ρ)N−1 if r ≥ ψ(ρ),

where ρ = d(o, x). Clearly, the family of all remote balls satisfies (V D). On
the other hand, it is easy to see that condition (V C) is satisfied if and only
if there exists a constant C such that for all r > 0

(4.15) ψ(r) ≤ Cr and
∫ r

0

ψ(s)N−1 ds ≤ Crψ(r)N−1.

Hence, by Proposition 4.7, (VD) holds for all balls provided (4.13) and (4.15)
are satisfied.

Uniformly in x and r, any remote ball B(x, r) is quasi-isometric to a
ball in a piece of a flat cylinder. Hence, (PI) holds on remote balls. Let us
verify that (4.13) and (4.15) imply the Poincaré inequality

(4.16) λψ(r) ≥ cr−2,

for all r > 1 and some c > 0. Indeed, let n be the integer such that
r ∈ [2n, 2n+1), and define by (3.33) a good covering A = {(Ai, A

∗
i , A

#
i )}ni=0

of U = B(o, r) in U . It follows from (4.13) and the first condition in (4.15)
that

Λc(A) ≤ Cr2

(cf. (3.35)). The associated graph (V,m) has vertex set V = {0, 1, . . . , n},
edge set (3.27), and weight m given by

m(i) = µ(Ai) ≈ 2iψN−1(2i).

By (4.14), (4.13) and (4.15) we obtain m(i) ≈ V (o, 2i). Using the fact
that Mψ satisfies (VD) and Lemma 2.10, we see that m(i) satisfies (3.26),
which yields by Example 3.9 Λd(A) ≤ C. Hence, by Theorem 3.7 we have
Λ(U,U) ≤ Cr2, which was to be proved. By Proposition 4.2, it follows
that (PI) holds for all balls.

Applying Theorem 2.7 we obtain the following result.

PROPOSITION 4.10. — Let Mψ be a model manifold such that ψ

satisfies (4.13) and (4.15). Then Mψ satisfies (PI), (VD), and (PHI).
Moreover, under the standing assumption (4.13), the condition (4.15) is

necessary and sufficient for (PHI) to hold on Mψ. In particular, if ψ(r) ≈ rα

for r > 1, then (PHI) holds if and only if −1/(N − 1) < α ≤ 1.

The necessity of (4.15) follows from the fact noted above that (4.15)
is necessary for (VC) and hence for (VD) and (PHI).
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Remark 4.11. — Given a compact Riemannian manifold Θ of
dimension N − 1 without boundary and a smooth positive function ψ

on [0,+∞) we denote by MΘ
ψ the manifold [0,+∞) × Θ equipped with the

Riemannian metric (4.11), where dθ2 is now the Riemannian metric on Θ.
Note that MΘ

ψ is a manifold with boundary. All the results stated in this
paper for manifolds Mψ hold true also for manifolds MΘ

ψ .

5. Stability results for the parabolic
Harnack inequality.

5.1. Parabolic Harnack inequality: from remote balls to all balls.

The examples described above indicate the advantage of performing
a discretization based on concentric annuli. For that we need Poincaré
inequalities on annuli, which obviously requires some connectivity of the
annuli. Consider the following condition.

DEFINITION 5.1. — Fix a constant CA > 1 and a point o ∈ M . We
say that a metric space (M,d) has relatively connected annuli with respect
to o, or satisfies condition (RCA), if for any r ≥ C2

A and all x,y ∈ M such
that d(o,x) = d(o,y) = r, there exists a continuous path γ : [0,1] → M with
γ(0) = x, γ(1) = y whose image is contained in B(o,CAr) \B(o,C−1

A r).

With this definition, we can state one of the main results of this paper.

THEOREM 5.2. — Let (M,µ) be a complete non-compact weighted

manifold satisfying (RCA) with respect to a point o ∈ M . Assume

that (M,µ) satisfies (VD) and (PI) for remote balls with respect to

Γ = {o}. Then (M,µ) satisfies (VD) and (PI) for all balls if and only if

it satisfies (VC).

Remark 5.3. — By Lemma 4.4, (VC) is necessary for (VD). Condition
(RCA) is very close to be necessary for (PI) and (VD). Indeed, [24] shows
that (RCA) follows from (PI) provided

(5.1) V (x, r) ≈ rQ for some Q ≥ 2 and for all x ∈ M, r > 0.

Condition (5.1), called Q-Ahlfors regularity, is clearly stronger than (VD).

It is known that a connected sum of two Euclidean spaces of dimension
N ≥ 2 satisfies neither (PHI) nor (PI). However, such a connected sum
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obviously satisfies (VD) and (VC), as well as (PI) and (PHI) on remote
balls, whereas (RCA) fails for this manifold. Thus, condition (RCA) cannot
be dropped from the hypotheses of Theorem 5.2.

The following result is an immediate consequence of Theorems 5.2
and 2.12.

COROLLARY 5.4. — Let (M,µ) be a complete non-compact weighted

manifold, and let o ∈ M and Γ = {o}. Assume that (M,µ) satisfies (PHI)
for remote balls, as well as (VC) and (RCA). Then (M,µ) satisfies (PHI)
for all balls.

Remark 5.5. — Assume that (M,µ) is a weighted manifold satisfying
(PHI) and (RCA). Let (M1, µ1) be another weighted manifold such that
the exteriors of some compacts in M and M1 are isometric as weighted
manifolds. Then Corollary 5.4 implies that (M1, µ1) also satisfies (PHI).
In fact, this result holds true without assuming that M satisfies (RCA).
To see this, one should use Theorem 2.7 and the rough isometry techniques
developed in [27] , [11].

To prove Theorem 5.2, we have to show that if (M,µ) satisfies the
conditions (RCA), (VC), as well as (VD) and (PI) for remote balls then it
satisfies (VD) and (PI) for all balls. Under these hypotheses, (VD) for all
balls holds by Proposition 4.7. Hence, we are left to prove (PI) for all balls.
Let us precede the proof by the following lemma. Recall that following
constants are involved in the above hypotheses: the remote parameter ε,
CA from (RCA), CV from (VC), CD from (VD) for remote balls, CP and
parameter δ from (PI) for remote balls.

LEMMA 5.6. — Assume that (M,µ) satisfies the conditions (RCA),
(VC), as well as (VD) and (PI) for remote balls. Let κ be any number ≥ C3

A

and set

U = B(o,κr) \B(o,r) and W = B(o,κ2r) \B(o,κ−1r).

Then Λ(U ,W ) ≤ Cr2, for any r ≥ C2
A, where C depends on the constants

from the hypotheses, but does not depend on r.

Proof. — For any set U∗ such that U ⊂ U∗ ⊂ W, we have
Λ(U,W ) ≤ Λ(U∗,W ). Therefore, it suffices to find a set U∗ such that
U ⊂ U∗ ⊂ W and

Λ(U∗,W ) ≤ Cr2.

ANNALES DE L’INSTITUT FOURIER



STABILITY RESULTS FOR HARNACK INEQUALITIES 859

By (RCA), for any two points on ∂B(o, r) there is a curve γ connecting these
points in B(o, CAr) \ B(o, C−1

A r) (see Figure 7). Fix s > 0 to be specified
below (see (5.2)) and set U∗ to be the union of U and the s-neighborhoods
of all such curves.

︸︷︷︸
︸︷︷︸

o

U∗

U

x

x

C−3
A r

C−2
A r

C−1
A r

r
CAr

C3
A r

Figure 7. Any point x ∈ U∗ can be connected to a point on

∂B(o, r) by a curve in U∗ (the shaded ball has radius s)

This construction ensures that U∗ is a connected set (note that the
condition (RCA) is used only here). Indeed, let us show that any two points
in U∗ can be connected by a curve in U∗. Any point x ∈ U can be connected
to a point on ∂B(o, r) by a curve in U just by connecting x to o by a shortest
line. Any point x ∈ U∗ \ U can be connected to a point on ∂B(o, r) by
a curve in U∗ because by construction x is a s-neighborhood of a curve
connecting in U∗ two points on ∂B(o, r) (see Figure 7). Finally, any two
points on ∂B(o, r) are connected by a curve in U∗ by the definition of U∗.

Define s by

(5.2) s = 1

2
εδ3C−3

A r,

where 0 < ε ≤ 1 is the remote parameter, and 0 < δ ≤ 1 is the parameter
from the Poincaré inequality for remote balls. Without loss of generality,
we can assume that CA is large enough, for example CA > 2. In particular,
(5.2) implies s < (C−1

A − C−2
A )r whence it follows that

U∗ ⊂ B(o, κr) \B(o, C−2
A r) ⊂ W.

Let {xi}i∈I be a maximal set of points of U∗ at distance at least s

from each other. Consider a good covering A = {(Ai, A
∗
i , A

#
i )}i∈I of U∗

in W defined by

Ai = B(xi, s), A∗i = B(xi, δ−1s), A#
i = B(xi, δ−2s).
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The balls Ai cover U∗ by the maximality of {xi}, and the fact that A#
i ⊂ W

follows from (5.2).

By Proposition 4.7, (M,µ) satisfies (VD). Therefore, the constants
Q1 and Q2 of the covering A are bounded in terms of the doubling constant
(cf. Example 3.2). By the choice of s, all balls A∗i , A

#
i are remote with

respect to Γ = {o}. Hence, by (PI) for remote balls, we have the following
estimate of the continuous Poincaré constant of A:

Λc(A) ≤ Cs2 ≤ Cr2.

To estimate the discrete Poincaré constant Λd(A), let us first show
that the number n := card I of the points xi is uniformly bounded above
by a constant independent of r. Indeed, all balls B(xi, 1

2 s) are disjoint and
are contained in B(o, κr + s). Therefore, by (VD), Lemma 2.9, and (5.2),

n ≤ V (o, κr + s)
mini V (xi, 1

2 s)
≤ C,

where C is independent of r.

The fact that U∗ is connected implies that the union
⋃

iAi is
connected and hence the associated graph (V,E) is connected (see
Definition 3.5). Alongside the weight m(i) = µ(Ai) consider the flat weight
m0(i) ≡ 1. The spectral gap λ(V,m0) is positive by the connectedness.
Since the number of all weighted connected graphs having at most C

vertices and equipped with a flat weight is finite, there is a universal lower
bound c > 0 for the spectral gap of any such graph. Consequently, we
have λ(V,m0) ≥ c. As follows from (VD) and Lemma 2.9, µ(Ai) ≈ µ(Aj)
for all i, j ∈V, which implies that λ(V,m) ≈ λ(V,m0). Therefore, we obtain
a positive lower bound for λ(V,m), which is independent of r, whence it
follows that Λd(A) ≤ C. By Theorem 3.7, Λ(U∗,W ) ≤ Cr2, which was to
be proved.

Proof of Theorem 5.2. — We are left to prove (PI) for anchored balls
since then, by Proposition 4.2, (PI) will be true for all balls. Set κ := C3

A

and consider the following sets

A1 = B(o, κ) and Ai = B(o, κi) \B(o, κi−1) for i > 1,(5.3)

A∗i = Ai−1 ∪Ai ∪Ai+1,(5.4)

A#
i = A∗i−1 ∪A∗i ∪A∗i+1,(5.5)

where we assume Ai = ∅ for i ≤ 0 (cf. Example 3.3). Given a ball B(o, r)
with r ≥ κ (smaller r can be treated by a compactness argument —
cf. Example 3.8) choose an integer n so that κn−1 < r ≤ κn and consider a
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good covering A = {(Ai, A
∗
i , A

#
i )}ni=1 of B(o, r) in B(o, κ2r): The associated

graph (V,m) has the vertex setV = {1, 2, . . . , n}, the edge set (3.27), and
the weight

m(i) = µ(Ai) ≈ V (o, κi).

We claim that m satisfies the conditions (3.26). Indeed, the first condition
in (3.26), that is m(i) ≈ m(i+1) follows from (VD). By Lemma 2.10, (VD)
implies that there exists c, β > 0 such that m(8) ≥ cκβ(#−k)m(k), for all
non-negative integers 8 ≥ k, which is exactly the second condition in (3.26).
Hence, by Example 3.9, the discrete Poincaré constant Λd(A) is bounded by
a constant C independently of r. By Lemma 3.9, we have Λ(Ai, A

∗
i ) ≤ Cr2

and Λ(A∗i , A
#
i ) ≤ Cr2. By Definition 3.4, we have Λc(A) ≤ Cr2, and

by Theorem 3.7 we obtain

Λ
(
B(o, r), B(o, κ2r)

)
≤ Cr2,

which was to be proved.

5.2. Changes of measure.

Recall that by Theorem 2.7 the parabolic Harnack inequality (PHI)
is stable under a change of the measure dµ �→ h2dµ provided h, h−1 are
bounded functions. The next result uses Theorem 5.2 to show that certain
changes of weight where h or h−1 are unbounded also preserve the validity
of (PHI) provided the annuli connectedness condition (RCA) holds. This
result is useful in several applications (see, e.g., [21], [22]).

THEOREM 5.7. — Let (M,µ) be a complete noncompact weighted

manifold satisfying (PHI) and (RCA) with respect to a point o ∈ M . Let h

be a positive smooth function on M such that

(h1) for all positive integers i

(5.6) hi := sup
B(o,2i)\B(o,2i−1)

h ≤ C inf
B(o,2i)\B(o,2i−1)

h.

Consider the measure µ̃ on M defined by dµ̃ = h2 dµ. Then the

weighted manifold (M,µ̃) satisfies (PHI) if and only if the following

condition holds true:

(h2) the numerical sequence Hi = h2
iµ(B(o,2i)) satisfies the inequa-

lity
∑k

i=1 Hi ≤ CHk , for all k = 1,2,... .

Remark 5.8. — If the sequence {hi} is increasing, then the
condition (h2) is satisfied automatically. Indeed, using (VD) for (M,µ) and

TOME 55 (2005), FASCICULE 3



862 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

its consequence (2.13) (see Lemma 2.10) and setting V (r) := µ(B(o, r))
we obtain

k∑
i=1

Hi =
k∑

i=0

h2
iV (2i) ≤ h2

kV (2k)
k∑

i=1

V (2i)
V (2k)

≤ CHk

k∑
i=1

2(i−k)β ≤ CHk.

However, the function h(x) = V (d(o, x))−1/2 gives an example for
which (h1) is satisfies but not (h2). Indeed, (h1) holds by (VD) but (h2)
fails because Hi ≈ 1.

Remark 5.9. — It is easy to see that the condition (h2) can be
equivalently stated as

(5.7)
∫ r

0

h
2
(s) dV (s) ≤ Ch

2
(r)V (r),

for all r ≥ 1, where h(s) := sup∂B(o,s) h.

Remark 5.10. — Consider the weighted manifold (M,µ) where M

is the two-sided flat cylinder R × S with coordinates x = (s, θ) and
dµ(x) = dsdθ. Let h(x) = (1 + |s|2)α/4. A simple test function argument
shows that (M,h2dµ) does not satisfy (PI) if α ≥ 2. This example shows
that the hypothesis (RCA) is essential for the validity of Theorem 5.7.

Proof of Theorem 5.7. — Let us first prove that (h1)–(h2) imply (PHI)
for (M, µ̃). Since balls are the same on (M,µ) and (M, µ̃), the manifold
(M, µ̃) is complete, non-compact, and satisfies (RCA).

By Theorem 2.7, (M,µ) satisfies (VD) and (PI). It follows from (h1)
that (M, µ̃) satisfies (VD) and (PI) for remote balls (with respect to the set
Γ = {o} and with remote parameter ε = 1).

Let us show that (M, µ̃) satisfies (VC). Indeed, fix a point x ∈ M

such that ρ := d(o, x) > 1 (for smaller ρ use a compactness argument)
and set s = 1

64 ρ. Let k be a positive integer such that 2k−1 ≤ ρ < 2k.
Using (h1), (h2), and (VC) for µ, we obtain

µ̃
(
B(o, ρ)

)
≤ µ̃

(
B(o, 1)

)
+

k∑
i=1

µ̃
(
B(o, 2i) \B(o, 2i−1)

)
≤ µ

(
B(o, 1)

)
sup
B(o,1)

h2 +
k∑

i=1

µ
(
B(o, 2i)

)
sup

B(o,2i)\B(o,2i−1)

h2

≤ C

k∑
i=1

Hi ≤ CHk = Cµ
(
B(o, 2k)

)
h2
k ≤ Cµ̃

(
B(x, s)

)
,
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whence (VC) for (M, µ̃) follows. By Theorem 5.2, (M, µ̃) satisfies (VD) and
(PI) for all balls, which implies (PHI) by Theorem 2.7.

Now we show that (h1) and (PHI) for (M, µ̃) imply (h2). Indeed,
by Theorem 2.7 and Lemma 4.4, (M, µ̃) satisfies (VC). Therefore, for
any x ∈ M we have

µ̃
(
B(o, ρ)

)
≤ Cµ̃

(
B(x, s)

)
,

where s = 1
64 ρ and ρ = d(o, x). Assuming that ρ > 1, choose an integer k

such that 2k ≤ ρ < 2k+1. A computation similar to the one above gives

µ̃
(
B(o, ρ)

)
≥ c

k∑
i=0

Hi,

whereas µ̃(B(x, s)) ≤ CHk. Combining these inequalities, we obtain (h2).

When applying Theorem 5.7 the following elementary lemma comes
handy. We omit the proof, which is straightforward and is contained in the
above computation.

LEMMA 5.11. — Assume that the hypotheses of Theorem 5.7 are

satisfied including (h2). Then we have, for all x ∈ M and r > 0,

µ̃
(
B(x,r)

)
≈ µ

(
B(x,r)

)
h̄(ρ + r)2 ,

where ρ := d(o,x) and h̄(s) := sup∂B(o,s) h.

Combining Theorem 5.7, Lemma 5.11, and Theorem 2.7, we obtain
the following statement.

COROLLARY 5.12. — Assume that the hypotheses of Theorem 5.7
are satisfied including (h2). Then the heat kernel p̃ of the weighted manifold

(M,µ̃) satisfies the estimate

p̃(t,x,y) ≈ exp
(
−cd2(x,y)/t

)
(V (x,

√
t )V (y,

√
t ))1/2h̄(d(o,x) +

√
t ) h̄(d(o,y) +

√
t )

,

where V (x,r) = µ(B(x,r)).
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6. Elliptic Harnack inequality.

The purpose of the next two subsections is to obtain the elliptic
Harnack inequality (EHI) (see Definition 2.1) for all balls assuming only
that it holds for some specific families of balls.

6.1. Elliptic Harnack inequality: from remote balls to all balls.

Recall that the notion of remote and anchored balls has been
introduced in Definition 4.1.

LEMMA 6.1. — Let (M,µ) be a weighted manifold and let Γ ⊂ M be

a closed set. Assume that (EHIη) holds for all anchored and remote balls.

Then (EHIη′) holds for all balls with η′ = 1
8 εη

2, where 0 < ε ≤ 1 is the

remote parameter.

Proof. — Let B(x, r) be a ball that is neither anchored nor remote.
Then by definition r > 1

2 ερ > 0 where ρ = d(Γ, x). Consider first the case
when

(6.1) r ≥ 2(1 + η−1)ρ.
Let o ∈ Γ be a point such that d(o, x) = ρ. Then B(x, η′r) ⊂ B(o, η′r + ρ)
but B(x, r) ⊃ B(o, r − ρ). Using η′ ≤ 1

2 η and (6.1), it is easy to check that

η′r+ ρ ≤ η(r− ρ
)
. Hence, applying (EHIη) in the anchored ball B(o, r− ρ)

we obtain (EHIη′) in B(x, r).

Assume now that

(6.2) 1
2
ερ < r < 2(1 + η−1)ρ.

It follows from η′ = 1
8 εη

2 and (6.2) that η · 1
2 ερ > η′r. Hence, applying

(EHIη) in the remote ball B(x, 1
2 ερ) we obtain (EHIη′) in B(x, r).

Before we proceed further, let us introduce one more notion.

DEFINITION 6.2. — We say that a metric space (M,d) satisfies the
annuli covering condition (ACη) with respect to a point o ∈ M and with
parameter 0 < η < 1 if there exist constants CA > 1 and Q such that for
any r ≥ C2

A the annulus {x: r/CA ≤ d(o,x) ≤ CAr} can be covered by at
most Q balls B(xi ,si) such that all balls B(xi ,si/η) are remote to Γ = {o}
(with the remote parameter 1).

When we write (AC) we mean (ACη) for some η. In what follows we
assume that (M,µ) is a complete weighted manifold.
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LEMMA 6.3. — Fix a point o ∈ M , set Γ = {o}, and assume

that (EHIη) holds for remote balls. Assume further that (M,µ) satisfies

conditions (ACη) and (RCA) with respect to o and with constant CA.

Then for any r > 0 and for any non-negative harmonic function u in

B(o,3CAr) \B(o,r/(3CA)),

(6.3) sup
∂B(o,r)

u ≤ C inf
∂B(o,r)

u.

Consequently, (EHI) holds for all balls.

Proof. — Let us first explain how to obtain (EHI) for all balls assuming
that the annulus Harnack inequality (6.3) is already proved. By hypothesis,
(EHI) is known for remote balls. Hence, by Lemma 6.1, it suffices to prove
(EHI) for anchored balls. Let u be a non-negative harmonic function in an
anchored ball B(o, 3CAr). Applying the maximum principle and (6.3), we
obtain

sup
B(o,r)

u = sup
∂B(o,r)

u ≤ C inf
∂B(o,r)

u = C inf
B(o,r)

u,

that is (EHI) for anchored balls.

Let us now prove (6.3). For a bounded range of r (6.3) holds just by
a compactness argument. Assuming in the sequel that r is large enough,
let x (resp. y) be a point on ∂B(o, r) where u attains its maximum (resp.
minimum) on ∂B(o, r). By (RCA) there is a continuous path γ connecting
x to y in B(o, CAr) \B(o, r/CA). By (ACη), the curve γ can be covered by
at most Q balls B(xi, si) such that all balls B(xi, si/η) are remote.

Set ri = d(o, xi). As B(xi, si) intersects γ and hence the annulus
B(o, CAr) \B(o, r/CA) we have

ri − si ≤ CAr and ri + si ≥ C−1
A r.

As B(xi, si/η) is a remote ball, we have si/η ≤ 1
2 ri. It follows that

2
3
C−1
A r ≤ ri ≤ 2CAr,

whence we obtain

ri − si/η ≥ 1
3
C−1
A r and ri + si/η ≤ 3CAr.

In particular, each ball B(xi, si/η) is contained in B(o, 3CAr) \
B(o, r/(3CA)). Considering a chain of balls B(xi, si) connecting x to y

and applying (EHIη) in all balls B(xi, si/η) we obtain

u(x) ≤ CQ
Hu(y),

whence (6.3) follows.
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LEMMA 6.4. — Fix a point o ∈ M and assume that (M,µ) satisfies

(VC) with respect to Γ = {o} and (VD) for anchored balls. Then the

condition (ACη) is satisfied with η = 1
4 ε where ε is the remote parameter

from the condition (VC).

Proof. — Set CA = 2 and consider an annulus

A :=
{
x : 1

2
r ≤ d(o, x) ≤ 2r

}
.

Similarly to Example 3.2, consider a maximal set {xi} of points xi ∈ A

at distance at least s := 1
16 εr each from other. Clearly, all balls B(xi, s)

cover A.

Set ri = d(xi, o). By construction, we have 1
2 ri ≤ r ≤ 2ri. Therefore,

s/η = 1
4 r ≤ 1

2 ri, whence we see that the ball B(xi, s/η) is remote, with
remote parameter 1. Since 1

2 s ≥ ε
64 ri, we obtain by (VC)

µ
(
B(xi,

1
2
s)

)
≥ C−1

V µ
(
B(o, ri)

)
≥ C−1

V µ
(
B(o, 1

2
r)

)
.

On the other hand, all balls B(xi, 1
2 s) are disjoint, whence by (VD) for

anchored balls∑
i

µ
(
B(xi,

1
2
s)

)
≤ µ

(
B(o, 2r + 1

2
s)

)
≤ C3

V µ
(
(B(o, 1

2
r)

)
.

Therefore, the number of the points xi is bounded by C4
V , which finishes

the proof.

Remark 6.5. — Combining Lemma 4.4 with Lemma 6.4 we conclude
that (V D) for all balls implies (AC).

PROPOSITION 6.6. — Fix a point o ∈ M and set Γ = {o}. Assume

that a complete weighted manifold (M,µ) satisfies (V D) and (RCA), as

well as (EHI) for remote balls. Then (M,µ) satisfies the annulus Harnack

inequality (6.3) as well as (EHI) for all balls.

Proof. — By Lemma 4.4, (VD) implies (VC) with any remote
parameter 0 < ε ≤ 1. By Lemma 6.4, we obtain (ACη) with parameter
η = 1

4 ε. Adjusting ε so that (EHIη) holds for remote balls with the same η,
we finish the proof by Lemma 6.3.
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Proposition 6.6 can be considered as an elliptic analogue of
Corollary 5.4 (or Theorem 5.2). Indeed, the former says that

(V D) + (RCA) + remote(EHI) =⇒ (EHI),

whereas the latter says that

(VC) + (RCA) + remote(PHI) =⇒ (PHI).

However, the difference is that while (VC) is a necessary condition for (PHI),
the condition (VD) is not necessary for (EHI).

6.2. Elliptic Harnack inequality for model manifolds.

Consider a model manifold Mψ where ψ satisfies (1.7), that is

(6.4) sup
[r,2r]

ψ ≤ C inf
[r,2r]

ψ,

for all r > 0. This easily implies that (PHI) and (EHI) hold on remote balls
with respect to the pole o. Obviously, (RCA) is also satisfied in this case.
The annuli covering condition (AC) (see Definition 6.2) is equivalent to

(6.5) ψ(r) ≤ Cr,

for all r > 0. Thus, by Lemma 6.3, any model manifold satisfying (6.4)
and (6.5) satisfies (EHI). In fact, (6.5) is a necessary and sufficient condition
for (EHI) as will be proved in the following statement.

PROPOSITION 6.7. — Let Mψ be a model manifold with ψ

satisfying (6.4). Then (EHI) holds on Mψ if and only if ψ satisfies (6.5).
In particular, if ψ(r) ≈ rα for r > 1, then (EHI) holds if and only if α ≤ 1.

Proof. — We only need to prove (EHI) implies (6.5) for all r > 1
(for r ≤ 1, (6.5) follows from (4.12)). Fix r ≥ 1 and consider the
Green function G2r(x, y) with the Dirichlet boundary condition in the
ball B(o, 2r), defined by

(6.6) G2r(x, y) =
∫ ∞

0

p2r(t, x, y) dt,

where p2r(t, x, y) is the heat kernel in B(o, 2r) with the Dirichlet boundary
condition. It is not hard to check that

G2r(o, y) =
1
ωN

∫ 2r

d(o,y)

1
ψ(s)N−1

ds
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(see for example [19, Section 4.2]). In particular, if d(o, y) = r, then

(6.7) G2r(o, y) ≈
r

ψ(r)N−1
.

Fix an angular component θ and set y0 = (r, θ) and x0 = (ηr, θ) where
0 < η < 1 is the parameter from (EHI). By (PHI) on remote balls (which
follows from (6.4)) and a standard chaining argument we have

(6.8) p2r(t, x0, y0) ≥ cp2r

( 1
2
t, y0, y0

)
, for all t ≈ r2.

By the proof of (2.14), we also have

(6.9) p2r

( 1
2
t, y0, y0

)
≥ c

V (y0,
√
t )

, for all t ≤
( 1

16
r
)2
.

Combining (6.8), (6.9), and (6.6) we obtain

(6.10) G2r(x0, y0) ≥
∫ (r/16)2

(r/32)2
p2r(t, x0, y0) dt ≥ c

r2

V (y0, r/16)
·

Let us show that

(6.11) V
(
y0,

1
16

r
)
≤ CrN .

If ψ(r) > Cr (for a large enough constant C), then the ball B(y0,
1
16 r)

is quasi-isometric to a Euclidean ball of the same radius, whence (6.11)
follows. If ψ(r) ≤ Cr, then

V
(
y0,

1
16

r
)
≤ V (o, 2r) − V

(
o, 1

2
r
)

= ωN

∫ 2r

r/2

ψN−1(ξ) dξ

≤ Cψ(r)N−1r ≤ CrN .

Hence, (6.10) and (6.11) imply

(6.12) G2r(x0, y0) ≥
c

rN−2
·

Now, x �→ G2r(x, y0) is a non-negative harmonic function in B(o, r).
Applying (EHI) to compare its values at o and x0 we obtain from (6.7)
and (6.12)

r

ψ(r)N−1
≥ c

rN−2
,

whence (6.5) follows.
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Remark 6.8. — Assume that ψ(r) = rα for r > 1 where α ≤ 1. By
(6.4) (PI) holds for all remote balls. By Example 3.14 (PI) holds for all
anchored balls. Hence Mψ satisfies (PI), by Proposition 4.2. Proposition 4.10
shows that Mψ satisfies (PHI) if and only if −1/(N − 1) < α ≤ 1. Hence,
for α ≤ −1/(N − 1), Mψ satisfies (EHI) and (PI) but not (PHI). Examples
of manifolds satisfying (EHI) but not (PHI) are described in [2], [3], [12].
These examples are much less explicit than Mψ. To our knowledge, none of
the previously known examples satisfies (PI) nor is simply connected. When
N = 2, the Gauss curvature of Mψ at x = (r, θ) equals −ψ′′/ψ (r) = cr−2

which tends to 0 as r → ∞, again unlike any previously known example.

Remark 6.9. — Let us say that a weighted manifold (M, g , µ) satisfies
the weak Liouville (resp. strong Liouville) property if any bounded (resp.
positive) harmonic function on M is constant. Liouville properties on model
manifolds have been studied by many authors, e.g., [36], [38], [41]. They
proved that for Mψ the weak and strong Liouville properties are equivalent
and are satisfied if and only if

(6.13)
∫ +∞ ( 1

ψ(r)N−1

∫ r

1

ψ(s)N−3 ds
)

dr = +∞.

If N = 2, then (6.13) coincides with the condition

(6.14)
∫ +∞ ds

ψ(s)
= +∞,

which is equivalent to the parabolicity of Mψ (a manifold is called parabolic if
any positive superharmonic function is constant). From Proposition 6.7 and
(6.13), we obtain a class of examples of manifolds having the strong Liouville
property but for which (EHI) fails. For instance, in dimension 2, it suffices
to take ψ(r) = r log r (for large r) so that (6.14) holds, whereas (6.5) fails.

6.3. Changes of measure.

THEOREM 6.10. — Let (M,µ) be a complete weighted manifold. Fix

o ∈ M and assume that M satisfies conditions (RCA) and (ACη) (see
Definitions 5.1 and 6.2). Let h be a positive smooth function on M such

that one of the following two conditions holds:

(i) either h satisfies the hypothesis (h1) of Theorem 5.7 and (M,µ)
satisfies (PHI) for remote balls;
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(ii) or h is harmonic outside a compact set and (M,µ) satisfies (EHIη)
for remote balls.

Define a measure µ̃ on M by dµ̃ = h2dµ . Then (M,µ̃) satisfies (EHI).

Remark 6.11. — In the case (i), if (PHI) holds on (M,µ) for all balls,
then the hypothesis (AC) can be dropped as it follows from (VD) and hence
from (PHI) (see Lemma 6.4 and Theorem 2.7).

Remark 6.12. — The example of Remark 5.10 can be used to show
that condition (RCA) is essential for the validity of Theorem 6.10.

Proof. — (i) By Theorem 2.12, (M,µ) satisfies (PI) and (VD) for
remote balls. By (h1), the function h varies on any remote ball at most by
a constant factor. Therefore, (M, µ̃) also satisfies (PI) and (VD) for remote
balls. Again by Theorem 2.12, (M, µ̃) satisfies (PHI) for remote balls. The
latter implies (EHIη) for remote balls with any parameter 0 < η < 1 (see
Remark 2.3). In particular, take η the same as in (ACη). Then (M, µ̃)
satisfies (EHI) for all balls by Lemma 6.3.

(ii) By Lemma 6.3, it suffices to prove (EHIη) for remote balls in
(M, µ̃) . Let B(x, r) be a remote ball and ∆µ̃u = 0, u ≥ 0 in B(x, r).
The Laplace operator ∆µ̃ of (M, µ̃) has the form

∆µ̃u = h−2 divµ(h2∇u) = ∆µu + 2h−1g(∇h,∇u).

In particular, in the domain D of harmonicity of h we have ∆µh = 0 whence

∆µ̃u = ∆µu + 2h−1g(∇h,∇u) + ∆µh = h−1∆µ(hu).

Hence, if the ball B(x, r) is contained in D, then we have ∆µ(hu) = 0
in B(x, r). By (EHIη) for remote balls in (M,µ), we obtain

sup
B(x,ηr)

(uh) ≤ CH inf
B(x,ηr)

(uh) and sup
B(x,ηr)

h ≤ CH inf
B(x,ηr)

h,

whence supB(x,ηr) u ≤ C2
H infB(x,ηr) u. If B(x, r) is not contained in D, then

it intersects a compact set M \D and hence has a bounded radius. In this
case, an elliptic Harnack inequality in B(x, r) follows by a compactness
argument.

COROLLARY 6.13. — For any complete weighted manifold (M,µ)
satisfying (PHI) and (RCA), there exists a smooth positive function h on M

such that the manifold (M,µ̃) with measure dµ̃ = h2dµ satisfies (EHI) but

not (PHI).
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Proof. — Indeed, take h as in Remark 5.8. Then h satisfies the
condition (h1) from Theorem 5.7 but not (h2). By Theorem 5.7, (M, µ̃)
does not satisfy (PHI), but (M, µ̃) satisfies (EHI) by Theorem 6.10 (i)
(see also Remark 6.11).

Example 6.14. — Consider the weighted manifold (RN , µα), N ≥ 2,
where RN is equipped with the Euclidean metric and measure µα is given
by dµα = (1+ |x|2)α/2dx. By Proposition 4.9 or Theorem 5.7, this manifold
satisfies (PHI) if and only if α > −N . Note that the condition (h2) breaks
down exactly for α ≤ −N . The function h(x) = (1 + |x|2)α/4 satisfies (h1)
for any real α. Therefore, by Theorem 6.10 (i), the manifold (RN , µα)
satisfies (EHI) for all real α.

7. Harnack inequalities on manifolds with ends.

7.1. Connected sums of manifolds.

Let {Mi}ni=1 be a finite family of non-compact Riemannian manifolds.
We say that a Riemannian manifold M is a connected sum of the Mi’s
and write

(7.1) M = M1#M2# · · ·#Mn

if, for some compact K ⊂ M (called the central part of M), the exterior
M \K is a disjoint union of open sets E1, E2, . . . , En, such that each Ei is
isometric to Mi \ Ki, for some compact Ki ⊂ Mi (in fact, we will always
identify Ei and Mi \ Ki). If (M,µ) and (Mi, µi) are weighted manifolds,
then the isometry is understood in the sense of weighted manifolds, that is
it maps measure µ to µi. Of course, forming connected sums is not a
uniquely defined operation.

Let M be a non-compact manifold and K ⊂ M be a compact set with
smooth boundary such that M \ K is a disjoint union of a finite number
of connected open sets E1, E2, . . . , En which are not precompact (if M has
boundary δM , then assume in addition that ∂K ∩ δM = ∅). We say that
the Ei’s are the ends of M with respect to K. Consider the closure Ei

as a manifold with boundary. Then by definition of a connected sum we
have M = E1#E2# · · ·#En.

Let a weighted manifold (M,µ) be a connected sum of weighted
manifolds (Mi, µi). Fix points o ∈ M , oi ∈ Mi and set

(7.2) V (r) = µ
(
B(o, r)

)
and Vi(r) = µi

(
BMi(oi, r)

)
.
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Consider the following two conditions:

(v1) For all i = 1, . . . , n and all r large enough, Vi(r) ≈ V (r).

(v2) For all r large enough,

(7.3)
∫ r

1

sds
V (s)

≤ C
r2

V (r)
·

Condition (v1) means that any two ends have comparable volume
growth. Note that, for any bounded range of r, we have always
Vi(r) ≈ V (r) ≈ rN where N = dimM . Hence, (v1) is equivalent to
the fact that Vi(r) ≈ V (r) for all r > 0.

Note that, for r > 2, one always has∫ r

1

sds
V (s)

≥
∫ r

r/2

sds
V (s)

≥ r2

4V (r)
,

which implies that (v2) is equivalent to

(7.4)
∫ r

1

sds
V (s)

≈ r2

V (r)
·

Condition (v2) significantly restricts the growth rate of the function V . In
particular, it implies

(7.5)
∫ ∞

1

sds
V (s)

= ∞

(which is easy to see from (7.4)) and, hence, V (r) = o(r2) as r → ∞. For
example, if V (r) ≈ rα for large r, then (v2) holds if and only if α < 2.

THEOREM 7.1. — Let a weighted manifold (M,µ) be a connected sum

of weighted manifolds (Mi ,µi), i = 1, . . . ,n, where each Mi is complete,
non-compact, and satisfies (PHI) and (RCA) with respect to a point

oi ∈ Mi.

(i) If n = 1, then M satisfies (PHI).

(ii) Assume that n ≥ 2 and that (v1) and (v2) are satisfied. Then M

satisfies (PHI).

(iii) Assume that n ≥ 2 and that M satisfies (EHI). Then (v1) and (v2)
hold true.

In particular, if n ≥ 2, then (PHI) ⇔ (EHI) ⇔ (v1) + (v2).
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Example 7.2. — Let n ≥ 2 and let all manifolds M1, . . . ,Mn be
isometric to a model manifold Mψ of dimension N where ψ(r) ≈ rα

for large r. We claim that if |α| < 1/(N − 1), then M = M1# · · ·#Mn

satisfies (PHI). Indeed, we have Vi(r) ≈ rα(N−1)+1 so that (v2) follows
from α < 1/(N − 1). By Proposition 4.10, each Mi satisfies (PHI)
because −1/(N − 1) < α ≤ 1. By Theorem 7.1 (ii), we conclude that M

satisfies (PHI).

Part (i) of Theorem 7.1 is a consequence of Corollary 5.4 which was
already mentioned in Remark 5.5. The proofs of parts (ii) and (iii) are
rather involved and are given in Sections 7.3 and 7.4, using an auxiliary
material from Section 7.2.

7.2. Flux and capacity.

Fix a couple (D,U) where U ⊂ M is an open set and D ⊂ U is a
precompact set. For any harmonic function v in U \D define the notion of
the flux of v with respect to the couple (D,U) by

flux
(D,U)

v :=
∣∣∣ ∫

∂Ω

∂v

∂n
dµ′

∣∣∣,
where Ω is any precompact open set with smooth boundary such that
D � Ω � U , and n is the inward unit normal vector field on ∂Ω. By the
harmonicity of v, the flux does not depend on the choice of Ω. Clearly, we
have the following identities

flux
(D,U)

v = flux
(D,U)

(−v) = flux
(D,U)

(v + const ) = flux
(D′,U ′)

v

provided D′ ⊃ D and U ′ ⊂ U .

If in addition U is precompact and v satisfies the boundary conditions
v ∂U = 0 and v ∂D = 1, then

(7.6) flux
(D,U)

v = cap(D,U) := inf
ϕ∈C10(U)
ϕ D≡1

∫
U

|∇ϕ|2 dµ.

The following general estimate of capacity was proved in [47]: for all x ∈ M

and 0 < r < ρ

(7.7) cap
(
B(x, r), B(x, ρ)

)−1 ≥ 1
2

∫ ρ

r

sds
V (x, s)

·
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Assuming in addition that the manifold satisfies (PHI) and r ≤ 1
2 ρ, one

has also an opposite inequality

(7.8) cap
(
B(x, r), B(x, ρ)

)−1 ≤ C

∫ ρ

r

sds
V (x, s)

(see [21, Lemma 4.3]). Hence, under the above assumptions we have

(7.9) cap
(
B(x, r), B(x, ρ)

)−1 ≈
∫ ρ

r

sds
V (x, s)

·

LEMMA 7.3. — Let a complete non-compact weighted manifold (M,µ)
satisfy (PHI) and (RCA) with respect to a point o. Fix positive numbers r0
and ρ such that ρ > 4r0. Set U = B(o,ρ), let D be a precompact subset in

B(o,r0), and let v be a positive harmonic function in U \D such that

v ∂U = 0 and v ∂D = const.

Then, for any r ∈ (2r0 , 1
2 ρ) and for all x ∈ ∂B(o,r), we have

(7.10) v(x) ≈ ( flux
(D,U)

v)
∫ ρ

r

sds
V (o,s)

·

Proof. — Without loss of generality, we can assume v = 1 on ∂D and
extend v to D by setting v = 1. Set

(7.11) a := inf
∂B(o,r)

v = inf
B(o,r)

v and b := sup
∂B(o,r)

v = sup
B(o,ρ)\B(o,r)

v

and note that by the strong maximum principle 0 < a ≤ b < 1. Similarly
to the proof of Lemma 6.3, the hypotheses (RCA) and (PHI) imply b ≤ Ca

where the constant C does not depend on r.

For any 0 < t < 1, consider the set Ut = {x ∈ B(o, ρ) : v(x) > t}
(see Figure 8) and observe that by (7.6)

cap(Ut, U) = flux
(Ut,U)

v

t
=

1
t

flux
(D,U)

v.

It is clear from (7.11) that Ub ⊂ B(o, r) ⊂ Ua, whence by the
monotonicity of capacity we obtain

fluxv
b

≤ cap(B(o, r), U) ≤ fluxv
a

ANNALES DE L’INSTITUT FOURIER



STABILITY RESULTS FOR HARNACK INEQUALITIES 875

Ub

B(o, r)v = 1

Ua

v = 0

Figure 8. Sets Ua and Ub

(here for simplicity we suppress the subscript (D,U) in fluxv). Since for
any x ∈ ∂B(o, r) we have v(x) ≈ a ≈ b, we obtain

(7.12) v(x) ≈ flux v

cap(B(o, r), B(o, ρ))
·

Finally, applying (7.9) we obtain (7.10).

LEMMA 7.4. — Let U be a precompact open subset of M with smooth

boundary, and D be a precompact set such that D ⊂ U . Let w be a

harmonic function in U \D such that

(7.13) w ∂U = 0 and w ∂D = 1,

and v be a harmonic function in U \D such that

v ∂U = 0 and a ≤ v ∂D ≤ b,

for positive constants a,b. Then

(7.14) a flux
(D,U)

w ≤ flux
(D,U)

v ≤ b flux
(D,U)

w.

Proof. — By the comparison principle, we have v/b ≤ w ≤ v/a. Since
all the functions v/b, w, v/a vanish on ∂U , we obtain

0 ≤ ∂(v/b)
∂n ∂U

≤ ∂w

∂n ∂U
≤ ∂(v/a)

∂n ∂U
,

where n is the inward normal vector field on ∂U . Clearly, this implies (7.14).
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LEMMA 7.5. — Under the conditions of Lemma 7.3, let us drop the

hypothesis that v ∂D = const . Then we still have, for any r ∈ (2r0 , 1
2 ρ) and

for all x ∈ ∂B(o,r),

(7.15) C−1 a

b

(
flux

(D,U)
v
) ∫ ρ

r

sds
V (o,s)

≤ v(x) ≤ C
b

a

(
flux

(D,U)
v
) ∫ ρ

r

sds
V (o,s)

,

where a = inf∂D v and b = sup∂D v.

Proof. — Let w be the harmonic function in U \D satisfying (7.13).
Then by the comparison principle and by Lemma 7.3, we have

v(x) ≤ bw(x) ≈ b( flux
(D,U)

w)
∫ ρ

r

sds
V (o, s)

·

By Lemma 7.4 fluxv ≥ afluxw, whence the upper bound in (7.15) follows.
The lower bound is proved similarly.

7.3. Proof of Theorem 7.1: (v1)–(v2) imply (PHI).

In this section M = M1# · · ·#Mn is as in Theorem 7.1, and n ≥ 2.
Assuming that conditions (v1) and (v2) are satisfied, we will prove the
parabolic Harnack inequality (PHI) on M .

By Theorem 2.7, each Mi satisfies (VD) and (PI). Fix a point o in the
central part of M . Clearly, condition (VD) on Mi and (v1) imply that the
function V (r) := µ(B(o, r)) satisfies the doubling property:

(7.16) V (2r) ≤ V (r), for all r > 0.

Set Γ = {o} and observe that condition (VD) on each Mi implies (VD) for
remote balls on M (with the remote parameter ε = 1). In addition, (v1)
implies that M satisfies (VC). Hence, by Proposition 4.7, (VD) holds for
all balls in M .

For any precompact open set Ω on a weighted manifold (M, µ)
(where M will be either M or Mi), set

λ(D)(Ω) := inf
{ ∫

|∇f |2 dµ∫
f2 dµ

: f ∈ C1(Ω) \ {0}
}
,

that is, λ(D)(Ω) is the bottom eigenvalue for the Dirichlet problem in Ω. By
[17, Theorem 5.1], if M is complete and satisfies (PHI) then, for any ball B
in M of radius r and for any open set Ω ⊂ B, the following inequality holds

(7.17) λ(D)(Ω) ≥ c

r2

( µ(B)
µ(Ω)

)α
,
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with some constant α, c > 0 depending on CH . We refer to (7.17) as the
Faber-Krahn inequality. Since all manifolds Mi satisfy (PHI), we conclude
that all manifolds Mi satisfy the Faber-Krahn inequality.

By a result of [20], if the Faber-Krahn inequality holds on each Mi,
then, for any ball B = B(x, r) in M and for any open set Ω ⊂ B,

λ(D)(Ω) ≥ c̃

r2

( µ̃(B)
µ(Ω)

)α
,

where c̃ > 0 and

µ̃(B) :=
{
µ(B) if B ⊂ Ei for some i ,

min i Vi(r) otherwise.

The hypothesis Vi(r) ≈ V (r) allows to replace here mini Vi(r) by V (r).
Furthermore, if the ball B(x, r) is not contained in any Ei, then it intersects
the central part K of M , which implies by (VD) and Lemma 2.9 that
µ(B(x, r)) ≈ µ(B(o, r)) ≈ V (r). Therefore, we conclude that µ̃(B) ≈ µ(B)
for all balls B ⊂ M , which means that the Faber-Krahn inequality holds
also on the manifold M .

By [18, Proposition 5.2], the Faber-Krahn inequality on M implies
the following heat kernel estimate:

(7.18) p(t, x, y) ≤ exp(−cd2(x, y)/t)
(V (x,

√
t ), V (y,

√
t ))1/2

·

By [25, Theorems 1.2 and 2.6], the upper bound (7.18) together with the
elliptic Harnack inequality (EHI) implies (PHI). Hence, we are left to prove
that (EHI) holds on (M,µ), which will be done in the rest of proof.

Obviously, M satisfies (EHI) for remote balls because (EHI) holds for
each Mi. By Lemma 6.1 it suffices to prove (EHI) for anchored balls in M .
Let u be a non-negative harmonic function in an anchored ball B(o, ρ) of
a large enough radius ρ. Since each Mi satisfies (EHI), (V D), and (RCA),
we have the annulus Harnack inequality (6.3) on each Mi (see Section 6.1
and Proposition 6.6). This implies, for some (large enough) constants CH

and CA,

(7.19) mi := sup
∂B(o,r)∩Ei

u ≤ CH inf
∂B(o,r)∩Ei

u,

where r = ρ/CA (strictly speaking, (6.3) holds on each Mi with respect
to the distance di on Mi whereas in (7.19) we use the distance d on M ;
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however, this can be easily handled by increasing the constants CH and CA

because di ≈ d). By the maximum principle,

sup
B(o,r)

u = sup
∂B(o,r)

u = max
i

mi and inf
B(o,r)

u = inf
∂B(o,r)

u ≥ C−1
H min

i
mi.

Hence, (EHI) for the ball B(o, ρ) amounts to maximi ≤ C minimi, which
will follow if we prove that

(7.20) mi ≈ u(o) for all i = 1, 2, . . . , n.

Proof of the lower bound mi ≥ cu(o). — Let r0 be a constant much
larger than the diameter of the central part of M . Assuming that r % r0
and ρ = CAr, consider the following subsets of Mi:

Di := (B(o, r0) ∩ Ei) ∪Ki and Ui = (B(o, ρ) ∩ Ei) ∪Ki,

where Ki = Mi \ Ei. In other words, Ui and Di are open sets in Mi such
that their intersections with Ei coincide with the intersections of the balls
B(o, ρ) and B(o, r0) with Ei, respectively. Clearly, we have

∂Di = ∂B(o, r0) ∩ Ei and ∂Ui = ∂B(o, ρ) ∩ Ei.

Let v be the harmonic function in Ui \Di such that

v ∂Di = 1 and v ∂Ui = 0

(see Figure 9).

0

1

∂D

∂E i

i

EiKi

∂Ui

∂B(o, r) ∩ Ei

v

Figure 9. Manifold Mi and function v in Ui \Di

By a local Harnack inequality we have u ∂Di ≥ cu(o). Since also
u ∂Ui ≥ 0, the comparison principle implies

u(x) ≥ cu(o)v(x) for any x ∈ Ui \Di.
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Hence, it suffices to show that

(7.21) inf
∂B(o,r)∩Ei

v ≥ c.

By Lemma 7.3 we obtain, for any x ∈ ∂B(o, r) ∩ Ei,

(7.22) v(x) ≈ ( flux
(Di,Ui)

v)
∫ ρ

r

sds
Vi(s)

≈ ( flux
(Di,Ui)

v)
ρ2

V (ρ)
,

where we have used r ≈ ρ ≈ ρ − r. Strictly speaking, when applying
Lemma 7.3, we have to use ri := di(x, oi) instead of r = d(x, o); however,
since ri ≈ r, this only changes the constant multiples in the estimates.

On the other hand, using (7.9), (7.4), and (v1), we obtain

flux
(Di,Ui)

v = capMi
(Di, Ui) ≈

( ∫ ρ

r0

sds
Vi(s)

)−1

≈ V (ρ)
ρ2

·

Combining with (7.22) we obtain (7.21).

Proof of the upper bound mi ≤ Cu(o). — In this part it will be
convenient to redefine mi as follows

mi := inf
∂B(o,r)∩Ei

u

(by (7.19) this can reduce mi only by a constant factor). For any
i = 1, 2, . . . , n, set

Di =
(
B(o, r0) ∩ Ei

)
∪Ki and Ui = (B(o, r) ∩ Ei) ∪Ki .

Clearly, ∂Ui = ∂B(o, r) ∩ Ei. Fix an index i, and let v be the harmonic
function in B(o, r) such that

v ∂Uj = 0 for all j �= i, and v ∂Ui = 1

(see Figure 10). By the comparison principle, we have

u(x) ≥ miv(x) for all x ∈ B(o, r).

In particular, the required inequality mi ≤ Cu(o) will follow if we prove
that v(o) ≥ c; by a local Harnack inequality, the latter is equivalent to

ε := sup
B(o,r0)

v ≥ c,

where r0 is as above. Hence, we are left to prove that ε is bounded from
below by a positive constant.
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Let w be the harmonic function in B(o, r) \B(o, r0) such that

w ∂B(o,r) = 0 and w ∂B(o,r0) = 1.

(see Figure 10).

0

1
v

w
wε

∂Dj ∂Di

Ej EiB(o, r0 )

∂Ui∂Uj

Figure 10. Functions v and w

By (7.9), (7.4) and (v1) we have, for any 8 = 1, 2, . . . , n

(7.23) flux
(D�,U�)

w = capM�
(D#, U#) ≈

( ∫ r

r0

sds
V#(s)

)−1

≈ V (r)
r2

·

By Lemma 7.4,

(7.24) flux
(Di,Ui)

v = flux
(Di,Ui)

(1 − v) ≥ (1 − ε) flux
(Di,Ui)

w ≈ (1 − ε)
V (r)
r2

·

For any j �= i we have, again by Lemma 7.4,

(7.25) flux
(Dj ,Uj)

v ≤ ε flux
(Dj ,Uj)

w ≈ ε
V (r)
r2

·

Let Ω be any precompact open set with smooth boundary such that
B(o, r0) � Ω � B(o, ρ), and n is the inward unit normal vector field on ∂Ω.
Observe that, by the harmonicity of v,

n∑
j=1

∫
∂Ω∩Ej

∂v

∂n
dµ′ =

∫
∂Ω

∂v

∂n
dµ′ = 0.

Since
flux

(Dj ,Uj)
v =

∣∣∣ ∫
∂Ω∩Ei

∂v

∂n
dµ′

∣∣∣,
this implies

(7.26) flux
(Di,Ui)

v ≤
∑
j �=i

flux
(Dj ,Uj)

v.

Combining (7.24), (7.25), and (7.26), we conclude that ε is bounded from
below by a positive constant, which was to be proved.
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7.4. Proof of Theorem 7.1: (EHI) implies (v1)–(v2).

In this section M = M1# . . .#Mn is again as in Theorem 7.1 and
n ≥ 2. We assume that M satisfies (EHI) and we will prove that (v1)
and (v2) hold true on M . Let us first observe that each manifold Mi,
i = 1, 2, . . . , n, must be parabolic, that is, any positive superharmonic
function on Mi is constant. Indeed, if there is a non-parabolic end then by
[48, Corollary 3.3] there exists a non-constant positive harmonic function
on M , which contradicts (EHI).

Using the parabolicity of Mi and (PHI) on Mi we conclude by [21,
Lemma 4.5] that there exists a positive harmonic function hi on Ei, which
vanishes on ∂Ei and such that

flux
(Ki,Mi)

hi =
∫
∂Ei

∂hi
∂n

dµ′ = 1,

where Ki = Mi \ Ei and n is the inward unit normal vector field on ∂Ei.
Moreover, for this function one has the estimate

hi(x) ≈
∫ d(oi,x)

1

sds
Vi(s)

,

provided d(oi, x) % 1 (this estimate can also be deduced from Lemma 7.5).
Using the notation

Ii(r) :=
∫ r

1

sds
Vi(s)

,

we can write that, for large enough r,

hi(x) ≈ Ii(r) for all x ∈ ∂B(o, r) ∩ Ei,

where o is a fixed point in the central part of M (indeed, we have
d(oi, x) ≈ d(o, x) = r for large r). Note that Ii(r) → ∞ as r → ∞ because
the parabolicity of Mi is equivalent to∫ ∞ sds

Vi(s)
= ∞

(see [19, Theorem 11.1]).

Let us show that, for all i, j = 1, 2, . . . , n and for large enough r,

(7.27) Ii(r) ≈ Ij(r).
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By [48], given two distinct ends Ei, Ej , there exists a harmonic function hij
on M such that hij is bounded on each Ek, k �= i, j, the function hij − hi is
bounded on Ei, and the function hij + hj is bounded on Ej . Consequently,
we obtain, for large enough r,

C−1Ii(r) ≤ hij(x) ≤ CIi(r), if x ∈ ∂B(o, r) ∩ Ei,(7.28)

C−1Ij(r) ≤ −hij(x) ≤ CIj(r), if x ∈ ∂B(o, r) ∩ Ej .(7.29)

Set
aij(r) := − inf

B(o,r)
hij = sup

B(o,r)

(−hij)

and observe that, for all large enough r,

(7.30) −C ≤ aij(r) ≤ CIj(r).

Indeed, the lower bound in (7.30) follows from

inf
B(o,r)

hij ≤ inf
B(o,r)∩Ei

hij ≤ inf
B(o,r)∩Ei

(hi + C) ≤ C,

and the upper bound in (7.30) follows from (7.29) and from the observation
that hij is bounded from below on any end Ek with k �= j.

Applying (EHIη) in B(o, r) to the non-negative harmonic function
x �→ hij(x) + aij(r), we obtain

sup
∂B(o,ηr)∩Ei

hij + aij(r) ≤ C
(

inf
∂B(o,ηr)∩Ej

hij + aij(r)
)
,

which together with (7.28), (7.29), and (7.30) yields

Ii(ηr) ≤ CIj(r).

Observe that Ii(ηr) ≈ Ij(r) since by Theorem 2.7 each end Mi

satisfies (VD). Therefore, we obtain Ii(r) ≤ CIj(r), whence (7.27) follows.

Next we claim that for each i,

(7.31) Ii(r) ≈
r2

Vi(r)
,

which together with (7.27) will clearly imply (v1) and (v2). To prove (7.31),
consider a harmonic function u in B(o, r) such that

u ∂B(o,r)\Ei ≡ const and u ∂B(o,r)∩Ei = 0,
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where const is chosen so that .flux.(Ki,Mi)u = 1. By (EHI) in B(o, r), we
have

sup
B(o,ηr)

u ≤ C inf
B(o,ηr)

u.

Let r0 be a constant much larger than the diameter of the central part
of M . Assuming that r % r0 we have by Lemma 7.5

sup
B(o,ηr)

u ≥ sup
∂B(o,r0)∩Ei

u ≈
∫ r

r0

sds
Vi(s)

≈ Ii(r),

inf
B(o,ηr)

u ≤ inf
∂B(o,ηr)∩Ei

u ≈
∫ r

ηr

sds
Vi(s)

≈ r2

Vi(r)
·

Combining together the above three lines, we obtain Ii(r) ≤ Cr2/Vi(r).
The opposite inequality follows just from the monotonicity of Vi(r). This
finishes the proof of Theorem 7.1.

7.5. Examples involving curvature conditions.

In the context of complete Riemannian manifolds without boundary,
after the seminal work of Yau [49], Cheng and Yau [9] proved that
any manifold with non-negative Ricci curvature satisfies the elliptic
Harnack inequality (EHI). Later, Li and Yau [34] obtained the parabolic
version (PHI) for the same class of manifolds. It is natural to try and
study manifolds satisfying slightly less stringent curvature conditions. In
this spirit, we will consider here the following two classes of Riemannian
manifolds.

(a) M has asymptotically non-negative sectional curvature, that is
there exists a point o ∈ M and a continuous decreasing function
k : (0,+∞) → (0,+∞) satisfying the condition∫ +∞

sk(s) ds < ∞

and such that the sectional curvature Sect(x) of M at any point x ∈ M

satisfies Sect(x) ≥ −k(d(o, x)).

(b) M has non-negative Ricci curvature outside a compact set and finite
first Betti number.

For instance, if Sect(x) ≥ −C d(o, x)−α for some α > 2, then (a)
is satisfied. On the other hand, it is easy to show that (a) implies
Sect(x) ≥ −C d(o, x)−2.
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It is clear that the classes (a) and (b) contain manifolds that do
not satisfy (PHI), e.g., a connected sum of two n-dimensional Euclidean
spaces, n ≥ 2. Harmonic functions on manifolds of classes (a) and (b)
were studied by Li and Tam [32], [33] and by Kasue [28] . In particular,
Li and Tam [33] emphasized the role of condition (VC) for the class (b).
Corollary 7.14 below characterizes those manifolds in classes (a) and (b)
that satisfy (PHI).

Let us recall the following fact which follows from the Gromov-Bishop
volume comparison theorem [4] and the gradient estimate of Li and Yau [34].

PROPOSITION 7.6. — Let M be a complete Riemannian manifold

without boundary and o be a fixed point in M . Assume that the Ricci

curvature Ric(x) of M satisfies for any x ∈ M the lower bound

(7.32) Ric(x) ≥ −C d(o,x)−2.

Then, for any remote parameter 0 < ε ≤ 1, the family of all remote balls

satisfies (VD), (PI), and (PHI).

For example, this statement applies to manifolds of the class (a).

In order to use Theorem 5.2 and Corollary 5.4, we need to investigate
properties (VC) and (RCA).

DEFINITION 7.7. — We say that a complete Riemannian manifold M

has n ends if for sufficiently large compact sets K ⊂ M , the difference
M \K has exactly n unbounded components.

Given a Riemannian manifold M with n ends, let us fix a large enough
compact set K with smooth boundary such that M \K has n unbounded
components E1, E2, . . . , En. Then we can represent M as a connected
sum M = M1#M2# · · ·#Mn where each Mi is a complete Riemannian
manifold such that Ei is isometric to the exterior of a compact in Mi. For
example, one can take Mi to be the closure of Ei in M so that M has the
boundary δMi = ∂Ei. By slightly abusing terminology, we will refer to Mi’s
as the ends of M .

The following proposition contains already known results (see [28],
[33], [5], [35]).

PROPOSITION 7.8. — Any manifold of class (a) or (b) has finitely

many ends, and each end satisfies (VC) and (RCA).
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Example 7.9. — Let M be a complete manifold with a pole o ∈ M ;
that is, the exponential map at o is a diffeomorphism. Clearly, all geodesic
spheres around o are connected, which implies (RCA). If M satisfies (7.32),
then, by Proposition 7.6, M satisfies (PHI) for remote balls. Hence, by
Theorem 5.2, (PHI) on M is equivalent to (VC). If M satisfies the stronger
hypothesis (a) instead of (7.32), then, by Proposition 7.8, M satisfies (VC)
because M has a single end. Therefore, (PHI) holds on any manifold with
a pole satisfying (a).

Observe that by [16, Theorem C], a complete manifold with a pole,
having asymptotically non-negative sectional curvature and non-positive
sectional curvature, is quasi-isometric to Rn. Hence, in this case (PHI)
follows also from Moser’s theorem.

Another result in this direction is as follows.

PROPOSITION 7.10. — Let M be a complete Riemannian manifold

without boundary having non-negative Ricci curvature outside a compact

set. Then M has finitely many ends, say, M1 , . . . ,Mn. Furthermore, if an

end Mi satisfies (RCA), then it also satisfies (VC).

Proof. — The manifold M has finitely many ends by [5], [35], [33].
By [35], there exist o ∈ M and a constant Q such that for any r > 0 the
set Sr = {x ∈ Mi : d(o, x) = r} can be covered by at most Q balls of radius
1
8 r centered on the set Sr. By [33, Proposition 5.1], there exists x ∈ Sr
such that V (o, r) ≤ CV (x, 1

5 r) with C independent of r. Since Mi has
non-negative Ricci curvature outside a compact set and satisfies (RCA),
any two balls of radius 1

8 r centered on Sr have comparable volume, whence
condition (VC) follows.

Remark 7.11. — It is not yet known if in general any end Mi must
satisfy (RCA).

Combining with Theorem 5.2, Corollary 5.4, and Proposition 7.6, we
obtain the following results.

COROLLARY 7.12. — If M is a manifold of class (a) or (b), then each

end of M satisfies (VD), (PI) and (PHI). In particular, if M has only one

end, then M satisfies (VD), (PI), and (PHI).

COROLLARY 7.13. — Under the hypotheses of Proposition 7.10, if

an end Mi satisfies (RCA), then Mi satisfies (VD), (PI), and (PHI). In
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particular, if M has non-negative Ricci curvature outside a compact set

and satisfies (RCA), then M satisfies (VD), (PI), and (PHI).

We close with a remarkable application of Theorem 7.1, which
characterizes manifolds satisfying (PHI) in the classes (a) and (b). This
result is new even for manifolds with non-negative sectional curvature
outside a compact set.

COROLLARY 7.14 (= Theorem 1.1). — Let M be a manifold of class (a)
or (b). Then the following condition are equivalent:

• M satisfies (PHI).

• M satisfies (EHI).

• Either M has only one end or it has more than one end and satisfies

the conditions (v1) and (v2) (see Section 7.1 for the definitions).

Proof. — If M has one end, then M satisfies (PHI) (and (EHI))
by Corollary 7.12. If M has at least two ends, then the claim follows from
Corollary 7.12 and Theorem 7.1.

For comparison, let us state a similar result for the case when all ends
are model manifolds.

COROLLARY 7.15. — Assume that M is a complete Rieman-

nian manifold (without boundary) with sectional curvature satisfying

Sect(x) ≥ −C d(x,o)−2, for some o ∈ M . Assume that M has finitely

many ends M1 , . . . ,Mn, n ≥ 2, and that each end Mi is isometric to a

model manifold Mψi . Then M satisfies (PHI) if and only if for all large

enough r and all indices i,j

• (ψ1) ψi(r) ≈ ψj(r),

• (ψ2)
∫ r

1

ds
ψN−1
i (s)

≤ Cr

ψN−1
i (r)

,

• (ψ3)
∫ r

0

ψN−1
i (s) ds ≤ CrψN−1

i (r).

Proof. — Each end Mi obviously satisfies (RCA). By Proposition 7.6,
remote balls in Mi (and M) satisfy (PHI). By Theorem 5.2, Mi satisfies
(PHI) if and only if Mi satisfies (VC). Given that each Mi satisfies (PHI)
and (RCA), by Theorem 7.1 M satisfies (PHI) if and only if M satisfies
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(v1) and (v2). Hence, M satisfies (PHI) if and only if (v1), (v2), and (VC)
are satisfied. Let us verify that

(v1) + (v2) + (VC) ⇐⇒ (ψ1) + (ψ2) + (ψ3).

Indeed, the assumption Sect(x) ≥ −C d(x, o)−2 implies that

(7.33) ψ′′i (r) ≤ Cr−2ψi(r).

It is an elementary exercise to show that (7.33) and the positivity of ψi

imply |ψ′i(r)| ≤ Cr−1ψi(r), whence

(7.34) ψi(r) ≈ ψi(s) provided r ≈ s.

Obviously, under (7.34) we have (VC) ⇔ (ψ3). From (ψ3) and (7.35) we
obtain

(7.35) Vi(r) := ωN

∫ r

0

ψi(s)N−1 ds ≈ rψN−1
i (r),

and under (7.35) we clearly have (v1) ⇔ (ψ1) and (v2) ⇔ (ψ2).

It is easy to see that (ψ2) and (ψ3) do not imply each other. Indeed,
if ψi(r) = rα for large r, then (ψ2) is equivalent to α < 1/(N − 1)
whereas (ψ3) is equivalent to α > −1/(N − 1) (cf. Example 7.2). Note that
the additional condition (ψ3) appears because the curvature assumption in
Corollary 7.15 is (slightly) weaker than condition (a).
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