ANNALES

DE

L'INSTITUT FOURIER

Kenneth J. DYKEMA \& Nigel J. KALTON
Sums of commutators in ideals and modules of type II factors
Tome 55, n 3 (2005), p. 931-971.
http://aif.cedram.org/item?id=AIF_2005__55_3_931_0

Abstract

© Association des Annales de l'institut Fourier, 2005, tous droits réservés.

L'accès aux articles de la revue «Annales de l'institut Fourier» (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

SUMS OF COMMUTATORS IN IDEALS AND MODULES OF TYPE II FACTORS

by Kenneth J. DYKEMA \& Nigel J. KALTON (*)

1. Introduction and description of results.

Let \mathcal{M} be a von Neumann algebra of type II_{∞} having separable predual. We will study the commutator structure of ideals of \mathcal{M} and, more generally, of modules of operators affiliated to \mathcal{M}.

Fix a faithful semifinite trace τ on \mathcal{M}, and let \mathcal{M} be represented on a Hilbert space \mathcal{H}. Segal [26] introduced measurability for unbounded operators on \mathcal{H} affiliated to \mathcal{M}. Later Nelson [23], in a slightly different approach, defined the completion $\overline{\mathcal{M}}$ of \mathcal{M} with respect to a notion of convergence in measure, and showed that the operations on \mathcal{M} extend to make $\overline{\mathcal{M}}$ a topological $*$-algebra. He also showed that $\overline{\mathcal{M}}$ is the set of all τ measurable operators, i.e. the closed, densely defined, possibly unbounded operators T on \mathcal{H}, affiliated with \mathcal{M}, such that for every $\epsilon>0$ there is a projection $E \in \mathcal{M}$ with $\tau(1-E)<\epsilon$ and with $T E$ bounded. Note that $\overline{\mathcal{M}}$ is defined independently of the Hilbert space \mathcal{H} on which \mathcal{M} acts, but is then characterized in terms of operators on \mathcal{H}. Nelson's work was done in the more general context of a von Neumann algebra \mathcal{M} equipped with a fixed finite or semifinite faithful normal trace. (See [4] for a proof that Segal's and Nelson's definitions are equivalent in II_{∞} factors.)

[^0]We consider subspaces $\mathcal{I} \subseteq \overline{\mathcal{M}}$ that are globally invariant under left and right multiplication by elements from \mathcal{M}. These are thus sub- $(\mathcal{M}, \mathcal{M})$ bimodules of $\overline{\mathcal{M}}$; for brevity we will call them submodules of $\overline{\mathcal{M}}$. Note that if such a submodule \mathcal{I} is actually contained in \mathcal{M}, then it is a two-sided ideal of \mathcal{M}. Submodules of $\overline{\mathcal{M}}$ are analogues in the type II_{∞} context of ideals of $B(\mathcal{H})$ in the type I context. The submodules of $\overline{\mathcal{M}}$ can be classified in terms of the singular numbers of their elements, analogously to Calkin's classification [3] of the ideals of $B(\mathcal{H})$. If $T \in \overline{\mathcal{M}}$ and $t>0$, the t-th singular number of T is

$$
\begin{equation*}
\mu_{t}(T)=\inf \{\|T(1-E)\|: E \in \mathcal{M} \text { a projection with } \tau(E) \leqslant t\} \tag{1.1}
\end{equation*}
$$ and we denote by $\mu(T)$ the function $t \mapsto \mu_{t}(T)$. If $\mathcal{I} \subseteq \overline{\mathcal{M}}$ is a submodule, we set

$$
\mu(\mathcal{I})=\{\mu(T) \mid T \in \mathcal{I}\}
$$

and we call $\mu(\mathcal{I})$ the characteristic set of \mathcal{I}. The aforementioned classification is the bijection $\mathcal{I} \mapsto \mu(\mathcal{I})$ from the set of all submodules of $\overline{\mathcal{M}}$ to the set of all characteristic sets, where, abstractly, a characteristic set is a set of decreasing functions on $(0, \infty)$ satisfying certain properties. Several authors have used singular numbers to characterize ideals of \mathcal{M} and modules of $\overline{\mathcal{M}}$ (see [5], [6], [9], [27] and [29]), and the full classification result was derived by Guido and Isola in [16].

One interesting facet of submodules of $\overline{\mathcal{M}}$ is that their classification involves both asymptotics at infinity (the rate of decay of $\mu_{t}(T)$ as $t \rightarrow \infty$) and asymptotics at zero (the rate of increase of $\mu_{t}(T)$ as $t \rightarrow 0$).

We consider additive commutators $[A, B]=A B-B A$ of elements of $\overline{\mathcal{M}}$ and study the commutator spaces

$$
[\mathcal{I}, \mathcal{J}]=\left\{\sum_{k=1}^{n}\left[A_{k}, B_{k}\right] \mid n \in \mathbb{N}, A_{k} \in \mathcal{I}, B_{k} \in \mathcal{J}\right\}
$$

of submodules \mathcal{I} and \mathcal{J} of $\overline{\mathcal{M}}$. Note $[\mathcal{I}, \mathcal{J}] \subseteq \mathcal{I J}$, where $\mathcal{I} \mathcal{J}$ is the submodule of $\overline{\mathcal{M}}$ spanned by all products $A B$ with $A \in \mathcal{I}$ and $B \in \mathcal{J}$. Using properties of singular numbers (which are reviewed in § 2), one easily shows that $\mu(\mathcal{I} \mathcal{J})$ is the set of all decreasing functions $f:(0, \infty) \rightarrow[0, \infty)$ bounded above by products $g h$ with $g \in \mu(\mathcal{I})$ and $h \in \mu(\mathcal{J})$. Since an element of $\mathcal{I} \mathcal{J}$ belongs to $[\mathcal{I}, \mathcal{J}]$ if and only if its real and imaginary parts belong to $[\mathcal{I}, \mathcal{J}]$, to characterize $[\mathcal{I}, \mathcal{J}]$ it will suffice to describe the normal elements of it. This we do as follows: given a normal element $T \in \mathcal{I} \mathcal{J}$, let $E_{|T|}$ denote the spectral measure of the positive part $|T|$ of T. Then $T \in[\mathcal{I}, \mathcal{J}]$ if and only if there is $h \in \mu(\mathcal{I} \mathcal{J})$ such that

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right]\right)\right| \leqslant r h(r)+\operatorname{sh}(s) \tag{1.2}
\end{equation*}
$$

for all $0<r<s<\infty$. This is analogous, though for asymptotics in both directions, to the characterization of commutator spaces for ideals of $B(\mathcal{H})$ found in [7] (see also [19] for the earlier result in the case of the traceclass operators). Our proof relies on a result of Fack and de la Harpe [11], expressing any trace-zero element of a I_{1}-factor as a sum of a fixed number of commutators of elements whose norms are controlled. A corollary of our characterization is

$$
[\mathcal{I}, \mathcal{J}]=[\mathcal{I} \mathcal{J}, \mathcal{M}]
$$

for any submodules \mathcal{I} and \mathcal{J} of $\overline{\mathcal{M}}$. We also give a characterization of $T \in[\mathcal{I}, \mathcal{J}]$ for T normal that considers separately the asymptotics at 0 and at ∞.

As an alternative to using the characteristic set $\mu(\mathcal{I})$ of a submodule $\mathcal{I} \subseteq \overline{\mathcal{M}}$ for the classification of submodules, one can use the corresponding rearrangement invariant function space $S(\mathcal{I})$, which is the set of all measurable functions $f:(0, \infty) \rightarrow \mathbb{C}$ such that the decreasing rearrangement of the absolute value of f lies in $\mu(\mathcal{I})$. Then every normal element $T \in \mathcal{I}$ gives rise to a unique (up to rearrangement) function $f_{T} \in S(\mathcal{I})$ defined as follows: Fix any measure preserving transformation from $(0, \infty)$ with Lebesgue measure to the disjoint union of four copies of $(0, \infty)$ with Lebesgue measure, in order to define the measurable function $g_{1} \oplus g_{2} \oplus g_{3} \oplus g_{4}:(0, \infty) \rightarrow \mathbb{C}$, given measurable functions $g_{j}:(0, \infty) \rightarrow \mathbb{C}$. Now let $f_{T}=f_{1} \oplus\left(-f_{2}\right) \oplus\left(i f_{3}\right) \oplus\left(-i f_{4}\right) \in S(\mathcal{I})$, where

$$
\begin{array}{ll}
f_{1}(t)=\mu_{t}\left((\operatorname{Re} T)_{+}\right) & f_{2}(t)=\mu_{t}\left((\operatorname{Re} T)_{-}\right) \\
f_{3}(t)=\mu_{t}\left((\operatorname{Im} T)_{+}\right) & f_{4}(t)=\mu_{t}\left((\operatorname{Im} T)_{-}\right)
\end{array}
$$

with $\operatorname{Re} T=\left(T+T^{*}\right) / 2=(\operatorname{Re} T)_{+}-(\operatorname{Re} T)_{-}$, where $(\operatorname{Re} T)_{+}$and $(\operatorname{Re} T)_{-}$ are commuting positive operators whose product is zero, and similarly for $\operatorname{Im} T=\left(T-T^{*}\right) / 2 i=(\operatorname{Im} T)_{+}-(\operatorname{Im} T)_{-}$. Then in the case when $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$ for all elements $T \in \mathcal{I} \mathcal{J}$, the condition (1.2) above for $T \in[\mathcal{I}, \mathcal{J}]$ with T normal can be rephrased in terms of f_{T} and is seen to be equivalent to the condition found in [13] for f_{T} to belong to the kernel of every symmetric functional on $S(\mathcal{I} \mathcal{J})$. Thus, our main result can be seen as a noncommutative analogue of this result from [13]. See also [6] for related results on Banach symmetric functions spaces and the corresponding submodules of $\overline{\mathcal{M}}$.

In the case of a II_{1}-factor \mathcal{M}, we give an analogous characterization of the commutator spaces $[\mathcal{I}, \mathcal{J}]$ for submodules \mathcal{I} and \mathcal{J} of $\overline{\mathcal{M}}$.

In the case of ideals in $\mathcal{B}(\mathcal{H})$ it was shown in [20] that for quasiBanach ideals \mathcal{I} the subspace $[\mathcal{I}, \mathcal{B}(\mathcal{H})]$ can be characterized purely in
spectral terms (see also [19] for an earlier result in this direction). More generally this result was established for the class of geometrically stable ideals. This means that for such ideals if two operators S, T in \mathcal{I} have the same spectrum (counting algebraic multiplicities) and $S \in[\mathcal{I}, \mathcal{B}(\mathcal{H})]$ then $T \in[\mathcal{I}, \mathcal{B}(\mathcal{H})]$. This was known for hermitian operators (and hence normal operators) from the results in [7], but is generally false (see [8]). We study the same phenomenon in type II_{∞}-factors. In this case, since we need a notion corresponding to multiplicity we employ the Brown measure [2] as a substitute for the notion of spectrum. The Brown measure of an operator is a measure with support contained in its spectrum. It is, however, only defined for certain special types of operators. Nevertheless we obtain a quite satisfactory analogue of the result of [20]. If \mathcal{I} is a geometrically stable submodule of $\overline{\mathcal{M}}$ and $T \in \mathcal{I}$ admits a Brown measure ν_{T} then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if there is a positive operator $V \in \mathcal{I}$ so that

$$
\left|\int_{r<|z| \leqslant s} z d \nu_{T}(z)\right| \leqslant r \tau\left(E_{V}(r, \infty)\right)+s \tau\left(E_{V}(s, \infty)\right), \quad 0<r<s<\infty
$$

This condition depends only on the Brown measure associated to T.
The paper is organized as follows: In § 2, we recall some facts about singular numbers of elements of $\overline{\mathcal{M}}$. In $\S 3$, we describe the classification of submodules of $\overline{\mathcal{M}}$ when \mathcal{M} is a type II_{∞} or I_{1} factor with separable predual. In § 4, we prove the main results characterizing $[\mathcal{I}, \mathcal{J}]$. In $\S 5$, we give a characterization of $[\mathcal{I}, \mathcal{J}]$ in the II_{∞} case, separating the asymptotics at 0 and ∞. Results on the Brown measure are discussed in $\S 6$.

After a first version of this paper was distributed, we were made aware of the recent results of T. Fack [10], which are independent of and have some overlap with our results. In particular, he proves the characterization of $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ for T self-adjoint, when $\mathcal{I}_{b}=\mathcal{I} \cap \mathcal{M}$ for a Banach submodule \mathcal{I} of $\overline{\mathcal{M}}$. He also proves the characterization of $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ when \mathcal{I} is a Banach module contained in L^{p} for some $0<p<\infty$. Both of these results are generalized in this paper to (posibly) unbounded operators and to submodules that are not necessarily Banach. Some of our methods are quite parallel to Fack's and in the text we will remark on these similarites. Fack also gives some nice applications of his commutator results to Dixmier traces in the II_{∞} setting.

2. Preliminaries on singular numbers.

If \mathcal{M} is a von Neumann algebra with a fixed finite or semifinite normal trace τ, then the singular numbers (sometimes called generalized singular
numbers) of elements of \mathcal{M} and more generally of τ-measurable operators affiliated to \mathcal{M} have been understood for many years; see, for example, [22], [15], [24], [9] and [12]. In this section, we review these concepts and some results, introduce the notation we will use throughout the paper and prove a technical result that will be of use later.

Recall that the t-th singular number of $T \in \overline{\mathcal{M}}$ is defined for $t>0$ by (1.1). Since T is τ-measurable, we have $0 \leqslant \mu_{t}(T)<+\infty$. We will also use the convention $\mu_{0}(T)=\|T\|$, where $\|T\|=\infty$ if $T \notin \mathcal{M}$. Note that $t \mapsto \mu_{t}(T)$ is a nonincreasing function from $[0, \infty)$ into $[0, \infty]$. If τ is a finite trace, then by our convention that $\tau(1)=1$ we have $\mu_{t}(T)=0$ whenever $t \geqslant 1$. We will use the following properties of singular numbers; see [9] or [12] for proofs.

Proposition 2.1. - Let \mathcal{M} be a von Neumann algebra with a distinguished finite or semifinite normal faithful trace, let $S, T \in \overline{\mathcal{M}}$ and $s, t \geqslant 0$. Then
(i) $\mu_{t}(T)=\mu_{t}\left(T^{*}\right)=\mu_{t}(|T|)$,
(ii) $\mu_{s+t}(S+T) \leqslant \mu_{s}(S)+\mu_{t}(T)$,
(iii) $\mu_{s+t}(S T) \leqslant \mu_{s}(S) \mu_{t}(T)$,
(iv) if $A, B \in \mathcal{M}$, then $\mu_{t}(A T B) \leqslant\|A\|\|B\| \mu_{t}(T)$.

Moreover,

(v) the function $[0, \infty) \ni t \mapsto \mu_{t}(T) \in[0, \infty]$ is continuous from the right.

Given $T \in \overline{\mathcal{M}}$, let $A \mapsto E_{|T|}(A)$ be the projection-valued spectral measure of the positive part $|T|$ of T. (To avoid clutter, when A is an inverval we will frequently omit to write parenthesis, writing just $E_{|T|}$.)

Proposition 2.2 ([12], 2.2). - For $t \geqslant 0$ we have

$$
\begin{equation*}
\mu_{t}(T)=\inf \left(\left\{s \geqslant 0 \mid \tau\left(E_{|T|}(s, \infty)\right) \leqslant t\right\} \cup\{\infty\}\right) \tag{2.1}
\end{equation*}
$$

and the infimum is attained, giving

$$
\begin{equation*}
\tau\left(E_{|T|}\left(\mu_{t}(T), \infty\right)\right) \leqslant t \tag{2.2}
\end{equation*}
$$

whenever $\mu_{t}(T)<\infty$.
Lemma 2.3. - Let \mathcal{M} be a nonatomic von Neumann algebra with a normal faithful semifinite trace τ, let $T \in \overline{\mathcal{M}}$ and let $x \in \mathbb{R}, x \geqslant 0$. Then

$$
\begin{align*}
& \tau\left(E_{|T|}(x, \infty)\right)=\inf \left(\left\{s \geqslant 0 \mid \mu_{s}(T) \leqslant x\right\} \cup\{\infty\}\right), \tag{2.3}\\
& \tau\left(E_{|T|}[x, \infty)\right)=\sup \left(\left\{s \geqslant 0 \mid \mu_{s}(T) \geqslant x\right\} \cup\{0\}\right), \tag{2.4}
\end{align*}
$$

and the infimum in (2.3) is attained.

Proof. - The infimum in (2.3) is attained because $s \mapsto \mu_{s}(T)$ is continuous from the right. If $a=\tau\left(E_{|T|}(x, \infty)\right)<\infty$, then, since $\left\|T\left(1-E_{|T|}(x, \infty)\right)\right\| \leqslant x$, we have $\mu_{a}(T) \leqslant x$, proving \geqslant in (2.3). On the other hand, if $\mu_{s}(T) \leqslant x<\infty$, then using (2.2) we have

$$
\tau\left(E_{|T|}(x, \infty)\right) \leqslant \tau\left(E_{|T|}\left(\mu_{s}(T), \infty\right)\right) \leqslant s
$$

proving \leqslant in (2.3).
If $s<\tau\left(E_{|T|}[x, \infty)\right.$), then for any projection $P \in \mathcal{M}$ with $\tau(P)=s$, we have $(1-P) \wedge E_{|T|}[x, \infty) \neq 0$. Hence $\|T(1-P)\| \geqslant x$. Therefore $\mu_{s}(T) \geqslant x$, which proves \leqslant in (2.4). If $\tau\left(E_{|T|}[x, \infty)\right)<s^{\prime}<\infty$, then since $[x, \infty)=\bigcap_{0<r<x}(r, \infty)$, there is $r<x$ such that $\tau\left(E_{|T|}(r, \infty)\right) \leqslant s^{\prime}$. But then $\mu_{s^{\prime}}(T) \leqslant r<x$, which implies $s^{\prime} \geqslant \sup \left(\left\{s \geqslant 0 \mid \mu_{s}(T) \geqslant x\right\} \cup\{0\}\right)$. This proves \geqslant in (2.4).

Definition 2.4. - Let \mathcal{M} be a II_{∞}-factor and let us introduce the natural notation \oplus. Since $\overline{\mathcal{M}}$ consists of (in general unbounded) operators on a Hilbert space \mathcal{H}, by choosing an isomorphism $\mathcal{H} \cong \mathcal{H} \oplus \mathcal{H}$, we may realize $\overline{\mathcal{M}} \oplus \overline{\mathcal{M}}$ as a subalgebra of $\overline{\mathcal{M}}$ in such a way that $\tau(S \oplus T)=$ $\tau(S)+\tau(T)$ whenever S and T are in $L^{1}(\mathcal{M}, \tau) \subseteq \overline{\mathcal{M}}$. Thus for $S, T \in \overline{\mathcal{M}}$, $S \oplus T$ defines an element of $\overline{\mathcal{M}}$ uniquely up to conjugation by a unitary in \mathcal{M}. Since $U^{*} A U=A+\left[A U, U^{*}\right]$ whenever U is unitary and $A \in \overline{\mathcal{M}}$, if $S, T \in \mathcal{I}$ for any submodule $\mathcal{I} \subseteq \overline{\mathcal{M}}$, the direct sum $S \oplus T$ is defined uniquely up to addition of a commutator from $[\mathcal{I}, \mathcal{M}]$. Moreover, we have $\mathcal{I} \oplus \mathcal{I} \subseteq \mathcal{I}$ and for every $T \in \mathcal{I}$ we get

$$
T \oplus 0 \in T+[\mathcal{I}, \mathcal{M}]
$$

by using an appropriate nonunitary isometry in \mathcal{M}.

Proposition 2.5. - Let $S, T \in \overline{\mathcal{M}}$ and let $a \geqslant 0$. Then

$$
\mu_{a}(S \oplus T)=\inf \left\{\max \left(\mu_{b}(S), \mu_{c}(T)\right) \mid b, c \geqslant 0, b+c=a\right\}
$$

Proof. - The case $a=0$ is straightforward, so we may assume $a>0$. It is clearly equivalent to show

$$
\begin{equation*}
\mu_{a}(S \oplus T)=\inf \left\{\max \left(\mu_{b}(S), \mu_{c}(T)\right) \mid b, c \geqslant 0, b+c \leqslant a\right\} \tag{2.5}
\end{equation*}
$$

Given $b, c \geqslant 0$ such that $b+c \leqslant a$, by (2.2) we have

$$
\tau\left(E_{|S|}\left(\mu_{b}(S), \infty\right) \oplus E_{|T|}\left(\mu_{c}(T), \infty\right)\right) \leqslant b+c \leqslant a
$$

so using the definition (1.1) of singular numbers, we get

$$
\mu_{a}(S \oplus T) \leqslant\left\|S E_{|S|}\left[0, \mu_{b}(S)\right] \oplus T E_{|T|}\left[0, \mu_{c}(T)\right]\right\| \leqslant \max \left(\mu_{b}(S), \mu_{c}(T)\right.
$$

This shows \leqslant in (2.5). For the reverse inclusion, by (2.1) we have

$$
\mu_{a}(S \oplus T)=\inf \left\{r \geqslant 0 \mid \tau\left(E_{|S \oplus T|}(r, \infty)\right) \leqslant a\right\} .
$$

But

$$
E_{|S \oplus T|}(r, \infty)=E_{|S| \oplus|T|}(r, \infty)=E_{|S|}(r, \infty) \oplus E_{|T|}(r, \infty),
$$

so

$$
\mu_{a}(S \oplus T)=\inf \left\{r \geqslant 0 \mid \tau\left(E_{|S|}(r, \infty)\right)+\tau\left(E_{|T|}(r, \infty)\right) \leqslant a\right\}
$$

By Lemma 2.3, if $b=\tau\left(E_{|S|}(r, \infty)\right)$ and $c=\tau\left(E_{|T|}(r, \infty)\right)$, then $\mu_{b}(S) \leqslant r$ and $\mu_{c}(T) \leqslant r$. This implies \geqslant in (2.5).

The next lemma can be described as mashing the atoms of $E_{|T|}$. It is both straightforward and similar to [9, Lemme 1.13] and [16, Lemma 1.8]. However, for completeness we include a proof.

Lemma 2.6. - Let \mathcal{M} be a von Neumann algebra without minimal projections and with a distinguished semifinite normal faithful trace τ. Let $T \in \overline{\mathcal{M}}$. Then there is a family $\left(P_{t}\right)_{t \geqslant 0}$ of projections in \mathcal{M} such that for all s and t,
(i) $s \leqslant t$ implies $P_{s} \leqslant P_{t}$,
(ii) $\tau\left(P_{t}\right)=t$,
(iii) P_{t} and $|T|$ commute, and if T is normal then P_{t} and T commute,
(iv) $E_{|T|}\left(\mu_{t}(T), \infty\right) \leqslant P_{t} \leqslant E_{|T|}\left[\mu_{t}(T), \infty\right)$,
(v) if $x>0$, then $E_{|T|}(x, \infty)=P_{y}$, where $y=\inf \left\{t>0 \mid \mu_{t}(T) \leqslant x\right\}$.

Furthermore, suppose $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$. Then, letting F be the projection-valued Borel measure in \mathcal{M} supported on $(0, \infty)$ and satisfying $F((a, b))=P_{b}-P_{a}$, we have

$$
|T|=\int_{(0, \infty)} \mu_{t}(T) d F(t)
$$

Proof. - If T is not normal, then we may replace T by $|T|$, so assume T is normal. Set $P_{t}=E_{|T|}\left(\mu_{t}(T), \infty\right)$ whenever $E_{|T|}\left(\left\{\mu_{t}(T)\right\}\right)=0$. For these values of t, it follows from Lemma 2.3 that $\tau\left(P_{t}\right)=t$. The set

$$
\mathcal{E}=\left\{E_{|T|}\left(\left\{\mu_{t}(T)\right\}\right) \mid t>0\right\}
$$

is finite or countable. We index \mathcal{E} by letting I be a set and $I \ni i \mapsto t(i) \in$ $[0, \infty)$ be an injective map such that

$$
\mathcal{E}=\{0\} \cup\left\{E_{|T|}\left(\left\{\mu_{t(i)}(T)\right\}\right) \mid i \in I\right\},
$$

$E_{|T|}\left(\left\{\mu_{t(i)}(T)\right\}\right) \neq 0$ and

$$
t(i)=\inf \left\{s \mid \mu_{s}(T)=\mu_{t(i)}(T)\right\} .
$$

Let $a_{i}=\tau\left(E_{|T|}\left(\left\{\mu_{t(i)}(T)\right\}\right)\right)$.
Fix $i \in I$. Applying the spectral theorem to the normal operator $T E_{|T|}\left(\left\{\mu_{t(i)}(T)\right\}\right)$ and putting an atomless resolution of the identity under any of its atoms, we find a family $\left(Q_{r}\right)_{0 \leqslant r<a_{i}}$ of projections in \mathcal{M} such that
(1) $r_{1} \leqslant r_{2}$ implies $Q_{r_{1}} \leqslant Q_{r_{2}}$,
(2) $\tau\left(Q_{r}\right)=r$,
(3) $Q_{r} T=T Q_{r}$,
(4) $Q_{r} \leqslant E_{|T|}\left(\left\{\mu_{t(i)}(T)\right\}\right)$.

Let

$$
P_{t(i)+r}=E_{|T|}\left(\mu_{t(i)}(T), \infty\right)+Q_{r}
$$

for all $r \in\left[0, a_{i}\right)$. If $a_{i} \neq \infty$ then set $P_{t(i)+a_{i}}=E_{|T|}\left[\mu_{t(i)}(T), \infty\right)$. Now it is easily seen that the family $\left(P_{t}\right)_{t \geqslant 0}$ satisfies (i)-(v).

Suppose $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$ and let

$$
S=\int_{(0, \infty)} \mu_{t}(T) d F(t)
$$

Clearly $S \geqslant 0$. In order to show $S=|T|$, it will suffice to show $E_{S}(x, \infty)=$ $E_{|T|}(x, \infty)$ for all $x>0$. We have

$$
E_{S}(x, \infty)=F\left(\left\{t>0 \mid \mu_{t}(T)>x\right\}\right)
$$

But $\left\{t>0 \mid \mu_{t}(T)>x\right\}=(0, y)$ where

$$
y=\sup \left\{t>0 \mid \mu_{t}(T)>x\right\}=\inf \left\{t>0 \mid \mu_{t}(T) \leqslant x\right\} .
$$

From Lemma 2.3, $y=\tau\left(E_{|T|}(x, \infty)\right)$ and, furthermore, $\mu_{y}(T) \leqslant x$. By construction,

$$
F((0, y))=P_{y}=E_{|T|}(x, \infty)
$$

3. Classification of modules of a type II factor.

Let $D^{+}(0, \infty)$, respectively $D^{+}(0,1)$, denote the cone of all decreasing (i.e. nonincreasing) functions f from the interval $(0, \infty)$, respectively $(0,1)$, into $[0, \infty)$ that are continuous from the right.

Definition 3.1. - Let \mathcal{D} be either $D^{+}(0, \infty)$ or $D^{+}(0,1)$. A subset Λ of \mathcal{D} is called a hereditary subcone of \mathcal{D} if
(i) $f, g \in \Lambda$ implies $f+g \in \Lambda$,
(ii) $f \in \Lambda, g \in D^{+}(0, \infty)$ and $g \leqslant f$ imply $g \in \Lambda$.

The subset $\Lambda \subseteq \mathcal{D}$ is called a characteristic set in \mathcal{D} if it is a hereditary subcone and if
(iii) $f \in \Lambda$ implies $D_{2} f \in \Lambda$,
where $D_{2} f(t)=f(t / 2)$.
Let \mathcal{M} be either a type II_{∞} factor with a fixed semifinite normal trace τ or a type II_{1} factor with tracial state τ. Let \mathcal{D} be $D^{+}(0, \infty)$ if \mathcal{M} is type II_{∞} and $D^{+}(0,1)$ if \mathcal{M} is type II_{1}. We will recall from [16] the classification of submodules of the algebra $\overline{\mathcal{M}}$ of τ-measurable operators in terms of characteristic sets in \mathcal{D}.

For $T \in \overline{\mathcal{M}}$, let $\mu(T) \in \mathcal{D}$ be the function which at t takes the value $\mu_{t}(T)$ of the t-th singular number of T. Given a submodule $\mathcal{I} \subseteq \overline{\mathcal{M}}$, let

$$
\mu(\mathcal{I})=\{\mu(T): T \in \mathcal{I}\} \subseteq \mathcal{D} .
$$

Proposition 3.2 ([16]). - Let \mathcal{M} be a factor of type I_{∞} or II_{1}. Then the map $\mathcal{I} \mapsto \mu(\mathcal{I})$ is a bijection from the set of all submodules of $\overline{\mathcal{M}}$ onto the set of all characteristic sets in \mathcal{D}.

Remark 3.3. - A few well known observations are perhaps in order. If \mathcal{M} is type II_{∞}, then $\mu(\mathcal{M})$ is the set of all bounded functions in $D^{+}(0, \infty)$. Thus the smallest nonzero ideal of \mathcal{M} is the set \mathcal{F} of all τ-finite rank operators in \mathcal{M}, where an operator T has τ-finite rank if $T=E T$ for some projection $E \subseteq \mathcal{M}$ with $\tau(E)<\infty$; the largest proper ideal of \mathcal{M} is the set \mathcal{K} of all τ-compact operators in \mathcal{M}, where (see [9]), an operator T is τ-compact if $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$.

On the other hand, if \mathcal{M} is type II_{1}, then $\mu(\mathcal{M})$ is the set of all bounded functions in $D^{+}(0,1)$, and \mathcal{M} itself has no proper nonzero ideals.

4. Sums of commutators.

The proof of the following lemma is similar to the proof of $(\mathrm{i}) \Longrightarrow$ (iii) of [10].

Lemma 4.1. - Let \mathcal{M} be a von Neumann algebra without minimal projections and with a normal faithful semifinite trace τ. Let $T \in \overline{\mathcal{M}}$. If $T=\sum_{i=1}^{N}\left[A_{i}, B_{i}\right]$ with $A_{i}, B_{i} \in \overline{\mathcal{M}}$, then

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right]\right)\right| \leqslant r h(r)+\operatorname{sh}(s) \tag{4.1}
\end{equation*}
$$

whenever $0<r<s<\infty$, where

$$
h(t)=(8 N+2) \mu_{t}(T)+(16 N+4) \sum_{i=1}^{N} \mu_{t}\left(A_{i}\right) \mu_{t}\left(B_{i}\right) .
$$

Proof. - We have $E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right]=F_{s}-F_{r}$ where $F_{t}=$ $E_{|T|}\left(\mu_{t}(T), \infty\right)$. Note

$$
\begin{array}{ll}
\left\|T\left(1-F_{s}\right)\right\| \leqslant \mu_{s}(T), & \tau\left(F_{s}\right) \leqslant s, \\
\left\|T\left(1-F_{r}\right)\right\| \leqslant \mu_{r}(T), & \tau\left(F_{r}\right) \leqslant r .
\end{array}
$$

We can find a projection $P \geqslant F_{r}$ in \mathcal{M} such that $\tau(P) \leqslant(4 N+1) r$ and

$$
\begin{aligned}
& \left\|A_{i}(1-P)\right\| \leqslant \mu_{r}\left(A_{i}\right), \quad\left\|(1-P) A_{i}\right\| \leqslant \mu_{r}\left(A_{i}\right), \quad(1 \leqslant i \leqslant N) . \\
& \left\|B_{i}(1-P)\right\| \leqslant \mu_{r}\left(B_{i}\right), \quad\left\|(1-P) B_{i}\right\| \leqslant \mu_{r}\left(B_{i}\right), \quad .
\end{aligned}
$$

Then we can find a projection $Q \geqslant F_{s} \vee P$ such that $\tau(Q) \leqslant(4 N+1)(r+s) \leqslant$ $(8 N+2) s$ and such that for all $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
& \left\|A_{i}(1-Q)\right\| \leqslant \mu_{s}\left(A_{i}\right), \quad\left\|(1-Q) A_{i}\right\| \leqslant \mu_{s}\left(A_{i}\right), \quad(1 \leqslant i \leqslant N) . \\
& \left\|B_{i}(1-Q)\right\| \leqslant \mu_{s}\left(B_{i}\right), \quad\left\|(1-Q) B_{i}\right\| \leqslant \mu_{s}\left(B_{i}\right),
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\tau\left(T\left(F_{s}-F_{r}\right)\right)\right| & \leqslant|\tau(T(Q-P))|+\left|\tau\left(T\left(Q-F_{s}\right)\right)\right|+\left|\tau\left(T\left(P-F_{r}\right)\right)\right| \\
& \leqslant|\tau(T(Q-P))|+(8 N+2) s \mu_{s}(T)+(4 N+1) r \mu_{r}(T) .
\end{aligned}
$$

Since $Q-P$ is a finite projection and $T(Q-P)$ is bounded,

$$
|\tau(T(Q-P))|=|\tau((Q-P) T(Q-P))| \leqslant \sum_{i=1}^{N}\left|\tau\left((Q-P)\left[A_{i}, B_{i}\right](Q-P)\right)\right|
$$

Since also $A_{i}(Q-P),(Q-P) A_{i}, B_{i}(Q-P)$ and $(Q-P) B_{i}$ are bounded, we have

$$
\begin{aligned}
\tau\left((Q-P)\left[A_{i}, B_{i}\right](Q-P)\right) & =\tau\left((Q-P) A_{i}(1-Q+P) B_{i}(Q-P)\right) \\
& -\tau\left(\left((Q-P) B_{i}(1-Q+P) A_{i}(Q-P)\right)\right.
\end{aligned}
$$

But

$$
\begin{aligned}
& \left|\tau\left((Q-P) A_{i}(1-Q+P) B_{i}(Q-P)\right)\right| \\
& \quad \leqslant\left|\tau\left((Q-P) A_{i}(1-Q) B_{i}\right)\right|+\left|\tau\left(B_{i}(Q-P) A_{i} P\right)\right| \\
& \quad \leqslant \tau(Q-P)\left\|A_{i}(1-Q)\right\|\left\|(1-Q) B_{i}\right\|+\tau(P)\left\|B_{i}(Q-P)\right\|\left\|(Q-P) A_{i}\right\| \\
& \quad \leqslant(8 N+2) s \mu_{s}\left(A_{i}\right) \mu_{s}\left(B_{i}\right)+(4 N+1) r \mu_{r}\left(B_{i}\right) \mu_{r}\left(A_{i}\right),
\end{aligned}
$$

and also with A_{i} and B_{i} interchanged. Adding these several upper bounds gives (4.1).

The proof of the following lemma is similar to the proof of Lemma 3 of [10].

Lemma 4.2. - Let \mathcal{M} be a I_{∞} factor with a specified normal faithful semifinite trace τ. Let $h \in D^{+}(0, \infty)$ and suppose $T \in \overline{\mathcal{M}}$ is a normal operator satisfying

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mu_{t}(T)=0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right]\right)\right| \leqslant r h(r)+\operatorname{sh}(s), \quad(0<r<s<\infty) \tag{4.3}
\end{equation*}
$$

Let Λ be the characteristic subset in $D^{+}(0, \infty)$ generated by h and $\mu(T)$. Then there are $X_{1}, \ldots, X_{14} \in \overline{\mathcal{M}}$ and $Y_{1}, \ldots, Y_{14} \in \mathcal{M}$ such that

$$
\begin{equation*}
T=\sum_{i=1}^{14}\left[X_{i}, Y_{i}\right] \tag{4.4}
\end{equation*}
$$

and $\mu\left(X_{i}\right) \in \Lambda$ for all i.

Proof. - Let $\left(P_{t}\right)_{t \geqslant 0}$ be a family of projections obtained from Lemma 2.6. Assumption (4.2) implies $P_{\infty} T=T P_{\infty}=T$, where $P_{\infty}=$ $\bigvee_{t \geqslant 0} P_{t}$. Let $P[s, t]=P_{t}-P_{s}$ when $s<t$, let

$$
\alpha_{n}=2^{-n} \tau\left(T P\left[2^{n}, 2^{n+1}\right]\right), \quad(n \in \mathbb{Z})
$$

and let

$$
A=\sum_{n \in \mathbb{Z}} \alpha_{n} P\left[2^{n}, 2^{n+1}\right] .
$$

Note that $T-A=\sum_{n \in \mathbb{Z}} S_{n}$ where $S_{n}=(T-A) P\left[2^{n}, 2^{n+1}\right]$ is an element of the II_{1}-factor $P\left[2^{n}, 2^{n+1}\right] \mathcal{M} P\left[2^{n}, 2^{n+1}\right]$ having zero trace. By [11, Thm. 2.3], there are $X_{1}^{(n)}, \ldots, X_{10}^{(n)}, Y_{1}^{(n)}, \ldots, Y_{10}^{(n)} \in P\left[2^{n}, 2^{n+1}\right] \mathcal{M} P\left[2^{n}, 2^{n+1}\right]$ such that

$$
S_{n}=\sum_{i=1}^{10}\left[X_{i}^{(n)}, Y_{i}^{(n)}\right]
$$

and for all $i,\left\|X_{i}^{(n)}\right\| \leqslant 12\left\|S_{n}\right\|$ and $\left\|Y_{i}^{(n)}\right\| \leqslant 2$. We therefore have

$$
T-A=\sum_{i=1}^{10}\left[X_{i}, Y_{i}\right]
$$

where

$$
X_{i}=\sum_{n \in \mathbb{Z}} X_{i}^{(n)}, \quad Y_{i}=\sum_{n \in \mathbb{Z}} Y_{i}^{(n)} .
$$

Clearly $Y_{i} \in \mathcal{M}$. Since $\left\|X_{i}^{(n)}\right\| \leqslant 12\left\|T_{n}\right\| \leqslant 12 \mu_{2^{n}}(T)$, it follows that $\mu_{2^{n+1}}\left(X_{i}\right) \leqslant 12 \mu_{2^{n}}(T)$, and therefore that $\mu\left(X_{i}\right) \in \Lambda$.

It remains to show that A is a sum of four commutators. For $t>0$ let $F_{t}=E_{|T|}\left(\mu_{t}(T), \infty\right)$. For $k, \ell \in \mathbb{Z}, k<\ell$, using the hypothesis (4.3) we get

$$
\begin{aligned}
\left|\sum_{j=k}^{\ell-1} 2^{j} \alpha_{j}\right| & =\left|\tau\left(T\left(P_{2^{\ell}}-P_{2^{k}}\right)\right)\right| \\
& \leqslant\left|\tau\left(T\left(F_{2^{\ell}}-F_{2^{k}}\right)\right)\right|+\left|\tau\left(T\left(P_{2^{k}}-F_{2^{k}}\right)\right)\right|+\left|\tau\left(T\left(P_{2^{\ell}}-F_{2^{\ell}}\right)\right)\right| \\
& \leqslant 2^{k} h\left(2^{k}\right)+2^{\ell} h\left(2^{\ell}\right)+2^{k} \mu_{2^{k}}(T)+2^{\ell} \mu_{2^{\ell}}(T)
\end{aligned}
$$

Letting $\phi(t)=h(t)+\mu_{t}(T)$, we have $\phi \in \Lambda$ and

$$
\begin{equation*}
\left|\sum_{j=k}^{\ell-1} 2^{j} \alpha_{j}\right| \leqslant 2^{k} \phi\left(2^{k}\right)+2^{\ell} \phi\left(2^{\ell}\right) \tag{4.5}
\end{equation*}
$$

We will now write $\operatorname{Re} A$ as a sum of two commutators. Note that inequality (4.5) continues to hold when each α_{j} is replaced by $\operatorname{Re} \alpha_{j}$. We will find real numbers β_{n} satisfying

$$
\begin{equation*}
\operatorname{Re} \alpha_{n}=\beta_{n-1}-2 \beta_{n}, \quad\left|\beta_{n}\right| \leqslant \phi\left(2^{n}\right), \quad(n \in \mathbb{Z}) \tag{4.6}
\end{equation*}
$$

Treating β_{0} as the independent variable, solving the equality in (4.6) recursively yields

$$
\begin{aligned}
\beta_{-m} & =2^{m} \beta_{0}+2^{m-1} \sum_{j=-m+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} \\
\beta_{m} & =2^{-m} \beta_{0}-2^{-m-1} \sum_{j=1}^{m} 2^{j} \operatorname{Re} \alpha_{j}
\end{aligned}
$$

The condition $\left|\beta_{n}\right| \leqslant \phi\left(2^{n}\right)$ for all $n \in \mathbb{Z}$ is thus equivalent to the inequalitities

$$
\begin{aligned}
&-2^{-m} \phi\left(2^{-m}\right)-\frac{1}{2} \sum_{j=-m+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} \leqslant \beta_{0} \leqslant 2^{-m} \phi\left(2^{-m}\right)-\frac{1}{2} \sum_{j=-m+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} \\
&-2^{m} \phi\left(2^{m}\right)+\frac{1}{2} \sum_{j=1}^{m} 2^{j} \operatorname{Re} \alpha_{j} \leqslant \beta_{0} \leqslant 2^{m} \phi\left(2^{m}\right)+\frac{1}{2} \sum_{j=1}^{m} 2^{j} \operatorname{Re} \alpha_{j}
\end{aligned}
$$

for all $m \in \mathbb{N}$. The existence of a real number β_{0} satisfying all of these relations is equivalent to the following four inequalities holding for all integers $k, \ell \geqslant 1$:

$$
\begin{align*}
\text { (4.7) }-2^{-k} \phi\left(2^{-k}\right)-\frac{1}{2} \sum_{j=-k+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} & \leqslant 2^{-\ell} \phi\left(2^{-\ell}\right)-\frac{1}{2} \sum_{j=-\ell+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} \tag{4.7}\\
\text { (4.8) }-2^{-k} \phi\left(2^{-k}\right)-\frac{1}{2} \sum_{j=-k+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} & \leqslant 2^{\ell} \phi\left(2^{\ell}\right)+\frac{1}{2} \sum_{j=1}^{\ell} 2^{j} \operatorname{Re} \alpha_{j} \\
\text { (4.9) }-2^{k} \phi\left(2^{k}\right)+\frac{1}{2} \sum_{j=1}^{k} 2^{j} \operatorname{Re} \alpha_{j} & \leqslant 2^{-\ell} \phi\left(2^{-\ell}\right)-\frac{1}{2} \sum_{j=-\ell+1}^{0} 2^{j} \operatorname{Re} \alpha_{j} \tag{4.9}\\
\text { (4.10) }-2^{k} \phi\left(2^{k}\right)+\frac{1}{2} \sum_{j=1}^{k} 2^{j} \operatorname{Re} \alpha_{j} & \leqslant 2^{\ell} \phi\left(2^{\ell}\right)+\frac{1}{2} \sum_{j=1}^{\ell} 2^{j} \operatorname{Re} \alpha_{j} . \tag{4.10}
\end{align*}
$$

But these inequalities are easily verified. For example, (4.7) is equivalent to

$$
\begin{align*}
& \text { (4.11) } \frac{1}{2} \sum_{j=-\ell+1}^{-k} 2^{j} \operatorname{Re} \alpha_{j} \leqslant 2^{-\ell} \phi\left(2^{-\ell}\right)+2^{-k} \phi\left(2^{-k}\right) \quad \text { if } k<\ell \tag{4.11}\\
& \text { (4.12) }-2^{-k} \phi\left(2^{-k}\right)-2^{-\ell} \phi\left(2^{-\ell}\right) \leqslant \frac{1}{2} \sum_{j=-k+1}^{-\ell} 2^{j} \operatorname{Re} \alpha_{j} \quad \text { if } k>\ell,
\end{align*}
$$

while (4.8) is equivalent to

$$
\begin{equation*}
-2^{-k} \phi\left(2^{-k}\right)-2^{\ell} \phi\left(2^{\ell}\right) \leqslant \frac{1}{2} \sum_{j=-k+1}^{\ell} 2^{j} \operatorname{Re} \alpha_{j} \tag{4.13}
\end{equation*}
$$

keeping in mind that ϕ is nonnegative and nonincreasing, inequalities (4.11)-(4.13) follow directly from (4.5). Inequalities (4.9) and (4.10) are verified for all k and ℓ similarly. We have suceeded in proving the existence of β_{n} satisfying (4.6).

Now let $V_{n}, W_{n} \in \mathcal{M},(n \in \mathbb{Z})$, be such that

$$
\begin{array}{lll}
V_{n}^{*} V_{n}=P\left[2^{n-1}, 2^{n}\right], & V_{n} V_{n}^{*}=P\left[2^{n}, 2^{n}+2^{n-1}\right], \\
W_{n}^{*} W_{n}=P\left[2^{n-1}, 2^{n}\right], & W_{n} W_{n}^{*}=P\left[2^{n}+2^{n-1}, 2^{n+1}\right]
\end{array}
$$

and let

$$
\begin{aligned}
X_{11} & =\sum_{n \in \mathbb{Z}} \beta_{n-1} V_{n} & Y_{11} & =\sum_{n \in \mathbb{Z}} V_{n}^{*} \\
X_{12} & =\sum_{n \in \mathbb{Z}} \beta_{n-1} W_{n} & Y_{12} & =\sum_{n \in \mathbb{Z}} W_{n}^{*} .
\end{aligned}
$$

Then $X_{i} \in \overline{\mathcal{M}}, \mu\left(X_{i}\right) \in \Lambda$ and $Y_{i} \in \mathcal{M}(i=11,12)$, and

$$
\left[X_{11}, Y_{11}\right]+\left[X_{12}, Y_{12}\right]=\operatorname{Re} A
$$

We may do the same for $\operatorname{Im} A$.
We now prove an analogous result in a II_{1}-factor.
Lemma 4.3. - Let \mathcal{M} be a II_{1}-factor with tracial state τ and let $T \in \overline{\mathcal{M}}$ be a normal operator. Suppose there is $h \in D^{+}(0,1)$ such that

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant r h(r), \quad(0<r \leqslant 1) . \tag{4.14}
\end{equation*}
$$

Let Λ be the characteristic set in $D^{+}(0,1)$ generated by h and $\mu(T)$. Then there are $X_{1}, \ldots, X_{12} \in \overline{\mathcal{M}}$ and $Y_{1}, \ldots, Y_{12} \in \mathcal{M}$ such that

$$
\begin{equation*}
T=\sum_{i=1}^{12}\left[X_{i}, Y_{i}\right] \tag{4.15}
\end{equation*}
$$

and $\mu\left(X_{i}\right) \in \Lambda$ for all i.

Proof. - Lemma 2.6 (formally applied in $\mathcal{M} \otimes B(\mathcal{H})$, if we like) gives a family of projections $\left(P_{t}\right)_{0 \leqslant t \leqslant 1}$ satisfying (i)-(v) of that proposition. Let $P[s, t]=P_{t}-P_{s}(s<t)$, let

$$
\alpha_{n}=\tau\left(T P\left[2^{n}, 2^{n+1}\right]\right), \quad(n \in \mathbb{Z}, n<0)
$$

and let

$$
A=\sum_{n=-\infty}^{-1} \alpha_{n} P\left[2^{n}, 2^{n+1}\right] .
$$

Applying the result of Fack and de la Harpe [11] as in the proof of Lemma 4.2, we can show

$$
T-A=\sum_{i=1}^{10}\left[X_{i}, Y_{i}\right]
$$

with $Y_{i} \in \mathcal{M}, X_{i} \in \overline{\mathcal{M}}$ and $\mu\left(X_{i}\right) \in \Lambda$. Letting $F_{t}=E_{|T|}\left(\mu_{t}(T), \infty\right)$ and using the hypothesis (4.14), for $n \in \mathbb{Z}, n \leqslant-1$ we have

$$
\begin{aligned}
\left|\sum_{j=n}^{-1} 2^{j} \alpha_{j}\right| & =\left|\tau\left(T\left(1-P_{2^{n}}\right)\right)\right| \\
& \leqslant\left|\tau\left(T\left(1-F_{2^{n}}\right)\right)\right|+\left|\tau\left(T\left(P_{2^{n}}-F_{2^{n}}\right)\right)\right| \\
& \leqslant 2^{n} h\left(2^{n}\right)+2^{n} \mu_{2^{n}}(T)
\end{aligned}
$$

Let $\beta_{-1}=0$ and

$$
\beta_{n}=2^{-n-1} \sum_{j=n+1}^{-1} 2^{j} \alpha_{j}, \quad(n \in \mathbb{Z}, n \leqslant-2) .
$$

Then we have

$$
\left|\beta_{n}\right| \leqslant \frac{1}{2}\left(h\left(2^{n+1}\right)+\mu_{2^{n+1}}(T)\right)
$$

and

$$
\beta_{n-1}-2 \beta_{n}=\alpha_{n}, \quad(n \leqslant-1) .
$$

Let $V_{n}, W_{n} \in \mathcal{M}(n \leqslant-1)$ be as in the proof of Lemma 4.2 and let

$$
\begin{array}{lll}
X_{11}=\sum_{n=-\infty}^{-1} \beta_{n-1} V_{n} & Y_{11}=\sum_{n=-\infty}^{-1} V_{n} \\
X_{12}=\sum_{n=-\infty}^{-1} \beta_{n-1} W_{n} & Y_{12}=\sum_{n=-\infty}^{-1} W_{n} .
\end{array}
$$

Then $X_{i} \in \overline{\mathcal{M}}, \mu\left(X_{i}\right) \in \Lambda$ and $Y_{i} \in \mathcal{M}(i=11,12)$, and

$$
\left[X_{11}, Y_{11}\right]+\left[X_{12}, Y_{12}\right]=A
$$

The following result is well known and indeed follows from the stronger result of Halpern [17].

Proposition 4.4. - If \mathcal{M} is a II_{∞}-factor, then $[\mathcal{M}, \mathcal{M}]=\mathcal{M}$.

Lemma 4.5. - Let \mathcal{M} be a II_{1} - or a II_{∞}-factor, and let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ and $\mathcal{J} \subseteq \overline{\mathcal{M}}$ be submodules. Then $[\mathcal{I} \mathcal{J}, \mathcal{M}] \subseteq[\mathcal{I}, \mathcal{J}]$.

Proof. - If $X \in \mathcal{I} \mathcal{J}$ then $X=A B$ for $A \in \mathcal{I}$ and $B \in \mathcal{J}$. This can be seen by writing $X=V|X|$ for a partial isometry V.

If also $Y \in \mathcal{M}$, then we have

$$
[X, Y]=A B Y-Y A B=[A, B Y]+[B, Y A] \in[\mathcal{I}, \mathcal{J}]
$$

Theorem 4.6. - Let \mathcal{M} be a type II_{1} factor and let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ and $\mathcal{J} \subseteq \overline{\mathcal{M}}$ be submodules. Let $T \in \mathcal{I} \mathcal{J}$ be normal. Then $T \in[\mathcal{I}, \mathcal{J}]$ if and only if there is $h \in \mu(\mathcal{I} \mathcal{J})$ such that

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant r h(r), \quad(0<r<1) . \tag{4.16}
\end{equation*}
$$

Proof. - We may embed \mathcal{M} in the II_{∞} factor $\mathcal{M} \otimes B(\mathcal{H})$ in a tracepreserving manner. If $T \in[\mathcal{I}, \mathcal{J}]$ then letting h be as in Lemma 4.1, we have $h \in \mu(\mathcal{I} \mathcal{J})$ with $h(1)=0$. So taking $s=1$ in equation (4.16), we get that h satisfies (4.16).

Now suppose $h \in \mu(\mathcal{I J})$ is such that (4.16) holds. By Lemma 4.3, $T \in[\mathcal{I} \mathcal{J}, \mathcal{M}]$. Now Lemma 4.5 gives $T \in[\mathcal{I}, \mathcal{J}]$.

Compare the following to Theorem 1 of [10].
Theorem 4.7. - Let \mathcal{M} be a type II_{∞} factor and let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ and $\mathcal{J} \subseteq \overline{\mathcal{M}}$ be submodules. Let $T \in \mathcal{I} \mathcal{J}$ be normal. Then $T \in[\mathcal{I}, \mathcal{J}]$ if and only if there is $h \in \mu(\mathcal{I} \mathcal{J})$ such that

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right]\right)\right| \leqslant r h(r)+\operatorname{sh}(s), \quad(0<r<s<\infty) \tag{4.17}
\end{equation*}
$$

Proof. - If $T \in[\mathcal{I}, \mathcal{J}]$ then by Lemma 4.1 there is $h \in \mu(\mathcal{I J})$ satisfying (4.17).

Now suppose $h \in \mu(\mathcal{I} \mathcal{J})$ is such that (4.17) holds, and let us show $T \in$ $[\mathcal{I} \mathcal{J}, \mathcal{M}]$. If $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$, then by Lemma 4.2 we have $T \in[\mathcal{I} \mathcal{J}, \mathcal{M}]$. Suppose $d:=\lim _{t \rightarrow \infty} \mu_{t}(T)>0$. If T is bounded, then by Halpern's result, Proposition 4.4, we have $T \in[\mathcal{M}, \mathcal{M}] \subseteq[\mathcal{I} \mathcal{J}, \mathcal{M}]$. Suppose T is unbounded, let $a>0$ be such that $\mu_{a}(T)>d$ and let $Q=E_{|T|}\left(\mu_{a}(T), \infty\right)$. Then $0<\tau(Q) \leqslant a, Q T=T Q$ and $\|(1-Q) T\| \leqslant \mu_{a}(T)$. By Proposition 4.4, $(1-Q) T \in[\mathcal{I} \mathcal{J}, \mathcal{M}]$. We have

$$
\mu_{t}(Q T)= \begin{cases}\mu_{t}(T) & \text { if } t<\tau(Q) \\ 0 & \text { if } t \geqslant \tau(Q)\end{cases}
$$

Let $0<r<s<\infty$. Then
$(Q T) E_{|Q T|}\left(\mu_{s}(Q T), \mu_{r}(Q T)\right]= \begin{cases}T E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right] & \text { if } s<\tau(Q) \\ T E_{|T|}\left(\mu_{a}(T), \mu_{r}(T)\right] & \text { if } r<\tau(Q) \leqslant s \\ 0 & \text { if } \tau(Q) \leqslant r .\end{cases}$
If $r<\tau(Q) \leqslant s$ then we have

$$
\begin{aligned}
\left|\tau\left(T E_{|T|}\left(\mu_{a}(T), \mu_{r}(T)\right]\right)\right| \leqslant r h(r)+a h(a) & \leqslant r h(r)+a h(\tau(Q)) \\
& \leqslant r h(r)+s \frac{a h(\tau(Q))}{\tau(Q)}
\end{aligned}
$$

Let $\tilde{h}(t)=\max \left(h(t), \frac{a h(\tau(Q))}{\tau(Q)}\right)$. Then $\tilde{h} \in \mu(\mathcal{I} \mathcal{J})$ and we have

$$
\left|\tau\left((Q T) E_{|Q T|}\left(\mu_{s}(Q T), \mu_{r}(Q T)\right]\right)\right| \leqslant r \tilde{h}(r)+s \tilde{h}(s), \quad(0<r<s<\infty)
$$

Now Lemma 4.2 implies $Q T \in[\mathcal{I} \mathcal{J}, \mathcal{M}]$.

We have shown $T \in[\mathcal{I} \mathcal{J}, \mathcal{M}]$. From Lemma 4.5, it follows that T belongs to $[\mathcal{I}, \mathcal{J}]$.

Corollary 4.8. - Let \mathcal{M} be a type II_{∞} factor or a type I_{1} factor, and let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ and $\mathcal{J} \subseteq \overline{\mathcal{M}}$ be submodules. Then

$$
[\mathcal{I}, \mathcal{J}]=[\mathcal{I} \mathcal{J}, \mathcal{M}] .
$$

5. Separated asymptotic behaviour.

Throughout this section, \mathcal{M} will be a type II_{∞} factor with semifinite trace τ and $\mathcal{I} \subseteq \overline{\mathcal{M}}$ will be a nonzero submodule. Theorem 4.7 gives a necessary and sufficient condition for a normal operator T to belong to the commutator space $[\mathcal{I}, \mathcal{M}]$, but this condition considers simultaneous asymptotics at 0 and ∞. In this section, we give an equivalent characterization which separates the behaviour at 0 and ∞.

We have

$$
\begin{equation*}
\mathcal{I}=\mathcal{I}_{f s}+\mathcal{I}_{b} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{I}_{f s} & =\left\{T \in \mathcal{I} \mid \mu_{s}(T)=0 \text { for some } s>0\right\} \\
\mathcal{I}_{b} & =\{T \in \mathcal{I} \mid \mu(T) \text { bounded }\} .
\end{aligned}
$$

Thus $\mathcal{I}_{f s}$ is the set of $T \in \mathcal{I}$ that are supported on finite projections and $\mathcal{I}_{b}=\mathcal{I} \cap \mathcal{M}$. From (5.1), we have

$$
\begin{equation*}
[\mathcal{I}, \mathcal{M}]=\left[\mathcal{I}_{f s}, \mathcal{M}\right]+\left[\mathcal{I}_{b}, \mathcal{M}\right] \tag{5.2}
\end{equation*}
$$

Given a normal element $T \in \mathcal{I}$, using a spectral projection of $|T|$ we can easily write $T=T_{f s}+T_{b}$ for some normal elements $T_{f s} \in \mathcal{I}_{f_{s}}$ and $T_{b} \in \mathcal{I}_{b}$. It is our purpose to use Theorem 4.7 to give necessary and sufficient conditions for $T \in[\mathcal{I}, \mathcal{M}]$ in terms of $T_{f s}$ and T_{b}.

Lemma 5.1. - Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a submodule.
(i) Let $T \in \mathcal{I}_{f_{s}}$ be normal. Then $T \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ if and only if there is $h \in \mu\left(\mathcal{I}_{f_{s}}\right)$ such that

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant r h(r), \quad(0<r<\infty) . \tag{5.3}
\end{equation*}
$$

(ii) Let $T \in \mathcal{I}_{b}$ be normal. Then $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ if and only if there is $h \in \mu\left(\mathcal{I}_{b}\right)$ such that

$$
\begin{equation*}
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)\right| \leqslant \operatorname{sh}(s), \quad(0<s<\infty) \tag{5.4}
\end{equation*}
$$

Proof. - Let us prove (i). If $T \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$, then invoking Theorem 4.7 and letting $s \rightarrow \infty$, since $\mu_{s}(T)$ and $h(s)$ are eventually zero we obtain

$$
\left|\tau\left(T E_{|T|}\left(0, \mu_{r}(T)\right]\right)\right| \leqslant r h(r),
$$

which clearly implies (5.3). On the other hand, if (5.3) holds, then for $0<r<s<\infty$ we have

$$
\begin{aligned}
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{r}(T)\right]\right)\right| & \leqslant\left|\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right|+\left|\tau\left(T E_{|T|}\left[0, \mu_{s}(T)\right]\right)\right| \\
& \leqslant r h(r)+\operatorname{sh}(s)
\end{aligned}
$$

so $T \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ by Theorem 4.7.
For (ii), if $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$, then invoking Theorem 4.7 and letting $r \rightarrow 0$, we get

$$
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)\right|=\left|\tau\left(T E_{|T|}\left(\mu_{s}(T),\|T\|\right]\right)\right| \leqslant \operatorname{sh}(s)
$$

since $h(r)$ stays bounded. Thus (5.4) holds. The argument that (5.4) implies $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ is similar to the analogous one in case (i).

Recall (Remark 3.3) \mathcal{F} denotes the submodule (in fact, the ideal of $\mathcal{M})$ consisting of τ-finite rank bounded operators: $\mathcal{F}=\mathcal{M}_{f s}$.

Corollary 5.2.- $\quad[\mathcal{F}, \mathcal{M}]=\mathcal{F} \cap \operatorname{ker} \tau$.

Proof. - It will suffice to show that if $T=T^{*} \in \mathcal{F}$, then $T \in[\mathcal{F}, \mathcal{M}]$ if and only if $\tau(T)=0$. Suppose $T \in[\mathcal{F}, \mathcal{M}]$ and let $h \in \mu(\mathcal{F})$ be such that (5.4) holds. Then $h(s)=0$ and $\mu_{s}(T)=0$ for some $s>0$ and therefore $\tau(T)=\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)=0$.

Suppose $\tau(T)=0$. Then $\mu_{s^{\prime}}(T)=0$ for some $s^{\prime}>0$. Let

$$
h(s)=\left\{\begin{array}{cc}
\|T\| & s<s^{\prime} \\
0 & s \geqslant s^{\prime} .
\end{array}\right.
$$

Then $h \in \mu(\mathcal{F})$. Using (2.2), we see that (5.4) holds when $0<s<s^{\prime}$, and it holds when $s \geqslant s^{\prime}$ because $\tau(T)=0$.

See Definition 2.4 for an explanation of the notation \oplus used below.

Theorem 5.3. - Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a nonzero submodule and let $T=T_{f s}+T_{b} \in \mathcal{I}$, where $T_{f_{s}} \in \mathcal{I}_{f_{s}}$ and $T_{b} \in \mathcal{I}_{b}$. Then the following are equivalent:
(a) $T \in[\mathcal{I}, \mathcal{M}]$.
(b) There is $X \in \mathcal{F}$ such that

$$
\begin{align*}
T_{b} \oplus X & \in\left[\mathcal{I}_{b}, \mathcal{M}\right] \\
T_{f s} \oplus(-X) & \in\left[\mathcal{I}_{f s}, \mathcal{M}\right] . \tag{5.5}
\end{align*}
$$

(c) There is $a \in \mathbb{C}$ such that whenever $X, Y \in \mathcal{F}, \tau(X) \neq 0$ and $\tau(Y) \neq 0$,

$$
\begin{align*}
& T_{b} \oplus \frac{a}{\tau(X)} X \in\left[\mathcal{I}_{b}, \mathcal{M}\right] \tag{5.6}\\
& T_{f_{s}} \oplus \frac{-a}{\tau(Y)} Y \in\left[\mathcal{I}_{f_{s}}, \mathcal{M}\right] . \tag{5.7}
\end{align*}
$$

Proof. - We first prove (a) \Longrightarrow (c). Suppose $T \in[\mathcal{I}, \mathcal{M}]$. From (5.2), we have $T=\widetilde{T}_{f s}+\widetilde{T}_{b}$ for some $\widetilde{T}_{f s} \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ and $\widetilde{T}_{b} \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$. Then using Corollary 5.2,

$$
\widetilde{T}_{b}-T_{b}=T_{f s}-\widetilde{T}_{f s} \in \mathcal{I}_{b} \cap \mathcal{I}_{f_{s}}=\mathcal{F}
$$

Let $a=\tau\left(\widetilde{T}_{b}-T_{b}\right)$ and let $X \in \mathcal{F}$ with $\tau(X) \neq 0$. Then

$$
\widetilde{T}_{b}-T_{b}-\frac{a}{\tau(X)} X \in \mathcal{F} \cap \operatorname{ker} \tau=[\mathcal{F}, \mathcal{M}] \subseteq\left[\mathcal{I}_{b}, \mathcal{M}\right]
$$

Thus

$$
\begin{aligned}
T_{b} \oplus \frac{a}{\tau(X)} X & \in\left(T_{b} \oplus \frac{a}{\tau(X)} X \oplus 0\right)+\left[\mathcal{I}_{b}, \mathcal{M}\right] \\
& =\left(T_{b} \oplus \frac{a}{\tau(X)} X \oplus\left(\widetilde{T}_{b}-T_{b}-\frac{a}{\tau(X)} X\right)\right)+\left[\mathcal{I}_{b}, \mathcal{M}\right] \\
& =\left(T_{b} \oplus\left(\widetilde{T}_{b}-T_{b}\right)\right)+\left[\mathcal{I}_{b}, \mathcal{M}\right] \\
& =\widetilde{T}_{b}+\left[\mathcal{I}_{b}, \mathcal{M}\right]=\left[\mathcal{I}_{b}, \mathcal{M}\right]
\end{aligned}
$$

and (5.6) holds. Similarly, we have

$$
\begin{aligned}
T_{f_{s}} \oplus \frac{-a}{\tau(Y)} Y & \in\left(T_{f s} \oplus \frac{-a}{\tau(Y)} Y \oplus 0\right)+\left[\mathcal{I}_{f s}, \mathcal{M}\right] \\
& =\left(T_{f_{s}} \oplus \frac{-a}{\tau(Y)} Y \oplus\left(\widetilde{T}_{f_{s}}-T_{f_{s}}+\frac{a}{\tau(Y)} Y\right)\right)+\left[\mathcal{I}_{f_{s}}, \mathcal{M}\right] \\
& =\left(T_{f_{s}} \oplus\left(\widetilde{T}_{f_{s}}-T_{f_{s}}\right)\right)+\left[\mathcal{I}_{f s}, \mathcal{M}\right] \\
& =\widetilde{T}_{f_{s}}+\left[\mathcal{I}_{f_{s}}, \mathcal{M}\right]=\left[\mathcal{I}_{f_{s}}, \mathcal{M}\right]
\end{aligned}
$$

and (5.7) holds.
The implication $(\mathrm{c}) \Longrightarrow(\mathrm{b})$ is clear.
For $(\mathrm{b}) \Longrightarrow(\mathrm{a})$, assuming (5.5), we have

$$
T_{f_{s}}+T_{b} \in T_{f_{s}} \oplus T_{b}+[\mathcal{I}, \mathcal{M}]=T_{f_{s}} \oplus(-X) \oplus X \oplus T_{b}+[\mathcal{I}, \mathcal{M}]=[\mathcal{I}, \mathcal{M}]
$$

Lemma 5.4. - Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a nonzero submodule, let $T \in \mathcal{I}_{f s}$ be normal, $T \neq 0$ and let $a \in \mathbb{C}$. Let $P \in \mathcal{F}$ be a nonzero projection such that either T is unbounded or $\frac{|a|}{\tau(P)}<\|T\|$. Then

$$
T \oplus \frac{a}{\tau(P)} P \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]
$$

if and only if there is $h \in \mu\left(\mathcal{I}_{f s}\right)$ such that

$$
\begin{equation*}
\forall r \in(0,1), \quad\left|a+\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant r h(r) \tag{5.8}
\end{equation*}
$$

Remark 5.5. - As will be apparent from the proof, for any $r^{\prime}>0$ the existence of $h \in \mu\left(\mathcal{I}_{f_{s}}\right)$ such that (5.8) holds is equivalent to the existence of $h^{\prime} \in \mu\left(\mathcal{I}_{f s}\right)$ such that

$$
\forall r \in\left(0, r^{\prime}\right), \quad\left|a+\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant r h^{\prime}(r)
$$

holds.
Proof of Lemma 5.4. - There is $r^{\prime}>0$ such that $\mu_{r}(T)>\frac{|a|}{\tau(P)}$ for all $r \in\left(0, r^{\prime}\right)$. Let $T^{\prime}=T \oplus \frac{a}{\tau(P)} P$. Then (by Proposition 2.5), for $r \in\left(0, r^{\prime}\right)$ we have $\mu_{r}\left(T^{\prime}\right)=\mu_{r}(T)$,

$$
\begin{aligned}
E_{\left|T^{\prime}\right|}\left[0, \mu_{r}\left(T^{\prime}\right)\right] & =E_{|T|}\left[0, \mu_{r}(T)\right] \oplus P \\
\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left[0, \mu_{r}\left(T^{\prime}\right)\right]\right) & =a+\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right) .
\end{aligned}
$$

If $T^{\prime} \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$, then by Lemma 5.1, there is $h^{\prime} \in \mu\left(\mathcal{I}_{f_{s}}\right)$ such that

$$
\forall r \in\left(0, r^{\prime}\right), \quad\left|a+\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant r h^{\prime}(r)
$$

Since $d:=\tau\left(E_{|T|}(0, \infty)\right)<\infty$ and

$$
\left|\tau\left(T E_{|T|}\left[0, \mu_{r}(T)\right]\right)\right| \leqslant \mu_{r}(T) d
$$

for all $r>0$, we can find $h \in \mu\left(\mathcal{I}_{f s}\right)$ such that (5.8) holds.
Conversely, suppose $h \in \mu\left(\mathcal{I}_{f_{s}}\right)$ is such that (5.8) holds. Assume without loss of generality $r^{\prime} \leqslant 1$. Then we have

$$
\left|\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left[0, \mu_{r}\left(T^{\prime}\right)\right]\right)\right| \leqslant r h(r)
$$

for all $r \in\left(0, r^{\prime}\right)$. Let $r^{\prime \prime}>r^{\prime}$ be such that $\mu_{r^{\prime \prime}}\left(T^{\prime}\right)=0$. Let $d^{\prime}=E_{\left|T^{\prime}\right|}(0, \infty)$. Then

$$
\left|\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left[0, \mu_{r}\left(T^{\prime}\right)\right]\right)\right| \leqslant \begin{cases}0 & \text { if } r \geqslant r^{\prime \prime} \\ \mu_{r}\left(T^{\prime}\right) d^{\prime} & \text { otherwise. }\end{cases}
$$

Letting

$$
h^{\prime}(t)= \begin{cases}\max \left(h(t), \frac{\mu_{r^{\prime}}\left(T^{\prime}\right) d^{\prime}}{r^{\prime}}\right) & \text { if } 0<t<r^{\prime} \\ \frac{\mu_{r^{\prime}}\left(T^{\prime}\right) d^{\prime}}{r^{\prime}} & \text { if } r^{\prime} \leqslant t<r^{\prime \prime} \\ 0 & \text { if } r^{\prime \prime} \leqslant t,\end{cases}
$$

we have $h^{\prime} \in \mu\left(\mathcal{I}_{f s}\right)$ and

$$
\left|\tau\left(T^{\prime} E_{\mid T^{\prime}} \mid\left[0, \mu_{r}\left(T^{\prime}\right)\right]\right)\right| \leqslant r h^{\prime}(r)
$$

for all $r>0$. Thus $T^{\prime} \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ by Lemma 5.1.
Lemma 5.6. - Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a nonzero submodule, let $T \in \mathcal{I}_{b}$ be normal and let $a \in \mathbb{C}$. If $a \neq 0$, let $P \in \mathcal{F}$ be a projection such that $\frac{|a|}{\tau(P)}>\|T\|$. If $a=0$, let $P \in \mathcal{F}$ have nonzero trace. Then

$$
T \oplus \frac{a}{\tau(P)} P \in\left[\mathcal{I}_{b}, \mathcal{M}\right]
$$

if and only if there is $h \in \mu\left(\mathcal{I}_{b}\right)$ such that

$$
\begin{equation*}
\forall s \in[1, \infty), \quad\left|a+\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)\right| \leqslant \operatorname{sh}(s) \tag{5.9}
\end{equation*}
$$

Remark 5.7. - As will be apparent from the proof, for any $s^{\prime}>0$ the existence of $h \in \mu\left(\mathcal{I}_{b}\right)$ such that (5.9) holds is equivalent to the existence of $h^{\prime} \in \mu\left(\mathcal{I}_{b}\right)$ such that

$$
\forall s \in\left[s^{\prime}, \infty\right), \quad\left|a+\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)\right| \leqslant \operatorname{sh}^{\prime}(s)
$$

holds.
Proof of Lemma 5.6. - Suppose $a \neq 0$. Let $T^{\prime}=T \oplus \frac{a}{\tau(P)} P$. Then for all $s>0$, we have, (by Proposition 2.5), $\mu_{s+\tau(P)}\left(T^{\prime}\right)=\mu_{s}(T)$,

$$
\begin{align*}
E_{\left|T^{\prime}\right|}\left(\mu_{s+\tau(P)}\left(T^{\prime}\right), \infty\right) & =E_{|T|}\left(\mu_{s}(T), \infty\right) \oplus P \\
\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left(\mu_{s+\tau(P)}\left(T^{\prime}\right), \infty\right)\right) & =a+\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right) \tag{5.10}
\end{align*}
$$

If $T^{\prime} \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$, then it follows from (5.10) and Lemma 5.1 that there is $h^{\prime} \in \mu\left(\mathcal{I}_{b}\right)$ such that

$$
\forall s \in(0, \infty), \quad\left|a+\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)\right| \leqslant(s+\tau(P)) h^{\prime}(s+\tau(P))
$$

Letting $h(s)=(1+\tau(P)) h^{\prime}(s+\tau(p))$, we have $h \in \mu\left(\mathcal{I}_{b}\right)$ and that (5.9) holds.

On the other hand, still taking $a \neq 0$, suppose $h \in \mu\left(\mathcal{I}_{b}\right)$ and (5.9) holds. Using (5.10), we have

$$
\left|\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left(\mu_{t}\left(T^{\prime}\right), \infty\right)\right)\right| \leqslant(t-\tau(P)) h(t-\tau(P))
$$

for all $t \geqslant 1+\tau(P)$. Using Proposition 2.2, we have

$$
\left|\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left(\mu_{t}\left(T^{\prime}\right), \infty\right)\right)\right| \leqslant\left\|T^{\prime}\right\| t
$$

for all $t>0$. Therefore, letting

$$
h^{\prime}(t)= \begin{cases}\frac{1}{1+\tau(P)} h(t-\tau(P)) & \text { if } t \geqslant 1+\tau(P) \\ \max \left(\frac{|a|}{\tau(P)}, \frac{h(1)}{1+\tau(P)}\right) & \text { if } 0<t<1+\tau(P)\end{cases}
$$

we get $h^{\prime} \in \mu\left(\mathcal{I}_{b}\right)$ and

$$
\left|\tau\left(T^{\prime} E_{\left|T^{\prime}\right|}\left(\mu_{t}\left(T^{\prime}\right), \infty\right)\right)\right| \leqslant t h^{\prime}(t)
$$

for all $t>0$. Thus $T^{\prime} \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ by Lemma 5.1.
When $a=0$, the existence of $h \in \mu\left(\mathcal{I}_{b}\right)$ satifying (5.9) follows from $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ directly from Lemma 5.1 , while proving that the existence of $h \in \mu\left(\mathcal{I}_{b}\right)$ such that (5.9) holds implies $T \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ is similar to the case $a \neq 0$, but easier.

Theorem 5.8. - Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a nonzero submodule and let $T=T_{f s}+T_{b} \in \mathcal{I}$, where $T_{f s} \in \mathcal{I}_{f s}$ and $T_{b} \in \mathcal{I}_{b}$ are normal. Then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if there are $a \in \mathbb{C}, h_{f_{s}} \in \mu\left(\mathcal{I}_{f_{s}}\right)$ and $h_{b} \in \mu\left(\mathcal{I}_{b}\right)$ such that

$$
\begin{array}{ll}
\forall r \in(0,1), & \mid a-\tau\left(T_{f s} E_{\mid T}{ }_{f} \mid\right. \\
& \left.\left[0, \mu_{r}\left(T_{f s}\right)\right]\right) \mid \leqslant r h_{f s}(r) \tag{5.12}\\
\forall s \in[1, \infty), & \left|a+\tau\left(T_{b} E_{\left|T_{b}\right|}\left(\mu_{s}\left(T_{b}\right), \infty\right)\right)\right| \leqslant s h_{b}(s) .
\end{array}
$$

Proof. - If $T_{f s} \neq 0$, then the conclusion of the theorem follows from Theorem 5.3 and Lemmas 5.4 and 5.6. If $T_{f_{s}}=0$, then we choose $a=0$ and apply Lemma 5.1.

Let $\omega_{f s}, \omega_{b} \in D^{+}(0, \infty)$ be given by

$$
\begin{aligned}
\omega_{f s}(t) & = \begin{cases}1 / t & \text { if } t<1 \\
0 & \text { if } t \geqslant 1,\end{cases} \\
\omega_{b}(t) & =\frac{1}{1+t} .
\end{aligned}
$$

Corollary 5.9.- Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a nonzero submodule and let $T=T_{f_{s}}+T_{b} \in \mathcal{I}$, where $T_{f s} \in \mathcal{I}_{f s}$ and $T_{b} \in \mathcal{I}_{b}$ are normal.
(I) Suppose $\omega_{f s}, \omega_{b} \in \mu(\mathcal{I})$. Then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $T_{f_{s}} \in$ $\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ and $T_{b} \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$.
(II) Suppose $\omega_{f_{s}} \in \mu(\mathcal{I})$ and $\omega_{b} \notin \mu(\mathcal{I})$. Then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $T_{f s} \in\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ and there are $a \in \mathbb{C}$ and $h_{b} \in \mu\left(\mathcal{I}_{b}\right)$ such that (5.12) holds.
(III) Suppose $\omega_{f_{s}} \notin \mu(\mathcal{I})$ and $\omega_{b} \in \mu(\mathcal{I})$. Then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $T_{b} \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$ and there are $a \in \mathbb{C}$ and $h_{f_{s}} \in \mu\left(\mathcal{I}_{f_{s}}\right)$ such that (5.11) holds.

Proof. - If $\omega_{b} \in \mu(\mathcal{I})$, then for any $a \in \mathbb{C}$, the function

$$
t \mapsto \begin{cases}|a| / t, & 0<t<1 \\ 0, & t \geqslant 1\end{cases}
$$

lies in $\mu\left(\mathcal{I}_{f s}\right)$, while if $\omega_{f s} \in \mu(\mathcal{I})$, then for any $a \in \mathbb{C}$, the function

$$
t \mapsto \begin{cases}|a|, & t \in(0,1) \\ |a| / t, & t \geqslant 1\end{cases}
$$

lies in $\mu\left(\mathcal{I}_{b}\right)$.
This seems like a convenient place to prove the following proposition, which will be needed in Section 6 .

Proposition 5.10. - Let $\mathcal{I} \subseteq \overline{\mathcal{M}}$ be a nonzero submodule and suppose $\mathcal{M} \subseteq \mathcal{I}$. Let

$$
\mathcal{I}_{0}=\left\{T \in \mathcal{I} \mid \lim _{t \rightarrow \infty} \mu_{t}(T)=0\right\} .
$$

Then $[\mathcal{I}, \mathcal{M}] \cap \mathcal{I}_{0}=\left[\mathcal{I}_{0}, \mathcal{M}\right]$.

Proof. - Since \supseteq is clear, we need only show \subseteq. Suppose $T \in$ $[\mathcal{I}, \mathcal{M}] \cap \mathcal{I}_{0}$ and T is normal. It will suffice to show $T \in\left[\mathcal{I}_{0}, \mathcal{M}\right]$. Let $T=T_{f_{s}}+T_{b}$ where $T_{f_{s}} \in\left(\mathcal{I}_{0}\right)_{f_{s}}=\mathcal{I}_{f_{s}}$ and $T_{b} \in\left(\mathcal{I}_{0}\right)_{b}$ are normal. Note we have $\left(\mathcal{I}_{0}\right)_{b}=\mathcal{M}_{0}=\mathcal{K}$, (see Remark 3.3). Since $T \in[\mathcal{I}, \mathcal{M}]$, by Corollary 5.9, if $\omega_{f_{s}} \in \mu(\mathcal{I})$, then $T_{f_{s}} \in\left[\mathcal{I}_{f_{s}}, \mathcal{M}\right]$, while if $\omega_{f_{s}} \notin \mu(\mathcal{I})$, then there are $a \in \underset{\mathbb{C}}{ }$ and $h_{f s} \in \mu\left(\mathcal{I}_{f_{s}}\right)$ such that (5.11) holds. Since $\omega_{b} \in \mu\left(\mathcal{I}_{0}\right)$, by Corollary 5.9 in order to show $T \in\left[\mathcal{I}_{0}, \mathcal{M}\right]$ it will suffice to show $T_{b} \in\left[\left(\mathcal{I}_{0}\right)_{b}, \mathcal{M}\right]$. But $[\mathcal{K}, \mathcal{M}]=\mathcal{K} \ni T_{b}$.

We will finish this section with a few observations relating $[\mathcal{I}, \mathcal{M}]$ to $\left[\mathcal{I}_{b}, \mathcal{M}\right]$ and $\left[\mathcal{I}_{f s}, \mathcal{M}\right]$, and examples involving ideals of p-summable operators. Writing $\mathcal{I}=\mathcal{I}_{f_{s}}+\mathcal{I}_{b}$, we have $[\mathcal{I}, \mathcal{M}]=\left[\mathcal{I}_{f s}, \mathcal{M}\right]+\left[\mathcal{I}_{b}, \mathcal{M}\right]$. Since $\mathcal{I}_{f_{s}} \cap \mathcal{I}_{b}=\mathcal{F}$, and (see Corollary 5.2) $[\mathcal{F}, \mathcal{M}]=\mathcal{F} \cap$ ker τ, we have

$$
\begin{aligned}
& {\left[\mathcal{I}_{f s}, \mathcal{M}\right] \cap \mathcal{I}_{b}=\left[\mathcal{I}_{f_{s}}, \mathcal{M}\right] \cap \mathcal{F}= \begin{cases}\mathcal{F} & \text { if } \omega_{f_{s}} \in \mu(\mathcal{I}) \\
\mathcal{F} \cap \operatorname{ker} \tau & \text { if } \omega_{f s} \notin \mu(\mathcal{I}),\end{cases} } \\
& {\left[\mathcal{I}_{b}, \mathcal{M}\right] \cap \mathcal{I}_{f s}=\left[\mathcal{I}_{b}, \mathcal{M}\right] \cap \mathcal{F}= \begin{cases}\mathcal{F} & \text { if } \omega_{b} \in \mu(\mathcal{I}) \\
\mathcal{F} \cap \operatorname{ker} \tau & \text { if } \omega_{b} \notin \mu(\mathcal{I})\end{cases} }
\end{aligned}
$$

So we have the following result.
Proposition 5.11. - Let \mathcal{I} be a nonzero submodule of $\overline{\mathcal{M}}$, for a II_{∞} factor \mathcal{M}. Then
(i) $\mathcal{F}+[\mathcal{I}, \mathcal{M}]=\mathcal{I}$ if and only if $\mathcal{F}+\left[\mathcal{I}_{f s}, \mathcal{M}\right]=\mathcal{I}_{f s}$ and $\mathcal{F}+\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b} ;$
(ii) $[\mathcal{I}, \mathcal{M}]=\mathcal{I}$ if and only if at least one of the following holds:
(a) $\left[\mathcal{I}_{f s}, \mathcal{M}\right]=\mathcal{I}_{f s}$ and $\mathcal{F}+\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b}$;
(b) $\mathcal{F}+\left[\mathcal{I}_{f s}, \mathcal{M}\right]=\mathcal{I}_{f_{s}}$ and $\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b}$.

We now relate the commutator space $\left[\mathcal{I}_{b}, \mathcal{M}\right]$ to its discrete analogue. Let $\mathcal{B} \subseteq \mathcal{M}$ be any type I_{∞} factor (i.e. a copy of $B(\mathcal{H})$) such that the restriction of τ to \mathcal{B} is semifinite. Let $\mathcal{I}_{d}=\mathcal{I} \cap \mathcal{B}$ and let $\mathcal{F}_{d}=\mathcal{F} \cap \mathcal{B}$; (the "d" is for "discrete"). Note that \mathcal{I}_{d} is an ideal of \mathcal{B} and \mathcal{F}_{d} is the ideal of finite rank operators in \mathcal{B}. In the notation used in [7], the characteristic set $\mu\left(\mathcal{I}_{d}\right)$ of \mathcal{I}_{d}, consisting of the sequences of singular numbers of elements of \mathcal{I}_{d}, is naturally identified with the set of all functions $f \in \mu(\mathcal{I})$ that are constant on the intervals $[0,1),[1,2),[2,3), \ldots$ The commutator space $\left[\mathcal{I}_{d}, \mathcal{B}\right]$ of an ideal of a I_{∞} factor has been extensively studied - see $[7]$ and references contained therein, and see [18] for some further results.

Lemma 5.12. - Let $T \in \mathcal{I}_{b}$ and assume $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$. Then there is $A \in \mathcal{I}_{d}$ such that $T-A \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$.

Proof. - We may without loss of generality assume $T=T^{*}$ and that $\tau(\widetilde{Q})=1$ for a minimal projection \widetilde{Q} of \mathcal{B}. Let $\left(P_{t}\right)_{t \geqslant 0}$ be a family of projections in \mathcal{M} obtained from Lemma 2.6. Let $Q_{k}=P_{k}-P_{k-1},(k \in \mathbb{N})$, $\alpha_{k}=\tau\left(T Q_{k}\right)$ and $A^{\prime}=\sum_{k=1}^{\infty} \alpha_{k} Q_{k}$. Then $T Q_{k}-\alpha_{k} Q_{k}$ is an element of the II_{1}-factor $Q_{k} \mathcal{M} Q_{k}$ of trace zero and with

$$
\left\|\left(T-\alpha_{k}\right) Q_{k}\right\| \leqslant\left\|T Q_{k}\right\|+\left|\alpha_{k}\right| \leqslant 2\left\|T Q_{k}\right\| \leqslant 2 \mu_{k}(T)
$$

Using [11, Thm. 2.3] as in the proof of Lemma 4.2, one shows $T-A^{\prime} \in$ $\left[\mathcal{I}_{b}, \mathcal{M}\right]$. Let $\widetilde{Q}_{1}, \widetilde{Q}_{2}, \ldots \in \mathcal{B}$ be pairwise orthogonal projections, each of trace 1, and let $U \in \mathcal{M}$ be a partial isometry such that $U^{*} Q_{j} U=\widetilde{Q}_{j}$. Let $A=\sum_{k=1}^{\infty} \alpha_{k} \widetilde{Q}_{k}$. Then $A=U^{*} A^{\prime} U \in \mathcal{I}_{d}$ and $A^{\prime}-A=\left[U, U^{*} A^{\prime}\right] \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$. Thus $T-A \in\left[\mathcal{I}_{b}, \mathcal{M}\right]$.

Proposition 5.13.
(i) $\mathcal{B} \cap\left[\mathcal{I}_{b}, \mathcal{M}\right]=\left[\mathcal{I}_{d}, \mathcal{B}\right]$.
(ii) $\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b}$ if and only if $\left[\mathcal{I}_{d}, \mathcal{B}\right]=\mathcal{I}_{d}$.
(iii) $\mathcal{F}+\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b}$ if and only if $\mathcal{F}_{d}+\left[\mathcal{I}_{d}, \mathcal{B}\right]=\mathcal{I}_{d}$.

Proof. - We may without loss of generality assume $\tau(F)=1$ for a minimal projection F of \mathcal{B}. The inclusion \supseteq in (i) is clear. To show \subseteq, it will suffice to show that $T=T^{*} \in \mathcal{B} \cap\left[\mathcal{I}_{b}, \mathcal{M}\right]$ implies $T \in\left[\mathcal{I}_{d}, \mathcal{B}\right]$. By Lemma 5.1, there is $h \in \mu\left(\mathcal{I}_{b}\right)$ satisfying (5.4). Since h is bounded, replacing h if necessary by a slightly greater function, we may without loss of generality assume h is constant on all intervals $[0,1),[1,2), \ldots$. We may write $T=\sum_{i=1}^{\infty} \lambda_{i} F_{i}$ for a sequence of pairwise orthogonal, minimal projections F_{i} of \mathcal{B} and for $\lambda_{i} \in \mathbb{R}$ with $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \cdots$ If $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|>0$, then $\mathcal{I}_{b}=\mathcal{M}$ and $\mathcal{I}_{d}=\mathcal{B}$, so (i) holds. Hence we may without loss of generality assume $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=0$. Suppose k and n are nonnegative integers with $k<n$,

$$
\left|\lambda_{k+1}\right|=\left|\lambda_{k+2}\right|=\cdots=\left|\lambda_{n}\right|>\left|\lambda_{n+1}\right|
$$

and either $k=0$ or $\left|\lambda_{k}\right|>\left|\lambda_{k+1}\right|$. If $s \in[k, n)$, then $\mu_{s}(T)=\left|\lambda_{k+1}\right|$, so by (5.4),

$$
\left|\lambda_{1}+\cdots+\lambda_{k}\right|=\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \infty\right)\right)\right| \leqslant \operatorname{sh}(s) .
$$

Thus, if $\ell \in\{k, \ldots, n-1\}$ and $\ell \neq 0$, then

$$
\left|\lambda_{1}+\cdots+\lambda_{\ell}\right| \leqslant\left|\lambda_{1}+\cdots+\lambda_{k}\right|+(\ell-k)\left|\lambda_{\ell}\right| \leqslant \ell h(\ell)+\ell\left|\lambda_{\ell}\right|
$$

and

$$
\frac{\left|\lambda_{1}+\cdots+\lambda_{\ell}\right|}{\ell} \leqslant h(\ell)+\left|\lambda_{\ell}\right| .
$$

From this, the main result of $[7]$ implies $T \in\left[\mathcal{I}_{d}, \mathcal{B}\right]$, and (i) is proved.
From (i), we have

$$
\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b} \quad \Longrightarrow \quad\left[\mathcal{I}_{d}, \mathcal{B}\right]=\mathcal{I}_{d}
$$

The reverse implication follows from Lemma 5.12. Hence (ii) is proved.

To prove (iii), we have $\mathcal{F}=\mathcal{F}_{d}+(\mathcal{F} \cap \operatorname{ker} \tau)=\mathcal{F}_{d}+[\mathcal{F}, \mathcal{M}]$, so

$$
\mathcal{F}+\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{F}_{d}+\left[\mathcal{I}_{b}, \mathcal{M}\right] .
$$

From (i) we thus obtain

$$
\mathcal{F}+\left[\mathcal{I}_{b}, \mathcal{M}\right]=\mathcal{I}_{b} \quad \Longrightarrow \quad \mathcal{F}_{d}+\left[\mathcal{I}_{d}, \mathcal{B}\right]=\mathcal{I}_{d}
$$

The reverse implication follows from Lemma 5.12.
We now point out results relating $\left[\mathcal{I}_{f s}, \mathcal{M}\right]$ and commutator spaces of submodules of II_{1}-factors. Let $P \in \mathcal{M}$ be a projection with $\tau(P)=1$ and consider the II_{1}-factor $\mathcal{M}_{1}=P \mathcal{M} P$. Then $P \overline{\mathcal{M}} P$ is equal to the module $\overline{\mathcal{M}_{1}}$ of τ-measurable operators affiliated to \mathcal{M}_{1}. Given a nonzero submodule \mathcal{I} of $\overline{\mathcal{M}}$, consider the submodule $\mathcal{I}_{1}=P \mathcal{I} P$ of $\overline{\mathcal{M}_{1}}$. Then the following result follows directly from the characterizations of commutator spaces found in Theorem 4.6 and Lemma 5.1.

Proposition 5.14.
(i) $\overline{\mathcal{M}_{1}} \cap\left[\mathcal{I}_{f s}, \mathcal{M}\right]=\left[\mathcal{I}_{1}, \mathcal{M}_{1}\right]$.
(ii) $\left[\mathcal{I}_{f s}, \mathcal{M}\right]=\mathcal{I}_{f s}$ if and only if $\left[\mathcal{I}_{1}, \mathcal{M}_{1}\right]=\mathcal{I}_{1}$.
(iii) $\mathcal{F}+\left[\mathcal{I}_{f s}, \mathcal{M}\right]=\mathcal{I}_{f s}$ if and only if $\mathcal{M}_{1}+\left[\mathcal{I}_{1}, \mathcal{M}_{1}\right]=\mathcal{I}_{1}$.

For $0<p<\infty$, let \mathcal{L}_{p} denote the submodule of $\overline{\mathcal{M}}$ whose characterisitc set $\mu\left(\mathcal{L}_{p}\right)$ consists of all the p-integrable functions in $D^{+}(0, \infty)$. Thus

$$
\mathcal{L}_{p}=\left\{T \in \overline{\mathcal{M}} \mid \tau\left(\left(T^{*} T\right)^{p / 2}\right)<\infty\right\}
$$

where we have extended τ in the usual way to be a map from positive elements of $\overline{\mathcal{M}}$ to $[0,+\infty]$. Also, let $\mathcal{L}_{\infty}=\mathcal{M}$.

Proposition 5.15. - If $0<p<1$, then

$$
\begin{equation*}
\left[\left(\mathcal{L}_{p}\right)_{f s}, \mathcal{M}\right]=\left(\mathcal{L}_{p}\right)_{f s} \tag{5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\left(\mathcal{L}_{p}\right)_{b}, \mathcal{M}\right]=\left(\mathcal{L}_{p}\right)_{b} \cap \operatorname{ker} \tau \tag{5.14}
\end{equation*}
$$

so $\mathcal{F}+\left[\left(\mathcal{L}_{p}\right)_{b}, \mathcal{M}\right]=\left(\mathcal{L}_{p}\right)_{b}$.
With $p=1$, we have

$$
\begin{equation*}
\mathcal{F}+\left[\left(\mathcal{L}_{1}\right)_{f_{s}}, \mathcal{M}\right] \neq\left(\mathcal{L}_{1}\right)_{f_{s}} \tag{5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}+\left[\left(\mathcal{L}_{1}\right)_{b}, \mathcal{M}\right] \neq\left(\mathcal{L}_{1}\right)_{b} . \tag{5.16}
\end{equation*}
$$

If $1<p \leqslant \infty$, then

$$
\begin{equation*}
\left[\left(\mathcal{L}_{p}\right)_{f_{s}}, \mathcal{M}\right]=\left(\mathcal{L}_{p}\right)_{f_{s}} \cap \operatorname{ker} \tau \tag{5.17}
\end{equation*}
$$

so $\mathcal{F}+\left[\left(\mathcal{L}_{p}\right)_{f s}, \mathcal{M}\right]=\left(\mathcal{L}_{p}\right)_{f s}$, and

$$
\begin{equation*}
\left[\left(\mathcal{L}_{p}\right)_{b}, \mathcal{M}\right]=\left(\mathcal{L}_{p}\right)_{b} \tag{5.18}
\end{equation*}
$$

Proof. - When $p=\infty$, we have $\left(\mathcal{L}_{p}\right)_{f s}=\mathcal{F}$ and $\left(\mathcal{L}_{p}\right)_{b}=\mathcal{M}$, and these special cases of (5.17) and (5.18) have been considered previously. For $p<\infty$, all of the relations (5.13)-(5.18) can be readily verified from properties of L^{p}-functions.

Moreover, (5.14), (5.16) and (5.18) follow from Proposition 5.13 and the coresponding discrete analogues, which follow readily from the main result of [7] and were originally proved in [1], [28] and [25], respectively. On the other hand, (5.13) and (5.17) follow from Proposition 5.14 and [13, Prop. 2.12].

As an example, let us verify (5.15) directly. Clearly $\left[\left(\mathcal{L}_{1}\right)_{f_{s}}, \mathcal{M}\right] \subseteq$ $\operatorname{ker} \tau$, so it will suffice to find $T=T^{*} \in\left(\mathcal{L}_{1}\right)_{f_{s}} \cap \operatorname{ker} \tau$ with $T \notin\left[\left(\mathcal{L}_{1}\right)_{f_{s}}, \mathcal{M}\right]$. Using Lemma 5.1, it will suffice to find $f \in L^{1}[0,1]$ such that $\int_{0}^{1} f=0$ but the function

$$
s \mapsto \frac{1}{s} \int_{s}^{1} f(t) d t, \quad 0<s<1
$$

is not integrable. Such a function is given by

$$
f(t)= \begin{cases}\frac{1}{t(\log t)^{2}} & \text { if } 0<t<1 / 2 \\ \frac{-2}{\log 2} & \text { if } 1 / 2 \leqslant t<1\end{cases}
$$

Propositions 5.15 and 5.11 now yield the following examples.
Examples 5.16. - Let $\mathcal{I}=\left(\mathcal{L}_{p}\right)_{f_{s}}+\left(\mathcal{L}_{q}\right)_{b}$, for some $0<p, q \leqslant \infty$.
(i) If $p<1$ and $q \neq 1$ or if $p \neq 1$ and $q>1$, then $[\mathcal{I}, \mathcal{M}]=\mathcal{I}$.
(ii) If $p>1$ and $q<1$, then $[\mathcal{I}, \mathcal{M}]=\mathcal{I} \cap \operatorname{ker} \tau$ and $\mathcal{F}+[\mathcal{I}, \mathcal{M}]=\mathcal{I}$.
(iii) If $p=1$ or $q=1$, then $\mathcal{F}+[\mathcal{I}, \mathcal{M}] \neq \mathcal{I}$.

6. Spectral characterization of $[\mathcal{I}, \mathcal{M}]$.

In this section, \mathcal{M} will be a I_{∞}-factor with fixed normal, semifinite trace τ.

Let $\mathcal{L}_{\text {log }}$ be the submodule of all $T \in \overline{\mathcal{M}}$ such that

$$
\int_{0}^{\infty} \log \left(1+\mu_{s}(T)\right) d s<\infty
$$

As is usual, let \mathcal{L}_{p} be the submodule of all $T \in \overline{\mathcal{M}}$ such that

$$
\int_{0}^{\infty} \mu_{s}(T)^{p} d s<\infty
$$

If \mathcal{I} is a submodule of $\overline{\mathcal{M}}$ we say that \mathcal{I} is geometrically stable if $\mathcal{I} \subset \mathcal{M}+\mathcal{L}_{\text {log }}$ and if whenever $h \in \mu(\mathcal{I})$ then $g \in \mu(\mathcal{I})$, where

$$
g(t)=\exp \left(t^{-1} \int_{0}^{t} \log h(s) d s\right), \quad t>0
$$

Geometric stability is a relatively mild condition. For example let \mathcal{X} be a rearrangement-invariant quasi-Banach function space on $(0, \infty)$ and suppose $\mathcal{I}=\left\{T:\left(\mu_{s}(T)\right)_{s>0} \in \mathcal{X}\right\} \subseteq \mathcal{K}+\mathcal{L}_{\text {log }}$, where $\mathcal{K} \subseteq \mathcal{M}$ is the ideal of τ-compact operators (see Remark 3.3); then \mathcal{I} is geometrically stable by Proposition 3.2 of [13]. A non-geometrically stable ideal in $B(\mathcal{H})$ is constructed in [8], and from this a non-geometrically stable ideal of \mathcal{M} can be constructed.

Suppose $T \in \mathcal{L}_{1} \cap \mathcal{M}$. Then the Fuglede-Kadison determinant [14] of $I+T$ is defined by

$$
\Delta(I+T)=\exp (\tau(\log |I+T|))
$$

Using [2] Remark 3.4 we note that $T \mapsto \log \Delta(I+T)$ is plurisubharmonic on $\mathcal{L}_{1} \cap \mathcal{M}$. In the Appendix of [2] the definition of $\Delta(I+T)$ is extended to $\mathcal{L}_{\text {log }}$ and it is shown that $T \mapsto \Delta(I+T)$ is upper-semicontinuous for the natural topology of $\mathcal{L}_{\log }$. It is not shown explicitly that $T \mapsto \log \Delta(I+T)$ is plurisubharmonic on $\mathcal{L}_{\text {log }}$ but this follows trivially from the results of [2]:

Lemma 6.1. - Suppose $S, T \in \mathcal{L}_{\text {log }}$. Then

$$
\log \Delta(I+S) \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \Delta\left(I+S+e^{i \theta} T\right) d \theta
$$

Proof. - Let $S=H+i K$ and $T=H^{\prime}+i K^{\prime}$ be the splitting of S, T into real and imaginary parts. Let $R=|H|+\left|H^{\prime}\right|+|K|+\left|K^{\prime}\right|$. Then
$R \in \mathcal{L}_{\text {log }}$ and $(I+S+z T)(I+R)^{-1} \in I+\mathcal{L}_{1} \cap \mathcal{M}$ for all z. Using the fact that $T \mapsto \log \Delta(I+T)$ is plurisubharmonic on $\mathcal{L}_{1} \cap \mathcal{M}$ and

$$
\Delta\left((I+S+z T)(1+R)^{-1}\right)=\Delta(I+S+z T)(\Delta(I+R))^{-1}
$$

it is easy to deduce the Lemma.
Let $g_{0}(w)=(1-w)$ and

$$
g_{k}(w)=(1-w) \exp \left(w+\cdots+\frac{w^{k}}{k}\right)
$$

for $k \geqslant 1$. If $T \in \mathcal{L}_{\text {log }}$ let $k=0$; if $T \in \mathcal{M} \cap \mathcal{L}_{p}$ for some $p>0$, let k be an integer such that $k+1 \geqslant p$. Then, following [2], there is a unique σ-finite measure $\nu=\nu_{T}$ on $\mathbb{C} \backslash\{0\}$ such that

$$
\log \Delta\left(g_{k}(w T)\right)=\int \log \left|g_{k}(w z)\right| d \nu_{T}(z), \quad w \in \mathbb{C}
$$

ν_{T} is called the Brown measure of T, and is independent of the choice of k when many choices are permissible. If $T \in \mathcal{L}_{\log } \cup \bigcup_{p>0}\left(\mathcal{L}_{p} \cap \mathcal{M}\right)$ we shall say that T admits a Brown measure. The measure ν_{T} satisfies the following estimates. If $T \in \mathcal{L}_{\text {log }}$ and $k=0$ then

$$
\begin{equation*}
\int_{\mathbb{C}} \log (1+|z|) d \nu_{T}(z)<\infty \tag{6.1}
\end{equation*}
$$

while if $T \in \mathcal{L}_{p} \cap \mathcal{M}$ and $k+1 \geqslant p$, then

$$
\begin{equation*}
\int_{\mathbb{C}}|z|^{p} d \nu_{T}(z)<\infty \tag{6.2}
\end{equation*}
$$

We refer to [2, Theorem 3.6] and the remark on p. 29 of [2].
Of course if T is normal there is a projection-valued spectral measure $B \rightarrow E_{T}(B)$ defined for Borel subsets B of the complex plane and we can define a spectral measure ν_{T} by

$$
\nu_{T}(B)=\tau\left(E_{T}(B)\right)
$$

If T also admits a Brown measure, then ν_{T} coincides with the Brown measure.

If T either admits a Brown measure or is normal and satisfies $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$, then for every $0<r<s<\infty$ we define

$$
\begin{equation*}
\Phi(r, s ; T)=\int_{r<|z| \leqslant s} z d \nu_{T}(z) \tag{6.3}
\end{equation*}
$$

If T is normal then we can rewrite (6.3) in the form

$$
\begin{equation*}
\Phi(r, s ; T)=\tau\left(T E_{|T|}(r, s]\right) \tag{6.4}
\end{equation*}
$$

Note that it is elementary that if $|\alpha|=1$ then $\Phi(r, s ; \alpha T)=\alpha \Phi(r, s ; T)$.
Proposition 6.2. - Let $0<r<s<\infty$.
(1) Suppose T_{1}, \ldots, T_{N} are normal with $\lim _{t \rightarrow \infty} \mu_{t}\left(T_{j}\right)=0$ and $T_{1}+\cdots+T_{N}=0$. Then

$$
\begin{equation*}
\left|\sum_{j=1}^{N} \Phi\left(r, s ; T_{j}\right)\right| \leqslant 2 N \sum_{j=1}^{N}\left(r \tau\left(E_{\left|T_{j}\right|}(r, \infty)\right)+s \tau\left(E_{\left|T_{j}\right|}(s, \infty)\right)\right) . \tag{6.5}
\end{equation*}
$$

(2) Suppose $|\alpha| \leqslant 1$ and T is normal with $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$. Then

$$
\begin{equation*}
|\Phi(r, s ; \alpha T)-\alpha \Phi(r, s ; T)| \leqslant\left|\tau\left(r E_{|T|}(r, \infty)+s E_{|T|}(s, \infty)\right)\right| \tag{6.6}
\end{equation*}
$$

(3) If T is normal with $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$, then

$$
\begin{equation*}
|\Phi(r, s ; \operatorname{Re} T)-\operatorname{Re} \Phi(r, s ; T)| \leqslant \tau\left(r E_{|T|}(r, \infty)+s E_{|T|}(s, \infty)\right) \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Phi(r, s ; \operatorname{Im} T)-\operatorname{Im} \Phi(r, s ; T)| \leqslant \tau\left(r E_{|T|}(r, \infty)+s E_{|T|}(s, \infty)\right) \tag{6.8}
\end{equation*}
$$

Proof. - (1) Pick a projection $P \geqslant E_{\left|T_{j}\right|}(s, \infty)$ for $1 \leqslant j \leqslant N$ and such that $\tau(P) \leqslant \sum_{j=1}^{N} \tau\left(E_{\left|T_{j}\right|}(s, \infty)\right)$. Then choose $Q \geqslant P$ with $Q \geqslant E_{\left|T_{j}\right|}(r, \infty)$ for $1 \leqslant j \leqslant N$ and

$$
\tau(Q) \leqslant \sum_{j=1}^{N}\left(\tau\left(E_{\left|T_{j}\right|}(r, \infty)\right)+\tau\left(E_{\left|T_{j}\right|}(s, \infty)\right)\right) \leqslant 2 \sum_{j=1}^{N} \tau\left(E_{\left|T_{j}\right|}(r, \infty)\right)
$$

Then

$$
\left\|\left(Q-E_{\left|T_{j}\right|}(r, \infty)\right) T_{j}\right\| \leqslant r, \quad\left\|\left(P-E_{\left|T_{j}\right|}(s, \infty)\right) T_{j}\right\| \leqslant s, \quad 1 \leqslant j \leqslant N
$$

Hence

$$
\left|\tau\left(\left(Q-E_{\left|T_{j}\right|}(r, \infty)\right) T_{j}\right)\right| \leqslant r \tau(Q)
$$

and

$$
\left|\tau\left(\left(P-E_{\left|T_{j}\right|}(s, \infty)\right) T_{j}\right)\right| \leqslant s \tau(P)
$$

We thus have

$$
\begin{aligned}
\left|\sum_{j=1}^{N} \Phi\left(r, s ; T_{j}\right)\right| & =\left|\sum_{j=1}^{N} \tau\left(T_{j}\left(Q-E_{\left|T_{j}\right|}(s, \infty)\right)-T_{j}\left(P-E_{\left|T_{j}\right|}(r, \infty)\right)\right)\right| \\
& \leqslant N(r \tau(Q)+s \tau(P))
\end{aligned}
$$

Now (6.5) follows.

For (2), we note that

$$
\begin{aligned}
&|\Phi(r, s ; \alpha T)-\alpha \Phi(r, s ; T)| \leqslant|\alpha|\left(\int_{r<|z| \leqslant|\alpha|-\left.\right|^{-1} r}|z| d \nu_{T}(z)\right. \\
&\left.+\int_{s<|z| \leqslant|\alpha|^{-1} s}|z| d \nu_{T}(z)\right) .
\end{aligned}
$$

Then (6.6) follows immediately.
Part (3) is similar to (2). For example we observe for (6.7) that

$$
\begin{aligned}
|\Phi(r, s ; \operatorname{Re} T)-\operatorname{Re} \Phi(r, s ; T)| \leqslant \int_{|\operatorname{Re} z| \leqslant r<|z|} & |\operatorname{Re} z| d \nu_{T}(z) \\
& +\int_{|\operatorname{Re} z| \leqslant s<|z|}|\operatorname{Re} z| d \nu_{T}(z) .
\end{aligned}
$$

Proposition 6.3. - Let \mathcal{I} be a submodule of $\overline{\mathcal{M}}$. Suppose $T \in \mathcal{I}$ is normal and satisfies $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$. Then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if there exists a positive operator $V \in \mathcal{I}$ such that

$$
\begin{equation*}
|\Phi(r, s ; T)| \leqslant r \tau\left(E_{V}(r, \infty)\right)+s \tau\left(E_{V}(s, \infty)\right), \quad 0<r<s<\infty \tag{6.9}
\end{equation*}
$$

Proof. - Assume that (6.9) holds. By replacing V with $V+|T|$, if necessary, we may without loss of generality assume $V \geqslant|T|$. Let $h(t)=\mu_{t}(V)$. Then $h(t) \geqslant \mu_{t}(T)$. If $0<t<s<\infty$, then from (2.2) we have

$$
\left|\tau\left(T E_{|T|}(h(s), h(t)]\right)\right| \leqslant s h(s)+t h(t)
$$

Now using (2.2) again, we get

$$
\begin{aligned}
& \left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{t}(T)\right]\right)-\tau\left(T E_{|T|}(h(s), h(t)]\right)\right| \\
& \quad \leqslant \int_{\mu_{s}(T)<|z| \leqslant h(s)}|z| d \nu_{T}(z)+\int_{\mu_{t}(T)<|z| \leqslant h(t)}|z| d \nu_{T}(z) \\
& \quad \leqslant s h(s)+t h(t)
\end{aligned}
$$

Hence

$$
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{t}(T)\right]\right)\right| \leqslant 2 \operatorname{sh}(s)+2 \operatorname{th}(t)
$$

and we can apply Theorem 4.7 and (4.17) to conclude that $T \in[\mathcal{I}, \mathcal{M}]$.
Conversely, suppose T satisfies (4.17) for some h. Replacing h with

$$
\tilde{h}(t)=\frac{2}{t} \int_{t / 2}^{t} h(s) d s
$$

if necessary, we may without loss of generality assume h is continuous. Let $V \in \mathcal{I}$ be a positive operator such that $\mu_{t}(V)=h(t)$. Given $0<r<s<\infty$, choose $0<v<u$ so that $h(2 u) \leqslant r<h(u)$ and $h(2 v) \leqslant s<h(v)$. Then

$$
\left|\tau\left(T E_{|T|}\left(\mu_{2 u}(T), \mu_{2 v}(T)\right]\right)\right| \leqslant 2 u r+2 v s
$$

Now arguing as above,

$$
\begin{aligned}
& \left|\tau\left(T E_{|T|}\left(\mu_{2 u}(T), \mu_{2 v}(T)\right]\right)-\tau\left(T E_{|T|}(r, s]\right)\right| \\
& \quad \leqslant \int_{\mu_{2 u}(T)<|z| \leqslant r}|z| d \nu_{T}(z)+\int_{\mu_{2 v}(T)<|z| \leqslant s}|z| d \nu_{T}(z) \\
& \quad \leqslant 2 u r+2 v s .
\end{aligned}
$$

Using Lemma 2.3, we have $\tau\left(E_{V}(r, \infty)\right) \geqslant u$ and $\tau\left(E_{V}(s, \infty)\right) \geqslant v$. Combining gives

$$
\left|\tau\left(T E_{|T|}(r, s]\right)\right| \leqslant 4 u r+4 v s \leqslant 4 r \tau\left(E_{V}(r, \infty)\right)+4 s \tau\left(E_{V}(s, \infty)\right)
$$

Replacing V by $V \oplus V \oplus V \oplus V$, (cf. Definition 2.4) we have (6.9).
Lemma 6.4. - Let $\psi: \mathbb{C} \rightarrow \mathbb{R}$ be a subharmonic function such that ψ vanishes in a neighborhood of 0 , is harmonic outside some compact set, and for a suitable constant C, satisfies the estimate $|\psi(z)| \leqslant C \log (1+|z|)$ for all z. If T admits a Brown measure, then define

$$
\Psi(T)=\int_{\mathbb{C}} \psi(z) d \nu_{T}(z)
$$

Suppose $S, T \in \mathcal{L}_{\log }$ or $S, T \in \mathcal{L}_{p} \cap \mathcal{M}$ for some $p>0$. Then $\Psi\left(S+e^{i \theta} T\right)$ is a Borel function of θ and

$$
\begin{equation*}
\Psi(S) \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(S+e^{i \theta} T\right) d \theta \tag{6.10}
\end{equation*}
$$

Proof. - By an easy approximation argument it will suffice to consider the case when ψ is C^{2}. In this case for any choice of $k \geqslant 0$ we have the formula ([2] Proposition 2.2)

$$
\psi(z)=\int_{\mathbb{C}} \log \left|g_{k}\left(w^{-1} z\right)\right| \nabla^{2} \psi(w) d \lambda(w), \quad z \in \mathbb{C}
$$

where λ denotes area measure. Hence if T admits a Brown measure and k is suitably chosen,

$$
\begin{equation*}
\Psi(T)=\int_{\mathbb{C}}\left(\int_{\mathbb{C}} \log \left|g_{k}\left(w^{-1} z\right)\right| \nabla^{2} \psi(w) d \lambda(w)\right) d \nu_{T}(z) . \tag{6.11}
\end{equation*}
$$

Now it can be checked that the function $\left|\log g_{k}\left(w^{-1} z\right)\right| \nabla^{2} \psi(w)$ is integrable for the product measure $\lambda \times \nu_{T}$. Indeed, let us first consider the case when
$T \in \mathcal{L}_{p} \cap \mathcal{M}$, with $k+1 \geqslant p$. Estimates on the growth of $\log \left|g_{k}(w)\right|(c f$. p. 11 of [2]) give

$$
\int_{0}^{2 \pi}|\log | g_{k}\left(r^{-1} e^{-i \theta} z\right)| | d \theta \leqslant C \min \left(|z|^{k+1}|r|^{-k-1},|z|^{k+\epsilon}|r|^{-k-\epsilon}\right)
$$

for suitable C and $\epsilon>0$. Since $\nabla^{2} \psi$ has compact support contained in some annulus away from the origin we need only observe that

$$
\int \min \left(|z|^{k+1},|z|^{k+\epsilon}\right) d \nu_{T}(z)<\infty
$$

which follows from (6.2). On the other hand, if $T \in \mathcal{L}_{\log }$ and thus $k=0$, we use the estimate

$$
\int_{0}^{2 \pi}|\log | g_{k}\left(r^{-1} e^{-i \theta} z\right)| | d \theta \leqslant C \log (1+|z|)
$$

and (6.1). It follows we can use Fubini's theorem to rewrite (6.11) in the form

$$
\begin{aligned}
\Psi(T) & =\int_{\mathbb{C}}\left(\int_{\mathbb{C}} \log \left|g_{k}\left(w^{-1} z\right)\right| d \nu_{T}(z)\right) \nabla^{2} \psi(w) d \lambda(w) \\
& =\int_{\mathbb{C}} \log \Delta\left(g_{k}\left(w^{-1} T\right)\right) \nabla^{2} \psi(w) d \lambda(w)
\end{aligned}
$$

Now the result follows easily from the upper semicontinuity of $\log \Delta$ and Lemma 6.1.

Proposition 6.5. - Let \mathcal{I} be a geometrically stable submodule of $\overline{\mathcal{M}}$. If $T \in \mathcal{I}$ admits a Brown measure, then there is a normal operator $S \in \mathcal{I}$ with $\nu_{S}=\nu_{T}$. Furthermore, S admits a Brown measure.

Proof. - It will suffice to show the existence of a positive operator $V \in \mathcal{I}$ so that

$$
\nu_{T}(|z|>r) \leqslant \nu_{V}(r, \infty), \quad 0<r<\infty .
$$

Let $H=\operatorname{Re} T, K=\operatorname{Im} T$ and then set $P=|H|+|K|$. Since \mathcal{I} is geometrically stable there exists a positive $V \in \mathcal{I}$ with

$$
\frac{1}{t} \int_{0}^{t} \log \mu_{s}(P) d s \leqslant \log \mu_{t}(V), \quad 0<t<\infty
$$

Therefore, $\mu_{t}(P) \leqslant \mu_{t}(V)$ and $\nu_{P}(r, \infty) \leqslant \nu_{V}(r, \infty)$ for all $0<r<\infty$.
Suppose for contradiction that for some $0<r<\infty$ we have $t=$ $\nu_{T}(|z|>r)>\nu_{V}(r, \infty)$. Choose $r_{0}<r$ so that $\nu_{P}\left[r_{0}, \infty\right) \geqslant t \geqslant \nu_{P}\left(r_{0}, \infty\right)$. Let $\psi(z)=\log _{+} \frac{|z|}{r_{0}}$ and define Ψ as in Lemma 6.4. Then

$$
\Psi(T) \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(T+e^{i \theta} T^{*}\right) d \theta .
$$

Now $T+e^{i \theta} T^{*}=2 e^{i \theta / 2}\left(H \cos \frac{\theta}{2}+K \sin \frac{\theta}{2}\right)$. Hence $\left|T+e^{i \theta} T^{*}\right| \leqslant 2(|H|+$ $|K|)=P$ and it follows that $\Psi\left(T+e^{i \theta} T^{*}\right) \leqslant \Psi(P)$ for $0 \leqslant \theta \leqslant 2 \pi$.

$$
\begin{aligned}
t \log \frac{r}{r_{0}} & \leqslant \int \log _{+} \frac{|z|}{r_{0}} d \nu_{T}(z)=\Psi(T) \\
& \leqslant \Psi(P)=\int_{0}^{t} \log _{+} \frac{\mu_{s}(P)}{r_{0}} d s \leqslant t \log \frac{\mu_{t}(V)}{r_{0}}
\end{aligned}
$$

Thus $\mu_{t}(V) \geqslant r$ and hence $\nu_{V}(r, \infty) \geqslant t$ contrary to assumption.
The inequalities (6.1) and (6.2) imply that S admits a Brown measure.

Before proving our main result it will be convenient to introduce some notation. Let \mathcal{I} be any submodule of $\overline{\mathcal{M}}$ not containing \mathcal{M}. Hence $\lim _{t \rightarrow \infty} \mu_{t}(T)=0$ for every $T \in \mathcal{I}$. Let $F(r, s)$ be a function of two variables defined for $0<r<s<\infty$. We write $F \in \mathcal{F}(\mathcal{I})$ if there exists a positive operator $V \in \mathcal{I}$ such that

$$
|F(r, s)| \leqslant r \tau\left(E_{V}(r, \infty)\right)+s \tau\left(E_{V}(s, \infty)\right), \quad 0<r<s<\infty
$$

We write $F \in \mathcal{G}(\mathcal{I})$ if there if there is a positive operator $V \in \mathcal{I}$ such that

$$
|F(r, s)| \leqslant \int_{(0, \infty)}\left(r \log _{+} \frac{x}{r}+s \log _{+} \frac{x}{s}\right) d \nu_{V}(x), \quad 0<r<s<\infty
$$

Both $\mathcal{F}(\mathcal{I})$ and $\mathcal{G}(\mathcal{I})$ are easily seen to be vector spaces. Also note that $\mathcal{F}(\mathcal{I}) \subset \mathcal{G}(\mathcal{I})$ (replace V by eV .) Proposition 6.3 states that if T is normal then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $\Phi(r, s ; T) \in \mathcal{F}(\mathcal{I})$. We improve this for geometrically stable submodules.

Proposition 6.6. - Suppose \mathcal{I} is a geometrically stable submodule of $\overline{\mathcal{M}}$ with $\mathcal{M} \nsubseteq \mathcal{I}$. If $T \in \mathcal{I}$ is normal, then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $\Phi(r, s ; T) \in \mathcal{G}(\mathcal{I})$.

Proof. - One direction is trivial from Proposition 6.3. For the other direction suppose $\Phi(r, s ; T) \in \mathcal{G}(\mathcal{I})$. Choose V a positive operator in \mathcal{I} so that

$$
\begin{equation*}
|\Phi(r, s ; T)| \leqslant \int_{(0, \infty)}\left(r \log _{+} \frac{x}{r}+s \log _{+} \frac{x}{s}\right) d \nu_{V}(x), \quad 0<r<s<\infty \tag{6.12}
\end{equation*}
$$

We can assume $V \geqslant|T|$. Let $h(t)=\mu_{t}(V)$ and let

$$
g(t)=\exp \left(\frac{1}{t} \int_{0}^{t} \log h(s) d s\right), \quad 0<t<\infty
$$

Suppose $0<t<s<\infty$. Then similarly to in the proof of Proposition 6.3, we get

$$
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{t}(T)\right]\right)\right| \leqslant\left|\tau\left(T E_{|T|}\left(\mu_{s}(V), \mu_{t}(V)\right]\right)\right|+\operatorname{sh}(s)+t h(t)
$$

Now from (6.12) we get

$$
\begin{aligned}
\mid \tau\left(T E_{|T|}\right. & \left.\left(\mu_{s}(V), \mu_{t}(V)\right]\right) \mid \\
& \leqslant \int_{(0, \infty)}\left(\mu_{s}(V) \log _{+} \frac{x}{\mu_{s}(V)}+\mu_{t}(V) \log _{+} \frac{x}{\mu_{t}(V)}\right) d \nu_{V}(x) \\
& =\int_{0}^{s} h(s) \log \frac{h(u)}{h(s)} d u+\int_{0}^{t} h(t) \log \frac{h(u)}{h(t)} d u \\
& =\operatorname{sh}(s) \log \frac{g(s)}{h(s)}+t h(t) \log \frac{g(t)}{h(t)} \\
& \leqslant \operatorname{sg}(s)+t g(t) .
\end{aligned}
$$

Combining, we see that

$$
\left|\tau\left(T E_{|T|}\left(\mu_{s}(T), \mu_{t}(T)\right]\right)\right| \leqslant s(h(s)+g(s))+t(h(t)+g(t))
$$

and so by Theorem 4.7, $T \in[\mathcal{I}, \mathcal{M}]$.

Theorem 6.7. - Suppose \mathcal{I} is a submodule of $\overline{\mathcal{M}}$ with $\mathcal{M} \nsubseteq \mathcal{I}$ and $T \in \mathcal{I}$ admits a Brown measure. Then

$$
\operatorname{Re} \Phi(r, s ; T)-\Phi(r, s ; \operatorname{Re} T) \in \mathcal{G}(\mathcal{I}), \quad \operatorname{Im} \Phi(r, s ; T)-\Phi(r, s ; \operatorname{Im} T) \in \mathcal{G}(\mathcal{I})
$$

Proof. - Let $H=\operatorname{Re} T$ and $K=\operatorname{Im} T$. We need only prove the statement concerning the real part, since the other half follows by considering $i T$. We also note that if $s \leqslant 2 r$ we have $|\Phi(r, s, T)| \leqslant 2 r \nu_{T}(|z|>r)$ and $|\Phi(r, s ; H)| \leqslant 2 r \nu_{|H|}(r, \infty)$. By Proposition 6.5, this implies an estimate

$$
|\operatorname{Re} \Phi(r, s ; T)-\Phi(r, s ; H)| \leqslant 2 r \nu_{V}(r, \infty), \quad 0<r<s \leqslant 2 r<\infty
$$

for a suitable positive operator $V \in \mathcal{I}$. This means we need only consider estimates when $s>2 r$.

We first fix a smooth bump function $b: \mathbb{R} \rightarrow \mathbb{R}$ such that $\operatorname{supp} b \subset$ $(0,1 / 2), b \geqslant 0, \int b(x) d x=1$. Let $\beta(t)=2|b(t)|+\left|b^{\prime}(t)\right|$.

Now suppose $0<r<s<\infty$, with $s>2 r$. We define

$$
\varphi_{r, s}(\tau)=\int_{-\infty}^{\tau} b(t-\log r)-b(t-\log s) d t
$$

Notice that the two terms in the integrand are never simultaneously positive (since $\log 2>\frac{1}{2}$), and $\varphi_{r, s}$ is a bump function which satisfies $\varphi_{r, s}(\tau)=0$ if $\tau<\log r$ or $\tau>\frac{1}{2}+\log s$, while $\varphi_{r, s}(\tau)=1$ if $\frac{1}{2}+\log r \leqslant \tau \leqslant \log s$ and $0 \leqslant \varphi_{r, s}(\tau) \leqslant 1$ for all τ.

Then let $\rho_{r, s}$ be defined to be the function such that $\rho_{r, s}(\tau)=0$ if $\tau<\log r$ and

$$
\rho_{r, s}^{\prime \prime}(\tau)=e^{\tau}\left(2\left|\varphi_{r, s}^{\prime}(\tau)\right|+\left|\varphi_{r, s}^{\prime \prime}(\tau)\right|\right)
$$

In fact, this implies that

$$
\rho_{r, s}^{\prime \prime}(\tau)=e^{\tau}(\beta(\tau-\log r)+\beta(\tau-\log s))
$$

and then

$$
\rho_{r, s}^{\prime}(\tau)=\int_{-\infty}^{\tau} e^{t}(\beta(t-\log r)+\beta(t-\log s)) d t
$$

and

$$
\rho_{r, s}(\tau)=\int_{-\infty}^{\tau}(\tau-t) e^{t}(\beta(t-\log r)+\beta(t-\log s)) d t
$$

Thus, if we set

$$
C_{0}=\int_{-\infty}^{\infty} e^{t} \beta(t) d t
$$

then

$$
\rho_{r, s}^{\prime}(\tau) \leqslant C_{0}\left(r \chi_{(\tau>\log r)}+s \chi_{(\tau>\log s)}\right)
$$

and so

$$
\begin{equation*}
0 \leqslant \rho_{r, s}(\tau) \leqslant C_{0}\left(r(\tau-\log r)_{+}+s(\tau-\log s)_{+}\right) \tag{6.13}
\end{equation*}
$$

Now we use the argument of Lemma 2.6 of [20]. We define

$$
\psi_{r, s}(z)=\rho_{r, s}(\log |z|)-x \varphi_{r, s}(\log |z|), \quad z=x+i y \neq 0
$$

and $\psi(0)=0$. Then if $z \neq 0$,

$$
\nabla^{2} \rho_{r, s}(\log |z|)=|z|^{-2} \rho_{r, s}^{\prime \prime}(\log |z|)
$$

Similarly

$$
\nabla^{2}\left(x \varphi_{r, s}(\log |z|)=\frac{x}{|z|^{2}}\left(2 \varphi_{r, s}^{\prime}(\log |z|)+\varphi_{r, s}^{\prime \prime}(\log |z|)\right)\right.
$$

Thus by construction, $\mid \nabla^{2}\left(x \varphi_{r, s}(\log |z|) \mid \leqslant \nabla^{2}\left(\rho_{r, s}(\log |z|)\right.\right.$ and so $\psi_{r, s}$ is subharmonic. Note that $\psi_{r, s}$ also vanishes on a neighborhood of 0 and is harmonic outside a compact set. We note the estimates (from (6.13))

$$
\begin{equation*}
0 \leqslant \rho_{r, s}(\log |z|) \leqslant C_{0}\left(r \log _{+} \frac{|z|}{r}+s \log _{+} \frac{|z|}{s}\right) \tag{6.14}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqslant \psi_{r, s}(z) \leqslant C_{0}\left(r \log _{+} \frac{|z|}{r}+s \log _{+} \frac{|z|}{s}\right), \quad|z| \geqslant 2 s \tag{6.15}
\end{equation*}
$$

Note of course that C_{0} is independent of r, s.
If A admits a Brown measure or is normal with $\lim _{t \rightarrow \infty} \mu_{t}(A)=0$, let us define

$$
\begin{aligned}
& \tilde{\Phi}(r, s ; A)=\int_{\mathbb{C}}(\operatorname{Re} z) \varphi_{r, s}(\log |z|) d \nu_{A}(z) \\
& \Omega(r, s ; A)=\int_{\mathbb{C}} \rho_{r, s}(\log |z|) d \nu_{A}(z) \\
& \Psi(r, s ; A)=\int_{\mathbb{C}} \psi_{r, s}(z) d \nu_{A}(z)
\end{aligned}
$$

Thus $\Psi(r, s ; A)=\Omega(r, s ; A)-\tilde{\Phi}(r, s ; A)$ and $\Psi(r, s ;-A)=\Omega(r, s, A)+$ $\tilde{\Phi}(r, s ; A)$. We can apply Lemma 6.4 to $\Psi(r, s ; \cdot)$, giving

$$
\begin{aligned}
\Psi(r, s ; T) & \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(r, s ; T+e^{i \theta} T^{*}\right) d \theta \\
\Psi(r, s ;-T) & \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi\left(r, s ;-T-e^{i \theta} T^{*}\right) d \theta
\end{aligned}
$$

Note that $\theta \rightarrow \tilde{\Phi}\left(r, s ; T+e^{i \theta} T^{*}\right)$ is a Borel function by using Lemma 6.4 and the equation

$$
\tilde{\Phi}(r, s ; A)=\frac{1}{2}(\Psi(r, s ; A)-\Psi(r, s ;-A)) .
$$

We have

$$
\begin{align*}
\left\lvert\, \frac{1}{2 \pi} \int_{0}^{2 \pi} \tilde{\Phi}\left(r, s ; T+e^{i \theta} T^{*}\right)\right. & d \theta-\tilde{\Phi}(r, s ; T) \mid \tag{6.16}\\
& \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi} \Omega\left(r, s ; T+e^{i \theta} T^{*}\right) d \theta
\end{align*}
$$

We first estimate the right-hand side of (6.16). Note that $\Omega(r, s ; T+$ $\left.e^{i \theta} T^{*}\right)=\Omega\left(r, s ; W_{\theta}\right)$ where $W_{\theta}=2\left(H \cos \frac{\theta}{2}+K \sin \frac{\theta}{2}\right)$ is hermitian and hence from (6.14),

$$
\Omega\left(r, s, W_{\theta}\right) \leqslant C_{0}\left(r \int_{0}^{\infty} \log _{+} \frac{\mu_{t}\left(\left|W_{\theta}\right|\right)}{r} d t+s \int_{0}^{\infty} \log _{+} \frac{\mu_{t}\left(\left|W_{\theta}\right|\right)}{s} d t\right)
$$

Hence for all $0 \leqslant \theta \leqslant 2 \pi$,

$$
\Omega\left(r, s, W_{\theta}\right) \leqslant C_{0}\left(r \int_{0}^{\infty} \log _{+} \frac{\mu_{t}(P)}{r} d t+s \int_{0}^{\infty} \log _{+} \frac{\mu_{t}(P)}{s} d t\right),
$$

where $P=2(|H|+|K|)$. Thus the right-hand side of (6.16) is estimated by

$$
C_{0}\left(r \int_{0}^{\infty} \log _{+} \frac{\mu_{t}(P)}{r} d t+s \int_{0}^{\infty} \log _{+} \frac{\mu_{t}(P)}{s} d t\right)
$$

In other words the right-hand side of (6.16) belongs to $\mathcal{G}(\mathcal{I})$, and hence so does the left-hand side.

Now we turn to the left-hand side of (6.16). We note that

$$
|\tilde{\Phi}(r, s ; T)-\operatorname{Re} \Phi(r, s ; T)| \leqslant \int_{r<|z|<2 r}|z| d \nu_{T}(z)+\int_{s<|z|<2 s}|z| d \nu_{T}(z)
$$

Hence

$$
|\tilde{\Phi}(r, s ; T)-\operatorname{Re} \Phi(r, s ; T)| \leqslant 2 r \nu_{T}(|z|>r)+2 s \nu_{T}(|z|>s) .
$$

By Proposition 6.5 this implies that $\tilde{\Phi}(r, s ; T)-\operatorname{Re} \Phi(r, s ; T) \in \mathcal{F}(\mathcal{I})$.
By the same argument we also have

$$
\sup _{0 \leqslant \theta \leqslant 2 \pi}\left|\tilde{\Phi}\left(r, s ; T+e^{i \theta} T^{*}\right)-\operatorname{Re} \Phi\left(r, s ; T+e^{i \theta} T^{*}\right)\right| \in \mathcal{F}(\mathcal{I}) .
$$

Now, by using parts (1) and (3) of Proposition 6.2, we easily obtain that

$$
\sup _{0 \leqslant \theta \leqslant 2 \pi}\left|\operatorname{Re} \Phi\left(r, s ; T+e^{i \theta} T^{*}\right)-(1+\cos \theta) \Phi(r, s ; H)+\sin \theta \Phi(r, s ; K)\right| \in \mathcal{F}(\mathcal{I})
$$

So on integration we find that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \tilde{\Phi}\left(r, s ; T+e^{i \theta} T^{*}\right) d \theta-\Phi(r, s ; H) \in \mathcal{F}(\mathcal{I})
$$

It follows that the left-hand side of (6.16) differs from $\mid \operatorname{Re} \Phi(r, s ; T)-$ $\Phi(r, s ; H) \mid$ by a function in class $\mathcal{F}(\mathcal{I})$. Combining we obtain:

$$
\operatorname{Re} \Phi(r, s ; T)-\Phi(r, s ; H) \in \mathcal{G}(\mathcal{I})
$$

Compare the following to Theorem 3 of [10].
Theorem 6.8. - Let \mathcal{I} be a geometrically stable submodule of $\overline{\mathcal{M}}$. Let $T \in \mathcal{I}$ admit a Brown measure. Then $T \in[\mathcal{I}, \mathcal{M}]$ if and only if there is a positive operator $V \in \mathcal{I}$ with

$$
\begin{equation*}
\left|\int_{r<|z| \leqslant s} z d \nu_{T}(z)\right| \leqslant r \tau\left(E_{V}(r, \infty)\right)+s \tau\left(E_{V}(s, \infty)\right), \quad 0<r, s<\infty \tag{6.17}
\end{equation*}
$$

Proof. - First suppose $\mathcal{M} \nsubseteq \mathcal{I}$. Let $H=\frac{1}{2}\left(T+T^{*}\right)$ and $K=$ $\frac{1}{2 i}\left(T-T^{*}\right)$. Note that $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $H, K \in[\mathcal{I}, \mathcal{M}]$. Then by

Theorem 6.7 we have $\Phi(r, s ; T) \in \mathcal{G}(\mathcal{I})$ if and only if $\Phi(r, s ; H), \Phi(r, s ; K) \in$ $\mathcal{G}(\mathcal{I})$. By Proposition 6.6 this implies that $\Phi(r, s ; T) \in \mathcal{G}(\mathcal{I})$ if and only if $T \in[\mathcal{I}, \mathcal{M}]$.

Let $S \in \mathcal{I}$ be a normal operator with $\nu_{S}=\nu_{T}$ as given by Proposition 6.5. Then the same reasoning as above applies to S, yielding $S \in[\mathcal{I}, \mathcal{M}]$ if and only if $\Phi(r, s ; S) \in \mathcal{G}(\mathcal{I})$. By Proposition 6.3, $S \in[\mathcal{I}, \mathcal{M}]$ if and only if $\Phi(r, s ; S) \in \mathcal{F}(\mathcal{I})$. But $\Phi(r, s ; T)=\Phi(r, s ; S)$, so $T \in[\mathcal{I}, \mathcal{M}]$ if and only if $\Phi(r, s ; T) \in \mathcal{F}(\mathcal{I})$.

Now suppose $\mathcal{M} \subseteq \mathcal{I}$. If $T \in[\mathcal{I}, \mathcal{M}]$, then by Proposition 5.10, $T \in\left[\mathcal{I}_{0}, \mathcal{M}\right]$, so by the case just proved there is a positive operator $V \in \mathcal{I}_{0}$ making (6.17) hold. On the other hand, suppose $V \in \mathcal{I}$ is a positive operator making (6.17) hold. Let $S \in \mathcal{I}$ be a normal operator with $\nu_{S}=\nu_{T}$ as given by Proposition 6.5. Then

$$
|\Phi(r, s ; S)|=|\Phi(r, s ; T)| \leqslant r \tau\left(E_{V}(r, \infty)\right)+s \tau\left(E_{V}(s, \infty)\right), \quad 0<r, s<\infty
$$

Hence, by Proposition 6.3, $S \in[\mathcal{I}, \mathcal{M}]$. Invoking Propositions 5.10 and 6.3 again, we find a positive operator $V^{\prime} \in \mathcal{I}_{0}$ such that

$$
|\Phi(r, s ; S)| \leqslant r \tau\left(E_{V^{\prime}}(r, \infty)\right)+s \tau\left(E_{V^{\prime}}(s, \infty)\right), \quad 0<r, s<\infty
$$

But then, since $\mathcal{M} \nsubseteq \mathcal{I}_{0}$, we get $T \in\left[\mathcal{I}_{0}, \mathcal{M}\right]$ by the case proved above.
Let us say that T is approximately nilpotent if T admits a Brown measure with support equal to $\{0\}$. This is equivalent to the statement that $\Delta\left(g_{k}(w T)\right)=1$ for all $w \in \mathbb{C}$.

Corollary 6.9. - If \mathcal{I} is a geometrically stable submodule of $\overline{\mathcal{M}}$ then every approximately nilpotent $T \in \mathcal{I}$ belongs to $[\mathcal{I}, \mathcal{M}]$.

A trace on a submodule \mathcal{I} of $\overline{\mathcal{M}}$ is a linear functional $\rho: \mathcal{I} \rightarrow \mathbb{C}$ such that $\rho(A B)=\rho(B A)$ whenever $A \in \mathcal{I}$ and $B \in \mathcal{M}$, (i.e. such that ρ vanishes on $[\mathcal{I}, \mathcal{M}])$. The following is the analogue in the II_{∞} case of Cor. 2.4 of [8].

Corollary 6.10. - Let \mathcal{I} be a geometrically stable submodule of $\overline{\mathcal{M}}$ and suppose $\rho: \mathcal{I} \rightarrow \mathbb{C}$ is a trace. If $T \in \mathcal{I}$ admits a Brown measure ν_{T}, then $\rho(T)$ depends only on ν_{T}.

Proof. - Suppose $S \in \mathcal{I}$ admits a Brown measure ν_{S} and $\nu_{S}=\nu_{T}$. We will show $\rho(S)=\rho(T)$. Consider $R=S \oplus(-T)$ in the sense of Definition 2.4, namely, $R=V_{1} S V_{1}^{*}-V_{2} T V_{2}^{*}$ for V_{1} and V_{2} in \mathcal{M} isometries
with $V_{1} V_{1}^{*}+V_{2} V_{2}^{*}=I$. By [2, Thm. 4.3], R admits a Brown measure ν_{R} which is given by $\nu_{R}(A)=\nu_{S}(A)+\nu_{T}(-A)$. In particular, ν_{R} is invariant under the transformation of \mathbb{C} described by multiplication by -1 ; as a consequence, all of the integrals

$$
\int_{r<|z| \leqslant s} z d \nu_{R}(z)
$$

vanish, and then by Theorem 6.8, we get $R \in[\mathcal{I}, \mathcal{M}]$. From this we have $\rho(R)=0$. But $\rho(R)=\rho(S)-\rho(T)$.

We remark that in the case of an ideal \mathcal{I} of $B(\mathcal{H})$ the relationship between the subspace $[\mathcal{I}, B(\mathcal{H})]$ and the growth of the characteristic determinant is discussed further in [21], and it is possible that some analogous results can be obtained here for the Fuglede-Kadison determinant.

BIBLIOGRAPHY

[1] J.H. Anderson, Commutators in ideals of trace class operators II, Indiana Univ. Math. J., 35 (1986), 373-378.
[2] L. G. Brown, Lidskii's theorem in the type II case, in Proc. U. S. -Japan Seminar, Kyoto 1983, Pitman Research Notes Math., Ser. 123 (1986), 1-35.
[3] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., 42 (1941), 839-873.
[4] C. Cecchini, On two definitions of measurable and locally measurable operators, Bullettino U. M. I. (5), 15-A (1978), 526-534.
[5] P. G. Dodds, T. K. Dodds and B. de Pagter, Noncommutative Banach function spaces, Math. Z., 201 (1989), 583-597.
[6] P. G. Dodds, B. de Pagter, E. M. Semenov and F. A. Sukochev, Symmetric functionals and singular traces, Positivity, 2 (1998), 45-75.
[7] K. J. Dykema, T. Figiel, G. Weiss and M. Wodzicki, The commutator structure of operator ideals, Adv. Math., 185 (2004), 1-79.
[8] K. J. Dykema and N. J. Kalton, Spectral characterization of sums of commutators II, J. reine angew. Math., 504 (1998), 127-137.
[9] T. Fack, Sur la notion de valeur caractéristique, J. Operator Theory, 7 (1982), 307-333.
[10] T. Fack, Sums of commutators in non-commutative Banach function spaces, J. Funct. Anal., 207 (2004), 358-398.
[11] T. Fack and P. de la Harpe, Sommes de commutateurs dans les algègres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble, 30 (1980), 49-73.
[12] T. FACK and H. Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math., 123 (1986), 269-300.
[13] T. Figiel and N. J. Kalton, Symmetric linear functionals on function spaces, in Function spaces, interpolation theory and related topics, M. Cwikel, M. Englis, A. Kufner, L. -E. Persson and G. Sparr, editors, de Gruyter (2002), 311-332.
[14] B. Fuglede and R. Kadison, Determinant theory in finite factors, Ann. Math., 55 (1952), 520-530.
[15] A. Grothendieck, Séminaire Bourbaki, 1954/55, Textes des conférences, Exp. 113, second corrected edition, Secrétariat mathématique, Paris, 1959.
[16] D. Guido and T. Isola, Singular traces on semifinite von Neumann algebras, J. Funct. Anal., 134 (1995), 451-485.
[17] H. Halpern, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc., 139 (1969), 55-73.
[18] V. Kaftal and G. Weiss, Traces, ideals, and arithmetic means, Proc. Nat. Acad. Sci., 99 (2002), 7356-7360.
[19] N. J. Kalton, Trace-class operators and commutators, J. Funct. Anal., 86 (1989), 41-74.
[20] N. J. Kalton, Spectral characterization of sums of commutators I, J. reine angew. Math., 504 (1998), 115-125.
[21] N. J. Kalton, Traces and characteristic determinants, Rend. Circ. Math. Palermo, 56 (1998), 59-68.
[22] F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math., 37 (1936), 116-229.
[23] E. Nelson, Notes on non-commutative integration, J. Funct. Anal., 15 (1974), 103-116.
[24] V. I. OvČINnikov, The s-numbers of measurable operators, (Russian), Funkcional. Anal. i Priložen., 4 (1970) 78-85.
[25] C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan J. Math., 18 (1971), 247-252.
[26] I. E. SEGAL, A non-commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457; correction 58 (1953), 595-596.
[27] A. Ströh and G. P. West, τ-compact operators affiliated to a semifinite von Neumann algebra, Proc. R. Ir. Acad., 93A (1993), 73-86.
[28] G. Weiss, Commutators of Hilbert-Schmidt operators II, Integral Equations Operator Theory, 3/4 (1980), 574-600.
[29] G. P. West, Ideals of τ-measurable operators, Quaestiones Math., 18 (1995), 333-344.

Manuscrit reçu le 2 mai 2003, accepté le 25 mai 2004.

Kenneth J. DYKEMA, Texas A\&M University Department of Mathematics College Station TX 77843-3368 (USA)
Ken.Dykema@math.tamu.edu
Nigel J. KALTON,
University of Missouri
Department of Mathematics Columbia MO 65211 (USA) nigel@math.missouri.edu

[^0]: (*) Both authors were supported in part by grants from the NSF.
 Keywords: Commutators, type II factors, Brown measure, noncommutative function space.
 Math. classification: 46L10, 46L52.

