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RESOLUTIONS OF
HOMOGENEOUS BUNDLES ON P

2

by Giorgio OTTAVIANI & Elena RUBEI

1. Introduction.

Homogeneous bundles on P
2 = SL(3)/P can be described by

representations of the parabolic subgroup P . In 1966 Ramanan [Ra] proved
that if ρ is an irreducible representation of P then the induced bundle Eρ

on P2 is simple and even stable. Since P is not a reductive group, there
is a lot of indecomposable reducible representations of P and to classify
homogeneous bundles on P2 and among them the simple ones, the stable
ones, etc. by means of the study of the representations of the parabolic
subgroup P seems difficult.

In this paper our point of view is to consider the minimal free
resolution of the bundle. Our aim is to classify homogeneous vector bundles
on P2 by means of their minimal resolutions. Precisely we observe that if E

is a homogeneous vector bundle on P2 = P(V ) (V complex vector space of
dimension 3) there exists a minimal free resolution of E

0 →
⊕
q

O(−q)⊗C Aq −→
⊕
q

O(−q)⊗C Bq −→ E → 0

with SL(V )-invariant maps (Aq and Bq are SL(V )-representations) and
we characterize completely the representations that can occur as Aq

and Bq and the maps A → B that can occur (A :=
⊕

q O(−q) ⊗C Aq,
B :=

⊕
q O(−q)⊗C Bq). To state the theorem we need some notation.

Keywords : Homgeneous bundles, minimal resolutions, quivers.
Math. classification : 14M17, 14F05, 16G20.



974 Giorgio OTTAVIANI & Elena RUBEI

NOTATION 1. — Let q,r ∈ N; for every ρ ≥ p, let ϕρ,p be a fixed
SL(V )-invariant nonzero map Sp,q,rV⊗OP(V )(p)→ Sρ,q,rV⊗OP(V )(ρ) (it is
unique up to multiples) such that ϕρ,p = ϕρ,p′ ◦ ϕp′ ,p for all ρ ≥ p′ ≥ p

(where Sp,q,r denotes the Schur functor associated to (p,q,r), see §2).

Let P ,R ⊂ N, c ∈ Z; for any SL(V )-invariant map

γ :
⊕
p∈P

Ap ⊗ Sp,q,rV (c + p) −→
⊕
ρ∈R

Bρ ⊗ Sρ,q,rV (c + ρ)

(Ap and Bρ vector spaces) we define M(γ) to be the map

M(γ):
⊕
p∈P

Ap −→
⊕
ρ∈R

Bρ

such that

γρ,p =
{

M(γ)ρ,p ⊗ ϕρ,p for all ρ, p with ρ ≥ p,

0 for all ρ, p with ρ < p,
where

γρ,p :Ap ⊗ Sp,q,rV (c + p) −→ Bρ ⊗ Sρ,q,rV (c + ρ), M(γ)ρ,p :Ap −→ Bρ

are the maps induced respectively by γ and M(γ) (by restricting and
projecting).

THEOREM 2. — (i) On P2 = P(V ) let

A =
⊕
p,q,i

Ap,q
i ⊗ Sp,qV (i), B =

⊕
p,q,i

Bp,q
i ⊗ Sp,qV (i)

with p,q,i varying in a finite subset of N, Ap,q
i and Bp,q

i finite dimensional

vector spaces. Then A and B are the first two terms of a minimal free

resolution of a homogeneous bundle on P2 if and only if for all c ∈ Z, q, p̃ ∈ N

dim
( ⊕
p≥p̃

Ap,q
c+p

)
≤ dim

( ⊕
ρ>p̃

Bρ,q
c+ρ

)
.

(ii) Let

A =
⊕
p,q,r

Ap,q,r⊗Sp,q,rV (p+q+r), B =
⊕
p,q,r

Bp,q,r⊗Sp,q,rV (p+q+r),

p,q,r varying in a finite subset of N, Ap,q,r and Bp,q,r finite dimensional

vector spaces; let α be an SL(V )-invariant map A → B. Then there exists

a homogeneous bundle E on P2 such that

0 → A
α−−→ B −→ E → 0

is a minimal free resolution of E if and only if:

ANNALES DE L’INSTITUT FOURIER
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• M(αp,q,r):Ap,q,r → Bp,q,r is zero for all p,q,r

and

• M(αq,r):
⊕

p Ap,q,r →
⊕

ρ Bρ,q,r is injective for all q,r,

where
αp,q,r :Ap,q,r ⊗ Sp,q,rV (p) −→ Bp,q,r ⊗ Sp,q,rV (p),

αq,r :
⊕
p

Ap,q,r ⊗ Sp,q,rV (p) −→
⊕
ρ

Bρ,q,r ⊗ Sρ,q,rV (p)

are the maps induced by α.

The above theorem allows us to parametrize the set of homogeneous
bundles on P2 by a set of sequences of injective matrices with a certain
shape up to the action of invertible matrices with a certain shape. An
interesting problem is to use this parametrization to study the related
moduli spaces.

Then we begin to study which minimal free resolutions give simple
or stable homogeneous bundles. We will consider the case A is irreducible;
we call a homogeneous bundle elementary if it has minimal free resolution
0 → A → B → E → 0 with A irreducible; besides we say that a bundle E

on P2 is regular if the minimal free resolution is 0→ A→ B → E → 0 with
all the components of A with the same twist and all the components of B

with the same twist.

First we study simplicity and stability of regular elementary
homogeneous bundles. Fundamental tool are quivers and representations
of quivers associated to homogeneous bundles introduced by Bondal and
Kapranov [BK]. The quivers allow us to handle well and “to make explicit”
the homogeneous subbundles of a homogeneous bundle E and Rohmfeld’s
criterion (see [Ro]) in this context is equivalent to saying that E is semistable
if and only if the slope of every subbundle associated to a subrepresentation
of the quiver representation of E is less or equal than the slope of E.

The simplest regular elementary homogeneous bundles are the
bundles E defined by the exact sequence

0→ Sp,qV ⊗O(−s)
ϕ−−→ Sp+s,qV ⊗O −→ E → 0

for some p, q, s ∈ N, p ≥ q, ϕ an SL(V )-invariant nonzero map; we prove
that such bundles are stable, see Theorem 36 (observe that Ramanan’s
theorem does not apply here). In the particular case p = q = 0 the stability
of E was already proved in [Ba].

Besides we prove:

TOME 55 (2005), FASCICULE 3



976 Giorgio OTTAVIANI & Elena RUBEI

THEOREM 3. — A regular elementary homogeneous bundle E on P2

is simple if and only if its minimal free resolution is of the following kind

0 → Sp,qV ⊗O(−s)
ϕ−−→W ⊗O −→ E → 0

where p,q,s ∈ N, p ≥ q, W is a nonzero SL(V )-submodule of Sp,qV ⊗ SsV ,
all the components of ϕ are nonzero SL(V )-invariant maps and we are in

one of the following cases:

(i) p = 0,

(i) p > 0 and W = Sp,qV ⊗ SsV .

By using the above theorem and Theorem 47, which characterizes
stability of the minimal free resolution of regular elementary homogeneous
bundles when (with the above notation) s = 1, we find infinite examples of
unstable simple homogeneous bundles.

Finally we state a criterion, generalizing Theorem 3, to say when
an elementary (not necessarily regular) homogeneous bundle is simple by
means of its minimal free resolution, see Theorem 48.

The sketch of the paper is the following: in §2 we recall some basic
facts on representation theory; in §3 we characterize the resolutions of
homogeneous bundles on P2 : in this section we prove Theorem 9, which
contains Theorem 2; in §4 we recall the theory of quivers; in §5 we prove
some lemmas by using quivers and we fix some notation; in §6 we study
stability and simplicity of elementary homogeneous bundles.

2. Notation and preliminaries.

We recall some facts on representation theory (see for instance [FH]).

Let d be a natural number and let λ = (λ1, . . . , λk) be a partition of d

with λ1 ≥ · · · ≥ λk.

We can associate to λ a Young diagram with λi boxes in the i-th row,
the rows lined up on the left. The conjugate partition λ′ is the partition
of d whose Young diagram is obtained from the Young diagram of λ

interchanging rows and columns.

A tableau with entries in {1, . . . , n} on the Young diagram of a
partition λ = (λ1, . . . , λk) of d is a numbering of the boxes by the
integers 1, . . . , n, allowing repetitions (we say also that it is a tableau
on λ).

ANNALES DE L’INSTITUT FOURIER
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A tableau on (4,3,1)

2 3 6

5

1

8 4

1

Young diagram 
of (4,3,1)

Young diagram of (3,2,2,1),
conjugate of (4,3,1)

Let V be a complex vector space of dimension n. Let d ∈ N and let
λ = (λ1, . . . , λk) be a partition of d, with λ1 ≥ · · · ≥ λk. Number the boxes
of the Young diagram of λ with the numbers 1, . . . , d from left to right
beginning from the top row. Let Σd be the group of permutations on d

elements; let R be the subgroup of Σd given by the permutations preserving
the rows and let C be the subgroup of Σd given by the permutations
preserving the columns.

DEFINITION 4. — We define

SλV := Im
( ∑
a∈C
s∈R

sign(a)s ◦ a:
d
⊗V →

d
⊗V

)
.

The SλV are called Schur representations

The SλV are irreducible SL(V )-representations and it is well-known
that all the irreducible SL(V )-representations are of this form.

NOTATION 5. — Let V be a complex vector space and let {vj}1,...,n
be a basis of V . Let d ∈ N and λ = (λ1 , . . . ,λk) be a partition of d

with λ1 ≥ · · · ≥ λk. Let µ be the conjugate partition. Let Gλ be the free
abelian group generated by the tableaux on λ with entries in {1, . . . ,n}
and let Tλ = Gλ ⊗Z C.

Let t be the map associating to a tableau T on λ with entries
in {1, . . . ,n} the following element of V ⊗d :

vT 1
1
⊗ · · · ⊗ vT 1

λ1
⊗ · · · ⊗ vTk1 ⊗ · · · ⊗ vTk

λk

where (T j
1 , . . . ,T j

λj
) is the j-th row of T .

• We define ant : Tλ → Tλ to be the linear map such that for every
tableau T on λ

ant(T ) =
∑

(σ1 ,...,σλ1 )∈Σµ1×···×Σµλ1

sign(σ1) · · · sign(σλ1)T
σ1 ,...,σλ1 ,

TOME 55 (2005), FASCICULE 3



978 Giorgio OTTAVIANI & Elena RUBEI

where T σ1 ,...,σλ1 is the tableau obtained from T permuting the elements of
the j-th column with σj for all j. For instance

4
1

5
2 3 33 33

3

1

4

4 2

1

4

2

2

2

5 5

5

1

1 5

4

3

ant

• Analogously we define sim : Tλ → Tλ to be the linear map such that
for every tableau T on λ

sim(T ) =
∑

(σ1 ,...,σµ1 )∈Σλ1×···×Σλµ1

Tσ1 ,...,σµ1
,

where Tσ1 ,...,σµ1
is the tableau obtained from T permuting the elements of

the j-th row with σj for all j. For instance

22
4 3 34

12 2
4 43

1 11 2
34

1

3 sim

• We call ord the linear map associating to a tableau T the tableau
obtained from T ordering the entries of every row in nondecreasing way.

Observe that

ord ◦ sim = λ1! . . . λk! ord and sim ◦ ord = sim .

• Let S = t ◦ sim ◦ ant.

Obviously the space SλV can be described as the image of
S : Tλ → V ⊗d.

We recall that Pieri’s formula says that, if λ = (λ1, λ2, ...) is a
partition of a natural number d with λ1 ≥ λ2 ≥ · · · and t is a natural
number, then

SλV ⊗ StV =
⊕
ν

SνV

as SL(V )-representations, where the sum is performed on all the partitions
ν = (ν1, . . .) with ν1 ≥ ν2 ≥ · · · of d+ t whose Young diagrams are obtained
from the Young diagram of λ adding t boxes not two in the same column.

Finally we observe that if V is a complex vector space of dimension n

then S(λ1,...,λn−1)V is isomorphic to S(λ1+r,...,λn−1+r,r)V for all r as
SL(V )-representation. Besides (S(λ1,...,λn)V )∨ is isomorphic as SL(V )-
representation to S(λ1−λn,...,λ1−λ2)V . Moreover (SλV )∨ � SλV ∨.

ANNALES DE L’INSTITUT FOURIER
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NOTATION 6. — In all the paper V will be a complex vector space of
dimension 3 if not otherwise specified.

If E is a vector bundle on P(V ) then µ(E) will denote the slope of E,
i.e. the first Chern class divided by the rank.

3. Resolutions of homogeneous vector bundles.

The aim of this section is to characterize the minimal free resolutions
of the homogeneous bundles on P2.

LEMMA 7. — Let E be a homogeneous vector bundle on P2 = P(V ).
By Horrocks’ theorem [Hor] the bundle E has a minimal free resolution

0 →
⊕
q

O(−q)⊗C Aq −→
⊕
q

O(−q)⊗C Bq
ψ−−→ E → 0

(Aq, Bq C-vector spaces). Since E is homogeneous we can suppose the maps

are SL(V )-invariant maps (Aq and Bq are SL(V )-representations).

Proof (see also [Ka]). — Let

M :=
⊕
k

H0
(
E(k)

)
and S =

⊕
k

Symk V ∨.

Let mi ∈ M , i = 1, . . . , k such that no one of them can be written as
linear combination with coefficient in S of elements of the SL(V )-orbits
of the others and such that

⋃
g∈SL(V ),i=1,..,k g(mi) generates M on S.

Let qi = deg(mi). Let

Bi :=
〈 ⋃
g∈SL(V )

g(mi)
〉
C

(finite dimensional SL(V )-representations). Let

P =
⊕
i

Bi ⊗C S(−qi)

and ϕ :P → M be the SL(V )-invariant map given by multiplication. Let
ψ :B → E be the sheafification of ϕ :P → M . Thus B =

⊕
i Bi ⊗O(−qi).

Let A = Ker(ψ); it is a homogeneous vector bundle; we have H1(A(t)) = 0
for all t ∈ Z, because H0(B(t)) → H0(E(t)) is surjective for all t and
H1(B(t)) = 0 for all t, hence by Horrocks’ criterion A splits.

TOME 55 (2005), FASCICULE 3



980 Giorgio OTTAVIANI & Elena RUBEI

Remark 8.
a) If U,W, V are three vector spaces then on P (V ) we have

Hom(U ⊗O(−s),W ) = Hom(U ⊗ SsV,W ) (the isomorphism can be given
by H0( •∨)∨).

b) Let V be a vector space. For any λ, µ partitions, s ∈ N, up to
multiples there is a unique SL(V )-invariant map

SλV ⊗O(−s) −→ SµV ⊗O
by Pieri’s formula, Schur’s lemma and part a) of the remark.

Theorem 9, which implies Theorem 2, is the aim of this section.
It allows us to classify all homogeneous vector bundles on P2; in fact it
characterizes their minimal free resolutions.

Precisely part (i) allows us to say which A and B can occur in a
minimal free resolution 0 → A → B → E → 0 of a homogeneous vector
bundle E on P2; first we investigate when, given A and B direct sums of
bundles of the kind Sp,qV (−i), there exists an injective SL(V )-invariant
map A → B; roughly speaking this is true if and only if for every SL(V )-
irreducible subbundle S = Sp,qV (i) of A there exists a subbundle M(S)
of B of the kind Sp+s,qV (i + s) for some s ∈ N and we can choose M(S) in
such way that the map S �→M(S) is injective.

A crucial point of the proof is the fact that an SL(V )-invariant map
Sp,qV → Sp+s1,q+s2,s3V (s1 + s2 + s3) is injective if and only if s2 = s3 = 0
and the intersection of the kernels of the ones of such maps with s2 +s3 > 0
is nonzero.

Part (ii) allows us to say which maps A → B can occur in a minimal
free resolution 0 → A → B → E → 0 of a homogeneous bundle E ; first we
study when an SL(V )-invariant map α :A→ B is injective (A and B direct
sums of bundles of the kind Sp,q,rV (−i)). We remark that, if α :A → B

is an SL(V )-invariant map, we can suppose that the sum p + q + r − i

is constant for Sp,q,rV (i) varying among all SL(V )-irreducible subbundles
of A or B (by using the isomorphism Sp,qV � Sp+u,q+u,uV for all u ∈ N).

In the sequel we will use Notation 1.

THEOREM 9. — (i) On P2 = P(V ) let

A =
⊕
p,q,i

Ap,q
i ⊗ Sp,qV (i), B =

⊕
p,q,i

Bp,q
i ⊗ Sp,qV (i)

with p,q,i varying in a finite subset of N, Ap,q
i and Bp,q

i finite dimensional

ANNALES DE L’INSTITUT FOURIER



RESOLUTIONS OF HOMOGENEOUS BUNDLES ON P2 981

vector spaces. There exists an injective SL(V )-invariant map A→ B if and

only if for all c ∈ Z, q, p̃ ∈ N,

(1) dim
( ⊕
p≥p̃

Ap,q
c+p

)
≤ dim

( ⊕
ρ≥p̃

Bρ,q
c+ρ

)
.

(i′) Besides A and B are the first two terms of a minimal free resolution

of a homogeneous bundle on P2 if and only if for all c ∈ Z, q, p̃ ∈ N,

(2) dim
( ⊕
p≥p̃

Ap,q
c+p

)
≤ dim

( ⊕
ρ>p̃

Bρ,q
c+ρ

)
.

(ii) Let

A =
⊕
p,q,r

Ap,q,r⊗Sp,q,rV (p+q+r), B =
⊕
p,q,r

Bp,q,r⊗Sp,q,rV (p+q+r)

p,q,r varying in a finite subset of N, Ap,q,r and Bp,q,r finite dimensional

vector spaces; let α be an SL(V )-invariant map A→ B. Then α is injective

if and only if for all q,r the induced map

αq,r :
⊕
p

Ap,q,r ⊗ Sp,q,rV (p + q + r) −→
⊕
ρ

Bρ,q,r ⊗ Sρ,q,rV (ρ + q + r)

is injective and (by Lemma 13) this is true if and only if

M(αq,r):
⊕
p

Ap,q,r −→
⊕
ρ

Bρ,q,r

is injective. Besides obviously there exists a homogeneous bundle E on P2

such that

0 → A
α−−→ B −→ E → 0

is the minimal free resolution of E if and only if

• M(αq,r):
⊕

p Ap,q,r →
⊕

ρ Bρ,q,r is injective for all q,r

and

• M(αp,q,r):Ap,q,r → Bp,q,r is zero for all p,q,r.

To prove Theorem 9 we need some lemmas.

LEMMA 10. — Let V be a complex vector space of dimension n. Let

λ1 , . . . ,λn−1, s ∈ N with λ1 ≥ · · · ≥ λn−1 and

π :Sλ1 ,...,λn−1V ⊗ SsV −→ Sλ1+s,λ2 ,...,λn−1V

be an SL(V )-invariant nonzero map. Then (up to multiples) π can be

TOME 55 (2005), FASCICULE 3



982 Giorgio OTTAVIANI & Elena RUBEI

described in the following way: let T be a tableau on (λ1 , . . . ,λn−1) and

let R be a tableau on (s); then

π
(
S(T )⊗ S(R)

)
= S(TR),

where TR is the tableau obtained from T adding R at the end of its first

row and S is defined in Notation 5. In particular on Pn−1 = P(V ) any

SL(V )-invariant nonzero map

Sλ1 ,...,λn−1V (−s) −→ Sλ1+s,λ2 ,...,λn−1V

is injective.

Proof. — Let ϕ :Sλ1,...,λn−1V⊗SsV → Sλ1+s,λ2,...,λn−1V be the linear
map such that ϕ(S(T )⊗S(R)) = S(TR) for all T tableau on (λ1, . . . , λn−1)
and for all R tableau on (s); it is sufficient to prove that ϕ is well defined,
SL(V )-invariant and nonzero.

To show that it is well defined it is sufficient to show that, if
T, T ′ ∈ T(λ1,...,λn−1) are such that S(T ) = S(T ′) and R,R′ ∈ T(s) such
that S(R) = S(R′), then S(TR) = S(T ′R′) (with the obvious definition
of TR). Observe that

S(TR) = S(T ′R′) ⇐⇒ ord
(
ant(TR)

)
= ord

(
ant(T ′R′)

)
⇐⇒ ord

(
ant(T )R

)
= ord

(
ant(T′)R′

)
and the last equality follows from the fact that ord(ant(T )) = ord(ant(T ′))
because sim(ant(T )) = sim(ant(T ′)) and ord(R) = ord(R′) because
sim(R) = sim(R′).

Besides obviously the map S(T )⊗S(R) �→ S(TR) is SL(V )-invariant
and nonzero. Thus, up to multiples, it is the map π.

This implies the injectivity of any SL(V )-invariant nonzero map
Sλ1,...,λn−1V (−s)→ Sλ1+s,λ2,...,λn−1V ; in fact the induced map on the fibre
on [0 : . . . : 0 : 1] is

S(T ) �−→ S
(
T [n . . . n]

)
for all T ∈ T(λ1,...,λn−1) and if S(T [n . . . n]) = 0, then

ord ◦ sim ◦ ant
(
T [n . . . n]

)
= 0.

Thus ord ◦ ant(T [n . . . n]) = 0, but

ord ◦ ant
(
T [n . . . n]) =

(
ord ◦ ant(T )

)
[n . . . n],

hence ord ◦ ant(T ) = 0, i.e. S(T ) = 0.

ANNALES DE L’INSTITUT FOURIER
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The injectivity statement of Lemma 10 (probably well known) will be
obvious by the theory of quivers, precisely it will follow from Lemma 24,
but we wanted to show the above proof because it is more elementary and
intuitive.

LEMMA 11. — Let Pn−1 = P(V ). For every λ1 , . . . ,λn ∈ N, t ∈ Z with

λ1 ≥ · · · ≥ λn, there exist y = ytλ1 ,...,λn
∈ Sλ1 ,...,λnV (t), y = 0, such that

ϕ(y) = 0 for every SL(V )-invariant map

ϕ :Sλ1 ,....,λnV (t) −→ Sλ1+s1 ,....,λn+snV (t + s1 + · · ·+ sn)

for all s1 , . . . ,sn ∈ N such that s2 + · · ·+ sn > 0.

Proof. — It is sufficient to prove the statement when t = 0. It is
sufficient to take as y a nonzero element of the image of an SL(V )-invariant
nonzero map

ψ :Sλ2,...,λnV (−λ1) −→ Sλ1,...,λnV

(such a map exists because, by Pieri’s formula, Sλ1,...,λnV is a summand of
Sλ2,...,λnV ⊗ Sλ1V , thus we can take the map induced by the projection;
besides an SL(V )-invariant map

Sλ2,...,λnV (−λ1 − s1...− sn) −→ Sλ1+s1,....,λn+snV

is zero for all s1, . . . , sn with s2 + ... + sn > 0, because by Pieri’s
formula the induced map (i.e. H0( •∨)∨) Sλ2,...,λnV ⊗ Sλ1+s1+...+snV →
Sλ1+s1,....,λn+snV is zero, thus ϕ ◦ ψ = 0 for all ϕ as in the statement and
then ϕ(y) = 0).

Remark 12. — Let W be a finite dimensional C-vector space and
v1, . . . , vk ∈ W not all zero. Let B be a matrix with k columns such that∑

j=1,...,k Bi,jvj = 0 for all i (i.e. the coefficients of every row of B are the
coefficients of a linear relation among the vj). Then B :Ck → C

s (where s

is the number of the rows of B) is not injective.

LEMMA 13. — Fix q,r ∈ N with q ≥ r and let P ,R be finite subsets of

{p ∈ N | p ≥ q}. A map

α :
⊕
p∈P

Ap ⊗ Sp,q,rV (p) −→
⊕
ρ∈R

Bρ ⊗ Sρ,q,rV (ρ)

(Ap, Bp nonzero finite-dimensional vector spaces) is injective if and only

if M(α) is injective.
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Proof. — Let p = minP and p = maxP. Let

ψ =
⊕
p∈P

IdAp ⊗ϕp,p :
(⊕
p∈P
p≥p

Ap
)
⊗ S p,q,rV (p) −→

⊕
p∈P

Ap ⊗ Sp,q,rV (p).

The map ψ is injective by Lemma 10. We have

(3) α ◦ ψ =
( ⊕
ρ∈R
ρ≥p

IdBρ ⊗ϕρ,p
)
◦

(
M(α)⊗ IdS p,q,rV (p)

)
.

Suppose α is injective. Since ψ is injective, α ◦ ψ is injective. Thus,
by (3), M(α) is injective.

Suppose now M(α) is injective. Let x ∈ P2. Let αx be the map
induced on the fibres on x by α and for any bundle E, Ex will denote the
fibre on x.

Let P = {p1, . . . , pn} and v = (v1
1 , . . . , v

1
a1

, . . . , vn1 , . . . , vnan) ∈ Ker(αx)
where ai = dim Api and vij ∈ Spi,q,rV (pi)x . We want to show v = 0.

We can see every vij in Sp,q,r(p)x (by ϕp,pi , which is an injection);
(after fixing bases and seeing M(α) as a matrix) the coefficients of the
rows of M(α) are the coefficients of linear relations among the vij seen in
Sp,q,r(p)x, since αx(v) = 0. Thus, since M(α) is injective, by Remark 12,
the vij must be all zero, i.e. v = 0.

Proof of Theorem 9. — (i) Let α :A → B be an SL(V )-invariant
injective map. For any c, q, p̃, let

αc,q,≥p̃ :
⊕
p≥p̃

Ap,q
c+p ⊗ Sp,qV (c + p) −→

⊕
ρ≥p̃

Bρ,q
c+ρ ⊗ Sρ,qV (c + ρ)

the map induced by α, and let

ψp̃ =
⊕
p≥p̃

IdAp,q
c+p
⊗ϕp,p̃(c) :

(⊕
p≥p̃

Ap,q
c+p

)
⊗ Sp̃,qV (c + p̃)

−→
⊕
p≥p̃

Ap,q
c+p ⊗ Sp,qV (c + p).

The map ψp̃ is injective by Lemma 10. We can write

(4) αc,q, ≥p̃ ◦ ψp̃ =
(⊕
ρ≥p̃

IdBρ,q
c+ρ
⊗ϕρ,p̃

)
◦

(
M(αc,q,≥p̃)⊗ IdSp̃,qV (c+p̃)

)
.

Let v ∈ KerM(αc,q,≥p̃). If v = 0 then ψp̃(v ⊗ yc+p̃p̃,q ) (see Lemma 11 for the
definition of yc+p̃p̃,q ) is nonzero (since ψp̃ is injective) and it is in Ker(α) (in fact
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it is in Ker(αc,q,≥p̃) by (4) and thus in Ker(α) by the definition of yc+p̃p̃,q ).
Since α is injective we get a contradiction, thus v = 0. Thus M(αc,q,≥p̃)
is injective. Then (1) holds.

Suppose now (1) holds. Since

A =
⊕
c,q

(⊕
p

Ap,q
c+p ⊗ Sp,qV (c + p)

)
, B =

⊕
c,q

(⊕
ρ

Bρ,q
c+ρ ⊗ Sρ,qV (c + ρ)

)
,

to find an injective map α :A → B it is sufficient to find for all c, q an
injective map

αc,q :
⊕
p

Ap,q
c+p ⊗ Sp,qV (c + p) −→

⊕
ρ

Bρ,q
c+ρ ⊗ Sρ,qV (c + ρ).

Order p and ρ in decreasing way, fix a basis of Ap,q
c+p for all p and let αc,q

be the map such that M(αc,q) =
(
I
0

)
. Observe that, since p and ρ are

ordered in decreasing way and dim(
⊕

p≥p̃ Ap,q
c+p) ≤ dim(

⊕
ρ≥p̃ Bρ,q

c+ρ), then
the entries equal to 1 are “where ρ ≥ p”.

(i′) First observe that an SL(V )-invariant injective map α :A → B is
such that 0 → A

α−→ B → Cokerα → 0 is a minimal free resolution if and
only if the maps induced by α

αp,q,i :A
p,q
i ⊗ Sp,qV (i) −→ Bp,q

i ⊗ Sp,qV (i)

are zero.

Let 0 → A
α−→ B → Cokerα→ 0 be a minimal free resolution with α

SL(V )-invariant injective map. For any c, q, p̃, let

αc,q,>p̃,≥p̃ :
⊕
p≥p̃

Ap,q
c+p ⊗ Sp,qV (c + p) −→

⊕
ρ>p̃

Bρ,q
c+ρ ⊗ Sρ,qV (c + ρ)

the map induced by α.

We can prove that M(αc,q,>p̃,≥p̃) is injective as in the implication
‘⇒’ of (i), i.e. by considering αc,q,>p̃,≥p̃ ◦ ψp̃ with ψp̃ as above (to see that
ψp̃(v ⊗ yc+p̃p̃,q ) is in Ker(α), use also that the maps αp,q,i :A

p,q
i ⊗ Sp,qV (i)→

Bp,q
i ⊗ Sp,qV (i) are zero). Then (2) holds.

The other implication is completely analogous to the implication “if”
of (i).
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(ii) Suppose α is injective. Fix q and r. Let p = min{p | Ap,q,r = 0}
and let

ψp =
⊕
p≥p

IdAp,q,r ⊗ϕp,p :
(⊕
p≥p

Ap,q,r
)
⊗ S p,q,rV (p + q + r)

−→
⊕
p≥p

Ap,q,r ⊗ Sp,q,rV (p + q + r).

It holds

αq,r ◦ ψp =
(⊕

ρ

IdBρ,q,r ⊗ϕρ,p
)
◦ (M(αq,r)⊗ IdS p,q,rV (p+q+r)).

Let v ∈ KerM(αq,r). If v = 0 then ψp(v ⊗ y
p+q+r
p,q,r ) (see Lemma 11 for the

definition of y
p+q+r
p,q,r ) is nonzero (since ψp is injective) and it belongs to

Ker(α) (in fact it is in Ker(αq,r) by the above formula and thus in Ker(α)
by the definition of y

p+q+r
p,q,r ). Hence we get a contradiction since α is

injective, therefore v = 0. Thus M(αq,r) is injective; hence αq,r is injective
by Lemma 13.

Now suppose αq,r is injective for all q, r. Observe that α is “triangular”
with respect to q and r, thus, if for all q the induced map

αq :
⊕
p,r

Ap,q,r ⊗ Sp,q,rV (p + q + r) −→
⊕
ρ,r

Bρ,q,r ⊗ Sρ,q,rV (ρ + q + r)

is injective then α is injective; besides αq is injective for all q if for all q, r

the induced map αq,r is injective.

Theorem 9 is easily generalizable to Pn. Obviously the statement on
minimal resolutions is generalizable to minimal free resolutions with two
terms of bundles on P

n, but for a generic homogeneous bundle on P
n

with n ≥ 3 the minimal free resolution has more than two terms.

Finally we observe that Theorem 2 and the following lemma (which
will be useful also later to study simplicity) allow us to parametrize the set
of homogeneous bundles on P2 by a set of sequences of injective matrices
with a certain shape up to the action of invertible matrices with a certain
shape.

LEMMA 14. — (i) Let E and E′ be two homogeneous vector bundles

on P2 and

(5)
a) 0→ R

f−−→ S
g−−→ E → 0

b) 0→ R′
f ′−−→ S′

g′−−→ E′ → 0
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be two minimal free resolutions. Any map η :E → E′ induces maps A and B

such that the following diagram commutes

0→ R
f

−−−→ S
g

−−−→ E → 0�A �B �η
0→ R′

f ′

−−−→ S′
g′

−−−→ E′ → 0,

and given A and B such that the above diagram commutes we have a

map E → E′. Given η, the maps A and B are unique if and only if

Hom(S,R′) = 0. (In particular if Hom(S,R′) = 0 and we find A and B

such that the diagram commutes and B is not a multiple of the identity,
we can conclude that E is not simple.)

(ii) Let

(6)
a) 0→ R

f−→ S
g−→ E → 0,

b) 0→ R
f ′−→ S

g′−→ E → 0,

be two minimal free resolutions with SL(V )-invariant maps of a homoge-

neous bundle E on P2 = P(V ); then there exist SL(V )-invariant automor-

phisms A:R → R, B :S → S such that the following diagram commutes

0→ R
f

−−−→ S
g

−−−→ E → 0�A �B �Id

0→ R
f ′

−−−→ S
g′

−−−→ E → 0.

Proof. — (i) The composition S
g−→ E

η−→ E′ can be lifted to a map

B :S → S′ by the exact sequence

0 → Hom(S,R′) −→ Hom(S, S′) −→ Hom(S,E′)→ 0

(obtained by applying Hom(S, •) to (5) b). By the exact sequence

Hom(R,R′) −→ Hom(R,S′) −→ Hom(R,E′)

(obtained by applying Hom(R, •) to (5) b) the composition R
f−→ S

B−→ S′,

which goes to zero in Hom(R,E′), can be lifted to a map A :R → R′.
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(ii) As in (i) we can prove there exist SL(V )-invariant maps B :S → S

and B′ :S → S such that the following diagrams commute

0→R
f

−−−→ S
g

−−−→ E → 0�B �Id

0→R
f ′

−−−→ S
g′

−−−→ E → 0

0→R
f ′

−−−→ S
g′

−−−→ E → 0�B′ �Id

0→R
f

−−−→ S
g

−−−→ E → 0,

then we get the commutative diagram

0→R
f

−−−→ S
g

−−−→ E → 0
B′◦B

� �Id

0→R
f

−−−→ S
g

−−−→ E → 0.

Since also Id :S → S lifts Id :E → E in the above diagram (i.e.
Id ◦g = g ◦ Id), there exists a map a :S → R such that B′ ◦B − Id = f ◦ a;
hence, by the minimality of (6) a), det(B′ ◦ B) = 1 + P where P is a
polynomial without terms of degree 0; since det(B′ ◦B) : det(S) → det(S)
must be homogeneous, P = 0; hence B′ ◦ B is invertible and thus B

is invertible.

4. Quivers.

We recall now the main definitions and results on quivers and
representations of quivers associated to homogeneous bundles introduced
by Bondal and Kapranov [BK]. The quivers will allow us to handle well and
“to make explicit” the homogeneous subbundles of a homogeneous bundle.

DEFINITION 15 (see [Si], [Ki], [Hi1], [GR]). — A quiver is an oriented
graph Q with the set Q0 of vertices (or points) and the set Q1 of arrows.

A path in Q is a formal composition of arrows βm · · ·β1 where the
source of an arrow βi is the sink of the previous arrow βi−1.

A relation in Q is a linear form λ1c1 + · · · + λrcr where ci are paths
in Q with a common source and a common sink and λi ∈ C.

A representation of a quiver Q = (Q0 ,Q1), or Q-representation, is
the couple of a set of vector spaces {Xi}i∈Q0 and of a set of linear maps
{ϕβ}β∈Q1 where ϕβ :Xi → Xj if β is an arrow from i to j.
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A representation of a quiver Q with relations R is a Q-representation
such that ∑

j

λjϕβjmj
· · ·ϕβj1 = 0

for every
∑

j λjβ
j
mj
· · ·βj1 ∈ R.

Let (Xi ,ϕβ)i∈Q0 , β∈Q1 and (Yi ,ψβ)i∈Q0 , β∈Q1 be two representations
of a quiver Q = (Q0 ,Q1). A morphism f from (Xi ,ϕβ)i∈Q0 , β∈Q1 to
(Yi ,ψβ)i∈Q0 , β∈Q1 is a set of linear maps fi :Xi → Yi, i ∈ Q0 such that , for
every β ∈ Q1, β arrow from i to j, the following diagram is commutative:

Xi
fi−−−−→ Yi

ϕβ

� �ψβ
Xj

fj−−−−→ Yj .

A morphism f is injective if the fi are injective.

NOTATION 16. — We will say that a representation (Xi ,ϕβ)i∈Q0 , β∈Q1

of a quiver Q = (Q0 ,Q1) has multiplicty m in a point i of Q if dimXi = m.
The support (with multiplicities) of a representation of a quiver Q is the
subgraph of Q constituted by the points of multiplicity ≥ 1 and the nonzero
arrows (with the multiplicities associated to every point of the subgraph).

We recall now from [BK], [Hi1], [Hi2] the definition of a quiver Q such
that the category of the homogeneous bundles on P2 is equivalent to the
category of finite dimensional representations of Q with some relations R.
Bondal and Kapranov defined such a quiver in a more general setting but
we recall such a construction only for P2. See also [OR].

First some notation. Let P and R be the following subgroup of SL(3):

P =
{( a b c

0 d e
0 f g

)
∈ SL(3)

}
, R =

{( a 0 0
0 d e
0 f g

)
∈ SL(3)

}
.

Observe that R is reductive. We can see P2 as SL(3)/P , where P is the
stabilizer of [1 : 0 : 0]. Let p and r be the Lie algebras associated respectively
to P and R. Let n be the Lie algebra

n =
{( 0 x y

0 0 0
0 0 0

)
| x, y ∈ C

}
.

Thus p = r ⊕ n (Levi decomposition).
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We recall that the homogeneous bundles on P2 = SL(3)/P are given
by the representations of P (this bijection is given by taking the fibre
over [1 : 0 : 0] of a homogeneous vector bundle); by composing the projection
from P to R with a representation of R we get a representation of P and the
set of the homogenous bundles obtained in this way from the irreducible
representations of R are {

S'Q(t) | 7 ∈ N, t ∈ Z
}
,

where Q = TP2(−1).

DEFINITION 17. — From now on Q will be the following quiver:

• let

Q0 =
{
irreducible representations of R} = {S'Q(t) | 7 ∈ N, t ∈ Z

}
=

{
dominant weights of r

}
;

• letQ1 be defined in the following way: there is an arrow from λ to µ,
λ,µ ∈ Q0, if and only if n⊗Σλ ⊃ Σµ, where Σλ denotes the representation
of r with dominant weight λ.

LEMMA 18. — The adjoint representation of p on n corresponds to

Q(−2) = Ω1, more precisely: let ρ: p → gl(n) be the following represen-

tation:

ρ(B)h
((x

y

))
= Bh

(x

y

)
− h

(x

y

)
B,

where h :C2 → n is the isomorphism(x

y

)
�−→

( 0 x y
0 0 0
0 0 0

)
.

Q(−2) is the homogeneous bundle whose fibre as p-representation is n.

Proof. — Observe that if

B =

(
a b c
0 d e
0 f g

)
∈ p and A =

(
d e
f g

)
then

h−1
(
Bh

(x

y

)
− h

(x

y

)
B

)
= (a Id−tA)

(x

y

)
;

since the representation p → gl(1), B �→ a Id corresponds to the
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bundle O(−1) and the representation p → gl(2), B �→ −tA corresponds
to the bundle Q∨ = Q(−1), we conclude.

By the previous remark, if Σλ is the representation corresponding
to S'Q(t) and Σµ is the representation corresponding to S'

′
Q(t′), the

condition n⊗Σλ ⊃ Σµ is equivalent to the fact S'
′
Q(t′) is a direct summand

of Q(−2) ⊗ S'Q(t) and this is true if and only if (7′, t′) = (7 − 1, t − 1) or
(7′, t′) = (7 + 1, t− 2) (we recall that, by the Euler sequence, ∧2Q = O(1)).

Thus our quiver has three connected components Q(1), Q(2), Q(3)

(given by the congruence class modulo 3
2 of the slope of the homogeneous

vector bundles corresponding to the points of the connected component);
the figure shows one of them (the one whose points correspond to the
bundles with µ ≡ 0 mod ( 3

2 )): we identify the points of every connected
component Q(j) of Q with a subset of Z2 for convenience.

Q(4)

Q(1)

Q(−2)

S2Q(2)

S2Q(−1) S3Q

O(−3)

O

O

(3)

DEFINITION 19. — Let R be the set of relations on Q given by the
commutativity of the squares, i.e. (denoting by βw,v the arrow from v

to w):

β(x−1,y−1),(x−1,y)β(x−1,y),(x,y) − β(x−1,y−1),(x,y−1)β(x,y−1),(x,y)

for all (x,y) ∈ Q(j) ⊂ Z2 for some j, such that (x− 1,y) ∈ Q and

β(x−1,y−1),(x,y−1)β(x,y−1),(x,y)

for all (x,y) ∈ Q(j) ⊂ Z2 for some j, such that (x− 1,y) ∈ Q.
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DEFINITION 20. — Let E be a homogeneous vector bundle on P2. The
Q-representation associated to E is the following (see [BK], [Hi1], [Hi2],
[OR]). Consider the fiber E[1: 0: 0] of E on [1: 0: 0]; it is a representation
of p; as r-representation we have

E[1: 0: 0] =
⊕
λ∈Q0

Xλ ⊗ Σλ

for some vector spaces Xλ ; we associate to λ ∈ Q0 the vector space Xλ ;
we fix for all λ a dominant weight vector vλ ∈ Σλ and η1 ,η2 eigenvectors
of the p-representation n; let ψ1 ,ψ2 be their weights respectively; let i be
such that λ + ψi = µ; we associate to an arrow λ → µ a map f :Xλ → Xµ

defined in the following way: consider the composition

Σλ ⊗ n⊗Xλ −→ Σµ ⊗Xµ

given by the action of n over E[1: 0: 0] followed by projection; it maps
vλ⊗ ηi⊗ v to vµ⊗w; we define f(v) = w (it does not depend on the choice
of the dominant weight vector).

THEOREM 21 (Bondal-Kapranov, Hille; see [BK], [Hi1], [Hil2], [OR]).
— The category of the homogeneous bundles on P2 is equivalent to the

category of finite dimensional representation of the quiver Q with the

relations R.

Observe that in Definition 20 with respect to Bondal-Kapranov-Hille’s
convention in [BK], [Hi1], [Hi2], we preferred to invert the arrows in order
that an injective SL(V )-equivariant map of bundles corresponds to an
injective morphism of Q-representations. For example O injects in V (1)
whose support is the arrow from Q(1) to O:

O ◦←−−−−−◦ Q(1)

NOTATION 22. — • We will often speak of the Q-support of a
homogeneous bundle E instead of the support with multiplicities of the
Q-representation of E and we will denote it by Q-supp(E).

• The word rectangle will denote the subgraph with multiplicities of Q
given by the subgraph of Q included in a rectangle whose sides are unions
of arrows of Q, with the multiplicities of all its points equal to 1.

• The word segment will denote a rectangle with base or height equal
to 0.
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• If A and B are two subgraphs of Q, A ∩ B is the subgraph of Q
whose vertices and arrows are the vertices and arrows both of A and of B ;
A − B is the subgraph of Q whose vertices are the vertices of A not in B

and the arrows are the arrows of A joining two vertices of A−B.

Remark 23 (see [BK]). — The Q-support of Sp,qV is a rectangle as in
the figure

O(2q − p)

p− q

q

SqQ(−p) SpQ(−q)

Sp−qQ(q)

Sp,qV

In fact, by the Euler sequence Sp,qV = Sp,q(O(−1)⊕Q) as R-repre-
sentation; by the formula of a Schur functor applied to a direct sum (see
[FH, Exercise 6.11]) we get

Sp,qV =
⊕

SλQ⊗ SmO(−1)

as R-representations, where the sum is performed on m ∈ N and on λ

Young diagram obtained from the Young diagram of (p, q) by taking off m

boxes not two in the same column; thus

Sp,qV =
⊕

0≤m1≤p−q
0≤m2≤q

Sp−m1,q−m2Q(−m1 −m2)

Finally to show the maps associated to the arrows in the rectangle are
nonzero we can consider on the set of the vertices of the rectangle the
following equivalence relation: P ∼ Q if and only if there exist two paths
with P and Q respectively as sources and common sink such that the map
associated to any arrow of the two paths is nonzero; if a map associated
to an arrow (say from P1 to P2) of the rectangle is zero then, by the
“commutativity of the squares”, precisely by the relations in Definition 19,
there would be at least two equivalence classes (the class of P1 and the class
of P2), but this is impossible by the irreducibility of Sp,qV .

5. Some lemmas and notation.

In this section we study equivariant maps between some homogeneous
bundles on P2 by using the language of the quivers and we collect some
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technical notation and lemmas, which will be useful in the next section to
study homogeneous subbundles (in particular their slope) of homogeneous
bundles and then to study stability.

5.1. Q-representation of kernels and images.

LEMMA 24. — Let ϕ :Sp,qV → Sp+s1 ,q+s2 ,s3V (s1 + s2 + s3) be an

SL(V )-invariant nonzero map; then

Q- supp
(
Ker(ϕ)

)
= Q- supp(Sp,qV )(i)

−Q- supp
(
Sp+s1 ,q+s2 ,s3V (s1 + s2 + s3)

)
,

Q- supp
(
Im(ϕ)

)
= Q- supp(Sp,qV )(ii)

∩Q- supp
(
Sp+s1 ,q+s2 ,s3V (s1 + s2 + s3)

)
,

Q- supp
(
Coker(ϕ)

)
= Q- supp

(
Sp+s1 ,q+s2 ,s3V (s1 + s2 + s3)

)
(iii)

−Q- supp(Sp,qV ).

Proof. — Consider the P -invariant (and thus R-invariant) map
ϕ[1 : 0 : 0] induced by ϕ on the fibers on [1 : 0 : 0]; it is the mor-
phism from the Q-representation of Sp,qV to the Q-representation of
Sp+s1,q+s2,s3V (s1 + s2 + s3).

Obviously the R-representations corresponding to the vertices in the
Q-support of Sp,qV and not in theQ-support of Sp+s1,q+s2,s3V (s1+s2+s3)
are in Kerϕ[1 : 0 : 0].

We have to show that the R-representations corresponding to the
vertices both in the Q-support of Sp,qV and in the Q-support of
Sp+s1,q+s2,s3V (s1 + s2 + s3) are not in Kerϕ[1 : 0 : 0].

We call I the set of such vertices.

If the R-representation corresponding to an element of I is in
Kerϕ[1 : 0 : 0], then also the R-representation corresponding to another
element of I is in Kerϕ[1 : 0 : 0] : in fact by the commutativity of the
diagram in the definition of morphism of representations of a quiver, if the
R-representation corresponding to λ ∈ I is in Kerϕ[1 : 0 : 0], then also the R-
representation corresponding to any element of I linked to λ by an arrow is
in Kerϕ[1 : 0 : 0] and we conclude since for all λ1, λ2 ∈ I there is a path of the
quiver joining λ1 and λ2. Thus either any R-representation corresponding to
an element of I is in Kerϕ[1 : 0 : 0] or any R-representation corresponding
to an element of I is not in Kerϕ[1 : 0 : 0]. But the last case is impossible
because ϕ is nonzero.
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COROLLARY 25. — Let

ϕ:Sp,qV −→
⊕

s1 ,s2 ,s3

Sp+s1 ,q+s2 ,s3V (s1 + s2 + s3)

(where the sum is on a finite subset of N3) be an SL(V )-invariant nonzero

map. Then

Q- supp
(
Ker(ϕ)

)
= Q- supp(Sp,qV )−Q- supp

(
⊕Sp+s1 ,q+s2 ,s3V (s1 + s2 + s3)

)
.

LEMMA 26 (Four Terms Lemma). — On P
2 = P(V ) we have the

following exact sequence:

0 → Sq+s−1,qV (−p + q − 1 + s) −→ Sp,qV −→ Sp,q+sV (s)

−→ Sp−q−1,s−1V (q + 1 + s)→ 0,

where the maps are SL(V )-invariant nonzero maps (they are unique up to

multiples). (Observe that Sp−q−1,s−1V (q+1+s) � Sp,q+s,q+1V (q+1+s).)

Proof. — In the figure below we show the sides of the Q-supports
of Sp,qV and Sp,q+sV (s):

Sp,qV

O(2q − p + 3s) O(2q − p + 3s)

K

O(2q − p) O(2q − p)

Sp,q+sV (s)

C

These supports are rectangles (see Remark 23); thus by Lemma 24
the Q-support of the kernel of Sp,qV → Sp,q+sV (s) is the rectangle K,
which is the Q-support of Sq+s−1,qV (−p + q − 1 + s) and the Q-support
of the cokernel of Sp,qV → Sp,q+sV (s) is the rectangle C, which is the
support of Sp−q−1,s−1V (q + 1 + s).

5.2. Some calculations on the slope.

Remark 27. — (i) The first Chern class of a homogeneous bundle E

can be calculated as the sum of the first Chern classes of the irreducible
bundles corresponding to the vertices of the Q-support of E multiplied by
the multiplicities. The rank of E is the sum of the ranks of the irreducible
bundles corresponding to such vertices multiplied by the multiplicities.
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We will often speak of the slope (resp. first Chern class, rank) of a
graph with multiplicities instead of the slope (resp. first Chern class, rank)
of the vector bundle whose Q-support is that graph with multiplicities.

(ii) Suppose the set of the vertices of the Q-support of E is the
disjoint union of the vertices of the supports of two Q-representations
A and B; if µ(A) = µ(B) then µ(E) = µ(A) = µ(B), if µ(A) < µ(B)
then µ(A) < µ(E) < µ(B).

(iii) We recall that the rank of S'Q(t) is 7 + 1 and its first Chern class
is (7 + 1)( 1

2 7 + t).

LEMMA 28. — Let R be a rectangle of base h, height k and S'Q(t) as

the highest vertex of the left side. Then

µ(R) =

(h + 1)(k + 1)
{ 1

2 (h2 − k2) + h(7 + 1
2 t + 1)

+ k( 1
2 t− 1

2 7− 1) + (7 + 1)( 1
2 7 + t))

}
(h + 1)(k + 1)

(
7 + 1

2 (h + k) + 1
) ,

(where the numerator is the first Chern class and the denominator is the

rank).

Proof. — Left to the reader.

LEMMA 29. — Let S be a horizontal (resp. vertical) segment in Q(j)

for some j and let S′ be obtained translating S by (0,1) (resp (1,0))
in Q(j) ⊂ Z2. Then µ(S) < µ(S′).

S

S

SS ′

′

Proof. — Suppose S is horizontal, of length h and its first vertex from
left is S'Q(t). By Lemma 28,

µ(S′) =
h2 + 2h(7 + 1) + 7(7 + 1)

27 + 2 + h
+ t,

µ(S) =
h2 + 2h(7 + 2) + (7 + 2)(7 + 1)

2(7 + 1) + 2 + h
+ t− 2

and µ(S′) > µ(S) is easy to check. The case of vertical segments is similiar.
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LEMMA 30. — (i) Let U and U ′ be two rectangles with the same base

with the vertical sides lined up and U above U ′. Then µ(U ′) < µ(U).

(ii) Let W and W ′ be two rectangles with the same height and

the horizontal sides lined up and W at the right side of W ′. Then

µ(W ′) < µ(W ).

(iii) Let R be a rectangle and R′ a subrectangle of R with the same base

and with the lower side equal to the lower side of R. Then µ(R′) < µ(R).

(iv) Let T be a rectangle and T ′ a subrectangle of T with the same height

and with the left side equal to the left side of T . Then µ(T ′) < µ(T ).

U

U ′

R

R′

T

T ′WW ′

Proof. — (i) By Lemma 29 and Remark 27 the slope of a rectangle is
between the slope of the lower side and the slope of the higher side, thus
again by Lemma 29 we conclude. Assertion (ii) is analogous to (i); (iii)
and (iv) follow from (i) and (ii).

5.3 Staircases.

In this subsection we introduce particular Q-representations, called
“staircases”. Their importance is due to the fact that they are the Q-
supports of the homogeneous subbundles of the homogeneous bundles
whose Q-supports are rectangles (in particular of the trivial homogeneous
bundles).

Remark 31. — Let E be a homogeneous bundle on P2 and F be
a homogeneous subbundle. Let S and S′ be the Q-supports of E and F

respectively. By Theorem 21 the Q-representation of F injects into the
Q-representation of E. If the multiplicities of S are all 1 and S′ contains
the source of an arrow β in S then S′ contains β.

DEFINITION 32. — We say that a subgraph with multiplicities of Q
is a staircase S in a rectangle R if all its multiplicities are 1 and the
graph of S is a subgraph of R satisfying the following property: if V is a
vertex of S then the arrows of R having V as source must be arrows of S

(and then also their sinks must be vertices of S). We say that a subgraph
with multiplicities of Q is a staircase if it is a staircase in some rectangle.
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R R R R

S S S S

Observe that a staircase S in a rectangle R has as matter of fact the
form of a staircase with base and left side included respectively in the base
and the left side of R as in the figure above. By Remark 31 the Q-support
of a homogeneous subbundle of a homogeneous bundle whose Q-support is
a rectangle is a staircase in the rectangle.

V1

V2

V3

V4

R3 H1

H2

H3

H4

E1

E2

E3

E4

O1

O2

O3 A3

B3O3

O4

NOTATION 33 (see the figure above). — Given a staircase S in a
rectangle we define VS to be the set of the vertices of S that are not sinks
of any arrow of S. We call the elements of VS the vertices of the steps.
Let VS = {V1 , . . . ,Vk} ordered in such a way the projection of Vi+1 on the
base of R is on the left of the projection of Vi for all i = 1, . . . ,k − 1.

We define Ri as the rectangles with the right higher vertex equal to Vi
and left lower vertex equal to the left lower vertex of R.

For any i = 1,....,k, we define:

• the i-th horizontal step Hi = Ri −Ri−1 (R0 = ∅),
• the i-th vertical step Ei = Ri −Ri+1 (Rk+1 = ∅),
• the i-th sticking out part Oi = Hi ∩ Ei.

Let si and ri be the lines containing respectively the higher side of Oi

and the right side of Oi.

For i = 1, . . . ,k − 1, let Si be the rectangle whose sides are on ri,
si+1, the line of the base of the staircase and the line on the left side of
the staircase.

Let Ai, for i = 1, . . . ,k− 1, and Bi, for i = 2, . . . ,k, be the rectangles

Ai = Si −Ri −Ri+1 , Bi = Si−1 −Ri −Ri−1.
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6. Results on stability and simplicity of
elementary homogeneous bundles.

DEFINITION 34. — We say that a G-homogeneous bundle is multistable
if it is the tensor product of a stable G-homogeneous bundle and an
irreducible G-representation.

THEOREM 35 (Rohmfeld, Faini). — (i) (see [Ro]) A homogeneous

bundle E is semistable if and only if µ(F ) ≤ µ(E) for any subbundle F of

E induced by a subrepresentation of the P -representation inducing E.

(ii) (see [Fa]) A homogeneous bundle E is multistable if and only if

µ(F ) < µ(E) for any subbundle F of E induced by a subrepresentation of

the P -representation inducing E.

THEOREM 36. — Let p,q ∈ N with p ≥ q and s > 0. Let E be the

homogeneous vector bundle on P2 = P(V ) defined by the following exact

sequence:

(7) 0→ Sp,qV (−s)
ϕ−−→ Sp+s,qV −→ E → 0,

where ϕ is a nonzero SL(V )-invariant map. Then E is stable (in particular

it is simple).

Proof. — To show that E is stable it is sufficient to show that it is
multistable; in fact if E is the tensor product of a stable homogeneous vector
bundle E′ with an SL(V )-representation W , then the minimal resolution
of E must be the tensor product of the minimal resolution of E′ with W

and from (7) we must have W = C.

To show that E is multistable we consider the Q-representation
associated to E. In the figure we show the sides of the Q-supports of
Sp,qV (−s) and Sp+s,qV ; these supports are rectangles (see Remark 23);
thus the Q-support of E is the rectangle R (see figure next page).

By Theorem 35, E is multistable if µ(F ) < µ(E) for any subbundle F

of E induced by a subrepresentation of the P -representation inducing E.
Observe that, by Remark 31, the support of theQ-representation of any such
subbundle F must be a staircase C in R and vice versa anyQ-representation
whose support is a staircase C in R is theQ-representation of a subbundle F

of E induced by a subrepresentation of the P -representation inducing E.
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q q q

O(2q − p− s) O(2q − p− s) O(2q − p− s)

Sp,qV (−s) Sp+s,qV

p− q p + s− q

s− 1

E

R

We will show by induction on the number k of steps of C that
µ(C) < µ(R) for any C staircase in R.

• k = 1. — In this case C is a subrectangle in the rectangle R. Thus
this case follows from Lemma 30.

• k − 1 implies k. — We will show that, given a staircase C in R

with k steps, there exists a staircase C ′ in R with k − 1 steps such that
µ(C) ≤ µ(C ′). If we prove this, we conclude because µ(C) ≤ µ(C ′) < µ(R),
where the last inequality holds by induction hypothesis.

Let C1 and C2 be two staircases as in the figure

R R R

C

O

C1 C2

T

that is, C1 and C2 are staircases with k − 1 steps obtained from C

respectively “removing and adding” two rectangles O and T . Precisely O

is a sticking out part Oi of C for some i and T is a nonempty rectangle
among the two rectangles Ai, Bi (see Notation 33).

If µ(C1) ≥ µ(C) we conclude at once.

Thus we can suppose that µ(C1) < µ(C). We state that in this case
µ(C2) ≥ µ(C). In fact: let µ(C1) = a/b, µ(O) = c/d and µ(T ) = e/f,

where the numerators are the first Chern classes and the denominators
the ranks; since µ(C1) < µ(C), we have a/b < (a + c)/(b + d), thus
a/b < c/d; besides µ(O) < µ(T ) by Lemma 30, i.e. c/d < e/f ; thus
(a + c + e)/(b + d + f) ≥ (a + c)/(b + d) i.e. µ(C2) ≥ µ(C).

Observe that, by Lemma 14 (i), the simplicity statement of Theo-
rem 36 is equivalent to:

COROLLARY 37. — Let p,q,s ∈ N with p ≥ q, s > 0 and let A and B
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be two linear maps such that the following diagram commutes:

Sp,qV ⊗ SsV
π−−−−→ Sp+s,qV

A⊗Id

� �B
Sp,qV ⊗ SsV

π−−−−→ Sp+s,qV ,

where π is a nonzero SL(V )-invariant projection (it is unique up to

multiple); then A = λ Id and B = λ Id for some λ ∈ C.

Now we want to prove Theorem 3; first it is necessary to prove several
lemmas.

LEMMA 38. — Let p,q,s ∈ N with p ≥ q. For every

M ⊂
{
(s1 ,s2 ,s3) ∈ N3 | s1 + s2 + s3 = s, s2 ≤ p− q, s3 ≤ q

}
,

let PM be the following statement: for every V complex vector space of

dimension 3, the commutativity of the diagram of bundles on P(V ):

Sp,qV (−s)
ϕ−−−−−−→

⊕
(s1 ,s2 ,s3)∈M

Sp+s1 ,q+s2 ,s3V

A

� �B
Sp,qV (−s)

ϕ−−−−−−→
⊕

(s1 ,s2 ,s3)∈M
Sp+s1 ,q+s2 ,s3V

(where A and B are linear maps and the components of ϕ are nonzero

SL(V )-invariant maps) implies A = λ Id and B = λ Id for some λ ∈ C. Let{
(s1 ,s2 ,s3) ∈ N3 | s1 + s2 + s3 = s, s2 ≤ p− q, s3 ≤ q

}
= R ∪ T

with R ∩ T = ∅, R = ∅, T = ∅. Then PR is true if and only if PT is true.

Proof. — Suppose PT is true. We want to show PR is true. Let A

and B such that the diagram

Sp,qV (−s)
ϕ−−−−−−→

⊕
(s1,s2,s3)∈R

Sp+s1,q+s2,s3V

A

� �B
Sp,qV (−s)

ϕ−−−−−−→
⊕

(s1,s2,s3)∈R
Sp+s1,q+s2,s3V
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commutes. It is equivalent to the diagram

Sp,qV ⊗ SsV
π−−−−−→

⊕
(s1,s2,s3)∈R

Sp+s1,q+s2,s3V

A⊗Id

� �B
Sp,qV ⊗ SsV

π−−−−−→
⊕

(s1,s2,s3)∈R
Sp+s1,q+s2,s3V .

Thus (A⊗ Id)(Kerπ) ⊂ Kerπ. Observe that

Kerπ =
⊕

(s1,s2,s3)∈T
Sp+s1,q+s2,s3V.

Then we get the following commutative diagram:⊕
(s1,s2,s3)∈T

Sp+s1,q+s2,s3V −→ Sp,qV ⊗ SsV� �A⊗Id⊕
(s1,s2,s3)∈T

Sp+s1,q+s2,s3V −→ Sp,qV ⊗ SsV .

Let W = V ∨. Substitute W∨ for V in the above diagram and dualize;
the diagram we obtain is equivalent to the following commutative diagram
of bundles on P(W )

Sp,qW (−s)−−−−→
⊕

(s1,s2,s3)∈T
Sp+s1,q+s2,s3W�A∨ �

Sp,qW (−s)−−−−→
⊕

(s1,s2,s3)∈T
Sp+s1,q+s2,s3W .

By PT we conclude that A∨ = λ Id and then A = λ Id.

DEFINITION 39. — We say (see figure below) that a staircase is regular
if all the vertices of the steps (see Notation 33) are on a line with angular
coefficient equal to −1.
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LEMMA 40. — The bundles whose support is a regular staircase are

multistable.

Proof of Lemma 40.

Fact 1. — For any regular staircase we have

µ(Hi) > µ(Hi−1) and µ(Ei) > µ(Ei+1)

for any i, where Hi are the horizontal steps and Ei are the vertical steps
(see Notation 33); recall that Hi+1 is below Hi and Ei+1 is on left of Ei.

Proof. — Obviously it is sufficient to prove the statement for a regular
staircase with two steps. It is a freshman calculation (even if a bit long)
(use Lemma 28).

Fact 2. — Let S be a regular staircase. Then for every sticking out
part O of S we have µ(O) > µ(S −O). Therefore µ(S) > µ(S −O).

Proof. — Let b be the line on which the base of O is and let 7 be the
line on which the left side of O is. Let T1 be the staircase whose vertices are
the vertices of S that are either above b or on b and on the left of 7 (see the
figure below). Let T2 be the staircase whose vertices are the vertices of S

that are below b and either on the right of 7 or on 7.

Let K be the rectangle K = S − T1 − T2 −O.

T1

T2K

O

By Lemma 30 µ(O) > µ(K). Besides, by applying Fact 1 to the
staircases T1 + O and T2 + O (where Ti + O is the smallest staircase
containing Ti and O), we get µ(O) > µ(T1) and µ(O) > µ(T2). Hence
µ(O) > max{µ(K), µ(T1), µ(T2)} ≥ µ(S −O) (see Remark 27).

Now we are ready to prove that every bundle such that its Q-
support is a regular staircase S is multistable. Let C be the support
of a Q-representation subrepresentation of S (thus again a staircase by
Remark 31). We want to prove µ(C) < µ(S) by induction on the number k

of steps of C.

• k = 1. — The statement follows from Lemma 30 and Fact 1.
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• k − 1 implies k. — We do induction on − length(bd(C) ∩ bd(S)),
where bd denotes the border and the border of a staircase is the border of
the part of the plane inside the staircase.

Let C be a staircase with k steps support of a subrepresentation of S.
Let Oi be the i-th sticking out part of C.

? If µ(C−Oi) ≥ µ(C) for some i we conclude at once because C−Oi

has k − 1 steps; thus by induction assumption µ(S) > µ(C − Oi)
and then µ(S) > µ(C).

? Thus we can suppose µ(C) > µ(C −Oi) for all i i.e. µ(Oi) > µ(C)
for all i.

Let A′i be the biggest rectangle in Ai ∩ S with the lower side equal to
the lower side of Ai and let B′i be the biggest rectangle in Bi ∩ S with the
left side equal to the left side of Bi (see Notation 33 for the definition of Ai

and Bi).

A

CC

i

BiOi

A′i

B′i

S

Suppose that there exists i such that either A′i or B′i is not empty;
for instance suppose B′i = ∅. Since µ(B′i) > µ(Oi) by Lemma 30 and
µ(Oi) > µ(C) by assumption, we have µ(B′i) > µ(C) and thus

(8) µ(C + B′i) > µ(C)

where C + B′i is the smallest staircase containing C and B′i. If Bi is a
subgraph of S i.e. Bi = B′i, then C +B′i is a staircase with k− 1 steps thus,
by induction assumption, µ(S) > µ(C + B′i); hence µ(S) > µ(C) by (8).

If Bi is not a subgraph of S i.e. Bi = B′i, then

length
(
bd(C + B′i) ∩ bd(S)

)
> length

(
bd(C) ∩ bd(S)

)
and by induction assumption µ(S) > µ(C + B′i); hence we conclude
again µ(S) > µ(C) by (8).

If A′i and B′i are empty for all i then there exists a chain of staircases
C = S0 ⊂ S1 ⊂ · · · ⊂ Sr = S such that Si is obtained from Si+1 taking off
one of its sticking out parts, thus, by Fact 2, we conclude.
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LEMMA 41. — a) The Q-support of S'Q(t) ⊗ SqV is (see also the

figure below):

(i) if 7 ≥ q, the subgraph of Q, with all the multiplicities equal to 1,
included in an isosceles right-angled triangle with horizontal and vertical

catheti of length q, the direction of the hypotenuse equal to NW-SE, the

vertex opposite to the hypothenus equal to the lowest left vertex and equal

to S'Q(t− q);

(ii) if 7 < q the subgraph of Q, with all the multiplicities equal to 1,
included in a right-angled trapezium with horizontal bases, left side

orthogonal to the bases, right side with angular coefficient −1, length

of the inferior base equal to q, the lowest left vertex equal to S'Q(t− q).

b) By duality (or directly) we can get an analogous statement for the

Q-support of S'Q(t)⊗ Sq,qV (see the figure).

Proof. — Use that SqV =
⊕

i=0,...,q Sq−iQ(−i) as R-representation
and Clebsch-Gordan’s formula, see [FH]: if 7 ≥ m, then

S'Q(t)⊗ SmQ(r) = S'+mQ(t + r)⊕ S'+m−2Q(t + r + 1)

⊕ · · · ⊕ S'−mQ(t + r + m)

DEFINITION 42. — We say that a staircase is completely regular if it is
equal to one of the subgraphs of Q described in a of Lemma 41.

7 7

7

7

7

7 7

7

7 7

7 7

≥ q

S Q(t− q) S Q(t− q)

q

q

q

q

q

q

q

>

7 ≥ q q >

S Q(t + q) S Q(t + q)

S Q(t)⊗ Sq,qV S Q(t)⊗ Sq,qV

S Q(t)⊗ SqVcompletely regular staircase

LEMMA 43. — A bundle whose support is a regular staircase is stable

if and only if the staircase is not completely regular.
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Proof. — Observe that the Q-support of S'Q(t) ⊗ Sp,qV has some
multiplicity ≥ 2 if p = q and q = 0; in fact among the vertices of
the Q-support of Sp,qV there are O(2q − p) and S2Q(−1 + 2q − p),
thus, by Clebsch-Gordan’s formula, S'Q(t + 2q − p) occurs at least twice
in S'Q(t)⊗ Sp,qV .

By Lemma 40 if a bundle E has a regular staircase as Q-support,
then E = E′ ⊗ T where E′ is a stable vector bundle and T is a vector
space SL(V )-representation; if T = Sp,qV with p = q and q = 0 then by the
previous remark the Q-support of E′ ⊗ T has some multiplicity ≥ 2. Thus
we must have T = Sq,qV or T = SqV and since the Q-support of E′ ⊗ T

is a staircase only the last case is possible by Lemma 41. Thus we conclude
by Lemma 41, in fact a regular staircase can be the disjoint union of k

completely regular staircases with the same length of the base if and only
if k = 1 i.e. it is a completely regular stairacase (we can see this arguing on
the upper part of the border).

Remark 44. — If p + q = p′ + q′, then the rectangles that are the
Q-supports of Sp,qV (t) and Sp

′,q′V (t) have the highest right vertices on a
line with angular coefficient −1.

If p′′ + q′′ − t′′ = p + q− t and t′′ < t, then the highest right vertex of
the Q-support of Sp

′′,q′′V (t′′) is below this line.

LEMMA 45. — Let p,q,s ∈ N with p ≥ q and s > 0. Let

T ⊂
{
(s1 ,s2 ,s3) | s1 + s2 + s3 = s, s2 ≤ p− q, s3 ≤ q

}
, T $ (s,0,0).

Let A and B be two linear maps such that the following diagram of bundles

on P(V ) commutes:

Sp,qV (−s)
ϕ−−−−→

⊕
(s1 ,s2 ,s3)∈T

Sp+s1 ,q+s2 ,s3V

A

� �B
Sp,qV (−s)

ϕ−−−−→
⊕

(s1 ,s2 ,s3)∈T
Sp+s1 ,q+s2 ,s3V ,

where ϕ is an SL(V )-invariant map with all its components nonzero. Then

A = λ Id and B = λ Id for some λ ∈ C.
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Proof. — Observe that A(Ker(ϕ)) ⊂ Ker(ϕ). Thus we have a
commutative diagram

(9)

Ker(ϕ)−−−−→ Sp,qV (−s)

A|Ker(ϕ)

� �A

Ker(ϕ)−−−−→ Sp,qV (−s).

Let 0 → R → S → Ker(ϕ) → 0 be a minimal free resolution of Ker(ϕ).
By Lemma 14 the map A Ker(ϕ) : Ker(ϕ)→ Ker(ϕ) induces a commutative
diagram

0 →R−→ S −→Ker(ϕ)→ 0� � �A|Ker(ϕ)

0 →R−→ S −→Ker(ϕ)→ 0.

Let Smax be the direct sum of the summands of S with maximum twist and
let S = Smax ⊕ S′; thus the previous diagram is

0 →R−→ Smax ⊕ S′ −→Ker(ϕ)→ 0� � ↙
� �A|Ker(ϕ)

0 →R−→ Smax ⊕ S′ −→Ker(ϕ)→ 0.

Then we get a commutative diagram

Smax −−−−→Ker(ϕ)�α
�A|Ker(ϕ)

Smax −−−−→Ker(ϕ)

and, if f is the composition of the map Smax → Ker(ϕ) with the inclusion
Ker(ϕ)→ Sp,qV (−s), by (9) we get the commutative diagram

(10)

Smax
f−−−−→ Sp,qV (−s)�α �A

Smax
f−−−−→ Sp,qV (−s)

and thus a commutative diagram

(11)

0 →Ker(f)−→ Smax
f−−−→ Im(f)→ 0� �α �γ

0 →Ker(f)−→ Smax
f−−−→ Im(f)→ 0,

where γ = A Im(f).
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Now we will prove that if Im(f) is simple then A is a multiple of the
identity. Let 0 → K → M → (Im f)∨ → 0 be a minimal free resolution
of (Im f)∨; for any β :M → M induced by γ∨ we have the following
commutative diagram:

M −−−−→ (Im f)∨

β

� �γ∨
M −−−−→ (Im f)∨

and then by (11)
M

r−−−−→ S∨max

β

� �α∨
M

r−−−−→ S∨max.

In particular, since (Im f)∨ is simple, γ∨ is a multiple of the identity, thus
β can be taken equal to a multiple of the identity.

Observe that all the components of r are nonzero (because the map
M → (Im f)∨ is surjective and all the components of f∨ : (Im f)∨ → S∨max

are nonzero, since no component of Smax is sent to 0 by f); besides, up to
twisting, we can suppose Smax is a trivial bundle and then H0(r∨)∨ is a
projection. Hence, since β is a multiple of the identity, α∨ (and then α) is
a multiple of the identity.

Thus, by (10) also A is a multiple of the identity as we wanted
(twist (10) by s and consider H0( •∨)∨ of every map of the obtained
diagram; in this way we get a diagram of SL(V )-representations whose
horizontal maps are surjective, since they are SL(V )-invariant and nonzero
and Sp,qV is irreducible).

Observe that, by Remark 44, the Q-support of Im f is a regular
staircase in the Q-support of Sp,qV (−s), since all the summands of Smax

have the same twist.

Thus by Lemma 43 we can conclude at once if the Q-support of Im f

is not a completely regular staircase.

Therefore we can suppose the Q-support of Im f is a completely
regular staircase.

Observe that, by Remark 44, if the Q-support Im f is a completely
regular staircase then S = Smax and thus Im f = Kerϕ.

Consider the following exact sequence

(12) 0→ Kerϕ −→ Sp,qV (−s) −→ Imϕ→ 0.
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Up to dualizing we can suppose that also the Q-support of Imϕ is of the
kind b of Lemma 41.

Thus the unique remaining cases are the cases in which the
sequence (12) twisted by s is one of the following:

0 → SqQ(−q − 1)⊗ Sp−q−1V −→ Sp,qV• Case A:

−→ Sp−qQ⊗ Sq,qV → 0.

O(2q−p)

O(2q−p)

Sp−qQ(q)

Sp−qQ(q)
p−q

p−q

Sq(−p)Sq(−p)

p−q−1p−q−1

p−q > q p− q ≤ q

q

q

Case A

︷ ︸︸ ︷
︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

0→ SqQ(−q)⊗ Sp−qV −→ Sp,qV• Case B:

−→ Sp−qQ(1)⊗ Sq−1,q−1V → 0.

q−1
q−1

p− q ≥ q p− q < q

O(2q−p)

O(2q−p)

Sp−qQ(q)

Sp−qQ(q)

Sq(−p)Sq(−p)
p−q

p−q

qq

Case B

Observe that Case B is equivalent to Case A (by dualizing and
considering q′ = p− q). Thus it is sufficient to consider Case A. By (9) we
get a commutative diagram

0→ SqQ(−q − 1)⊗ Sp−q−1V −→ Sp,qV −→ Sp−qQ⊗ Sq,qV → 0� � �
0→ SqQ(−q − 1)⊗ Sp−q−1V −→ Sp,qV −→ Sp−qQ⊗ Sq,qV → 0.

By taking the cohomology (in particular H0) we get

0 −→ 0 −→ Sp,qV −→ Sq,qV ⊗ Sp−qV� � �
0 −→ 0 −→ Sp,qV → Sq,qV ⊗ Sp−qV
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since H0(SqQ(−q − 1)) = 0 and H0(Sp−qQ) = Sp−qV (to calculate
the cohomology of S'Q(t) use for instance its minimal resolution
0 → S'−1V (t − 1) → S'V (t) → S'Q(t) → 0). We conclude by applying
Lemma 37 to the dual of the right part of the diagram.

From Lemmas 45 and 38 we deduce at once:

COROLLARY 46. — Let p,q,s ∈ N with p ≥ q. Let A and B be two

linear maps such that the following diagram of bundles on P(V ) commutes

Sp,qV (−s)
ϕ−−−−→ W

A⊗Id

� �B
Sp,qV (−s)

ϕ−−−−→ W ,

where W is a non trivial SL(V )-submodule of Sp,qV ⊗ SsV and all the

components of ϕ are nonzero SL(V )-invariant maps. Then A = λ Id and

B = λ Id for some λ ∈ C.

Proof of Theorem 3. — The case p = 0 is trivial. Thus we can
suppose p > 0. By Corollary 46, the only thing we have to prove is
that if in W ⊗ O there are two copies of an irreducible bundle F , i.e.
W = F ⊕ F ⊕W ′, then E is not simple: in fact the following diagram
induces an automorphism on E not multiple of the identity:

0 → Sp,qV (−s) −−−→ F ⊕ F ⊕W ′ −−−→E→ 0� −
� � � �

0 → Sp,qV (−s) −−−→

2

−−−→

F ⊕ F ⊕W ′ −−−→E→ 0

Id IdIdIdId
Id

(see Lemma 14).

The following theorem gives a precise criterion to see when a regular
elementary homogeneous bundle E on P2 is stable or simple in the case the
difference of the twists of the first bundle and of the middle bundle of the
minimal free resolution of E is 1.

THEOREM 47. — Let E be a homogeneous bundle on P2 with minimal

free resolution

0 → Sp,qV
ϕ−−→

⊕
α∈A

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V (1)→ E → 0

with p ≥ q ≥ 0, sαi ∈ N, 1 = sα1 + sα2 + sα3 , A finite subset of indices and

all the components of ϕ nonzero SL(V )-invariant maps. Then:
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(i) E is simple if and only if its minimal free resolution has one of the

following forms:

0→ Sp,qV → Sp+1,qV (1)→ E → 0,

0→ Sp,qV → Sp+1,qV (1)⊕ Sp,q+1V (1)→ E → 0 with q = 0,

0→ Sp,qV → Sp+1,qV (1)⊕ Sp,q,1V (1)→ E → 0 with q = 0 and p = q.

(ii) E is stable if and only if E is simple and, moreover, in the case its

minimal resolution is of the third type 2q ≥ p > q.

Proof. — Part (i) follows from Theorem 3. So it is enough to check
when the bundles described in (i) are stable. The first case follows from
Lemma 37. For the second case note that the Q-support of E is a not
completely regular staircase, thus we conclude by Lemma 43. In the third
case the Q-support of E is the following:

O(2q−p)

Tq−1

p− q + 1

P = Sp+1V (−q + 1)

The bundle E is multistable if and only if µ(T ) < µ(E) and µ(P ) < µ(E)
and, by using Lemma 28, one can show that this is true if and only if

−5p + 2q − 2− 4p2 + 3pq + p2q − p3 < 0 and

3p2 + p3 − 8pq − 2p2q − 4− 8q < 0

respectively. The first inequality always holds since p ≥ q. The last
inequality is equivalent to p ≤ 2q since its first member is equal to
(p + 2)2(p − 1 − 2q). Thus E is multistable if and only if p ≤ 2q. In this
case, by Lemma 41, it is stable if and only if p = q.

In [Fa] an example of a simple unstable homogeneous bundle on P2

is exhibited. Theorem 47 shows infinite examples of such bundles.

We end with a theorem which studies the simplicity of elementary
homogeneous bundles.

THEOREM 48. — Let p ≥ q. Let E be the homogeneous vector bundle

on P2 = P(V ) defined by the following exact sequence (A a finite set of

indices)
0 → Sp,qV

ϕ−−→
⊕
α∈A

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V (sα) −→ E → 0,
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where sα1 + sα2 + sα3 = sα for all α ∈ A and the components ϕα of ϕ are

SL(V )-invariant maps. Then E is simple if and only if the following five

conditions hold:

a) there do not exist α,β ∈ A such that sαi ≤ sβi i = 1,2,3;

b) all the components ϕα of ϕ are nonzero, in particular p ≥ q + sα2
and q ≥ sα3 for all α ∈ A;

c) for all α,β ∈ A such that sα > sβ , we have that if sβ2 > 0 then

sβ3 + sα − sβ < q + 1 and if sβ1 > 0 then q + sβ2 + sα − sβ < p + 1;

d) for all α,β,γ ∈ A such that sα = sβ < sγ , we have sγ − sα ≥
max{|sαi − sβi | i = 1,2,3};

e) if p > 0 and if there exists an s such that sα = s for all α ∈ A then⊕
α∈A Sp+s

α
1 ,q+s

α
2 ,s

α
3 V = Sp,qV ⊗ SsV .

Sketch of the proof. — Any automorphism η of E induces maps A

and B as in Lemma 14 and given A and B we have an automorphism of E.
We call

BK,J :
⊕
α∈J

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V (sα) −→

⊕
α∈K

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V (sα)

the map induced by B, for all J ,K of A. We denote BJ = BJ,J ,
Bα,β = B{α},{β} and Bα = B{α} for short. Besides

ϕJ :Sp,qV −→
⊕
α∈J

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V (sα)

denotes the map induced by ϕ, for all J ⊂ A.

We show now that the simplicity of E implies a), b), c), d), e);
conditions a), b) and e) are left to the reader.

c) Observe that if for some α, β ∈ A there exists a nonzero map

γ :Sp+s
β
1 ,q+s

β
2 ,s

β
3 V (sβ) −→ Sp+s

α
1 ,q+s

α
2 ,s

α
3 V (sα)

such that γ ◦ ϕβ = 0 then E is not simple (take Bα,β = γ, A = Id, Bα = Id
for all α ∈ A, Bα,β = 0 for all (α, β) = (α, β) and use Lemma 14). Such a γ

exists if and only if there exists a nonzero map

Γ :Sp+s
β
1 ,q+s

β
2 ,s

β
3 V ⊗ Ss

α−sβV −→ Sp+s
α
1 ,q+s

α
2 ,s

α
3 V

such that Γ◦H0((ϕβ(−sα))∨)∨ = 0. This is equivalent to the non surjectivity
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of H0((ϕβ(−sα)∨)∨, which is the injection followed by the projection

Sp,qV⊗Ss
α

V → Sp,qV⊗Ss
β

V⊗Ss
α−sβV → Sp+s

β
1 ,q+s

β
2 ,s

β
3 V⊗Ss

α−sβV,

and we conclude by Pieri’s formula.

d) Obviously if for some α, β, γ ∈ A such that sα = sβ < sγ there
exist nonzero maps

δ :Sp+s
α
1 ,q+s

α
2 ,s

α
3 V (sα) −→ Sp+s

γ
1 ,q+s

γ
2 ,s

γ
3 V (sγ)

δ′ :Sp+s
β
1 ,q+s

β
2 ,s

β
3 V (sβ) −→ Sp+s

γ
1 ,q+s

γ
2 ,s

γ
3 V (sγ),

such that δ ◦ϕα+δ′ ◦ϕβ = 0 then E is not simple (take A = Id, Bα = Id for
all α ∈ A, Bγ,α = δ, Bβ,α = δ′ and Bε,λ = 0 for all (ε, λ) = (γ, α), (γ, β)).
Such δ and δ′ exist if and only if

Sp,qV⊗Ss
γ

V
Υ−−→(Sp+s

α
1 ,q+s

α
2 ,s

α
3 V⊗Ss

γ−sαV )⊕(Sp+s
β
1 ,q+s

β
2 ,s

β
3 V⊗Ss

γ−sαV )

is not surjective, where Υ = H0(ϕα(−sγ)∨)∨ × H0(ϕβ(−sγ)∨)∨; since
H0(ϕα(−sγ)∨)∨ and H0(ϕβ(−sγ)∨)∨ are surjective by c), this is true if and
only if Sp+s

α
1 ,q+s

α
2 ,s

α
3 V ⊗ Ss

γ−sαV and Sp+s
β
1 ,q+s

β
2 ,s

β
3 V ⊗ Ss

γ−sαV have
a nonzero subrepresentation in common and we conclude.

Suppose now a), b), c), d), e) hold. We may assume p > 0. Let η be
an automorphism of E and let B and A be the induced maps as above.

Let A = A′ ∪ A′′ ∪ . . . be disjoint union such that A′ is the set of
indices α in A such that sα is the minimum of {sα | α ∈ A}, A′′ is the set
of indices α in A − A′ such that sα is the minimum of {sα | α ∈ A − A′}
and so on. Let s′ = sα for α ∈ A′ and s′′ = sα for α ∈ A′′ and so on.

We have ϕA′ ◦ A = BA′ ◦ ϕA′ ; thus, by Corollary 46, A = λ Id
and BA′ = λ Id.

Besides we have ϕA′′ ◦ A = BA′′ ◦ ϕA′′ + BA′′,A′ ◦ ϕA′ thus we get
(λ Id−BA′′) ◦ ϕA′′ = BA′′,A′ ◦ ϕA′ . By applying H0( •∨)∨, we obtain

Sp,qV ⊗ Ss
′′
V

H0(ϕ∨A′′ )
∨

−−−−−−−−−−−−−−−−−→
⊕
α∈A′′

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V

H0(ϕ∨A′ )
∨

� �H0((λ Id−BA′′ )∨)∨⊕
α∈A′

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V ⊗ Ss

′′−s′V
H0(B∨A′′,A′ )

∨

−−−−−−−−−−→
⊕
α∈A′′

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V .

TOME 55 (2005), FASCICULE 3



1014 Giorgio OTTAVIANI & Elena RUBEI

By a we have that
⊕

α∈A′′ S
p+sα1 ,q+s

α
2 ,s

α
3 V is in the kernel of the map

H0(ϕ∨A′)
∨ :Sp,qV ⊗ Ss

′′
V −→

⊕
α∈A′

Sp+s
α
1 ,q+s

α
2 ,s

α
3 V ⊗ Ss

′′−s′V

thus λ Id−BA′′ = 0, then BA′′ = λ Id and BA′′,A′ ◦ ϕA′ = 0. Hence by c)
and d) we get BA′′,A′ = 0 (arguing as in the proof of the other implication).

By induction on the number of the subsets A′,A′′, . . . we conclude.
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