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RATIONAL POINTS ON A SUBANALYTIC SURFACE

by Jonathan PILA

1. Introduction.

This paper is concerned with certain diophantine properties of suban-

alytic sets in Rn; specifically the distribution of rational points. A definition
of the class of subanalytic sets and derivation of their main properties may
be found in [1]; a summary is in [10]. The class of subanalytic sets is larger
than the class of semianalytic sets, yet there are strong uniformization and
finiteness results. They are a suitable class of nonalgebraic objects in which
to study diophantine questions. A subanalytic surface will mean a suban-
alytic set of dimension 2.

Suppose X ⊂ Rn is a subanalytic set of dimension � 2. Then X may
contain subsets of positive dimension that are semialgebraic, even ifX itself
is not semialgebraic. Such a subset (e.g. a line) may contain many rational
points. Let then Xa be the union of all connected semialgebraic subsets of
X of positive dimension (note: Xa may not be subanalytic [10]). Treating
Xa in analogy with the special set in diophantine geometry [7] I, § 3; [5]
§ F.5, strong scarcity properties might be expected for the rational points
in the complementary subset Xt = X −Xa.

Now Xt may certainly contain infinitely many rational points (e.g.
X = {(x, y) ∈ R2, y = 2x} or, for compact examples, see [10] 7.5), so
a natural way to express the scarcity of rational points is by a density
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estimate relative to a suitable height function. When X is an algebraic
variety, it is natural to use the projective height

Hproj(a1/b, a2/b, . . . , an/b) = max{|ai|, b}
when ai, b ∈ Z, b > 0, (a1, a2, . . . , an, b) = 1. Here the projective height
is a less canonical choice, and it will be more natural to use a different
height and associated counting function. Thus for ai, bi ∈ Z, bi > 0, and
gcd(ai, bi) = 1 for i = 1, 2, . . . , n set

H(a1/b1, a2/b2, . . . , an/bn) = max{|ai|, bi}.

For X ⊂ Rn let X(Q) denote the subset of X consisting of points
having rational coordinates. Let further X(Q, B) = {P ∈ X(Q), H(P ) �
B} and set

N(X,B) = #X(Q, B).

Note that H(P ) � Hproj(P ). Indeed Rn(Q, B) is of order B2n as B →∞,
compared with order Bn+1 for the projective height.

The following conjecture is made in [10], 7.4.

Conjecture. — Let X ⊂ Rn be a compact subanalytic set and

ε > 0. There is a constant c(X, ε) such that

N(Xt, B) � c(X, ε)Bε,
for all B � 1.

ForX of dimension 1, the validity of this conjecture essentially follows
from [8], Theorem 9, as noted in [10], Remark 7.4. The aforementioned
examples from [10] 7.5, show that, even in dimension 1, such an estimate
cannot be much improved in general.

In [10] an analogous conjecture is made for the integer points on
the homothetic dilation sX of compact X ⊂ Rn for s � 1, namely that
# sXt(Z) is OX,ε(sε) for all ε > 0, and it is proved in dimension 2. (In
dimension 1, it follows from results in [3]). This is a somewhat weaker
statement: it implies an estimate of the form OX,ε(Bε) for rational points
of Xt with denominator dividing B. However it is not strictly weaker, since
the dilation parameter s need not be an integer.

The primary goal of this paper is to prove the conjecture on rational
points in dimension 2.

Theorem 1.1. — Let X ⊂ Rn be a compact subanalytic surface

and let ε > 0. There is a constant c(X, ε) such that, for all B � 1,

N(Xt, B) � c(X, ε)Bε.

ANNALES DE L’INSTITUT FOURIER
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The proof of this theorem proceeds by showing that the points in
question lie on very few intersections of X with hypersurfaces of suitable
degree. These intersections will be semianalytic curves. Concluding the
proof depends on having an estimate for rational points on such curves
(when they are not semialgebraic) that is suitably uniform.

Thus a subsidiary goal is to establish a suitable estimate for rational
points on a smooth curve. A prototype of the type of result needed (but for
integer points) is the well-known result of Jarnik [6] that a strictly convex
plane curve Γ : y = f(x) of length � � 1 contains at most

3(4π)−1/3�2/3 +O(�1/3)

integer points (indeed Jarnik showed that the exponent and constant above
are best possible).

The bound for rational points on curves likewise proceeds by showing
that the points lie on few algebraic curves of controlled degree. In the
following result the hypothesis that |f ′| � 1 controls the length of the
curve. The point is that the estimate depends only on the nonvanishing of
a certain derivative, and is otherwise independent of f .

Theorem 1.2. — Let ε > 0. There exist d = d(ε), D = D(ε) ∈ N
and c(ε) > 0 with the following property.

Let B � 1, L � 1/B2. Suppose I is a closed interval with |I| � L.

Suppose f ∈ CD(I) with |f ′| � 1 on I and f (D) nonvanishing in the interior

of I. Let Γ be the graph of f . Then Γ(Q, B) is contained in the union of at

most

c(ε)(LB3)ε

real algebraic curves of degree d.

The number of intersections of the graph of a sufficiently smooth
function with a curve of given degree can also be controlled by suitable
nonvanishing conditions on the function [8].

Theorem 1.3. — Let ε > 0. There exist d = d(ε), D = D(ε) ∈ N,

Z = Zε ∈ R[X1, . . . , XD] and c(ε) > 0 with the following property.

Let B � 1, L � 1/B2. Suppose I is a closed interval with |I| � L.

Suppose f ∈ CD(I) with |f ′| � 1 on I and Z(f) = Z(f, f ′, f ′′, . . . , f (D))
nonvanishing in the interior of I. Let Γ be the graph of f . Then

N(Γ, B) � c(ε)(LB3)ε.

TOME 55 (2005), FASCICULE 5
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Moreover, if f is transcendental analytic then Z(f) has only finitely

many zeros on I.

Bounds of this shape for integer points follow from the results of
[3], [8]. The fact that a variant of the method used to get uniform
bounds for integer points could be applied successfully to rational points
was inexplicably missed in [8]. Unlike Jarnik’s result these results are
presumeably very far from optimal in any sense. For strengthenings of
Jarnik’s result using minimal additional regularity see [13], [12].

When f is a transcendental analytic function on a compact interval,
Theorem 1.3 may be applied for arbitrary positive ε after dividing I into
finitely many (depending on ε) intervals in the interior of which Zε is
nonvanishing. This yields an estimate of the shape

N(Γ, B) � c(f, ε)Bε.

Now such an estimate for rational points on a transcendental analytic curve
was established in [8] but with the constant dependent on the norms of
derivatives of f (up to order Oε(1)). The present estimate depends only
on the number of vanishing points of Zε. This uniformity is the key in the
application to surfaces.

A final objective of this paper is to apply the present methods to
rational points on algebraic curves. Although the height H is somewhat
unnatural in the algebraic context, the result obtained is of the same
shape as those previously obtained for the projective height, and hence
is somewhat stronger.

Theorem 1.4. — Let b, c � 2 be integers and B � 3. Let F ∈
R[x, y] be irreducible of bidegree (b, c). Let d = max(b, c) and let X =
{P ∈ R2 : F (P ) = 0}. Then

N(X,B) �
(
8d2

)2d+7
B2/d

(
logB

)2d+4
.

Heath-Brown [4] has shown that, for an irreducible plane curve X of
degree d,

Nproj(X,B) = #{P ∈ X(Q), Hproj(P ) � B} � c(d, ε)B2/d+ε.

It appears very likely that, in Heath-Brown’s approach, one can replace Bε

by (logB)A for some constant A depending (at most) on d. As observed by
Bombieri [2], Heath-Brown’s result can be combined with Segre embeddings
and a neat height argument to yield an estimate for N(X,B) with exponent

ANNALES DE L’INSTITUT FOURIER
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2/d + ε, the same exponent of B as in 1.4. It is unclear if this argument,
which uses Segre embeddings of increasing degree as ε→ 0, yields so sharp
a result as above. The exponent 2/d is best possible here (and in Heath-
Brown’s result) in view of the curve y = xd.

It seems interesting to consider diophantine questions in other classes
of sets having suitable finiteness properties. Wilkie [14] studies integer
points on curves in o-minimal structures; a result on the rational points
of a pfaff curve is contained in [11].

Acknowledgements. This paper was written while I was a visitor at
the Mathematical Institute, University of Oxford. I am grateful to the
Institute for its hospitality, and would like to express thanks in particular
to A. Lauder and D.R. Heath-Brown. I thank A. Venkatesh for a helpful
conversation, and E. Descheemaeker for assistance. My thanks also to the
referee for a careful reading. My visit to Oxford was supported by my
home institution, McGill University, and in part by a grant from NSERC,
Canada.

2. Smooth curves.

The starting point is the following alternant mean value theorem. In
the form given it is contained in [3] Proposition 2 et seq.; variants go back
to the nineteenth century.

Proposition 2.1. — Let D ∈ N. Suppose f1, . . . , fD possess D− 1
continuous derivatives on an interval I and let x1, x2, . . . , xD ∈ I with

x1 < x2 < . . . < xD. Then there exist points ξij ∈ [x1, xD] such that

det
(
fj(xi)

)
= V (x1, x2, . . . , xD) det

(
f

(i−1)
j (ξij)
(i− 1)!

)
,

where V (x1, x2, . . . , xD) denotes the Vandermonde determinant. 
�

The above will be applied with fj = xhf(x)k for suitable index sets
of pairs (h, k). The following notation will be convenient.

Let M = {xhyk : (h, k) ∈ J} be a finite set of monomials in the
indeterminates x, y. Let

D=#M, R=
∑

(h,k)∈J
(h+k), s= max

(h,k)∈J
(h), t= max

(h,k)∈J
(k), S=D

(
s+ t

)
,

TOME 55 (2005), FASCICULE 5
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α =
2R

D(D − 1)
, C =

(
D!DR

)2/(D(D−1)) + 1.

Define a relation � on the set of monomials in x, y by setting xhyk � xuyv
if h � u and k � v and call a M closed under � if m1 � m2 ∈ M implies
m1 ∈M .

If Y is a plane algebraic curve defined by G(x, y) = 0, say Y is defined

in M if the monomials appearing in G all belong to M . If f is a function
and m = xhyk is a monomial let fm denote the function xhf(x)k.

Definition 2.2. — Let L � 0, k ∈ N, k � 1. Let I be a closed

bounded interval. For a function f ∈ Ck(I) set

AL,k(f) = max
1�κ�k

sup
t∈I

{
1,
Lκ−1|f (κ)(t)|

κ!

}k/κ

.

For a finite set M of monomials set

AL,M (f) = A1/(D−1)
L,D−1 (f).

With the above notation, Proposition 2.1 can be reformulated as
follows.

Lemma 2.3. — Let M = {mj , j = 1, . . . , D} be a finite set of

monomials, closed under � with D � 2. Suppose that I is a closed interval

with |I| � L and that f ∈ CD−1(I) with |f ′| � 1. Let x1, x2, . . . , xD ∈ I
with x1 < x2 < . . . < xD and put fj = fmj . Let

∆ = det
(
fj(xi)

)
Then

|∆| � V (x1, . . . , xD)LR−D(D−1)/2D!DRAD/2L,D−1(f).

Proof. — This is essentially [9], Lemma 3. The assumption there that
|f | � L is obviated by the assumption here thatM is closed under �. With
this assumption, elementary column operations can be used to replace each
function fm by fm(x)− fm(x0) for some x0 ∈ I. 
�

Lemma 2.4. — Let M be a finite set of monomials, and define

D,C,R, S as above. Let B � 1, L � 0 with LRBS � 1.

Let I be a closed interval with |I| � L and f ∈ CD−1(I) with |f ′| � 1
and graph Γ. Then Γ(Q, B) is contained in the union of not more than

C
(
LRBS

)2/(D(D−1))
AL,M (f)

ANNALES DE L’INSTITUT FOURIER
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real algebraic curves defined in M .

Proof. — The proof proceeds as the proof of the “Main Lemma”
of [3], [8]. Suppose M = {mj , j = 1, . . . , D} and write fj for fmj . If
x1 < x2 < . . . < xD and (x1, y1), . . . , (xD, yD) are points of Γ(Q, B) that
do not lie on any real algebraic defined in M , then

∆ = det
(
fj(xi)

)
= 0.

Now H(xi), H(yi) � B, so there are positive integers bi, ci � B such that
bixi, ciyi ∈ Z whence

∆
D∏
i=1

bsi c
t
i ∈ Z.

By 2.3 and the preceding definitions it follows that

1 � V (x1, . . . , xD)LR−D(D−1)/2BS D!DRAD/2L,D−1(f).

Now V (x1, . . . , xD) � (xD − x1)D(D−1)/2, and (D!DR)2/(D(D−1)) = C − 1
and so

(C − 1)(xD − x1) � L
(
LRBS

)−2/(D(D−1))
A
−1/(D−1)
L,D−1 (f).

Since |I| � L, it can be divided into at most

(C − 1)
(
LRBS

)2/(D(D−1))
A

1/(D−1)
L,D−1 (f) + 1 � C

(
LRBS

)2/(D(D−1))
AL,M (f)

subintervals, on each of which the points in question lie on a single curve
defined in M . 
�

For the set M(d) of all monomials of total degree � d, elementary
computations find

D =
(d+ 1)(d+ 2)

2
, R = 2dD/3, s = t = d, S = 2dD = 3R,

α =
8

3(d+ 3)
, C � 6.

Corollary 2.5. — Let M = M(d), d � 2. Then Γ(Q, B) is

contained in the union of at most

6
(
LB3

)8/3(d+3)

AL,M (f)

real algebraic curves of degree d. 
�

To deduce 1.2 it remains to eliminate the dependence of 2.5 on the
norms of derivatives of f . This will be accomplished by showing that, if f
does not oscillate, intervals where derivatives are large are short and few.

TOME 55 (2005), FASCICULE 5
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Lemma 2.6 ([3], Lemma 7). — Suppose A � 1, L > 0, k ∈ N.

Let I be a closed interval with |I| � L and g ∈ Ck(I) with |g′(x)| � 1
throughout I. Suppose further that

|g(κ)(x)| � i!Aκ/kL1−κ

for 1 � i < k and all x ∈ I and that, for all x ∈ I,
|g(k)(x)| � k!AL1−k.

Then

|I| � 2A−1/kL.


�

Proof of Theorem 1.2. — The proof follows the recurrence argument
used in [3] and [8]. Choose d = d(ε) such that

8
3(d+ 3)

� ε.

Let M =M(d), so that D = D(ε) = (d+ 1)(d+ 2)/2.

For a function g verifying the conditions stated for f in Theorem 1.2
and with graph Γ, let G(g) denote the minimum number of curves defined
inM that contain Γ(Q, B). Let G(L) = G(D, d,B,L) denote the maximum
of G(g) over all g.

Now suppose g is such a function. Let A � 1. Since g(D) is nonvan-
ishing in the interior of I, an equation of the form g(κ)(x) = c, 1 � κ �
D − 1, c ∈ R, has at most D − κ solutions interior to I. Thus I may be
divided into most 2

∑D−1
κ=1 (D−κ) � D2 subintervals Iν such that, for each

Iν and each κ = 1, 2, . . . , D − 1 either (i) or (ii) holds:

(i) |g(κ)(x)| � κ!Aκ/(D−1)L1−κ for all x ∈ Iν ;
(ii) |g(κ)(x)| � κ!Aκ/(D−1)L1−κ for all x ∈ Iν .
On an interval Iν satisfying (i) for all κ, AL,D−1(g) � A. According

to Corollary 2.5, the points in question on this interval then lie on not more
than

6(LB3)2R/(D(D−1))A1/(D−1)

real algebraic curves of degree d.

If an interval Iν has (ii) for some κ, and hence for some least κ � 2,
then, by Lemma 2.6,

|Iν | � 2A−1/(D−1) L.

ANNALES DE L’INSTITUT FOURIER
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The function G(L) therefore satisfies the following recurrence when
L � 1/H2:

G(L) � uB3α Lα + v G(λL),

where
λ = 2A−1/(D−1), u = 6D2A1/(D−1), v = D2.

Thus, provided λn−1L � 1/B2,

G(L) � u (LB3)α(1 + vλα + . . .+ (vλα)n−1) + vnG(λnL).

Choose λ so that vλα = 1/2; that is,

λ =
( 1

2v

)1/α

=
(
2D2

)−D(D−1)/2R
.

Then A is determined (and note A � 1), with

A1/(D−1) =
2
λ

= 2
(
2D2

)D(D−1)/2R
.

Now take n such that
λ

LB2
� λn < 1

LB2
.

Then G(λnL) � 1 and

G(L)�2u(LB3)α+2−nλ−α(LB2)α � 12D2(LB3)αA1/(D−1) +2D2(LB2)α

� 28D2(2D2)D(D−1)/2R
(
LB3

)8/3(d+3)
.


�

The additional ingredient needed to prove 1.3 is to control the number
of points of Γ that may lie on any curve of degree d. This can be effected by
the nonvanishing of appropriate Wronskian determinants, as shown in [8].
If f1, . . . , fn are functions with n− 1 derivatives, let W (f1, . . . , fn) denote
the Wronskian determinant.

Lemma 2.7 ([8], Theorem 1). — Let M = {m1, . . . ,mD} be a set

of monomials. Let f possess D − 1 derivatives on an interval I, and put

fj = fmj , j = 1, . . . , D. If the D Wronskians

W (f1, f2, . . . , fk), k = 1, . . . , D

are nonvanishing throughout the interior of I then the intersection of Γ and

any curve defined in M consists of at most D − 1 points. 
�

Note that a different condition is obtained by reordering the set
of monomials (or using polynomials). See [8] for further discussion and

TOME 55 (2005), FASCICULE 5
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applications; it is shown there that there is natural necessary and sufficient
nonvanishing condition under which Γ (where f ∈ C5(I)) intersects any
curve of degree 2 in at most 5 points (counting multiplicity).

Definition 2.8. — Let d ∈ N and f a function possessingD deriva-

tives on an interval I. Fix an ordering of the set M(d) = {m1, . . . ,mD} of

monomials of degree � d. Let fj = fmj . Define

Zd(f, f ′, . . . , f (D)) = f (D)
D∏
k=1

W (f1, . . . , fk).

Proof of Theorem 1.3. — The first assertion is immediate from 1.2,
2.7. The second assertion follows from [8], Proposition 4. 
�

Remarks 2.9. — 1. As already mentioned, a simpler choice of Z for
d = 2 is possible by [8].

2. A result for parametrized curves Γ can be proved by the same
method. The number of possible intersections of Γ with curves of degree
d is intrinsic to Γ, but the oscillation of the parametrizing functions
depends on the parametrization. This raises the question of how “good” a
parametrization can be expected. The method of proof in effect replaces
the parametrizing interval I by a system of intervals on which not only f ′

but the subsequent derivatives up to order D − 1 are absolutely bounded,
using the nonvanishing of f (D) to control the number of intervals required.
The question arises whether reparametrizing Γ using a single interval could
yield a better result.

3. Theorems 1.2 and 1.3 remain valid with respect to a still weaker
“denominator only” heightH∗(P )=max{bi}, where P =(a1/b1, . . . , an/bn),
ai, bi ∈ Z, bi > 0, (ai, bi) = 1, with counting function N∗(X,B) =
#{P ∈ X(Q), H∗(P ) � B}. Note that H∗ does not have the property
#{P ∈ Rn(Q), H∗(P ) � B} < ∞ usually required of height functions;
indeed {P ∈ Rn(Q), H∗(P ) � 1} = Zn.

3. Subanalytic surfaces.

Proof of Theorem 1.1. — The deduction of 1.1 from 1.2 is identical
to the deduction of [10], Theorem 1.3 from [10], Proposition 8.1. A sketch
of the argument is as follows.

ANNALES DE L’INSTITUT FOURIER
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Let X ⊂ Rn be a compact subanalytic surface. By the Uniformization
Theorem [1], 0.1, there is a compact real analytic manifold N of dimen-
sion 2, and a proper real analytic map ψ : N → Rn with ψ(N) = X. Such
N has a finite number of connected components, and it suffices to consider
the case that N is connected.

Arguing as in the early paragraphs of [10], Proof of 1.3: if n � 2 or
if the image of X in every projection of Rn onto three of its coordinates is
contained in a hypersurface, thenXt has dimension � 1, and the conclusion
follows from [10], Proof of Conjecture 1.1 and 1.2 for curves and Remark 7.4.

Now by [10], Lemma 4.4 and Remark 4.5, for suitably large b ∈ N,
the set X(Q, B) is contained in the intersection of X with at most

OX,ε(Bε/2)

hypersurfaces Υ of degree b that do not contain X.

Fix d ∈ N with 8/3(d + 3) � ε/2, D = (d + 1)(d + 2)/2 for the
application of 1.2.

The sets V = ψ−1(Υ) are semianalytic sets of dimension � 1.
Moreover the number of connected components of such V (which may be
points or curves) are bounded by Gabrielov’s Theorem [1], 3.14, as Υ ranges
over all hypersurfaces of degree d. This principle will be applied again after
a further decomposition of the sets V .

Let Π ⊂ Rn be a plane with coordinates (u, v) and π : Rn → Π
the orthogonal projection. Let Vs be the singular points of V , a set of
dimension � 0. With respect to Π, the set Vns of nonsingular points of V
may be decomposed as follows into subanalytic subsets. First, Vu is the
subset of Vns of points at which the projection π(Vns) has indeterminate
slope (i.e., for components of dimension 1, they map to a point in Π); next
Va is the subset of Vns−Vu where the slope in Π belongs to {0,±1,∞}. At
the remaining points π(V ) is a graph with respect to both axes, (and with
slope � 1 in absolute value with respect to one of the axes). Let Vb be the
subset of points where the derivative of order D with respect to one of the
axes vanishes. Call the remaining set Vc.

The number of connected components in each of the sets Vs, Va, Vb, Vc

is again uniformly bounded over all Υ by Gabrielov’s theorem. So compo-
nents of dimension 0, i.e. points, contribute at most OX,ε(Bε/2) in total.

If P ∈ X(Q, B) then P lies on one of the sets V . If it belongs to a
connected component γ of dimension 1 of Vc then, after projection into Π,

TOME 55 (2005), FASCICULE 5
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the point π(P ) lies on a graph with respect to one of the coordinate axes
of an analytic function f having slope |f ′| � 1 and f (D) = 0. Moreover
H(π(P )) � B.

If f is transcendental then the number of intersections of π(γ) with a
plane curve Y ⊂ Π of degree d will be finite and moreover bounded over all
Υ of degree b and Y ⊂ Π by Gabrielov’s theorem. For such components γ
an estimate N(γ,B) = OX,ε(Bε/2) follows from Theorem 1.2 applied with
curves of degree d.

It remains to take care of the cases in which P lies in a connected
component of dimension 1 of one of the other sets Vu, Va or Vb, and the
case that P ∈ Vc where Vc is not semialgebraic but its projection into Π
is semialgebraic. Note that the projections of components Vu, Va, Vb are
semialgebraic.

Let then Π be the set of coordinate planes of Rn (i.e. planes on two
of the coordinates of Rn). If a connected subanalytic curve γ ⊂ X has the
property that its projection into Π is semialgebraic for all Π ∈ Π then
γ ⊂ Xa (see [10], 7.2 and Proof of 1.3).

Decompose V with respect to all Π ∈ Π, i.e. for each map θ : Π →
{u, a,b, c} take

Vθ =
⋂

Π∈Π
V Π
θ(Π)

where V Π
u , V

Π
a , V

Π
b , V

Π
c is the decomposition with respect to Π.

If P ∈ X(Q, B) ∩ V is not in Xa, and is not one of OX,ε(1) isolated
points of a component in the decomposition of V , then, for some Π ∈ Π, it
lies in a component of dimension 1 of Vc whose image in Π is transcendental.

Now, by Gabrielov’s Theorem, the number of connected components
of each constituent set Vθ is again uniformly bounded (over Υ of degree
b), and the number of intersections of the projection of any component
into any Π ∈ Π whose image is transcendental with a curve Y of degree
d is uniformly bounded (over Y of degree d and Π ∈ Π). There are thus
OX,ε(Bε/2) components in all. So now application of 1.2. completes the
proof. 
�

Remark 3.1. — Theorem 1.1 remains valid with respect to H∗.
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4. Algebraic curves.

For integers β, γ � 2 let

M(β, γ) = {xhyk : 0 � h � β − 1, 0 � k � γ − 1}.
Then, for M =M(β, γ),

D = βγ, R =
D (γ + β − 2)

2
, S = D(β − 1 + γ − 1) = 2R, C � 2D.

The last requires an elementary computation; A further elementary obser-
vation ([9]) is that

max
( 1
β
,
1
γ

)
� α � 1

β
+

1
γ
.

Note that M is closed under �. The following results from 2.4.

Lemma 4.1. — Let M =M(β, γ), B � 1, L � 1/B2.

Suppose I is a closed interval with |I| � L and f ∈ CD−1(I) with

|f ′| � 1. Let Γ be the graph of f . Then {P ∈ Γ, H(P ) � B} is contained

in the union of at most

2D(LB2)2R/(D(D−1))AL,M (f)

real algebraic curves defined in M(β, γ). 
�

Lemma 4.2. — Let B � 1, L � 1/B2 and b, c � 2 integers.

Let f be a C∞ function on a closed interval I with |I| � L and

|f ′| � 1. Suppose f satisfies an algebraic relation F (x, f(x)) = 0 where F

is irreducible of bidegree (b, c). Let d = max(b, c), and δ ∈ N, δ � d. Let Γ
be the graph of f . Then

N(Γ, B) �
(
4d2δ

)2d+4 (LB2)1/d+1/δ.

Proof. — This will follow the scheme of 2.9.

Let G(L) = G(b, c, B, L) denote the maximum number of rational
points of height � B that can lie on the graph Γ of a function g with
the hypothesized properties on an interval I. So g satisfies a relation
F (x, g(x)) = 0. The curve Y : F (x, y) = 0 has degree � b+ c � 2d.

By [3], Lemma 6, for A � 1, the interval I can be subdivided into at
most 2(2d)2(D− 1)2 subintervals Iν such that, on each subinterval and for
each κ = 1, . . . , D − 1 either (i) or (ii) holds:
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(i) |g(κ)(x)| � κ!Aκ/(D−1)L1−κ for all x ∈ Iν ; or

(ii) |g(κ)(x)| � κ!Aκ/(D−1)L1−κ for all x ∈ Iν .
If case (i) holds for all κ then AL,D−1(g) � A. Intervals Iν that are

in case (ii) for any index (and hence for some smallest index k � 2) have
length at most 2A−1/(D−1)L, according to 2.6 applied with A = Ak/(D−1).

Let δ � d and apply 4.1 with M = M(d, δ) if d = b, or with
M =M(δ, d) if d = c. Then Γ intersects properly with any curve defined in
M , hence such intersection consists of at most (b+ c)(d+ δ) � 2d 2δ � 4D
points.

It follows that G(L) satisfies the recurrence relation

G(L) � uB2αLα + v G(λL)

while LB2 � 1, where

u = 64 d2D2 (D − 1)2A1/(D−1), v = 8 d2 (D − 1)2, λ = 2A−1/(D−1).

Choosing A1/(D−1) = 2(2v)1/α � 2
(
16d2(D − 1)2

)d, so that vλα = 1/2,
and n so that

λ

LB2
� λn < 1

LB2
,

(whence G(λnL) � 1) implies that

G(L) � uB2α
(
1 + vλα + . . .+ (vλα)n−1

)
Lα + vnG(λnL)

� 2u(LB2)α + λ−α(LB2)α � 2(u+ v)(LB2)α

� 16d2D2
(
16D2

(
16d2(D − 1)2)d + 1)

)
(LB2)α

� 256d6δ4
(
16d4δ2

)d(
LB2

)1/d+1/δ
.


�

Proof of Theorem 1.4. — Let P = (x, y) ∈ X(Q) with H(P ) � B.
Then one of the following holds:

(i) |x|, |y| � 1

(ii) |x| � 1, |y| > 1

(iii) |x| > 1, |y| � 1

(iv) |x| > 1, |y| > 1.

In case (i), P lies in the box [−1, 1]2 ⊂ R2.

In case (ii), the pointQ = (x, 1/y) is on the curve Y : ycF (x, 1/y) = 0.
This curve is also irreducible and of bidegree (b, c) (because F must have
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a term independent of y). The point Q is then in the box [−1, 1]2 and
has H(Q) � B. Likewise in cases (iii) and (iv) the corresponding points
R = (1/x, y), S = (1/x, 1/y) lie on irreducible curves xbF (1/x, y) =
0, xbycF (1/x, 1/y) = 0 of bidegree (b, c) in the box [−1, 1]2 and have height
� B.

Therefore, up to a factor 4 in the estimate, it suffices to consider the
points of F inside the box [−1, 1]2.

Now the total degree of F is at most b + c � 2d. There are at most
d(2d − 1) singular points of X, at most 4d(2d − 1) points with slope ±1,
and 2d intersections of X with (each of) y = ±1. On intervals between the
corresponding � 10d2 x-coordinates (including x = ±1), X has at most d
branches. So X∩[−1, 1]2 consists of at most 10 d3 graphs of C∞ functions g
with slope |g′| � 1 with respect to one of the coordinate axes and satisfying
an algebraic equation of bidegree (b, c) or (c, b). Thus combining with 4.2
implies

N(X,B) � 40d3
(
4d2δ

)2d+4(2B2)1/d+1/δ.

Now take δ to be the least integer exceeding logB. Since B � 3, δ � 2 logB.
Then 21/d+1/δ � 2, B2/δ � e2 and so

N(X,B) � 80e2 d3
(
8d2

)2d+4
B2/d(logB)2d+4.


�
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Manuscrit reçu le 5 novembre 2004,
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