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THE SPECTRAL MATRICES OF TODA SOLITONS
AND THE FUNDAMENTAL SOLUTION OF SOME

DISCRETE HEAT EQUATIONS

by Luc HAINE

1. Introduction.

The fundamental solution K(y|x, t) of the heat equation

(1.1) ut = uxx + V (x) u, u(x, 0) = δ(x− y),

has been linked with soliton theory from the early days [30], by providing
a tool for obtaining the integrals of the motion of the Korteweg-de Vries
(KdV) equation, see also [33]. In recent years, the problem has been turned
around, by using soliton theory as a tool to understand the fundamental
solution, for some special classes of potentials V (x). The starting point of
these investigations was the comparison of the important papers [28, 29] by
Lagnese and Stellmacher devoted to Hadamard’s problem of finding linear
scalar hyperbolic equations of second-order for which Huygens’ principle
is valid, with the results of the modern theory of finite-gap Schrödinger
operators in one dimension (see e.g. the survey article [11]). This study led
Berest and Veselov [4] to discover new solutions to Hadamard’s problem,
using the theory of integrable systems and multidimensional “finite-gap”
Schrödinger operators. For some of the latest developments in this direction,
see [7].

Keywords: Heat kernel, Toda lattice hierarchy.
Math. Classification: 35Q51, 37K20, 39A13.



1766 Luc HAINE

The results of [28, 29] can be reinterpreted as saying that for the
Adler-Moser [1] potentials Vi(x) = 2 (log τi(x))′′, with τ0 = 1, τ1 = x, τ2 =
x3/3−s3, . . . giving the manifolds of rational functions vanishing at x =∞
and invariant under the KdV flows, the Hadamard coefficients Hk(x, y) in
the asymptotic expansion (valid in general for t ↓ 0 and for x close to y) of
the fundamental solution of the heat equation (1.1)

K(y|x, t) ∼ e−
(x−y)2

4t

2
√
πt

(
1 +

∞∑
k=1

Hk(x, y)tk
)
,

vanish for k � i + 1, see [6, 15]. Thus, in these cases, the expansion gives
rise to an exact formula consisting of a finite number of terms. The same
family of potentials provide the so-called rank 1 solutions of the bispectral
problem as originally formulated by Duistermaat and Grünbaum [12]. For
an overview of the relation between Hadamard’s problem and the bispectral
problem, I recommend to consult [3].

A similar “finite number of terms phenomenon” was observed and
established by Grünbaum and Iliev [16, 19], when the space variable x in
(1.1) is discrete, that is for an equation of the type

(1.2) ut (n, t) = L u(n, t), n ∈ Z,

with L a doubly infinite tridiagonal matrix. If L belongs to the family of
rational solutions of the Toda lattice hierarchy, the fundamental solution
K(m|n, t) of (1.2) with initial condition u(n, 0) = δnm, can be expressed
as a finite sum of terms of the form e−2t tr Ik(2t), r � 0, with Ik(t) the
Bessel functions of imaginary argument. The rational solutions of the Toda
lattice hierarchy were constructed in [21, 22], as part of a study of the
rank 1 solutions to a discrete-continuous version of the bispectral problem,
linking the problem with rational curves with only cusp-like singularities
as in the pioneering work of Wilson [36]. The proof in [19] is based on
an orthogonality relation satisfied by the wave function (in the sense of
Sato theory), that was established in full generality in [22], using singular
algebraic curve theory.

In this paper, I propose to further explore the “finite number of terms
phenomenon” found in [16, 19] by studying the case when L in (1.2) is a
doubly infinite Jacobi matrix, leading (when taken as initial condition) to
a soliton solution of the Toda lattice equations [13, 35]. For sake of brevity,
I shall call these Jacobi matrices “Toda solitons”. It is well known (see for
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SPECTRAL MATRICES OF TODA SOLITONS 1767

instance [26]) that the fundamental solution of the heat equation (1.1) can
be written in terms of the eigenfunctions and eigenvalues of the Schrödinger
operator L = ∂2/∂x2 + V (x). In the case of solitons, there is a continuous
spectrum and a finite number of eigenvalues (bound states). For “Toda
solitons”, we shall establish the following formula for the fundamental
solution of (1.2)

K(m|n, t) =
1

2πi

∮
e t

(z+z−1)
2 φ(n, z) φ(m, z−1)

dz
z

(1.3)

+
g∑
j=1

c2j e
t

(zj+z
−1
j

)

2 φ(n, zj) φ(m, zj).

In this formula, the integral is taken over the unit circle in the complex
z plane; φ(n, z) is the discrete Jost function that satisfies the asymptotic
condition φ(n, z) ∼ zn as n → +∞ on |z| = 1; zj ∈ ] − 1, 1[, j = 1, . . . , g
denote the bound states of L, i.e. L φ(n, zj) = (zj + z−1

j )/2 φ(n, zj), and
cj are the norming constants. I refer the reader to Section 3, for a quick
review of discrete inverse scattering theory.

The main issue in (1.3) is to show that when t = 0, K(m|n, 0) = δnm.
In Sections 2 and 3, we give a proof of these orthogonality relations, in
the spirit of [22], using Sato theory applied to some special irreducible
rational singular curves with double points. For second-order formally self-
adjoint difference operators on the integers, the analogue of the classical
Weyl-Titchmarsh-Kodaira theory for second-order differential operators
on the line, can be found in [5]. Instead of a spectral measure which is
characteristic of the semi-infinite case (both continuous and discrete), we
have now a two by two spectral matrix measure. In the so-called limit point

case, to which the operators we are dealing with belong to, the spectral
matrix is unique. In Section 3, the orthogonality relations are interpreted
as providing the Stieltjes spectral matrix measure of a “Toda soliton”,
thus linking our curve theoretic approach to the orthogonality relations
with classical spectral theory.

The situation considered in [19] corresponds to the limiting case in
(1.3) where all the bound states accumulate at zj = ±1. In the case of
pure solitons, with all zj ∈ ]−1, 1[ and distinct, (1.3) can be expanded in a
convergent series of Bessel functions Ik(t) of imaginary argument, but this
series never leads to a finite sum formula (see Remark 5.3). In Section 5,
we replace in (1.3) the exponential factors by the product of q-exponentials

TOME 55 (2005), FASCICULE 6



1768 Luc HAINE

eq(tz/2) eq(tz−1/2), which is the generating function for the Jackson’s q-
Bessel functions Ik(t; q) (of imaginary argument), see [14, 24, 25]. Again,
K(m|n, t) can be expanded in a series of the functions Ik(t; q) (convergent
for t small enough), see Theorem 5.2. However, if we pick now the bound
states to be

(1.4) z1 = ±q
r1
2 , . . . , zg = ±q

rg
2 , 0 < q < 1,

with r1, . . . , rg arbitrary positive integers (with an arbitrary choice of the
± signs, keeping the zj ’s distinct), this expansion reduces to a finite sum,
using an apparently new identity satisfied by the functions Ik(t; q), which
is established in Section 4 of the paper. With the modification of the
exponential by the q-exponential, (1.3) becomes the fundamental solution
of a purely discrete heat equation

Dq,t u(n, t) =
(
L +

(q − 1)t
4

Id
)
u(n, t), n ∈ Z,

(with a time-dependent discrete Schrödinger operator), where Dq,t denotes
the q-derivative with respect to t. Remarkably, the condition (1.4) precisely
defines the so-called Askey-Wilson type solitons [20, 23], that provide the
rank 1 solutions of a difference – q-difference version of the bispectral
problem, that was initiated in [17] in the aim of generalizing the celebrated
Askey-Wilson polynomials [2], see also [32].

2. Toda solitonic curves.

We consider a special case of a procedure in algebraic geometry [27,
31] that enables one to construct rank 1 commutative rings of difference
operators, starting with an irreducible affine algebraic curve (eventually
singular), with two non-singular marked points P∞ and Q∞ at infinity.
The presentation below was worked out in [20], though some complements
will be added.

A Toda solitonic curve is an irreducible rational singular curve with
double points, given by the equation

(2.1) C : v2 = (u2 − 4)
g∏
j=1

(
u− (zj + z−1

j )
)2
,
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where z1, . . . , zg are distinct non-zero complex numbers inside the unit
circle, |zj | < 1. It is rationally parametrized by putting

u = z + z−1,

v = (z − z−1)
g∏
j=1

(
(z + z−1)− (zj + z−1

j )
)
,

z ∈ P1(C). In this parametrization, the two marked points P∞ and Q∞
correspond respectively to z =∞ and z = 0.

We write s = (s1, s2, . . .) and exp (s, z) = exp (
∑∞
k=1 skz

k). Fixing
a collection of g non-zero complex numbers ε1, . . . , εg, the Baker-Akhiezer
function (called the wave function in the context of Sato theory, see [34]),
is defined to be the unique function of the form

(2.2) w(n, s, z) = exp(s, z) zn
{

1 +
g∑
j=1

wj(n, s)
z − z−1

j

}
,

subject to the g conditions

(2.3) resz=z−1
j
w(n, s, z)− εj w(n, s, zj) = 0.

The dual Baker-Akhiezer function (also called the dual wave func-
tion), is defined by

(2.4) w∗(n, s, z) = exp−1(s, z) z−n
{

1 +
g∑
j=1

w∗j (n, s)
z − zj

}
,

and is determined by the g conditions

(2.5) resz=zjw
∗(n, s, z) + εj w

∗(n, s, z−1
j ) = 0.

The wave and dual wave functions satisfy an identity that will be
important for us.

PROPOSITION 2.1. — (Bilinear identities).

(2.6) resz=∞w(n, s, z) w∗(m, s′, z) = 0, ∀n � m and ∀s, s′.

TOME 55 (2005), FASCICULE 6
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Proof. — It follows immediately from (2.3) and (2.5) that

{resz=z−1
j

+ resz=zj} w(n, s, z) w∗(m, s′, z) = 0, ∀n,m ∈ Z.

When n � m, we see from (2.2) and (2.4) that w(n, s, z) w∗(m, s′, z) is
holomorphic at z = 0. Thus, by the residue theorem, we deduce that

resz=∞w(n, s, z) w∗(m, s′, z)

= −
g∑
j=1

{resz=z−1
j

+ resz=zj} w(n, s, z) w∗(m, s′, z) = 0, ∀n � m,

which establishes the proposition. �

The next proposition introduces the tau-function, in the sense of Sato
theory.

PROPOSITION 2.2. — The tau-function corresponding to the wave

function in (2.2) is

(2.7) τn(s) = det
(
z
−(i−1)
j − µj(s) z2n+i−1

j

)
1�i,j�g,

with

(2.8) µj(s) = µj exp
( ∞∑
k=1

sk(zkj − z−kj )
)
,

and

(2.9) µj = εj

∏g
k=1,k �=j(z

−1
j − z−1

k )∏g
k=1(zj − z−1

k )
= εjz

2−g
j

∏g
k=1,k �=j(zk − zj)∏g
k=1(zjzk − 1)

.

Proof. — It is easy to check that the unique function of the form
(2.2), satisfying (2.3), is given by

(2.10) w(n, s, z) =
exp(s, z)∏g
j=1(z − z−1

j )

×
det

(
z
−(i−1)
j − µj(s) z2n+i−1

j ; zn+i−1
)

det
(
z
−(i−1)
j − µj(s) z2n+i−1

j

)
1�i,j�g

,

ANNALES DE L’INSTITUT FOURIER
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with µj(s) as in (2.8), (2.9); the notation in the numerator means the
determinant of the (g + 1)× (g + 1) matrix with (i, j) entries as indicated
there for 1 � i � g + 1, 1 � j � g, and entries zn+i−1, 1 � i � g + 1, in the
last column.

Introducing the notation

s− [z−1] =
(
s1 −

1
z
, s2 −

1
2z2

, s3 −
1

3z3
, . . .

)
,

one computes easily from (2.8) that

µj(s− [z−1]) =
z − zj

z − z−1
j

µj(s).

Then, elementary row manipulations with the determinant in the numera-
tor of (2.10) lead to

w(n, s, z) = exp(s, z) zn
τn(s− [z−1])

τn(s)
,

which is the equation defining the tau-function (up to a non-zero constant)
in Sato theory. This finishes the proof. �

It is a well known fact [27, 31] that the Baker-Akhiezer function
w(n, s, z) is the common eigenfunction of a rank 1 commutative ring of
difference operators. More precisely, for any meromorphic function f on C,
which is holomorphic on C \{P∞, Q∞}, there is a finite difference operator
Lf such that Lfw(n, s, z) = f(z)w(n, s, z). The size of the operator Lf is
determined by the order of the poles of f at P∞ and Q∞. Namely, if f has
a pole of order i at P∞ and a pole of order j at Q∞, then the operator Lf ,
thought of as a finite band matrix, has i diagonals above the main diagonal
and j diagonals below it.

For the curve (2.1), the function u = z+ z−1 has a simple pole at P∞
and Q∞, hence there exists a unique tridiagonal operator Lu, satisfying
Luw(n, s, z) = (z + z−1)w(n, s, z). By a standard technique (see [27, 34]),
one can show that this three-term recurrence relation satisfied by the wave
function, is explicitly given by

(2.11)
τn−1(s)τn+1(s)

τn(s)2
w(n− 1, s, z) +

∂

∂s1
log

τn+1(s)
τn(s)

w(n, s, z)

+w(n + 1, s, z) = (z + z−1)w(n, s, z).

TOME 55 (2005), FASCICULE 6



1772 Luc HAINE

We conclude this section with two properties which are special to
Toda solitonic curves, that will play a crucial role in the paper.

PROPOSITION 2.3. — The wave and the dual wave function of a Toda

solitonic curve are related by the following equation

(2.12)

exp (s, z−1) w∗(n, s, z) =
τn−1(s)
τn(s)

z−1 exp−1(s, z) w(n− 1, s, z−1).

Proof. — An easy check shows that the only function of the form
(2.4) satisfying the g conditions in (2.5) is given by

(2.13) w∗(n, s, z) = (−1)g
exp−1(s, z)∏g
j=1(z − zj)

×
det

(
z
−(i−2)
j − µj(s)z2n+i−2

j ; zg+1−n−i)
det

(
z
−(i−1)
j − µj(s)z2n+i−1

j

)
1�i,j�g

,

where the determinant in the numerator denotes the determinant of a
(g+1)×(g+1) matrix, using the same conventions as in (2.10). A straight-
forward computation using (2.7), (2.10) and (2.13), gives the relation (2.12),
which establishes the proposition. �

PROPOSITION 2.4. — Put

(2.14) εj = c2jzj ⇔ µj = c2j z
3−g
j

∏g
k �=j,k=1(zk − zj)∏g
k=1(zjzk − 1)

.

Then, the τ -function (2.7) can be expressed (up to an inessential factor) in

Flaschka’s form

(2.15) τn(s) = det
(
z
−(i−1)
j

)
1�i,j�g det B(n, s),

with B(n, s) the g × g matrix with entries

(2.16) B(n, s)ij = δij + ci(s) cj(s)
(zizj)n+1

1− zizj
,

and

(2.17) cj(s) = cj exp
( ∞∑
k=1

sk(zkj − z−kj )/2
)
.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Expanding the determinant (2.7) as a polynomial in the
µj(s), using the Vandermonde determinant formula, we find

(2.18) τn(s) = det
(
z
−(i−1)
j

)
1�i,j�g

∑
J⊆{1,...,g}

(−1)�J
∏
j∈J

µj(s) z2n
j

×
∏
j,k∈J
j<k

zj − zk

z−1
j − z−1

k

∏
j∈J,k/∈J

zj − z−1
k

z−1
j − z−1

k

.

By substituting (2.14) in (2.18), using (2.8) and (2.17), we find after some
computations that

(2.19) τn(s) = det
(
z
−(i−1)
j

)
1�i,j�g

×
∑

J⊆{1,...,g}

∏
j∈J

c2j (s) z
2(n+1)
j

1− z2
j

∏
j,k∈J
j<k

( zj − zk
1− zjzk

)2

.

We now show that the sum in (2.19) agrees with detB(n, s) in
(2.15). To this end, we use an argument in [10] (pp. 365-366), notic-
ing that B(n, s) = Id + D C D, with Id the identity matrix, D =
diag (c1(s)zn+1

1 , . . . , cg(s)zn+1
g ) a diagonal matrix, and C the g × g matrix

C = [(1− zizj)−1]1�i,j�g. Hence, the determinant of B(n, s) boils down to
the sum of all the principal minors of the matrix D C D. It is not difficult
to evaluate these minors by means of the Cauchy determinant formula

det
( 1

1− xjyk

)
1�j,k�N

=

∏
1�j<k�N (xj − xk)(yj − yk)∏

1�j,k�N (1− xjyk)
,

which, setting xj = yj = zj , leads to the sum in (2.19). This concludes the
proof. �

3. Toda solitons and their spectral matrices.

We start this section by relating the various constructions in Section
2 to the data used in the discrete version of the inverse scattering problem.
We follow [13] (see also [35]), where the theory summarized below can be
found. One considers in the Hilbert space l2 of square-summable, doubly

TOME 55 (2005), FASCICULE 6



1774 Luc HAINE

infinite complex sequences {f(n);−∞ < n <∞}, the following eigenvalue
problem

(3.1) (Lf)(n) ≡ an−1f(n− 1) + bnf(n) + anf(n + 1) =
z + z−1

2
f(n),

where z denotes a (complex) spectral parameter. Here an > 0 for all
n ∈ Z; it is assumed that an → 1/2 and bn → 0 rapidly (exponentially, for
example) as |n| → ∞, see [13] for the precise assumptions.

The discrete Jost functions are the solutions φ(n, z) and ψ(n, z) of
Lf = z+z−1

2 f , satisfying the asymptotic conditions

(3.2) |φ(n, z)− zn| → 0, n→ +∞,

(3.3) |ψ(n, z)− z−n| → 0, n→ −∞,

for |z| = 1. Still restricting to |z| = 1, one can show that

(3.4) ψ(n, z) = α(z)φ(n, z−1) + β(z)φ(n, z),

with |α(z)|2 − |β(z)|2 = 1. The function S(n, z) = ψ(n, z)/α(z) has the
asymptotic behaviour

S(n, z) = z−n +
β(z)
α(z)

zn, n→ +∞.

It is called the scattering solution; R(z) = β(z)/α(z) is called the reflection

coefficient and 1/α(z) is the transmission coefficient. The eigenvalues of L
are simple, finite in number, and correspond to real values zj ∈ ]−1, 1[, j =
1, . . . , g. If λj = (zj + z−1

j )/2 is an eigenvalue, and if ξ(n, zj) denotes the
corresponding eigenfunction normalized by

∑∞
n=−∞ ξ(n, zj)2 = 1, then

ξ(n, zj) ∼ cjz
n
j , n→ +∞,

for certain cj > 0, called the norming constants. The quantities (R(z),
z1, . . . , zg, c1, . . . cg), constitute the collection of scattering data from which
the Jacobi operator L can be recovered. We shall (somewhat loosely) refer
to the zj ’s, rather than the λj ’s, as the discrete spectrum.

In the so-called reflectionless case R(z) = 0, and the operator L is
reconstructed via the following formulas

(3.5) an =
1
2

√
τn−1(0)τn+1(0)

τn(0)
, bn =

1
2

∂

∂s1
ln

τn(s)
τn−1(s)

∣∣∣
s=0

,

ANNALES DE L’INSTITUT FOURIER
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where τn(s) is defined as in (2.15), (2.16) and (2.17), and the cj ’s and zj ’s
in these formulas coincide with the norming constants and the eigenvalues
as described above. Notice that, after deleting the irrelevant first factor,
formula (2.19) for τn(s) makes it clear that τn(s) > 0.

DEFINITION 3.1. — The doubly infinite Jacobi matrix L (3.1) with

entries defined as in (3.5), will be called a Toda g-soliton.

The reason for this terminology is that the solution of the Toda lattice
equations

L̇(s1) = [L+(s1)− L−(s1), L(s1)],

with initial condition L(0) = L, L as in (3.5), is a g-soliton solution
of these equations; here L+ (resp. L−) denote the strictly upper (resp.
lower) part of L. When flowing, the operator L(s1) stays reflectionless,
with the same eigenvalues λj = (zj + z−1

j )/2 and norming constants
cj(s1) = cj exp

(
s1(zj−z−1

j )/2
)
, see [13]. When the cj ’s are allowed to flow

according to (2.17), one gets a solution of the full Toda lattice hierarchy.
In the rest of the paper, we shall not be interested in the evolution of
L along the flows of the Toda lattice hierarchy, and we shall always put
s = (0, 0, . . .) in our formulas. For sake of brevity, we shall write τn instead
of τn(0).

LEMMA 3.2. — In the reflectionless case, the discrete Jost function

φ(n, z) defined in (3.2), is related as follows to the wave function w(n, 0, z)

(3.6) φ(n, z) =
√

τn−1

τn
z w(n− 1, 0, z),

with τn = τn(0).

Proof. — Via the transformation

f(n) =
√

τn−1

τn
g(n),

using (3.5), the three-term recurrence relation (3.1) passes over into

τn−2τn
τ2
n−1

g(n− 1) +
∂

∂s1
ln

τn(s)
τn−1(s)

∣∣∣
s=0

g(n) + g(n + 1) = (z + z−1)g(n).

Comparing this recurrence with (2.11), shows that it is satisfied by taking
g(n) = w(n − 1, 0, z). Thus, the function on the right-hand side of (3.6)

TOME 55 (2005), FASCICULE 6



1776 Luc HAINE

satisfies (3.1) with an and bn as in (3.5). To conclude that this function
agrees with the Jost function φ(n, z), it suffices to check that the asymptotic
condition (3.2) is satisfied for |z| = 1. This is easily done from (2.10),
remembering that |zj | < 1, using the Vandermonde determinant formula
and the fact that limn→+∞ τn is a non-zero constant, see (2.19). The lemma
is established. �

THEOREM 3.3. — Let φ(n, z) be the discrete Jost function given by

(3.6). The following orthogonality relations hold

(3.7)
1

2πi

∮
φ(n, z) φ(m, z−1)

dz
z

+
g∑
j=1

c2j φ(n, zj) φ(m, zj) = δnm,

for all m,n ∈ Z, with
∮

denoting the integral over the unit circle in the

complex z plane.

Proof. — Using (3.6) and (2.12) (with s = 0), (3.7) is equivalent to

(3.8)
1

2πi

∮
w(n− 1, 0, z) w∗(m, 0, z) dz

+
τm−1

τm

g∑
j=1

c2j z
2
j w(n− 1, 0, zj) w(m− 1, 0, zj) = δnm, ∀m,n ∈ Z.

We evaluate the integral in (3.8) by residues. We note from (2.2) and
(2.4), that the integrand has poles inside the unit circle only at z = 0
and z = zj , j = 1, . . . , g.

Using (2.5), we have

resz=zjw(n− 1, 0, z) w∗(m, 0, z) = −εj w(n− 1, 0, zj) w∗(m, 0, z−1
j ).

Substituting (2.14) in this last equation, and expressing w∗(m, 0, z−1
j ) in

terms of w(m− 1, 0, zj) using (2.12) with s = 0 and z = z−1
j , gives

(3.9) resz=zjw(n− 1, 0, z) w∗(m, 0, z)

= − τm−1

τm
c2j z

2
j w(n− 1, 0, zj) w(m− 1, 0, zj).

From (3.9) we conclude that, in order to establish (3.8), it remains to
show that

(3.10) resz=0w(n− 1, 0, z) w∗(m, 0, z) = δnm, ∀m,n ∈ Z.
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From (2.10), (2.13) and (2.7) (all with s = 0), we obtain the following
expansions around z = 0
(3.11)

w(n, 0, z) = zn
( τn+1

τn
+ O(z)

)
and w∗(n, 0, z) = z−n

( τn−1

τn
+ O(z)

)
.

Thus

w(n− 1, 0, z) w∗(m, 0, z) = zn−m−1
( τnτm−1

τn−1τm
+ O(z)

)
, around z = 0,

which establishes (3.10) for n � m. On the other hand, from (2.12) (with
s = 0), we deduce that

(3.12) resz=0w(n− 1, 0, z) w∗(m, 0, z) = − τnτm−1

τn−1τm
×resz=∞w(m− 1, 0, z) w∗(n, 0, z).

By the bilinear identities (2.6) with s = s′ = 0, the right-hand side of (3.12)
is zero for m−1 � n, thus establishing (3.10) for n � m−1. This concludes
the proof of the theorem. �

As announced in the Introduction, we end this section by giving the
spectral interpretation of (3.7). Since we are dealing with bounded doubly
infinite Jacobi matrices, we are automatically in the so-called limit point
case at ±∞, for which the spectral matrix is unique (up to a change of basis
of fundamental solutions). The general form of the orthogonality relations
is as follows, see [5] and [18] for an application linked with a doubly infinite
version of the Jacobi polynomials. Given φ(n, z) and ψ(n, z) a fundamental
system of solutions for Lf = z+z−1

2 f on |z| = 1, let us define for n a
non-negative integer, the matrix

Pn(z) =
(
φ(−n− 1, z) ψ(−n− 1, z)

φ(n, z) ψ(n, z)

)
, n � 0.

Then, there exists a unique Stieltjes spectral matrix measure dΣ(z), such
that the following orthogonality relations hold

(3.13)
∮

Pn(z) dΣ(z) Pm(z)T = δnm Id, ∀n,m � 0,

where
∮

denotes the integral over the unit circle in the complex z plane,
Pm(z)T is the transpose of Pm(z) and Id is the identity matrix. The next
corollary gives the spectral interpretation of Theorem 3.3.
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COROLLARY 3.4. — In the basis of the discrete Jost functions φ(n, z)
and ψ(n, z) as defined in (3.2) and (3.3), the Stieltjes spectral matrix

measure of a Toda g-soliton is given by

(3.14) dΣ(z) =
(

0 1/2
1/2 0

)
1

α(z)
dz

2πiz
+

g∑
j=1

c2j

(
1 0
0 0

)
δ(z − zj),

with z1, . . . , zg, the discrete spectrum, c1, . . . , cg, the norming constants,

δ(z) Dirac’s delta function and

(3.15)
1

α(z)
=

g∏
j=1

zjz − 1
z − zj

,

the transmission coefficient.

Proof. — With dΣ(z) defined as in (3.14), a straightforward compu-
tation shows that the orthogonality relations (3.13) amount to

(3.16)
1

4πi

∮ {
φ(n, z) ψ(m, z) + ψ(n, z) φ(m, z)

} dz
α(z) z

+
g∑
j=1

c2j φ(n, zj) φ(m, zj) = δnm, ∀n,m ∈ Z.

In the reflectionless case, we have that β(z) = 0 in (3.4). Thus, we can re-
place in (3.16) ψ(n, z)/α(z) by φ(n, z−1), showing that these orthogonality
relations precisely amount to those we established in (3.7). It is well known
(see for instance [35]) that for a Toda g-soliton, the transmission coefficient
is given by (3.15). This proves the corollary. �

Remark 3.5. — To the best of my knowledge, formulas (3.7) and
(3.14) have not appeared in the literature on the Toda lattice. However,
related issues have been considered for semi-infinite Jacobi matrices in [8],
and for the inverse scattering on the line in [9]. It seems to me interesting
that the curve theoretic approach to the orthogonality relations applies
when the curves have worse singularities than double points, which leads
to nonselfadjoint eigenvalue problems, see [22].
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4. q-Bessel functions with imaginary argument.

Let 0 < q < 1. We denote by

(4.1) eq(z) =
∞∑
n=0

(1− q)n zn

(q; q)n
=

1
((1− q)z; q)∞

, |z| < 1
1− q

,

the q-analogue of the exponential function ez, where the q-shifted factorials
are defined by

(a; q)n =
n−1∏
j=0

(1− aqj), n = 1, 2, . . . ; (a; q)0 = 1;

(a; q)∞ =
∞∏
j=0

(1− aqj).(4.2)

It follows immediately from (4.1) and (4.2) that

(4.3) eq(qrz) = ((1− q)z; q)r eq(z), r = 1, 2, . . . .

We introduce a q-analogue of the Bessel functions with imaginary
argument, via the generating function

(4.4) eq

( tz

2

)
eq

( tz−1

2

)
=

∞∑
k=−∞

Ik(t; q) zk,

for (1−q)|t|
2 < |z| < 2

(1−q)|t| . These functions relate to one of the two
q-analogues of the Bessel functions introduced by Jackson [25]. The two
(closely related) Jackson’s q-analogues of Bessel functions were revived in
[24], and are denoted by J

(1)
k (z; q) and J

(2)
k (z; q) (see also [14], pp. 25-26).

With these notations, Ik(t; q) = (−i)k J (1)
k

(
i(1− q)t; q

)
.

In the next section, we shall need the following identity.

PROPOSITION 4.1. — Let r = 1, 2, 3, . . .. Then, for any k ∈ Z, one has

(4.5)
(
q
kr
2 − q−

kr
2

)
Ik(t; q)

=
r∑
j=1

[
r

j

]
q

q
j(j−r−1)

2

( q − 1
2

)j
tj

(
Ik−j(q−r/2 t; q)− Ik+j(q−r/2 t; q)

)
,
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with [
r

j

]
q

=
(q; q)r

(q; q)j (q; q)r−j
,

the q-binomial coefficient.

Proof. — On the one hand, using (4.4), we have that

(4.6) eq

( qrtz

2

)
eq

( tz−1

2

)
=

∞∑
k=−∞

Ik(qr/2 t; q) q
kr
2 zk,

and on the other hand, using (4.3) and (4.4), we find that

eq

( qrtz

2

)
eq

( tz−1

2

)
=

(
(1− q)

tz

2
; q

)
r
eq

( tz

2

)
eq

( tz−1

2

)

=

(
r∑
j=0

[
r

j

]
q

q
j(j−1)

2

( q − 1
2

)j
tj zj

) ( ∞∑
k=−∞

Ik(t; q) zk
)
,(4.7)

where in the last equality, we have used the q-binomial theorem (see [14],
p. 20). Comparing the coefficients of zk in (4.6) and (4.7), and substituting
q−r/2 t for t, we obtain that

q
kr
2 Ik(t; q) =

r∑
j=0

[
r

j

]
q

q
j(j−r−1)

2

( q − 1
2

)j
tj Ik−j(q−r/2 t; q).

A similar argument starting with eq
(
tz
2

)
eq

(
qrtz−1

2

)
, leads to

q−
kr
2 Ik(t; q) =

r∑
j=0

[
r

j

]
q

q
j(j−r−1)

2

( q − 1
2

)j
tj Ik+j(q−r/2 t; q).

Subtracting this equation from the previous one, leads to (4.5). This finishes
the proof. �

5. The discrete heat equation Dq,t u =
(
L + (q−1)t

4 Id
)
u.

In order to obtain a “finite number of terms phenomenon” for the
fundamental solution of a discrete heat equation as in (1.2), when L is a
Toda g-soliton, we shall need to discretize the heat equation not only with
respect to the space variable x, but also the time variable t.
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The (partial) q-derivative Dq,tf of a function f(n, t), n ∈ Z, t ∈ R,
with respect to t, is given by

(Dq,tf)(n, t) =
f(n, qt)− f(n, t)

(q − 1)t
.

From the definition (4.1) of the q-exponential, it is straightforward to check
that

(5.1) Dq,t eq(t) = eq(t).

In the next proposition, we deduce from the orthogonality relations
(3.7) a formula for the fundamental solution of a (purely) discrete heat
equation.

PROPOSITION 5.1. — Let L be a Toda g-soliton, as in Definition 3.1

and let R = min1�j�g |zj | < 1. Given m ∈ Z, the solution u(n, t) of

(5.2) Dq,t u =
(
L +

(q − 1)t
4

Id
)
u,

with initial condition

(5.3) u(n, 0) = δnm,

is given by

(5.4) K(m|n, t) =
1

2πi

∮
eq

( tz

2

)
eq

( tz−1

2

)
φ(n, z) φ(m, z−1)

dz
z

+
g∑
j=1

c2j eq

( tzj
2

)
eq

( tz−1
j

2

)
φ(n, zj) φ(m, zj),

for |t| < 2R
1−q , with

∮
denoting the integral over the unit circle in the

complex z plane.

Proof. — As long as |t| < 2/(1 − q), the unit circle lies inside
the annulus (1 − q)|t|/2 < |z| < 2/

(
(1 − q)|t|

)
for which the product

eq( tz2 ) eq( tz
−1

2 ) is well defined. The stronger condition that |t| < 2R/(1−q)
with R = min1�j�g |zj |, guarantees that all the bound states are also within
the same annulus. A simple computation, using (4.3) and (5.1), gives

Dq,t

(
eq

( tz

2

)
eq

( tz−1

2

))
=

( z + z−1

2
+

(q − 1)t
4

)
eq

( tz

2

)
eq

( tz−1

2

)
.

TOME 55 (2005), FASCICULE 6



1782 Luc HAINE

Using this equation and the fact that φ(n, z) solves the three-term recur-
rence relation (3.1), by taking Dq,t of (5.4), we get

Dq,t K(m|n, t) = an−1 K(m|n− 1, t) + bn K(m|n, t)

+an K(m|n + 1, t) +
(q − 1)t

4
K(m|n, t),

which is (5.2). Putting t = 0 in (5.4), by the orthogonality relations (3.7),
we obtain (5.3). This establishes the proposition. �

We now show that for an arbitrary Toda g-soliton, the fundamental
solution (5.4) of (5.2) can be expanded as an infinite series in terms of the
Jackson’s q-Bessel functions of an imaginary argument Ik(t; q), that were
introduced in (4.4).

THEOREM 5.2. — Let R = min1�j�g |zj | < 1. Then, for |t| < 2R
1−q , the

fundamental solution K(m|n, t) of (5.2) admits the following convergent

series expansion

(5.5) K(m|n, t) =
√

τm−1τn
τmτn−1

Im−n(t; q)

+
g∑
j=1

c2j φ(m, zj) φ(n, zj)
{m−n−1∑
k=−∞

(zkj − z−kj ) Ik(t; q)
}
.

Proof. — The condition |t| < 2R/(1 − q) guarantees that the unit
circle and the bound states lie inside the annulus of convergence (1 −
q)|t|/2 < |z| < 2/

(
(1− q)|t|

)
of the Laurent expansion (4.4), which defines

the functions Ik(t; q). Thus, substituting (4.4) into (5.4), the infinite series
in the first term, being uniformly convergent on the unit circle, can pass
through the integral, and the one appearing in the second term involving
the bound states converges too, so that

(5.6) K(m|n, t) =
∞∑

k=−∞
Ik(t; q)

{ 1
2πi

∮
zk−1 φ(n, z) φ(m, z−1) dz

+
g∑
j=1

c2j z
k
j φ(n, zj) φ(m, zj)

}
.

We evaluate the integrals in (5.6) by residues, taking into account that the
integrand has poles inside the unit circle only at z = 0 and z = z1, . . . , zg.
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We compute

resz=zj z
k−1 φ(n, z) φ(m, z−1)

= −
√

τm
τm−1

εj z
k−1
j φ(n, zj) w∗(m, 0, z−1

j ), using (3.6), (2.12), (2.5),

= −c2j zkj φ(n, zj) φ(m, zj), using (2.12), (2.14), (3.6).

This shows that (5.6) reduces to

(5.7) K(m|n, t) =
∞∑

k=−∞
Ik(t; q) resz=0 zk−1 φ(n, z) φ(m, z−1).

From (3.6) and (2.12), we have

(5.8) zk−1 φ(n, z) φ(m, z−1) =
√

τn−1τm
τnτm−1

zk w(n− 1, 0, z) w∗(m, 0, z).

Expanding the right-hand side of (5.8) near z = 0, using (3.11), we find
that

zk−1 φ(n, z) φ(m, z−1) = zk+n−m−1

(√
τnτm−1

τn−1τm
+ O(z)

)
, near z = 0,

which gives

(5.9) resz=0 zk−1 φ(n, z) φ(m, z−1) =




0 if k � m− n + 1,√
τnτm−1

τn−1τm
if k = m− n.

From (2.12), we deduce that

resz=∞ zk w(n− 1, 0, z) w∗(m, 0, z)

= − τnτm−1

τn−1τm
resz=0 z−k w∗(n, 0, z) w(m− 1, 0, z),

= 0 when k � m− n− 1,

where the last equality follows again from (3.11). By the residue theorem
on the Riemann sphere, we conclude that

(5.10) resz=0 zk−1 φ(n, z) φ(m, z−1)

= −
g∑
j=1

{resz=zj + resz=z−1
j
} zk−1 φ(n, z) φ(m, z−1), when k � m− n− 1.
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It remains to evaluate the residues appearing on the right-hand side
of (5.10). We have

− {resz=zj + resz=z−1
j
} zk−1 φ(n, z) φ(m, z−1)

= εj

√
τn−1τm
τnτm−1

w(n− 1, 0, zj) w∗(m, 0, z−1
j ) (zkj − z−kj )

using (5.8), (2.3) and (2.5),

= c2j φ(n, zj) φ(m, zj) (zkj − z−kj )

using (2.12), (2.14) and (3.6).(5.11)

Combining (5.7), (5.9), (5.10) and (5.11) leads to the announced result
(5.5). This concludes the proof of the theorem. �

Remark 5.3. — If we replace in (5.4) the q-exponential by the usual
exponential as in (1.3), we obtain the fundamental solution of the “time-
continuous, space-discrete” heat equation (1.2). Then, the same argument
as in Theorem 5.2 shows that (1.3) admits a series expansion as in (5.5),
with Ik(t; q) replaced by the standard Bessel functions Ik(t) of imaginary
argument, which converges now for all t. However, the standard identities
satisfied by the functions Ik(t) will never reduce this infinite series to a
finite sum. This only happens in the limiting case considered in [19], when
all the bound states zj accumulate at ±1.

Our final result shows that the introduction of the q-exponential in
(1.3) makes it possible to find some special choices of the bound states zj ,
for which the infinite expansion (5.5) reduces to a finite sum.

COROLLARY 5.4. — Let 0 < q < 1. Let L be a Toda g-soliton as in

Definition 3.1, with discrete spectrum at

(5.12) z1 = ± q
r1
2 , . . . , zg = ± q

rg
2 ,

for some choice of positive integers r1, . . . , rg and some arbitrary choice

of the ± signs, in such a way that the zj ’s are distinct points. Then, for

|t| < 2R
1−q with R as in Theorem 5.2, the expansion (5.5) reduces to a finite

sum of the form
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K(m|n, t) =
√

τm−1τn
τmτn−1

Im−n(t; q)

+
g∑
j=1

m−n+rj−1∑
k=m−n−rj

pj,k(m|n, t) Ik(q−rj/2 t; q),

with pj,k(m|n, t) polynomials in t of degree rj , that can be computed

explicitly.

Proof. — In view of (5.5), it suffices to show that when z = εqr/2, r =
1, 2, . . . , ε = ±1, the series

m−n−1∑
k=−∞

(zk − z−k) Ik(t; q),

can be expressed as a finite sum. But this fact follows immediately from
the property (4.5) that we established in Proposition 4.1, which shows that
in these cases the series above reduces to a telescoping one. Explicitly, we
find that

m−n−1∑
k=−∞

εk
(
q
kr
2 − q−

kr
2

)
Ik(t; q)

= −εm−n−1
r−1∑
k=0

(
r∑

j=k+1

εj+k
[
r

j

]
q

q
j(j−r−1)

2

( q − 1
2

)j
tj

)

×
(
Im−n−k−1(q−r/2 t; q) + ε Im−n+k(q−r/2 t; q)

)
.

Only the functions Ik(q−r/2 t; q), m − n − r � k � m − n + r − 1, are
involved in this sum, and their coefficients are polynomials in t of degree
r. This concludes the proof of the corollary. �

In [17, 20, 23], the following difference – q-difference bispectral
problem was studied. To find all doubly infinite (or semi-infinite) Jacobi
matrices for which some family of eigenfunctions is also a family of
eigenfunctions of a q-difference operator of an arbitrary order, in the
spectral variable z. The Askey-Wilson orthogonal polynomials [2] provide
instances of semi-infinite Jacobi matrices which solve this problem. Rank 1
solutions of the problem, that we called “Askey-Wilson type solitons”, were
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described in [20] (see also [23], which further contains a description of rank
2 solutions). It is quite remarkable that the conditions (5.12) which lead
to a “finite sum formula” for the fundamental solution of (5.2), precisely
define the “Askey-Wilson type solitons”. It would be interesting to have an
explanation for this coincidence!

Finally, our results should be extended to the heat equation (1.1),
with V (x) a soliton of the KdV equation. Clearly, the circle in (1.3) should
be replaced by the line. It could also be interesting to revisit from our point
of view the limiting case when all the bound states accumulate at the origin,
which corresponds to the original results of Lagnese and Stellmacher [28,
29]. I plan to return to these questions in a further publication.
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