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STABILITY OF BASES AND FRAMES
OF REPRODUCING KERNELS IN MODEL SPACES

by Anton BARANOV

Introduction.

Let Θ be an inner function in the upper half-plane C+, that is, a
bounded analytic function such that lim

y→0+
|Θ(x + iy)| = 1 for almost all

x ∈ R with respect to the Lebesgue measure. With each inner function Θ
we associate the subspace

K2
Θ = H2 �ΘH2

of the Hardy class H2 in the upper half-plane. These subspaces play an
outstanding role both in function and operator theory (see [24, 25, 26]).
In particular, by the P.D. Lax theorem, any subspace of H2 coinvariant
with respect to the semigroup of shifts (Ut)t�0, Utf(x) = eitxf(x), is of the
form K2

Θ for some inner function Θ. The subspaces K2
Θ are often called

model subspaces due to their relation with the Sz.-Nagy–Foias model for
contractions in a Hilbert space; in what follows we also use this term.

Keywords: Inner function, shift-coinvariant subspace, reproducing kernel, Riesz basis,
frame, stability.
Math. classification: 46E22, 42C15, 30D55, 47B32.



2400 Anton BARANOV

For λ ∈ C+ the function

kλ(z) =
i

2π
· 1−Θ(λ)Θ(z)

z − λ

is the reproducing kernel of the space K2
Θ corresponding to the point λ,

that is, kλ ∈ K2
Θ and

f(λ) =
∫
R

f(t)kλ(t)dt, f ∈ K2
Θ.

Recall that

‖kλ‖22 =
1− |Θ(λ)|2

4π�λ .

A system of vectors {hn} in a Hilbert space H is said to be a Riesz
basis if {hn} is an image of an orthonormal basis under a bounded and
invertible linear operator in H. An equivalent definition is that each h ∈ H
may be represented as an unconditionally convergent series h =

∑
n cnhn

and there exist positive constants A and B such that

(1) A
∑
n

|cn|2 �

∥∥∥∥∥
∑
n

cnhn

∥∥∥∥∥
2

H

� B
∑
n

|cn|2.

In the present paper we are concerned with the sets of complex
numbers Λ = {λn} such that the normalized kernels kλn/‖kλn‖2 constitute
a Riesz basis in K2

Θ for a given Θ. In this case we say for short that {kλn}
is a basis in K2

Θ. To be exact, we are interested in stability of this property:
given a basis {kλn} and the points µn ≈ λn, which are in a sense close to
λn, whether the system {kµn} is also a basis? The problem is to determine
which small perturbations are admissible, that is, preserve the property to
be a basis.

We start with one important example which motivates the interest
to this problem. Consider the inner function Θ(z) = exp (2πiz). Then,
by the Paley–Wiener theorem, the Fourier image of the model subspace
K2

Θ coincides with the space L2(0, 2π). Moreover, a system of reproduc-
ing kernels kλn in K2

Θ corresponds to a system of complex exponentials
eiλnt in L2(0, 2π). Thus, in this particular case, our problem is equivalent
to the famous problem of nonharmonic Fourier series which has important
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applications in control theory and signal processing [26]. Bases of repro-
ducing kernels in general model subspaces have applications to differential
operators; in particular, in string scattering theory (see [20]).

The first result on the nonharmonic Fourier series is due to R.C.E.A.
Paley and N. Wiener: if λn ∈ R, n ∈ Z, and

sup
n∈Z
|λn − n| � δ

with δ < π−2 (that is, {eiλnt} is close to the standart orthogonal basis
{eint}), then {eiλnt} is a Riesz basis in L2(0, 2π). Later, M. Kadec [21]
showed that the same is true for any δ < 1/4, whereas, by a result of
A. Ingham, the system {eiλnt} may fail to be a basis if δ = 1/4.

The complete description of Riesz bases of exponentials was obtained
by S.V. Hruscev, N.K. Nikolskii and B.S. Pavlov [20] in terms the Helson-
Szegö condition. In [20] also the case of general inner functions is treated
and a necessary and sufficient condition is obtained under the additional
restriction

(2) sup
n
|Θ(λn)| < 1.

In this case the system {kλn} is a basis if and only if the sequence Λ satisfies
the Carleson interpolation condition and the Toeplitz operator TΘB , where
B is the Blaschke product with zeros λn, is invertible. The invertibility of
TΘB is, in its turn, equivalent to the representation ΘB = αh/h, where
α ∈ C, |α| = 1, and h ∈ H2 is an outer function such that |h|2 satisfies
the Helson-Szegö condition. The problem of the description of bases of
reproducing kernels in the general case is still open.

For the case when Θ and Λ satisfy (2) a result on stability of the bases
under small perturbations of “frequencies” λn was obtained by E. Fricain
[18]: if {kλn} is a basis in K2

Θ, then there is ε > 0 such that {kµn} is a basis
whenever

(3) sup
n
ρ(λn, µn) < ε,

where ρ(z, w) stands for the pseudo-hyperbolic distance, that is, ρ(z, w) =∣∣∣ z−wz−w

∣∣∣, z, w ∈ C+.

However, the condition (2) seems to be too restrictive. In many cases
there exist bases of reproducing kernels such that (2) is violated. Moreover,

TOME 55 (2005), FASCICULE 7



2402 Anton BARANOV

there is an important class of orthogonal bases of reproducing kernels
corresponding to real points λn and, thus, |Θ(λn)| ≡ 1.

Orthogonal bases of reproducing kernels were studied by L. de
Branges [10] for meromorphic inner functions and by D.N. Clark [11] in
the general case. They may be constructed by the following procedure. For
any α ∈ C, |α| = 1, the function (α + Θ)/(α −Θ) has a positive real part
in the upper half plane. Hence, there exist pα � 0 and a measure σα such
that

� α+ Θ(z)
α−Θ(z)

= pα�z +
�z
π

∫
R

dσα(t)
|t− z|2 , z ∈ C+.

The Clark theorem states that if σα is purely atomic (that is,

σα =
∑
n

anδtn

where δx denotes the Dirac measure at the point x) and pα = 0, then the
system {ktn} is an orthogonal basis in K2

Θ; in particular, ktn ∈ K2
Θ. Note

that all measures σα are purely atomic if the boundary spectrum σ(Θ)∩R
(see Section 1 for the definition) is at most countable, whereas pα = 0 for
all α except at most one. Note also that, by the Ahern-Clark theorem [1],
kx ∈ K2

Θ, x ∈ R, if and only if |Θ′(x)| < ∞, where |Θ′(x)| is the modulus
of the angular derivative of Θ, and ‖kx‖22 = |Θ′(x)|/(2π).

We consider the following example. If Θ admits an analytic extension
across the real axis (and, thus, is meromorphic in the whole complex plane),
then there is a well-defined branch of the argument of Θ on the line, that is,
an increasing differentiable function ϕ such that Θ(t) = exp (iϕ(t)), t ∈ R
(note, that ϕ′(t) = |Θ′(t)|). In this case the points tn may be defined by
the equation

ϕ(tn) = argα+ 2πn.

In view of this example it seems reasonable to consider perturbations
sn of the points tn such that

(4) sup
n
|ϕ(sn)− ϕ(tn)| = sup

n

∫
<tn,sn>

|Θ′(t)|dt < ε,

that is, the perturbations which are small with respect to the change of the
argument of Θ. Here, by < s, t > we denote the interval with the endpoints
s and t.

ANNALES DE L’INSTITUT FOURIER
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Perturbations of the form (4) were studied by W.S. Cohn for one spe-
cial but important class of inner functions which generalizes the functions
Θ(z) = exp (iaz). Given δ ∈ (0, 1) consider the level set

Ω(Θ, δ) = {z ∈ C+ : |Θ(z)| < δ}.

We say that an inner function Θ satisfies the connected level set condition
(CLS) if the set Ω(Θ, δ) is connected for some δ ∈ (0, 1) (sometimes also
the term “one-component inner function” is used). The following theorem
is due to W.S. Cohn [13]:

THEOREM. — Let Θ be a CLS inner function. Then there is ε = ε(Θ)
such that if {ktn} is a Clark basis and (4) holds, then {ksn/‖ksn‖2} is a

Riesz basis in K2
Θ.

In the author’s paper [5] counterexamples are constructed which show
that the CLS condition is essential here. The result analogous to the
Cohn’s theorem is no longer true for general Θ-s even if we consider only
meromorphic inner functions (we include some of these examples for the
sake of completeness).

In conclusion we mention the sampling property of systems of repro-
ducing kernels which is important for applications. Recall that a system
{hn} in a Hilbert space H is said to be a frame if there are positive con-
stants A and B such that

(5) A‖f‖2H �
∑
n

|(f, hn)H |2 � B‖f‖2H , f ∈ H;

by (f, g)H we denote the inner product in H. Clearly, if the system {hn}
is a Riesz basis, then it is automatically a frame. Moreover, in this case (5)
holds with the same constants A and B as the inequality (1).

If {kλn/‖kλn‖2} is a frame in K2
Θ, then

(6) A‖f‖22 �
∑
n

|f(λn)|2/‖kλn‖22 � B‖f‖22, f ∈ K2
Θ.

Any set Λ satisfying (6) is said to be sampling for K2
Θ. Sampling sets

Λ ⊂ R for K2
Θ with Θ(z) = exp (2πiz) or, in other words, frames of

exponentials, were recently described by J. Ortega-Cerda and K. Seip [27].
Also, it was shown by Seip [28] that even for the systems of exponentials

TOME 55 (2005), FASCICULE 7
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there is an essential difference between frames and bases: there exist frames
of exponentials containing no subsequence which is a Riesz basis.

Stability of frames of reproducing kernels was considered in [6] for a
special class of inner functions Θ with Θ′ ∈ L∞(R). The following related
results also should be mentioned: in [19] stability of the completeness prop-
erty for the reproducing kernels is discussed, whereas in [8] a description
of uniformly minimal systems of reproducing kernels is obtained.

In the present paper we consider an approach to the problem of
stability of bases and frames of reproducing kernels based on the estimates
of derivatives (Bernstein-type inequalities) obtained recently by the author
[7]. This approach makes it possible to give unified proofs and generalize
essentially the results of Fricain and Cohn. It should be emphasized that
in the proof of the first stability theorem of Paley and Wiener also certain
Bernstein-type inequality was used.

In what follows, the letters C, C1, C2 denote different positive
constants which may change their values in different inequalities. We write
f � g if C1f � g � C2f .

1. Main results.

To state our main results we need some additional information on
inner functions. Recall that each inner function Θ admits the factorization

(7) Θ(z) = γ exp (iaz)B(z)Iψ(z),

where γ ∈ C, |γ| = 1, a � 0,

B(z) =
∏
n

eiαn
z − zn
z − zn

is the Blaschke product with zeros zn ∈ C
+ satisfying the Blaschke

condition
∑

n �zn(1 + |zn|2)−1 < ∞ and αn ∈ R. Singular inner function
Iψ is defined by the formula

Iψ = exp


i

∫
R

(
1

t− z −
t

t2 + 1

)
dψ(t)


 ,

ANNALES DE L’INSTITUT FOURIER
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where ψ is a Borel measure on the line singular with respect to the Lebesgue
measure and such that

∫
R
(t2 + 1)−1dψ(t) < ∞. Let σ(Θ) be the so-called

spectrum of the inner function Θ, that is, the set of all ζ ∈ C+ ∪ {∞}
such that lim inf

z→ζ, z∈C+
|Θ(z)| = 0. Note that σ(Θ) is closed and Θ (and,

moreover, any f ∈ K2
Θ) has an analytic extension across any interval of

the set R \ σ(Θ).

Clearly, if x ∈ R\σ(Θ), then the function kx belongs to K2
Θ and is the

reproducing kernels corresponding to the point x. It is possible, however,
that kx ∈ K2

Θ even when x ∈ σ(Θ): it was shown by P.R. Ahern and D.N.
Clark [1] that kx ∈ K2

Θ if and only if the modulus of the angular derivative
Θ′(x) is finite. Recall that

(8) |Θ′(x)| = a+
∑
n

2�zn
|x− zn|2

+
∫
R

dψ(t)
(t− x)2 .

A generalization of this result is due to Cohn [12]: the kernel kx is in Hp,
1 < p <∞, if and only if

Sp(x) =
∑
n

�zn
|x− zn|p

+
∫
R

dψ(t)
|t− x|p <∞.

A Borel measure ν in the closed upper half-plane C+ is said to be a
Carleson measure if there is a constant Mν > 0 such that

µ(S(x, h)) � Mνh

for any square S(x, h) = [x, x + h] × [0, h], x ∈ R, h > 0, in the upper
half-plane.

Let {kλn} be a basis in K2
Θ. In what follows we consider perturbations

within certain neighbourhoods of the points λn. By 〈u, v〉 we denote the
interval with the endpoints u and v; δ〈u,v〉 denotes the Lebesgue measure
on 〈u, v〉. Let G =

⋃
nGn ⊂ C+ satisfy the following properties:

(i) there exist positive constants c and C such that

c � ‖kzn‖2/‖kλn‖2 � C, zn ∈ Gn;

TOME 55 (2005), FASCICULE 7
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(ii) for any zn ∈ Gn the measure

ν =
∑
n

δ〈λn,zn〉

is a Carleson measure and, moreover, the Carleson constants Mν of such
measures are uniformly bounded with respect to zn.

It should be noted that for λn ∈ C+ there always exist nontrivial sets
Gn satisfying (i)-(ii). It is known that for any basis of reproducing kernels
the sequence Λ satisfies the Carleson interpolation condition

inf
n

∏
m�=n

∣∣∣∣ λm − λnλm − λn

∣∣∣∣ > 0

(see [24] or [26], p. 308). In particular, the measure ν =
∑

n �λnδλn is a
Carleson measure. The same arguments show that for a frame of the form
{kλn/‖kλn‖2} the sequence Λ is a finite union of interpolating sequences,
and, thus, ν is again a Carleson measure (see Lemma 4.2 below).

Therefore, we can take Gn = {z : |z − λn| < r�λn} for sufficiently
small r > 0. At the same time, it is possible that for λn ∈ R the only
admissible set Gn consists of the point λn.

Now we are able to state our main result on stability which is
applicable to general inner functions Θ and sequences Λ.

THEOREM 1.1. — Let {kλn} be a basis inK2
Θ, p ∈ (1, 2), 1/p+1/q = 1.

Then for any set G satisfying (i)-(ii) there is ε > 0 such that the system of

reproducing kernels {kµn} is a basis whenever µn ∈ Gn and

(9) sup
n

1
‖kλn‖22

∫
〈λn,µn〉

‖k2
z‖

2p
p+1
q |dz| < ε.

The constant ε in Theorem 1.1 depends on p, on the constants
involved in the definition of the set G and on the constant A from (1),
but not on the function Θ. To be exact, ε = Aε1(p,G).

The quantity in (9) which measures the smallness of perturbations
looks somewhat implicit. For the applications of Theorem 1.1 it is necessary

ANNALES DE L’INSTITUT FOURIER
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to have effective estimates of the norm ‖k2
z‖q. We start with the following

simple estimate:

(10) ‖k2
z‖qq � C

1− |Θ(z)|2
(�z)2q−1

z ∈ C+.

Indeed,

‖4π2k2
z‖qq =

∫
R

∣∣∣∣∣
1−Θ(z)Θ(t)

t− z

∣∣∣∣∣
2q

dt

�
22q−2

(�z)2q−2

∫
R

∣∣∣∣∣
1−Θ(z)Θ(t)

t− z

∣∣∣∣∣
2

dt � C
1− |Θ(z)|2
(�z)2q−1

.

Estimate (10) implies

COROLLARY 1.2. — Let {kλn} be a basis in K2
Θ and γ > 1/3. Then

there is ε = ε(γ,A) such that the system {kµn} is a basis whenever

(11) ρ(λn, µn) < ε(1− |Θ(λn)|)γ .

Note that in the case when (2) is satisfied, (11) is equivalent to (3);
thus, the theorem of Fricain follows immediately from Corollary 1.2.

If Θ belongs to some special class of inner functions with additional
properties we may have sharper estimates for the norms of reproducing
kernels than (10). For example, we show (making use of the results of A.B.
Aleksandrov [3, 4]) that for a CLS inner function Θ and a basis {kλn} we
have the estimate

(12) ‖k2
λn‖

q
q � C‖kλn‖

2(2q−1)
2

with C = C(Θ,Λ, q). Thus, we obtain

COROLLARY 1.3. — Let Θ be a CLS inner function, λn ∈ C+, and let

{kλn} be a basis in K2
Θ. Then there exists ε > 0 such that if

(13) |λn − µn| < ε‖kλn‖−2
2 = 4πε�λn(1− |Θ(λn)|2)−1,

then the system {kµn} is also a basis.

TOME 55 (2005), FASCICULE 7
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In particular, (13) implies that in the case of CLS inner functions the
bases of reproducing kernels are stable with respect to hyperbolically small
perturbations of the points λn.

Remarks . —

1. All our results on stability of bases have their analogs for frames
of reproducing kernels. To get the corresponding statement one should
replace “{kλn} is a basis in K2

Θ” by “{kλn/‖kλn‖2} is a frame in K2
Θ”

in the formulations. Moreover, all the proofs are based on some frame-type
estimate and the general fact that if a frame is close to a basis, then it is
a basis itself.

2. All the statements remain valid if we are interested in the stability
of Riesz sequences of reproducing kernels, that is, of systems of reproducing
kernels which constitute Riesz bases in their closed linear spans.

Now, we consider an extension of the Cohn’s theorem on stability of
bases with real “frequencies” (in particular, the Clark bases) to the case of
a general inner function. For t ∈ R let d0(t) = dist (t, σ(Θ)) be the distance
to the spectrum of Θ.

THEOREM 1.4. — Let tn ∈ R and let {ktn} be a basis ({ktn/‖ktn‖2} be

a frame) inK2
Θ. Then there is ε > 0 such that {ksn} is a basis ({ksn/‖ksn‖2}

is a frame) whenever

(14)
∫

<tn,sn>

[|Θ′(t)|+ |Θ′(t)|−1d−2
0 (t)] dt < ε

or

(15) |sn − tn| < ε|Θ′(tn)|min(d2
0(tn), |Θ′(tn)|−2).

Remark. — It should be emphasized that the admissible perturba-
tions in Theorems 1.1 and 1.4 depend essentially on the properties of the
function Θ and density of its spectrum near the points under consideration.
If we are far from the spectrum, then larger perturbations are admissible.
For particular cases the distance function (9) leads to Euclidean (in the case
Θ(z) = exp (iaz) or, more generally, for Θ′ ∈ L∞(R)) or pseudo-hyperbolic
(for functions satisfying (2) or CLS condition) metrics.

ANNALES DE L’INSTITUT FOURIER
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2. Preliminaries on bases and frames.

A frame {hn} is said to be an exact frame if it fails to be a frame
after the removal of any of its vectors hn. It turns out that exact frames
are just one more characterization of the Riesz bases. We cite the following
well-known theorem ([30], Ch. 4, Th. 12):

THEOREM 2.1. — The system {hn} is a Riesz basis in a separable

Hilbert space H if and only if {hn} is an exact frame.

A system {hn} is said to be minimal if hm /∈ Span(hn, n �= m) for
any hm, where Span denotes the closed linear span.

COROLLARY 2.2. — The following statements are equivalent:

1. {hn} is a Riesz basis in H;

2. {hn} is both a frame and minimal.

Proof. — Implication 1 =⇒ 2 is trivial. Let {hn} be a frame and min-
imal. Then the system {hn}n �=m is not complete in H, and, consequently,
is not a frame. Thus, {hn} is an exact frame and, by Theorem 2.1, is a
Riesz basis. �

The following lemma plays the key role in our arguments. It states
that if a system {h′n} is close to {hn} in a certain “frame” sense and {hn}
is a Riesz basis, then the same is true for {h′n}. Here A is the constant from
(1) and (5).

LEMMA 2.3. — Let

(16)
∑
n

|(f, hn − h′n)H |2 � ε‖f‖2H , f ∈ H.

If {hn} is a frame and ε < A, then {h′n} is also a frame. If, moreover, {hn}
is a Riesz basis, then {h′n} is a Riesz basis.

Proof. — The first statement is obvious. Indeed,

‖(f, h′n)H‖�2 � ‖(f, hn)H‖�2−‖(f, hn−h′n)H‖�2 � (
√
A−
√
ε)‖f‖H , f ∈ H.

TOME 55 (2005), FASCICULE 7
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Now let {hn} be a Riesz basis. To prove that {h′n} is a Riesz basis it
suffices to show that {h′n} is minimal. Consider finite linear combinations
g =

∑
n cnhn and g′ =

∑
n cnh

′
n. Clearly,

‖g − g′‖2H =
∑
n

cn(g − g′, hn − h′n)H � ‖{cn}‖�2‖{(g − g′, hn − h′n)H}‖�2 .

Hence, by the estimate (16), ‖g− g′‖2H � ε‖{cn}‖2�2 . Therefore, (1) implies

‖g′‖H � ‖g‖H − ‖g − g′‖H � (
√
A−
√
ε)‖{cn}‖�2 .

In particular, for any finite {cn} and for any m we have

∥∥∥∥∥∥h
′
m −

∑
n �=m

cnh
′
n

∥∥∥∥∥∥
H

�
√
A−
√
ε > 0.

Thus, {h′n} is minimal (the latter inequality coincides with the definition
of a stronger property of uniform minimality). �

3. Weighted Bernstein-type inequalities.
Proof of the main theorem.

The interest to the Bernstein-type inequalities in the model subspaces
K2

Θ and their Lp analogs Kp
Θ = Hp ∩ ΘHp is partially motivated by the

classical Bernstein’s inequality for the Paley–Wiener space PW p
a . The space

PW p
a consists of all entire functions of exponential type at most a which

belong to Lp(R). This space is closely related to the model subspace Kp
Θ,

where Θ(z) = exp (iaz); namely, Kp
Θ = PW p

a ∩Hp. It is well known that

‖f ′‖p � a‖f‖p, f ∈ PW p
a .

This inequality was a starting point for many generalizations. The problem
of existence of the non-tangential boundary values for the derivatives of
Kp

Θ-functions was solved in [1, 14]; the boundedness and compactness of
the differentiation operator on the model subspace were studied in [15, 17];
certain weighted norm inequalities were obtained in [6, 9, 16, 22]. A survey
of these results is presented in [7].

ANNALES DE L’INSTITUT FOURIER
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In the present paper we apply the following estimate obtained in [7]
(we consider only the case of L2-norms):

THEOREM 3.1. — Let ν be a Carleson measure, p ∈ (1, 2), 1/p+ 1/q
= 1. Put

wp(z) = ‖k2
z‖
− p
p+1

q ;

we assume wp(x) = 0 whenever x ∈ R and S2q(x) =∞. Then the operator

(Tpf)(z) = f ′(z)wp(z), z ∈ C+,

is bounded as an operator from K2
Θ to L2(ν), that is, there is a constant

C = C(Mν , p) such that

‖f ′wp‖L2(ν) � C‖f‖2, f ∈ K2
Θ.

In [7] a number of estimates for the norm ‖k2
z‖q (which is comparable

with the norm of the functional f �→ f ′(z), f ∈ Kp
Θ) is presented. We

mention here (besides (10) and (12)) the following:

(17) C1 min(d0(x), |Θ′(x)|−1) � ‖k2
x‖
− p
p+1

q � C2|Θ′(x)|−1, x ∈ R,

where d0(x) = dist(x, σ(Θ)). Moreover, the quantity

v0(x) = min(d0(x), |Θ′(x)|−1)

has a simple geometrical meaning related to the level sets Ω(Θ, δ). Namely,
v0(x) � dist(x,Ω(Θ, δ)) with the constants depending only on δ ∈ (0, 1).

Note that v0(x) = 0 whenever x ∈ σ(Θ). Hence, the function f ′v0 is
well-defined on R.

COROLLARY 3.2. — There exists an absolute constant C such that
‖f ′v0‖2 � C‖f‖2, f ∈ K2

Θ.

Proof of Theorem 1.1. — Let hn = kλn/‖kλn‖2 and h′n = kµn/‖kλn‖2.
Recall that ‖kλn‖2 � ‖kµn‖2, µn ∈ Gn. In view of Lemma 2.3, it suffices
to check the estimate (16). Note that for the case λn, µn ∈ R it follows
from (9) that Int (〈λn, µn〉) ∩ σ(Θ) = ∅ (see [7], Lemma 6.1), where Int I
denotes the interior of the interval I. Thus, any f ∈ K2

Θ is differentiable in
Int (〈λn, µn〉).
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It is known that the functions continuous in C+ are dense in K2
Θ (it is

obvious if Θ is a Blaschke product; see [2] for the general case). Let f ∈ K2
Θ

be continuous in C+. Then

|(f, hn − h′n)|2 =
|f(λn)− f(µn)|2

‖kλn‖22
=

1
‖kλn‖22

∣∣∣∣∣∣∣
∫

〈λn,µn〉

f ′(z)|dz|

∣∣∣∣∣∣∣

2

.

By the Hölder inequality,

|(f, hn − h′n)|2 �
1

‖kλn‖22

∫
〈λn,µn〉

|f ′(z)wp(z)|2|dz|
∫

〈λn,µn〉

w−2
p (z)|dz|.

By our assumptions,

1
‖kλn‖22

∫
〈λn,µn〉

w−2
p (z)|dz| < ε

and ν =
∑

n δ〈λn,µn〉 is a Carleson measure with a constant Mν which
does not exceed some absolute constant depending only on G. Hence, by
Theorem 3.1,

∑
n

|(f, hn − h′n)|2 � ε‖f ′wp‖2L2(ν) � Cε‖f‖22

for a constant C which depends on G, Λ and p. Now, Lemma 2.3 implies
that if hn is a basis (frame) in K2

Θ, then we can choose a sufficiently small
ε > 0 such that h′n is also a basis (frame). �

4. Proofs of the corollaries.

We begin with the following (apparently well-known) property of
inner functions.

LEMMA 4.1. — There exist absolute constants ε0 ∈ (0, 1), C1, C2 > 0
such that for any z, w ∈ C+ satisfying ρ(z, w) < ε0 we have

(18) C1 �
1− |Θ(z)|
1− |Θ(w)| � C2.
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Proof. — By the Frostman theorem, each inner function may be uni-
formly approximated by Blaschke products. So, without loss of generality,
Θ is a Blaschke product with the zeros zm. It follows from the condition
ρ(z, w) < ε0 that |z−w| � 2ε0(1− ε0)−1�w. Let ε0 = 1/9. Then |z−w| �
(�w)/4, whence 4/5 � �z/�w � 5/4 and 4/5 � |w − zm|/|z − zm| � 5/4.

Due to the symmetry, it suffices to prove the right-hand side inequality
in (18). The estimate is obvious if |Θ(w)| < 1/2. Also, if |z−zm|/|z−zm| <
1/2 for some zm, then

∣∣∣∣w − zmw − zm

∣∣∣∣ �
∣∣∣∣ w − zw − zm

∣∣∣∣ +
∣∣∣∣ z − zmz − zm

∣∣∣∣
∣∣∣∣ z − zmw − zm

∣∣∣∣ < 7
8
,

and, consequently, (1− |Θ(z)|)/(1− |Θ(w)|) < 8.

Assume that |Θ(w)| � 1/2 and |z − zm|/|z − zm| � 1/2. Then,
applying the elementary inequalities log(1 − u) < −u, u ∈ (0, 1), and
log(1 − u) > −2u, u ∈ (0, 1/2), to u = 1 − |Θ(z)| and u = 1 − |Θ(w)|
respectively, we get

1− |Θ(z)|
1− |Θ(w)| � 2

log |Θ(z)|
log |Θ(w)| .

Note that for ζ ∈ C+

(19) log |Θ(ζ)| =
∑
m

log
∣∣∣∣ ζ − zmζ − zm

∣∣∣∣ =
1
2

∑
m

log
(

1− 4�ζ�zm
|ζ − zm|2

)
.

Hence,

− log |Θ(w)| > 2
∑
m

�w�zm
|w − zm|2

.

On the other hand, since |z − zm|/|z − zm| � 1/2 and log(1 − u) > −4u,
u ∈ (0, 3/4), we have

− log |Θ(z)| < 8
∑
m

�z�zm
|z − zm|2

.

Therefore, 1− |Θ(z)| � 1− |Θ(w)|. �

LEMMA 4.2. — If {kλn/‖kλn‖2} is a frame inK2
Θ, then ν =

∑
n �λnδλn

is a Carleson measure.
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Proof. — Note that
(

kλm
‖kλm‖2

,
kλn
‖kλn‖2

)
=

1−Θ(λm)Θ(λn)
λn − λm

· 2i
√
�λm�λn

(1− |Θ(λm)|2)1/2(1− |Θ(λn)|2)1/2
.

Clearly, |1 − αβ|2 � (1 − |α|2)(1 − |β|2) when |α| < 1 and |β| < 1. Hence,
by (6), ∑

n

4�λm�λn
|λn − λm|2

�
∑
n

∣∣∣∣
(

kλm
‖kλm‖2

,
kλn
‖kλn‖2

)∣∣∣∣
2

� B,

whence
sup
m

∑
n

�λm�λn
|λn − λm|2

<∞.

It is well known that the latter condition is fulfilled if and only if ν is a
Carleson measure (see [24], p. 151). �

Proof of Corollary 1.2. — By Lemmas 4.1 and 4.2, the sets Gn =
{z : |z − λn| � (�λn)/9} satisfy the conditions (i)-(ii). If ε is sufficiently
small, then the estimate (11) implies that µn ∈ Gn and, moreover,
|λn − µn| < Cε�λn. Without loss of generality we may assume also that
γ < 1. Since γ > 1/3 there exists p ∈ (1, 2) such that 2 p−1

p+1 = 1 − γ. Let
q be the conjugate exponent. Note that p+1

p = 2q−1
q and 2p

(p+1)q = 1 − γ.
Then, by the inequality (10) and Lemma 4.1,

‖k2
z‖

2p
p+1
q � C1

(1− |Θ(z)|)
2p

(p+1)q

(�z)2 � C2
(1− |Θ(λn)|)1−γ

(�λn)2

for z ∈ 〈λn, µn〉. Hence,

1
‖kλn‖22

∫
〈λn,µn〉

‖k2
z‖

2p
p+1
q |dz| � C3

|λn − µn|�λn
1− |Θ(λn)|

· (1− |Θ(λn)|)1−γ
(�λn)2

� C4ε.

All the constants involved depend only on p. To complete the proof we
should take a sufficiently small ε and apply Theorem 1.1. �

Remark. — It is an interesting problem to determine the smallest γ
such that the bases of reproducing kernels are stable under perturbations
of the form (11) (or, at least, to find out whether this critical exponent is
positive).

In the proof of Corollary 1.3 we will use a few lemmas.
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LEMMA 4.3. — Let {kλn/‖kλn‖2} be a frame in K2
Θ. Then

∑
n

‖kλn‖−2
2 (|λn|2 + 1)−2 <∞.

Proof. — Taking z0 ∈ C+ such that |Θ(z0)| < 1/2 and applying (6)
to the function kz0 we get the desired estimate. An analogous statement is
proved in [20] for the case of a unit disk. �

LEMMA 4.4. — Let ∞ /∈ σ(Θ). Then for any frame of the form

{kλn/‖kλn‖2} we have supn |λn| <∞.

Proof. — If∞ /∈ σ(Θ), then the sequence of the zeros of Θ is bounded.
Also the support of the singular measure ψ in (7) is compact and a = 0. It
is easy to see that in this case ‖kz‖22 � |z|−2, |z| → ∞, z ∈ C+. Hence, by
Lemma 4.3, supn |λn| <∞. �

Now we discuss some properties of CLS inner functions. Most of these
results and arguments may be found in [3, 4] for the case of the unit disk;
certain small modifications are required to adapt them to the case of the
half-plane. In what follows the key role belongs to a theorem of A.L. Volberg
and S.R. Treil concerning embeddings of the model subspaces. Let µ be a
measure in C+ satisfying the following property: there is δ ∈ (0, 1) such
that

(20) sup {h−1µ(S(x, h)) : S(x, h) ∩ Ω(Θ, δ) �= ∅} <∞,

that is, the Carleson estimate µ(S(x, h)) � Ch holds for sufficiently
large squares intersecting the level set Ω(Θ, δ). If µ satisfies (20), then
K2

Θ ⊂ L2(µ) and ‖f‖L2(µ) � C‖f‖2, f ∈ K2
Θ [29]. We will make use of the

converse result (see [4]):

LEMMA 4.5. — Let Θ be a CLS inner function and either ∞ ∈ σ(Θ)
or the measure µ has a compact support. Then the embedding K2

Θ ⊂ L2(µ)
implies (20) for any δ ∈ (0, 1).

LEMMA 4.6. — Let Θ be a CLS inner function and {kλn/‖kλn‖2} be

a frame in K2
Θ. Then there exist positive constants r, C1, C2, such that

C1‖kλn‖2 � ‖kz‖2 � C2‖kλn‖2, z ∈ D(λn, r‖kλn‖−2
2 ) ∩ C+,

where D(w,R) denotes the ball with the center w and the radius R.
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Proof. — In view of the Frostman theorem we may confine ourselves
with the case of a Blaschke product. Let {zm}m∈N be the zeros of Θ and
bm(z) = z−zm

z−zm . Then

(21) ‖kz‖22 =
1− |Θ(z)|2

4π�z =
∞∑
m=1

1− |bm(z)|2
4π�z |b1(z) . . . bm−1(z)|2.

Since zm ∈ D(λn, |λn− zm|), the ball D(λn, |λn− zm|) intersects any
level set Ω(Θ, δ). On the other hand, for the measure µ =

∑
n ‖kλn‖−2

2 δλn
we have an embedding K2

Θ ⊂ L2(µ) since {kλn/‖kλn‖2} is a frame. Note
that, by Lemma 4.4, the support of µ is compact if ∞ /∈ σ(Θ). Hence,
applying Lemma 4.5 to the measure µ, we get the inequality

(22) ‖kλn‖−2
2 � C0|λn − zm|

for some positive constant C0 and for any λn and zm. In particular, if
r < (2C0)−1, then

(23) |λn − zk|/2 � |z − zk| � 2|λn − zk|, z ∈ D(λn, r‖kλn‖−2
2 ).

If |Θ(λn)| � 1/2, then ‖kλn‖−2
2 � �λn and the existence of r with

required property follows from Lemma 4.1. Now, let |Θ(λn) > 1/2; note
that the same is true for any subproduct of Θ. Then it follows from (21)
that

‖kλn‖22 �
∞∑
m=1

1− |bm(λn)|2
�λn

=
∞∑
m=1

4�zm
|λn − zm|2

.

Making use of (23) and (19) it is easy to show that |Θ(z)| > 1/4,
z ∈ D(λn, r‖kλn‖−2

2 ), for sufficiently small r. Hence, by (21),

‖kz‖22 �
∑
m

�zm
|z − zm|2

�
∑
m

�zm
|λn − zm|2

� ‖kλn‖22. �

LEMMA 4.7. — Let Θ be a CLS inner function, let {kλn/‖kλn‖2} be

a frame, and let r be the constant from Lemma 4.6. Then for any s � 2
there exists C = C(Θ,Λ, s) > 0 such that

‖kz‖ss � C‖kλn‖
2(s−1)
2 , z ∈ D(λn,

r

2
‖kλn‖−2

2 ) ∩ C+.
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Proof. — Let z ∈ D(λn, r2 ‖kλn‖
−2
2 ) and w ∈ D(λn, r‖kλn‖−2

2 ). Then,
by the Cauchy inequality and Lemma 4.6,

|kz(w)| � ‖kz‖2‖kw‖2 � C1‖kλn‖22.

If w ∈ C+ \D(λn, r‖kλn‖−2
2 ), then |z − w| � r‖kλn‖−2

2 /2 and

|kz(w)| = 1
2π

∣∣∣∣∣
1−Θ(z)Θ(w)

w − z

∣∣∣∣∣ �
2
πr
‖kλn‖22.

Thus, ‖kz‖∞ � C2‖kλn‖22. Therefore,

‖kz‖ss � ‖kz‖s−2
∞ ‖kz‖22 � C3‖kλn‖

2(s−1)
2 . �

Proof of Corollary 1.3. — Let Gn = D(λn, r2 ‖kλn‖
−2
2 ) ∩ C+. By

Lemma 4.6, the sets Gn have the property (i), and applying Lemma 4.5
once more, one can show that (ii) is also satisfied. To apply Theorem 1.1 one
should verify the estimate (9). Lemma 4.7 implies ‖k2

z‖qq � C1‖kλn‖
2(2q−1)
2 ,

z ∈ Gn. Note also that (2q−1)/q = (p+1)/p. Hence, ‖k2
z‖

2p
p+1
q � C2‖kλn‖42,

z ∈ 〈λn, µn〉, and

1
‖kλn‖22

∫
〈λn,µn〉

‖k2
z‖

2p
p+1
q |dz| � C2|λn − µn| · ‖kλn‖22 � C2ε. �

5. Proof of Theorem 1.4. Examples.

LEMMA 5.1. — Let tn ∈ R and {ktn/‖ktn‖2} be a frame. Put

Gn = {t ∈ R : |t− tn| � v0(tn)/2},

where v0(t) = min(d0(t), |Θ′(t)|−1). Then the sets Gn satisfy the conditions

(i)-(ii).

Proof. — Consider the nontrivial case v0(tn) > 0. We have, in
particular, |t − tn| � d0(tn)/2, t ∈ Gn. Hence, d0(tn)/2 � d0(t) � 2d0(tn)
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and it follows immediately from (8) that |Θ′(tn)|/4 � |Θ′(t)| � 4|Θ′(tn)|.
Thus, we get the property (i). Note also that Gn ∩ σ(Θ) = ∅ and,
consequently, Θ is analytic on Gn.

Now, we show that there is N ∈ N such that each point t ∈ R belongs
to at most N of the sets Gn (and, thus, condition (ii) is also satisfied). Let
ϕ be an increasing continuous branch of the argument of Θ on Gn, that is,
Θ(s) = eiϕ(s), s ∈ Gn. Let t ∈ Gn. Then

|kt(tn)| =
∣∣∣∣∣
1−Θ(t)Θ(tn)

2π(tn − t)

∣∣∣∣∣ =
∣∣∣∣ sin 1

2 (ϕ(tn)− ϕ(t))
2π(tn − t)

∣∣∣∣ .

Note that
∫
〈tn,t〉

ϕ′(s)ds =
∫
〈tn,t〉

|Θ′(s)|ds � 4|Θ′(tn)| · |t− tn| � 2|Θ′(tn)|v0(tn) � 2;

thus, |ϕ(tn) − ϕ(t)| � 2. Making use of the estimate sinu � 2u/π,
u ∈ (0, π/2), we get

|kt(tn)| �
∣∣∣∣ ϕ(tn)− ϕ(t)

2π2(tn − t)

∣∣∣∣ �
|Θ′(tn)|

8π2
,

where the last inequality follows from the fact that ϕ′(t) � ϕ′(tn)/4. Finally,
applying the frame property (6) to the function kt, we see that the number
of integers n such that t ∈ Gn is uniformly bounded. �

Proof of Theorem 1.4. — We consider only the case of nontrivial
perturbations, that is, sn �= tn. Both (14) and (15) imply that there is
a point un ∈ 〈tn, sn〉 such that |sn − tn| � εv0(un). If ε < 1/2, then
v0(un) � 4v0(tn). Hence, sn ∈ Gn if ε < 1/8.

Let us verify the estimate (9). Fix p ∈ (1, 2). By (17),

1
|Θ′(tn)|

∫
〈tn,sn〉

‖k2
t ‖

2p
p+1
q dt � C

∫
〈tn,sn〉

|Θ′(t)|−1 max(d−2
0 (t), |Θ′(t)|2)dt

� C

∫
〈tn,sn〉

[|Θ′(t)|+ |Θ′(t)|−1d−2
0 (t)] dt < Cε.

An application of Theorem 1.1 completes the proof. �
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Remarks. — 1. If Θ is a CLS inner function and {ktn/‖ktn‖2} is a
frame, then it follows from (22) that |Θ′(t)|−1 � Cd0(t) for t ∈ Gn. Thus,
in this case (14) is equivalent to (4) and Theorem 1.4 coincides with the
Cohn’s theorem.

2. The estimates (14) - (15) imply that

|sn − tn| < εv0(tn) = εmin(d0(tn), |Θ′(tn)|−1).

A question arises whether the property to be a frame or a basis is stable
under such larger perturbations.

Now we produce examples which show that the natural analog of the
Cohn’s theorem may fail when the generating inner function is not CLS,
that is, the Clark bases are not stable with respect to perturbations sn such
that

(24) sup
n
|ϕ(sn)− ϕ(tn)| = sup

n

∫
<tn,sn>

|Θ′(t)|dt < ε.

Consider the measure

(25) ν =
∑
n

|Θ′(sn)|−1δsn ,

If {ksn/‖ksn‖2} is a Riesz basis or a frame, then the measure ν defines
a norm on K2

Θ equivalent to the usual L2-norm. We show that even the
estimate from above, which is equivalent to the embedding K2

Θ ⊂ L2(ν),
may not hold for perturbations of the form (24).

In these examples Θ is a meromorphic Blaschke product with very
sparse zeros (geometrically it means that for any δ ∈ (0, 1) there are
components of Ω(Θ, δ) around infinitely many of the zeros).

Example 5.2. — Let Θ be the Blaschke product with the zeros
zn = 2n + i, n ∈ N, and let ϕ be an increasing branch of the argument of
Θ on R such that lim

t→−∞
ϕ(t) = 0. Put sn = 2n + 2n−1. Then

ϕ′(sn) =
∑
m

1
|2n + 2n−1 − 2m|2 �

n

22n
.

A simple calculation shows also that ϕ(sn)− 2πn = O(n2−n). Thus, {ksn}
is a perturbation of the Clark basis {ktn}, where ϕ(tn) = 2πn.
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Now we show that the embedding K2
Θ ⊂ L2(ν), where ν is defined by

(25), does not take place. Let f(z) = (z − z1)−1; then |f(sn)|2/|Θ′(sn)| �
n−1. Thus, f /∈ L2(ν) and, consequently, {ksn/‖ksn‖2} is not a frame (the
same statement follows from Lemma 4.3).

Example 5.3. — Let zn = n + iyn, n ∈ Z, and yn ∈ (0, 1). Fix
ε ∈ (0, 1) and set sn = n+ ε. We assume that

(26) ϕ′(sn) =
∑
m

2ym
|sn − zm|2

� yn
y2
n + ε2

� yn,

that is, ϕ′(sn) is approximately equal to the summand corresponding to the
nearest zero. Note that infn(ϕ(sn+1)−ϕ(sn)) > 0. Hence, if the Clark bases
are stable with respect to the perturbations (24), then for the measure ν
defined by (25) we have the embedding K2

Θ ⊂ L2(ν).

The zero set {zm} satisfies the Carleson interpolation condition.
Hence, by the Shapiro-Shields theorem (see [24]), the system of functions√
ym

z−zm is a Riesz basis in K2
Θ. Thus, each function f ∈ K2

Θ may be
represented as an unconditionally convergent series

f(z) =
∑
m

cm
√
ym

z − zm

and ‖f‖2 � ‖{cm}‖�2 . It is easy to see that under the condition (26) the
embedding K2

Θ ⊂ L2(ν) is equivalent to the boundedness in =2(Z) of the
operator defined by the infinite matrix

anm =
√
ym
yn
· 1
n−m , n �= m.

It is well known that the boundedness of the discrete Hilbert transform in a
weighted space =2({yn}) is equivalent to the discrete Muckenhoupt’s (A2)
condition [23]. One can easily construct a sequence {yn} satisfying (26),
whereas the Muckenhoupt’s condition is not satisfied (see [5] for details),
and this gives us one more example of the situation when the Clark bases
are not stable under perturbations small with respect to the change of the
argument of Θ.
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