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POLYHEDRAL REALISATION OF HYPERBOLIC
METRICS WITH CONICAL SINGULARITIES ON

COMPACT SURFACES

by François FILLASTRE

Abstract. — A Fuchsian polyhedron in hyperbolic space is a polyhedral sur-
face invariant under the action of a Fuchsian group of isometries (i.e. a group of
isometries leaving globally invariant a totally geodesic surface, on which it acts
cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric
to a hyperbolic metric with conical singularities of positive singular curvature on a
compact surface of genus greater than one. We prove that these metrics are actu-
ally realised by exactly one convex Fuchsian polyhedron (up to global isometries).
This extends a famous theorem of A.D. Alexandrov.

Résumé. — Un polyèdre fuchsien de l’espace hyperbolique est une surface poly-
édrale invariante sous l’action d’un groupe fuchsien d’isométries (c.a.d. un groupe
d’isométries qui laissent globalement invariante une surface totalement géodésique
et sur laquelle il agit de manière cocompacte). La métrique induite sur un polyèdre
fuchsien convexe est isométrique à une métrique hyperbolique avec des singularités
coniques de courbure singulière positive sur une surface compacte de genre plus
grand que un. On démontre que ces métriques sont en fait réalisées par un unique
polyèdre fuchsien convexe (modulo les isométries globales). Ce résultat étend un
théorème célèbre de A.D. Alexandrov.

1. Definitions and statements

Metrics with conical singularities and convex polyhedra. Let M+
K

be the simply connected (Riemannian) space of dimension 3 of constant
curvature K, K ∈ {−1, 0, 1}. A convex polyhedron is an intersection of
half-spaces of M+

K . The number of half-spaces may be infinite, but the
intersection is asked to be locally finite: each face must be a polygon with
a finite number of vertices, and the number of edges at each vertex must be

Keywords: Fuchsian, convex, polyhedron, hyperbolic, conical singularities, infinitesimal
rigidity, Pogorelov map, Alexandrov.
Math. classification: 53C45, 52A55, 52B70, 53C24.



164 François FILLASTRE

finite. A polyhedron is a connected union of convex polyhedra. A polyhedral
surface is the boundary of a polyhedron and a convex polyhedral surface is
the boundary of a convex polyhedron. A convex (polyhedral) cone in M+

K

is a convex polyhedral surface with only one vertex. Note that the sum of
the angles between the edges is strictly between 0 and 2π.

A metric of curvature K with conical singularities with positive singular
curvature on a compact surface S is a (Riemannian) metric of constant
curvature K on S minus n points (x1, . . . , xn) such that the neighbourhood
of each xi is isometric to the induced metric on the neighbourhood of the
vertex of a convex cone in M+

K . The xi are called the singular points. By
definition the set of singular points is discrete, hence finite since the surface
is compact.

An invariant polyhedral surface is a pair (P, F ), where P is a polyhedral
surface in M+

K and F a discrete group of isometries of M+
K such that F (P ) =

P and F acts freely on P . The group F is called the acting group.
If there exists an invariant polyhedral surface (P, F ) in M+

K such that
the induced metric on P/F is isometric to a metric h of curvature K with
conical singularities on a surface S, we say that P realises the metric h

(obviously the singular points of h correspond to the vertices of P , and F

is isomorphic to the fundamental group of S). In this case we say that h is
realised by a unique invariant polyhedral surface (P, F ) if P is unique up
to isometries of M+

K .
Let P be the boundary of a convex compact polyhedron in M+

K . The
induced metric on P is isometric to a metric of constant curvature K with
conical singularities of positive singular curvature on the sphere.

A famous theorem of A.D. Alexandrov asserts that each such metric
on the sphere is realised by the boundary of a unique convex compact
polyhedron of M+

K [1, 3, 14] - in this case the acting group F is the trivial
one.

In this paper we prove

Theorem 1.1. — A hyperbolic metric with conical singularities of pos-
itive singular curvature on a compact surface S of genus > 1 is realised
by a unique convex Fuchsian polyhedron in hyperbolic space (up to global
isometries).

A Fuchsian polyhedron is a polyhedral surface invariant under the action
of a Fuchsian group of hyperbolic space H3. A Fuchsian group of hyper-
bolic space is a discrete group of orientation-preserving isometries leaving
globally invariant a totally geodesic surface, on which it acts cocompactly
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REALISATION OF HYPERBOLIC METRICS 165

and without fixed points. The idea to use them comes from Gromov [7].
Analog statement can be found in [20], see further.

The general outline of the proof of Theorem 1.1 is very classical and has
been used in several other cases, starting from A.D. Alexandrov’s works.
Roughly speaking, the idea is to endow with suitable topology both the
space of convex Fuchsian polyhedra with n vertices and the space of corre-
sponding metrics, and to show that the map from one to the other given
by the induced metric is a homeomorphism.

The difficult step is to show the local injectivity of the map “induced
metric”. This is equivalent to a statement on infinitesimal rigidity of convex
Fuchsian polyhedra. The section 2 is devoted to this result.

Example of convex Fuchsian polyhedra. Consider the set of points
at constant (hyperbolic) distance of a totally geodesic surface PH2 and
denote by M the subset of points which are on one side of PH2 .

Obviously M is globally invariant under the action of any Fuchsian group
F leaving PH2 invariant. Moreover, M has the properties of being strictly
convex and umbilic (an umbilic surface is a surface such that its principal
curvatures are the same for all points. There are other kinds of umbilic
surfaces in the hyperbolic space, but in all this text, the expression “um-
bilic surface” means a complete surface at constant distance of PH2 and
contained in one of the half-spaces bounded by PH2).

Take n points (x1, . . . , xn) on M , and let F act on these points. We
denote by E the boundary of the convex hull of the points fxi, for all
f ∈ F and i = 1 . . . n. By construction, the convex polyhedral surface E is
globally invariant under the action F : it is a convex Fuchsian polyhedron.

Global rigidity of convex Fuchsian polyhedron. A polyhedral sur-
face is called globally rigid if any polyhedral surface that is isometric to it
is in fact congruent. A direct consequence of the uniqueness of the convex
Fuchsian polyhedron realising the induced metric is

Theorem 1.2. — Convex Fuchsian polyhedra in hyperbolic space are
globally rigid among convex Fuchsian polyhedra.

Hyperbolic manifolds with polyhedral boundary. Take a convex
Fuchsian polyhedron (P, F ) and consider the Fuchsian polyhedron (P ′, F )
obtained by the reflection on the invariant surface PH2 of F . Then cut the
hyperbolic space along P and P ′, and keep the component bounded by P

and P ′. The quotient of this manifold by F is a kind of hyperbolic mani-
fold called Fuchsian manifold (with convex polyhedral boundary): these are

TOME 57 (2007), FASCICULE 1



166 François FILLASTRE

compact hyperbolic manifolds with boundary with an isometric involution
fixing a compact hyperbolic surface (the symmetry relative to PH2/F ), see
Figure 1.1. In this case we obtain a Fuchsian manifold with convex poly-
hedral boundary, and all the Fuchsian manifolds with convex polyhedral
boundary can be obtained in this way: the lifting to the universal cover of a
component of the boundary of the Fuchsian manifold gives a convex Fuch-
sian polyhedron in the hyperbolic space. Then Theorem 1.1 says exactly
that for a choice of the metric h on the boundary, there exists a unique
metric on the manifold such that it is a Fuchsian manifold with convex
polyhedral boundary and the induced metric on the boundary is isometric
to h:

Theorem 1.3. — The metric on a Fuchsian manifold with convex poly-
hedral boundary is determined by the induced metric on its boundary.

Figure 1.1. From a Fuchsian polyhedron to a Fuchsian manifold.

This is a part of

Conjecture 1.4. — Let h be a hyperbolic metric on a compact man-
ifold M of dimension 3 such that ∂M is polyhedral and convex. Then the
induced metric on ∂M is a hyperbolic metric with conical singularities with
positive singular curvature. Each hyperbolic metric with conical singulari-
ties with positive singular curvature on ∂M is induced on ∂M for a unique
choice of h.

The statement of Conjecture 1.4 in the case where the boundary is
smooth and strictly convex as been proved in [21] (the existence part was
found in [9]). Remark that A.D. Alexandrov’s theorem is a part of Conjec-
ture 1.4 for the case of the hyperbolic ball.

The smooth analog of Conjecture 1.4 provides a smooth version of The-
orem 1.1. The existence part of this smooth statement was done in [7].

Towards a general result. The Lorentzian space-forms of dimension
3 are the de Sitter space dS3 (with curvature 1), the Minkowski space R3

1
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(with curvature 0) and the anti-de Sitter space AdS3 (with curvature −1),
see e.g. [13]. We denote them by M−

K , where K is the curvature.
Such spaces contain surfaces on which the induced metric is Riemann-

ian (think about the hyperbolic plane in the Minkowski space), and these
surfaces are called space-like. A space-like convex polyhedral cone in a
Lorentzian space-form has a negative singular curvature at its vertex (i.e.
the sum of the angles between its edges is > 2π).

A theorem of Rivin–Hodgson [16, 17] says that each metric of curvature
1 on the sphere with conical singularities with negative singular curvature
such that its closed geodesics have lengths > 2π is realised by a unique
space-like convex polyhedral surface homeomorphic to the sphere in the de
Sitter space (beware that π2(dS3) 6= 0).

In [20] it is stated that each metric of curvature 1 on a compact surface
of genus > 1 with conical singularities with negative singular curvature
such that its contractible geodesics have lengths > 2π is realised by a
unique space-like convex Fuchsian polyhedron in the de Sitter space (the
definition of a Fuchsian polyhedron in a Lorentzian space-form is the same
as in the hyperbolic space, after replacing “totally geodesic surface” by
“umbilic hyperbolic surface”).

We think that each constant curvature K metric with conical singulari-
ties with constant sign singular curvature ε ∈ {−,+} on a compact surface
can be realised in M ε

K by a unique (space-like) convex polyhedral surface
invariant under the action of a representation of the fundamental group of
the surface in a group of isometries of dimension 3 - with a condition on
contractible geodesics in the cases K = 1, ε = −. The images of these rep-
resentations are trivial for genus 0, parabolic for genus 1 and Fuchsian for
genus > 1 (a parabolic isometry fixes a point on the boundary at infinity).

The present paper proves this assertion for hyperbolic metrics with con-
ical singularities with positive singular curvature on compact surfaces of
genus > 1.

All the combinations with genus, curvature and sign of the singular curva-
ture are not possible because of Gauss–Bonnet Formulas [24]. The complete
list of results would be, if g is the genus of the compact surface (we imply
that the polyhedral surfaces are (space-like) convex):

g = 0 K = −1, ε = +: boundary of a compact polyhedron in H3

(Alexandrov);
K = 0, ε = +: boundary of a compact polyhedron in R3

(Alexandrov);
K = 1,

TOME 57 (2007), FASCICULE 1



168 François FILLASTRE

ε = +: boundary of a compact polyhedron in S3 (Alexan-
drov);
ε = − and lengths of the contractible geodesics > 2π:
polyhedral surface homeomorphic to the sphere in dS3

(Rivin–Hodgson);
g = 1 K = −1, ε = +: parabolic polyhedron in H3;

K = 1, ε = − and lengths of the contractible geodesics > 2π:
parabolic polyhedron in dS3;

g > 1 K = −1,
ε = +: Fuchsian polyhedron in H3 (this paper);
ε = −: Fuchsian polyhedron in AdS3;

K = 0, ε = −: Fuchsian polyhedron in R3
1;

K = 1, ε = − and lengths of the contractible geodesics > 2π:
Fuchsian polyhedron in dS3 (Schlenker).

The proofs of the others cases for g > 1 would be close to the one presented
here [5].

Acknowledgements. The material in this paper is a part of my PhD
thesis under the direction of B. Colbois and J.-M. Schlenker. For that rea-
son, they played a crucial part in the working out of these results. I also
want to thank M. Troyanov for his useful comments.

2. Infinitesimal rigidity

2.1. Background about infinitesimal isometric deformations

A Killing field of a constant curvature space M+
K is a vector field of M+

K

such that the elements of its local 1-parameter group are isometries (see e.g.
[6]). An infinitesimal isometric deformation of a polyhedral surface consists
of

• a triangulation of the polyhedral surface given by a triangulation
of each face, such that no new vertex arises,

• a Killing field on each face of the triangulation such that two Killing
fields on two adjacent triangles are equal on the common edge.

The edges of the triangulation which were not edges of the polyhedral
surface are called additional edges.

An infinitesimal isometric deformation is called trivial if it is the restric-
tion to the polyhedral surface of a global Killing field. If all the infinitesimal
isometric deformations of a polyhedral surface are trivial, then the polyhe-
dral surface is said to be infinitesimally rigid.

ANNALES DE L’INSTITUT FOURIER
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2.1.1. Infinitesimal rigidity of polyhedral convex caps which may have
infinitely many vertices accumulating at the boundary

A polyhedral convex cap is a convex polyhedral surface C, with boundary
∂C, in the Euclidean space homeomorphic to the (closed) disc, such that
∂C lies in a totally geodesic plane, and such that the orthogonal projection
onto this plane is a bĳection between C and the domain of the plane inside
∂C (up to global isometries, we suppose that ∂C lies in the horizontal
plane).

This paragraph is dedicated to the proof of:

Proposition 2.1. — If the vertical component of an infinitesimal iso-
metric deformation of a polyhedral convex cap vanishes on the boundary,
then the deformation is trivial.

Note that our definitions allow polyhedral convex caps with an infinite
number of vertices which accumulate at the boundary, and also infinitesimal
deformations which diverge on the boundary.

A smooth version of Proposition 2.1 has been known for a long time [14,
Thm 1 Chap IV ğ 7] - this reference contains also polyhedral results.

Definition 2.2. — Let C be a polyhedral convex cap and p a vertex
of C. Consider the spherical polygon which is the intersection of a trian-
gulation of C with a little sphere centred at p (such that it intersects only
edges incident with p). The link of C at p is the image of this polygon by
a homothety sending the little sphere to the unit sphere.

As C is convex, the link is a convex spherical polygon (with some interior
angles may be equal to π because of the additional edges of C).

We denote by u the vertical component of an infinitesimal isometric
deformation of C. The definition of an infinitesimal isometric deformation
implies that it is a continuous vector field defined on the interior of the
convex cap. It follows that the function u is continuous on the interior of
the convex cap.

Up to a Euclidean isometry, we can consider that at a vertex p, u(p) = 0.
Then, if the value of u is positive (resp. negative) at a point on an edge
joining p to another vertex, it means that the vertical component of the
deformation at this point is greater (resp. less) than at p. This doesn’t
depend on the choice of the point on the edge. In particular, it is the case
for the point which is sent by a homothety to a vertex of the link. In this
case, we say that the corresponding vertex of the link goes up (resp. goes
down).

TOME 57 (2007), FASCICULE 1
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p

p− p−

zi

zi+1
zi−1

ri+1

βi βi+1

ri−1

ri

αi

li−1 li

Figure 2.1. Some notations for the link at p.

Proposition 2.3. — The link cannot go up or go down, i.e. all the
vertices of the link cannot go up or go down at the same time.

We build a spherical polyhedral convex cone from the link by joining all
the vertices of the link with the south pole - denoted by p− - of the sphere
containing the link. We denote by (z1, . . . , zn) the vertices of the link, βi

the angle at p− between the (spherical) segments p−zi and p−zi+1, αi the
angle at p− between the (spherical) segments p−zi and p−zi+2 and ri the
length of the (spherical) segment between p− and zi (see Figure 2.1).

Without loss of generality, we consider that all the vertices of the link go
up. By definition the infinitesimal isometric deformation is isometric on the
faces of the polyhedral convex cap, it implies that the lengths (l1, . . . , ln)
of the edges of the link don’t change under the deformation: each βi is a
function of ri−1 and ri.

We recall the well known “spherical law of cosines (for the sides)”. Let
a, b, c be the length of the edges of a spherical triangle, and α the angle at
the opposite vertex from the edge of length a. Then

cos a = cos b cos c + sin b sin c cos α.

Lemma 2.4 (Corollary of the Cauchy Lemma, [2, 18.7.16],[19]). — If a
(convex) quadrilateral of the sphere is deformed such that the lengths of the
edges remain constant under the deformation and such that two opposite
angles increase, then the two others angles decrease (an angle may be equal
to π).

Lemma 2.5. — If ri−1 and ri+1 are fixed, then
∂βi

∂ri
(ri−1, ri) +

∂βi+1

∂ri
(ri, ri+1) < 0.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We call θ the angle at zi−1 of the triangle (p−, zi, zi−1). The
“spherical law of cosines” applied to this triangle says that

cos ri = cos li−1 cos ri−1 + sin li−1 sin ri−1 cos θ.

As li−1 and ri−1 are supposed to be fixed, and as the sines are positive, we
deduce from this formula that θ is a strictly increasing function of ri.

In the same way, the angle at zi+1 of the triangle (p−, zi+1, zi) is a strictly
increasing function of ri.

In this case, the corollary of the Cauchy Lemma says that the angles
at p− and zi of the quadrilateral (p−, zi+1, zi, zi−1) decrease. The first of
these angles was called αi, and it is the sum of βi and βi+1. It shows that
this sum (strictly) decreases when ri (and only ri) increases, and this is
another way to state the lemma. �

Proof of Proposition 2.3. — We consider (ṙ1, . . . , ṙn), where ṙi means
d
dtri(t)|t=0, a deformation (defined on each vertex) of the link such that all
the vertices go up, i.e. ṙi > 0 ∀i. As the sum of the angles βj goes around
p we have

n∑
j=1

βj = 2π

and this remains true under the deformation:

(2.1)
n∑

j=1

β̇j = 0.

But on other hand

β̇j =
∂βj

∂rj−1
ṙj−1 +

∂βj

∂rj
ṙj ,

and we get a contradiction from Lemma 2.5, by replacing in Equation (2.1)
(with a cyclic notation βn+1 = β1):

0 =
n∑

j=1

(
∂βj

∂rj−1
ṙj−1 +

∂βj

∂rj
ṙj

)
=

n∑
k=1

∂βk

∂rk−1
ṙk−1 +

n∑
i=1

∂βi

∂ri
ṙi

i=k−1=
n−1∑
i=−1

∂βi+1

∂ri
ṙi +

n∑
i=1

∂βi

∂ri
ṙi =

n∑
i=1

∂βi

∂ri
+

∂βi+1

∂ri︸ ︷︷ ︸
<0

 ṙi︸︷︷︸
>0

.

�

Corollary 2.6. — The function u does not attain a local extremum
in the interior of the convex cap.

TOME 57 (2007), FASCICULE 1
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Proof. — Suppose that a local extremum is reached at a vertex p (as
the deformation is isometric, it is clear that a local extremum can’t be
reached at a point on a face or an edge). That means that the values of u

at points on the edges from p are all greater (or less) than u(p). It implies
that the link at p goes up (or down), that’s impossible by the preceding
proposition. �

If we make the hypothesis that u vanishes at the boundary, this corollary
implies that u vanishes for all the vertices of the polyhedral convex cap,
and that proves the triviality of the infinitesimal isometric deformation
associated to u. Effectively, if the vertical component of an infinitesimal
isometric deformation in Euclidean space vanishes, then the deformation is
trivial. (It comes from the fact that in this case the rotation field associated
to the infinitesimal isometric deformation is constant, that is equivalent to
the triviality of the deformation, see e.g. [22, Lemma 4, p. 256]). Proposition
2.1 is now proved.

2.1.2. Infinitesimal Pogorelov map

The following construction is an adaptation of a map invented by Pogo-
relov [14], which allows to transport deformation problems in a constant
curvature space to deformation problems in a flat space, see for example
[10, 18, 21].

We view hyperbolic space as a quadric in the Minkowski space of dimen-
sion 4, that is

H3 = {x ∈ R4|x2
1 + x2

2 + x2
3 − x2

4 = −1, x4 > 0}.

We denote by ϕ the projective map sending H3 to the Klein projective
model. This map is known to be a homeomorphism between the hyperbolic
space and the unit open ball of the Euclidean space of dimension 3, and it
sends geodesics to straight lines. Moreover, it sends convex sets to convex
sets. In particular, convex polyhedral surfaces are sent to convex polyhedral
surfaces.

Let Z(x) be a vector of TxH3. The radial component of Z(x) is the
projection of Z(x) on the radial direction, which is given by the derivative
at x of the geodesic lx in H3 between xc := (0, 0, 0, 1) (as a point of the
Minkowski space) and x. The lateral component of Z(x) is the component
orthogonal to the radial one. We denote by µ the length of the geodesic lx,
and by Zr and Zl the radial and lateral components of Z. The definitions are
the same in Euclidean space, taking the origin instead of xc (the projective
map sends xc to the origin).

ANNALES DE L’INSTITUT FOURIER
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The infinitesimal Pogorelov map Φ is a map sending a vector field Z

of hyperbolic space to a vector field Φ(Z) of Euclidean space, defined as
follow: the radial component of Φ(Z)(ϕ(x)) has same direction and same
norm as Zr(x), and the lateral component of Φ(Z)(ϕ(x)) is dxϕ(Zl).

If we see a polyhedral surface P in the Klein projective model, then the
infinitesimal Pogorelov map is a map sending a vector field on P to another
vector field on P .

We have

‖Zr‖H3 = ‖Φ(Z)r‖R3 ; ‖Zl‖H3 = cosh µ ‖Φ(Z)l‖R3 .(2.2)

The first one is the definition, the second one comes from a direct compu-
tation or an elementary property of the geometry of the plane (sometimes
called the Thales Theorem, see Figure 2.2).

x
Zl

H2

0

0

xc
1

cosh(µ)
cosh(µ)

Zl

Φ(Z)l

Φ(Z)l

Figure 2.2. ‖Zl‖H3 = cosh µ ‖Φ(Z)l‖R3 .

We will sometimes make the confusion consisting to miss out the point
at which we evaluate a vector field.

The infinitesimal Pogorelov map has the following remarkable property:

Lemma 2.7 (Fundamental property of the infinitesimal Pogorelov map
[21, 1.9]). — Let V be a vector field on H3, then V is a Killing field if and
only if Φ(V ) is a Killing field of the Euclidean space.

As an infinitesimal isometric deformation of a polyhedral surface is the
data of a Killing field on each triangle of a triangulation, this lemma says

TOME 57 (2007), FASCICULE 1



174 François FILLASTRE

that the image of an infinitesimal isometric deformation of a polyhedral
surface P by the infinitesimal Pogorelov map is an infinitesimal isometric
deformation of the image of P by the projective map. And one is trivial
when the other is.

2.2. Fuchsian infinitesimal rigidity

We want to show that convex Fuchsian polyhedra are infinitesimally rigid
among Fuchsian polyhedra. As we will consider the Fuchsian polyhedra up
to isometries of hyperbolic space, we consider that the invariant totally ge-
odesic surface in the definition is always the same. We choose the horizontal
plane in the Klein projective model, and we will denote it by PH2 . By pH2

we mean the orthogonal projection in hyperbolic space onto the plane PH2 .

Global form of convex Fuchsian polyhedra. Let (P, F ) be a convex
Fuchsian polyhedron in the hyperbolic space.

Lemma 2.8. — The polyhedral surface P has a boundary at infinity
which is the same as the one of PH2 .

Proof. — It is a general property of discrete subgroups of isometries of
hyperbolic space that, for a point x ∈ H3, the set of accumulation points of
(fx)f∈F doesn’t depend on the choice of the point x. As F acts on P and
on PH2 , we deduce from this that the boundary at infinity of P is included
in the boundary at infinity of PH2 .

It remains to check that the fact that F acts cocompactly on PH2 implies
that all the points of the boundary at infinity of PH2 are reached by its
action, and this is left to the reader. �

Then, by convexity of P , P and PH2 have no intersection point in hyper-
bolic space (if we glue them along their common infinite boundary, they
bound a convex body - recall that in the Klein projective model, PH2 is the
intersection of a Euclidean plane with the unit ball) and, again by convex-
ity of P , the orthogonal projection on PH2 gives a homeomorphism between
PH2 and P . Note that this implies that for a convex Fuchsian polyhedron
(P, F ), the genus of the surface P/F is inevitably > 1.

By cocompactness of the action of F on PH2 , the distance between points
of P and points of PH2 (given by the orthogonal projection on PH2) is
bounded: P is between two umbilic surfaces, realising the extrema dmin

and dmax of the distance between P and PH2 .
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This leads to the fact that, if we see P in the Klein projective model, it
is a convex polyhedral cap (with infinite number of vertices accumulating
on the boundary), lying between two half-ellipsoids of radii (1, 1, rmin) and
(1, 1, rmax), with 0 < rmin < rmax < 1 (a direct computation shows that
in this model, umbilic surfaces are half-ellipsoids of radius (1, 1, r) where
r = tanh(d) < 1, with d the hyperbolic distance between the umbilic surface
and PH2).

Fuchsian polyhedral embeddings. We will need to introduce another
way to describe Fuchsian polyhedra. In all the following, S is a compact
surface of genus > 1.

Definition 2.9. — A polyhedral embedding of S in hyperbolic space is
a cellulation of S together with a homeomorphism from S to a polyhedral
surface of the hyperbolic space H3, sending polygons of the cellulation to
geodesic polygons of H3.

A Fuchsian polyhedral embedding of S in the hyperbolic space H3 is a
couple (φ, ρ), where

• φ is a polyhedral embedding of the universal cover S̃ of S in H3,
• ρ is a representation of the fundamental group Γ of S in the group

of orientation-preserving isometries of H3,

such that φ is equivariant under the action of Γ := π1(S):

∀γ ∈ Γ,∀x ∈ S̃, φ(γx) = ρ(γ)φ(x),

and ρ(Γ) leaves globally invariant a totally geodesic surface in H3, on which
it acts cocompactly (without fixed points).

The number of vertices of the Fuchsian polyhedral embedding is the
number of vertices of the cellulation of S.

The Fuchsian polyhedral embedding is convex if its image is a convex
polyhedral surface of the hyperbolic space.

We consider the Fuchsian polyhedral embeddings up to homeomorphisms
and up to global isometries: let (φ1, ρ1) and (φ2, ρ2) be two Fuchsian poly-
hedral embeddings of two surfaces S1 and S2. We say that (φ1, ρ1) and
(φ2, ρ2) are equivalent if there exists a homeomorphism h between S1 and
S2 and a hyperbolic isometry I such that, for a lift h̃ of h to S̃1 we have

φ2 ◦ h̃ = I ◦ φ1.

As two lifts of h only differ by conjugation by elements of Γ := π1(S), using
the equivariance property of the embedding, it is easy to check that the
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definition of the equivalence relation doesn’t depend on the choice of the
lift.

As we see the Fuchsian polyhedral embeddings up to global isometries,
we consider that the invariant surface is always PH2 .

Definition 2.10. — The genus of a Fuchsian group F of hyperbolic
space is the genus of the quotient of the invariant totally geodesic surface
(for the action of F ) by the restriction of F to it.

The genus of a Fuchsian polyhedron is the genus of the Fuchsian group
of hyperbolic space acting on it.

The number of vertices of a Fuchsian polyhedron (P, F ) is the number
of vertices of P in a fundamental domain for the action of F .

As S is a compact surface of genus g > 1, it can be endowed with hyper-
bolic metrics, and each of them provides a cocompact representation of Γ in
the group of orientation-preserving isometries of the hyperbolic plane. The
images of such representations are usually called Fuchsian groups (of H2),
that explains the terminology used. Moreover, there is a bĳection between
the cocompact representations of Γ in Isom+(H2) and the Fuchsian groups
of H2 of genus g.

Lemma 2.11. — There is a bĳection between the cocompact representa-
tions of the fundamental group of S in Isom+(H2) and the Fuchsian groups
of H3 of genus g (which leave invariant PH2).

Proof. — It suffices to prove that there is a bĳection between the Fuch-
sian groups of H2 and the Fuchsian groups of H3 (with same genus).

The restriction of a Fuchsian group of H3 to PH2 obviously gives a Fuch-
sian group of H2.

Reciprocally, a Fuchsian group F acting on PH2 canonically gives a Fuch-
sian group of the hyperbolic space: for a point x in the hyperbolic space,
an element f ∈ F sends pH2(x) on a point z ∈ PH2 . The image y of x by
the element of Isom+(H3) extending f is the unique point of the hyperbolic
space such that its projection on PH2 is z (and is in the same half-space de-
limited by PH2 than x). And there is no other such subgroup of Isom+(H3)
(because if there is, each elements of both groups sends a geodesic segment
orthogonal to PH2 to the same geodesic segment, then they are equal). �

Lemma 2.12. — There is a bĳection between the convex Fuchsian poly-
hedra of genus g with n vertices and the convex Fuchsian polyhedral em-
beddings with n vertices of S.

Proof. — Obviously, the image of S by a convex Fuchsian polyhedral
embedding is a convex Fuchsian polyhedron. Reciprocally, the canonical
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embedding in H3 of a convex Fuchsian polyhedron P invariant under the
action of a group F gives a convex Fuchsian polyhedral embedding of the
surface P/F in H3. We have seen that this surface is homeomorphic to
PH2/F , which is homeomorphic to S. �

Fuchsian deformations. Let (S, φ, ρ) a convex polyhedral Fuchsian
embedding.

Let (φt)t be a path of convex polyhedral embeddings of S̃ in H3, such
that:

- φ0 = φ,
- the induced metric is preserved at the first order at t = 0,
- there are representations ρt of Γ = π1(S) in Isom+(H3)

such that
φt(γx) = ρt(γ)φt(x)

and each ρt(Γ) leaves globally invariant a totally geodesic surface, on which
it acts cocompactly without fixed points (up to global isometries, we con-
sider that the surface is always PH2).

We denote by

Z(φ(x)) :=
d

dt
φt(x)|t=0 ∈ Tφ(x)H3

and
ρ̇(γ)(φ(x)) =

d

dt
ρt(γ)(φ(x))|t=0 ∈ Tρ(γ)φ(x)H3.

The vector field Z has a property of equivariance under ρ(Γ):

(2.3) Z(ρ(γ)φ(x)) = ρ̇(γ)(φ(x)) + dρ(γ).Z(φ(x)).

This can be written

(2.4) Z(ρ(γ)φ(x)) = dρ(γ).(dρ(γ)−1ρ̇(γ)(φ(x)) + Z(φ(x)))

and dρ(γ)−1ρ̇(γ) is a Killing field of H3, because it is the derivative of
a path in the group of isometries of H3 (we must multiply by dρ(γ)−1,
because ρ̇(γ) is not a vector field). We denote this Killing field by ~ρ(γ).
Equation (2.4) can be written, if y = φ(x),

(2.5) Z(ρ(γ)y) = dρ(γ).(~ρ(γ) + Z)(y).

A Fuchsian deformation is an infinitesimal isometric deformation Z on a
Fuchsian polyhedron which satisfies Equation (2.5), where ~ρ(γ) is a Fuch-
sian Killing field, that is a Killing field of the hyperbolic plane extended
to the hyperbolic space along geodesics orthogonal to the plane. More pre-
cisely, for a point x ∈ H3, let d be the distance between x and pH2(x).
We denote by pd the orthogonal projection onto PH2 of the umbilic surface
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which is at constant distance d from PH2 (passing through x). Then the
Killing field K at pH2(x) is extended as dp−1

d (K) at the point x.
A Fuchsian polyhedron is Fuchsian infinitesimally rigid if all its Fuchsian

deformations are trivial (i.e. are restriction to the Fuchsian polyhedron of
Killing fields of hyperbolic space).

We want to prove

Theorem 2.13. — Convex Fuchsian polyhedra are Fuchsian infinitesi-
mally rigid.

By the fundamental Property of the infinitesimal Pogorelov map, to prove
Theorem 2.13 it suffices to prove that, for each Fuchsian deformation Z, the
vertical component of the image of Z by the infinitesimal Pogorelov map
vanishes at the boundary, because in this case Proposition 2.1 provides the
result.

Remarks about the method employed. There is a non-direct way to
prove the statement of Theorem 2.13, using another infinitesimal Pogorelov
map. This way is pointed out in [5].

Moreover, it may be possible that the method employed to prove Propo-
sition 2.1 leads to a direct proof of Theorem 2.13 in hyperbolic space,
without using the infinitesimal Pogorelov map.

But we think that the method used here can be extended to prove infin-
itesimal rigidity results for ideal and hyperideal Fuchsian polyhedra (that
means that some vertices could be on the sphere or out of the ball for the
Klein projective model).

Note that the following proof is also true without any change for strictly
convex smooth Fuchsian surfaces (using the smooth analog of Proposition
2.1).

Proof of Theorem 2.13. Recall that pH2 is the orthogonal projection
on the totally geodesic surface PH2 . At a point x of a convex Fuchsian
polyhedron P , the derivative of the geodesic which realises this projection
is called the vertical direction at x, and the directions orthogonal to this one
are horizontal directions. So a Fuchsian deformation Z can be decomposed
in a vertical component Zv and in a horizontal component Zh. We denote
by (Zr)h the horizontal component of the radial component of Z, etc. We
have

Zr = (Zr)h + (Zr)v = (Zh)r + (Zv)r.

The first one is obvious and the second one comes from the linearity of the
orthogonal projection.
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Proposition 2.14. — The vector field Zv is invariant under the action
of ρ(Γ), i.e. ∀x ∈ P :

Zv(ρ(γ)x) = dρ(γ).Zv(x).

Proof. — From Equation (2.5), it suffices to check that ~ρ(γ) has no ver-
tical component, that is true by definition of a Fuchsian Killing field. �

And as ρ(Γ) acts cocompactly on P

Corollary 2.15. — There exists a constant cv such that, for all x ∈ P ,

‖Zv(x)‖ 6 cv.

Moreover

Corollary 2.16. — The vector field Zh is equivariant under the action
of ρ(Γ).

Proof. — Equation (2.3) says that

Zv(φ(γx)) + Zh(φ(γx)) = ρ̇(φ(x)) + dρ(γ).Zv(φ(x)) + dρ(γ).Zh(φ(x)),

and the preceding proposition gives the result. �

Recall that pd is the orthogonal projection on PH2 of the umbilic surface
which is at constant distance d from PH2 (passing through x). We call radial-
horizontal the component of Z (at x) in the direction dp−1

d (r(pH2(x))),
where r(pH2(x)) is the radial direction of PH2 at the point pH2(x). This
component is noted Zrh, and it’s a horizontal vector.

We denote by W the projection on PH2 of the horizontal component
of Z (it is equivariant under the action of ρ(Γ)). We denote by Wr its
radial component. Then dp−1

d (Wr) is the radial-horizontal component of
the horizontal component of Z.

The determining fact is:

Proposition 2.17. — Let H be a vector field of H2 equivariant under
the action of ρ(Γ). Then there exists a constant cḣ such that

‖Hr(x)‖H2 6 cḣdH2(xc, x).

The point xc is always the origin in the Klein projective model.

Proof. — We deform the hyperbolic metric h along H, that is ḣ = LHh,
where L is the Lie derivative:

ḣ(X, Y ) = (LHh)(X, Y ) = h(∇XH,Y ) + h(∇Y H,X)

= H.h(X, Y ) + h([X, H], Y ) + h(X, [Y, H]).
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Let c : [0, η] → H2, c(0) = xc, , c(η) = x, ‖c′‖ = 1 a geodesic (then
η = dH2(xc, x) and c′(η) is the radial direction at the point x). Up to
adding a Killing field, we can suppose that H(xc) = 0. Then

∫ η

0

ḣ(c′(t), c′(t))dt = 2
∫ η

0

h(∇c′(t)H(c(t)), c′(t))dt

= 2
∫ η

0

c′(t).h(H, c′(t))dt

= 2h(H, c′(η))

= 2h(Hr + Hl, c
′(η))

= 2h(Hr, c
′(η))

= 2h(Hr,±
Hr

‖Hr‖H2

),

that leads to

(2.6)
∫ η

0

ḣ(c′(t), c′(t))dt = ±2 ‖Hr‖H2 .

As H is equivariant under the action of ρ(Γ), the elements of ρ(Γ) preserve
the bilinear form ḣ, because, up to an isometry, H(ρ(γ)x) is written as
H(x) plus a Killing field.

Formally, using Equation (2.5)

H(ρ(γ)x) = dρ(γ).(~ρ(γ) + H)(x),

and we develop

ḣ(dρ(γ)X(x), dρ(γ)Y (x))

:= h(∇dρ(γ)X(x)H(ρ(γ)x), dρ(γ)Y (x))

+ h(∇dρ(γ)Y (x)H(ρ(γ)x), dρ(γ)X(x))

= h(∇dρ(γ)X(x)dρ(γ)(~ρ(γ)(x) + H(x)), dρ(γ)Y (x))

+ h(∇dρ(γ)Y (x)dρ(γ)(~ρ(γ)(x) + H(x)), dρ(γ)X(x))

= h(∇X(x)(~ρ(γ)(x) + H(x)), Y (x))

+ h(∇Y (x)(~ρ(γ)(x) + H(x)), X(x))

= h(∇X(x)H(x), Y (x)) + h(∇Y (x)H(x), X(x))

+ h(∇X(x)~ρ(γ)(x), Y (x)) + h(∇Y (x)~ρ(γ)(x), X(x))

= h(∇X(x)H(x), Y (x)) + h(∇Y (x)H(x), X(x))

+ L~ρ(γ)h(X(x), Y (x))

= ḣ(X(x), Y (x))
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(L~ρ(γ)h(X, Y ) = 0 because ~ρ(γ) is a Killing field).
Then ḣ is a bilinear form on PH2/ρ(Γ), which is compact, then |ḣ| is

bounded by a constant cḣ, and by Equation (2.6):

‖Hr(x)‖H2 6 cḣη = cḣdH2(xc, x).

�

Corollary 2.18. — There exists a constant crh such that:

‖(Zh)rh(x)‖H3 6 crhdH3(xc, x).

Proof. — A simple computation in Minkowski space shows that the in-
duced metric on the umbilic surface at constant distance d of PH2 (passing
through x) is cosh(d)h where h is the hyperbolic metric, then

‖(Zh)rh(x)‖H3 = cosh(d) ‖Wr(pH2(x))‖H2 ,

and as d is bounded for all x ∈ P , and with the preceding proposition,
there exists a constant crh such that:

(2.7) ‖(Zh)rh(x)‖H3 6 crhdH2(xc, pH2(x)).

Classical hyperbolic trigonometry applied to the rectangular triangle with
edge length dH3(xc, x) (the long edge), dH3(x, pH2(x)) and dH2(xc, pH2(x))
gives:

cosh(dH3(xc, x)) = cosh(dH3(x, pH2(x))) cosh(dH2(xc, pH2(x))),

and as the values of the hyperbolic cosine are greater than 1:

cosh(dH3(xc, x)) > cosh(dH2(xc, pH2(x))),

and the hyperbolic cosine is an increasing function for positive values, then:

dH3(xc, x) > dH2(xc, pH2(x)).

This together with Equation (2.7) gives the result. �

The vertical plane is the vector space of TxH3 spanned by the orthogonal
vectors Zv and Zrh (Zrh is in the horizontal plane by definition, then it is
orthogonal to the vertical direction).

We can see the vertical plane as the tangent plane (at x) to the totally
geodesic surface passing through xc and x and orthogonal to PH2 .

We denote by Zlv the image of the projection on the vertical plane of
the lateral component of Z.

The vector Zr belongs to the vertical plane, because it can be decomposed
in a horizontal component, which is in the radial-horizontal direction, and
a vertical component.
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The lateral component is orthogonal to the radial component, then the
vector Zlv is orthogonal to Zr in the vertical plane.

In all the following, we denote by µ := dH3(xc, x), and vector fields are
evaluated at the point x ∈ P .

Lemma 2.19. — Let V be the projection of a component of Z on the
vertical plane. Then there exists a constant c such that

‖V ‖H3 6 c(1 + µ).

Proof. — We denote by ΠV the projection on the vertical plane, con-
sidered as spanned by the orthogonal vectors Zrh and Zv. We can write
ΠV (Z) = Zrh +Zv. As V is already in the vertical plane, and as we project
a component of Z, we can write:

‖V ‖H3 = ‖ΠV (V )‖H3 6 ‖ΠV (Z)‖H3

6 ‖Zrh‖H3 + ‖Zv‖H3

6 ‖(Zh)rh‖H3 + ‖(Zv)rh‖H3 + ‖Zv‖H3

6 ‖(Zh)rh‖H3 + 2 ‖Zv‖H3 ,

and as the overestimation of these two last norms are known (by Corollaries
2.15 and 2.18) we get

‖V ‖H3 6 crhµ + 2cv,

that is, if c is greater than crh and 2cv,

‖V ‖H3 6 c(1 + µ).

�

For convenience, we denote by u be the image of Z by the infinitesimal
Pogorelov map.

The decompositions of tangent vectors defined above (vertical, horizon-
tal,. . . ) occur in Euclidean space. We want to show that the vertical com-
ponent of u goes to 0 at the boundary. As uv is in the vertical plane, if α

is the angle between uv and ulv, we get

(2.8) uv = cos(α)ulv + sin(α)ur,

because, for the same reason as for Z, ur and ulv give an orthogonal basis
of the vertical plane.

By Lemma 2.19 we get, as Zr and Zlv are in the vertical plane,

‖Zr‖H3 6 c(1 + µ),

‖Zlv‖H3 6 c(1 + µ),
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and as the infinitesimal Pogorelov map preserves the norm of the radial
component and crushes by a coefficient cosh(µ) the norm of the lateral
direction (Equation (2.2)), these two inequalities rise to

‖ur‖R3 6 c(1 + µ),

‖ulv‖R3 6 cosh(µ)−1c(1 + µ).

Starting from (2.8) we get

‖uv‖R3 6 ‖ulv‖R3 + sin(α) ‖ur‖R3

6 c cosh(µ)−1(1 + µ) + c sin(α)(1 + µ)

6 c(1 + µ)(cosh(µ)−1 + sin(α)).

We call δ the Euclidean distance between a point x on P and PH2 (in the
Klein projective model), and we see easily that we have sin(α) ≈

0
δ when

we go near the boundary of the ball:

c(1 + µ)(cosh(µ)−1 + sin(α)) ≈
0

c(1 + µ)(cosh(µ)−1 + δ).

We denote by Smax the umbilic surface which realises the maximum of
the distance between P and PH2 , xmax the intersection of Smax with the
geodesic joining x and xc, µmax for dH3(xc, xmax), δmax the distance in R3

between xmax and PH2 . Guess analog definitions of Smin, xmin, µmin, δmin

for the surface realising the minimum of the distance between P and PH2 .

Lemma 2.20. — Near the boundary of the ball, we have the approxi-
mations

µmax ≈
δmax→0

− cmax ln(δmax),

µmin ≈
δmin→0

− cmin ln(δmin),

where cmax and cmin are positive constants.

Proof. — We prove the lemma in the case max, the proof for min is the
same. It is easy to check that µmax = dH3(xc, xmax) = tanh−1(‖xmax‖R3),
that is

µmax = ln
(

1 + ‖xmax‖R3

1− ‖xmax‖R3

)
≈

‖xmax‖R3→1
− ln(1− ‖xmax‖R3).

As the image of Smax in the projective Klein model is an ellipsoid, δmax

satisfies the equation

(xmax)21 + (xmax)22 +
δ2
max

r2
= 1,
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where r is a positive constant strictly less than 1. Adding and removing a
δ2
max and reordering we get:

1− ‖xmax‖R3 = δ2
max

1− r2

r2
,

as δ2
max = (xmax)23, and this gives the result. �

As obviously

µmin 6 µ 6 µmax and δmin 6 δ 6 δmax,

we get

‖uv‖R3 6 c(1 + µ)(cosh(µ)−1 + δ)

6 c(1 + µmax)(cosh(µmin)−1 + δ),

and when x goes near the boundary, cosh(f(x)) ≈
∞

exp(f(x)), where f is a
function going to ∞ when x goes near the boundary. Then:

c(1 + µmax)(cosh(µmin)−1 + δ)

≈
0

c(1− cmax ln(δmax))(cosh(−cmin ln(δmin))−1 + δ)

≈
0

c′(1− ln(δmax))(δmin + δ).

At the end, as

c′(1− ln(δmax))(δmin + δ) 6 c′(1− ln(δmax))(δmax + δmax)

and as when δ goes to 0, δmax goes to 0, then ‖uv‖R3 goes to 0.
Theorem 2.13 is now proved.

3. Realisation of metrics

3.1. Set of Fuchsian polyhedra

We denote by P(n) the set of convex Fuchsian polyhedral embeddings
with n vertices of a compact surface S in H3, modulo isotopies of S fixing
the vertices of the cellulation and modulo the isometries of H3.

More precisely, the equivalence relation is the following: let (φ1, ρ1) and
(φ2, ρ2) be two convex Fuchsian polyhedral embeddings of S. We say that
(φ1, ρ1) and (φ2, ρ2) are equivalent if there exists

• a homeomorphism h of S isotopic to the identity, such that if ht is
the isotopy (i.e. t ∈ [0, 1], h0 = h and h1 = id), then ht fixes the
vertices of the cellulation for all t,

• a hyperbolic isometry I,
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such that, for a lift h̃ of h to S̃ we have

φ2 ◦ h̃ = I ◦ φ1.

Here again, the definition of the equivalence relation doesn’t depend on the
choice of the lift.

Z-V-C coordinates for Teichmüller space. For more details about
Z-V-C coordinates (Z-V-C stands for Zieschang–Vogt–Coldewey, [25]) we
refer to [4, 6.7].

Definition 3.1. — Let g > 2. A (geodesically convex) polygon of the
hyperbolic plane with edges (in the direct order) b1, b2, b1, b2, b3, b4, . . . , b2g

and with interior angles θ1, θ1, . . . , θ2g, θ2g is called (normal) canonical if,
with l(c) the length of the geodesic c,

i) l(bk) = l(bk), ∀k;
ii) θ1 + . . . + θ2g = 2π;
iii) θ1 + θ2 = θ1 + θ2 = π.

Two canonical polygons P and P ′ with edges b1, . . . , b2g and b′1, . . . , b
′
2g are

said equivalent if there exists an isometry from P to P ′ such that the edge
b1 is sent to the edge b′1 and b2 is sent to b′2.

If we identify the edges bi with the edges bi, we get a compact hyperbolic
surface of genus g. This surface could also be written H2/F , where F is the
sub-group of PSL(2, R) = Isom+(H2) generated by the translations along
the edges bi (the translation length is the length of bi). The interior of
the polygon is a fundamental domain for the action of F . This leads to a
description of the Teichmüller space Tg:

Proposition 3.2 ([4, 6.7.7]). — Let Pg be the set of equivalence classes
of canonical polygons. An element of Pg is described by the (6g − 6) real
numbers (the Z-V-C coordinates):

(b3, . . . , b2g, θ3, θ3, . . . , θ2g, θ2g).

Endowed with this topology, Pg is in analytic bĳection with Tg.

Surjection on the Teichmüller space with marked points. The
Teichmüller space of Fg,n (i.e. of a compact surface of genus g > 1 with
n > 0 marked points), denoted by Tg(n), can be defined as the set of
hyperbolic metrics on Fg,n modulo isotopies of Fg,n, such that each isotopy
ht fixes the marked points for all t.

Let (φ1, ρ1) and (φ2, ρ2) be two equivalent convex Fuchsian polyhedral
embeddings of S with n vertices. Recall that h is an isotopy of S and h̃ its
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lift to S̃. As h is homotopic to the identity, ∀x ∈ S̃,∀γ ∈ Γ, we get:

φ2(h̃(γx)) = I(φ1γx)

⇔ φ2((h)∗(γ)x) = I(ρ1(γ)(φ1(x))

⇔ φ2(γx) = I(ρ1(γ)(φ1(x))

⇔ ρ2(γ)(φ2(x)) = I(ρ1(γ)(φ1(x))

⇔ ρ2(γ)(I(φ1(x))) = I(ρ1(γ)(φ1(x)).

But if two orientation-preserving isometries of the hyperbolic space are
equal on an open set of a totally geodesic surface (a face of the Fuchsian
polyhedron), they are equal, then for all γ ∈ Γ, ρ2(γ) = I ◦ ρ1(γ) ◦ I−1. As
ρ1 and ρ2 are also representations of Γ in PSL(2, R) (modulo conjugation
by an element of PSL(2, C) = Isom+(H3)), we deduce that ρ1 and ρ2 are
the same element of Hom(Γ, PSL(2, R))/PSL(2, R).

Then in the hyperbolic plane PH2 , the canonical polygons associated to
these two representations are equal, and, up to an isometry, the projection
of the vertices of the Fuchsian polyhedra φ1(S̃) and φ2(S̃) on PH2 gives the
same n marked points in this canonical polygon: we have described a map
S which to each element of P(n) associates an element of Tg(n).

And as we have seen that from any Fuchsian group and any n points on
the plane, we can build a convex Fuchsian polyhedron with n vertices (it is
enough to take n points at same distance from the plane), S is surjective.

Manifold structure on P(n).

Lemma 3.3. — Let [h] ∈ Tg(n). Then S−1([h]) is diffeomorphic to the
open unit ball of Rn.

Proof. — We will show that S−1([h]) is a contractible open subset of
(R+)n.

We fix an element of Tg(n), that is the action of a cocompact Fuchsian
group F on PH2 and n points (y1, . . . , yn). We denote by (x1, . . . , xn) n

points of the hyperbolic space such that their projection on the plane PH2 is
exactly (y1, . . . , yn). We look at the Klein projective model of the hyperbolic
space, and the coordinates of the points are those of R3. The orthogonal
projection, Euclidean or hyperbolic, of a point on the horizontal plane gives
the same point.

We want the vertices of the polyhedron obtained as the boundary of the
closure of the convex hull of the points fxi, for any f ∈ F and i = 1 . . . n, to
be exactly the set of points of the form fxi, for any f ∈ F and i = 1 . . . n.
This is the same as saying that no point of the form fxi is in the interior
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of the convex hull of the others points of this form; that means, for all
fx (x ∈ {x1, . . . , xn}), and for all fixi, fjxj , fkxk such that pH2(fx) is
contained in the triangle formed by the points pH2(fixi), pH2(fjxj) and
pH2(fkxk), then the plane generated by fixi, fjxj , fkxk (strictly) separates
fx from PH2 .

Actually, it suffices to verify this condition only for the points (x1, . . . , xn),
because if the plane generated by

fixi, fjxj , fkxk

separates fx from PH2 , then the plane generated by

f−1fixi, f
−1fjxj , f

−1fkxk

separates x from PH2 (as F acts by isometries, it sends the convex polyhe-
dron with vertices

fixi, fjxj , fkxk, fx, pH2(fixi), pH2(fjxj), pH2(fixi), pH2(fx)

on the convex polyhedron of vertices

f−1fixi, f
−1fjxj , f

−1fkxk, x, pH2(f−1fixi),

pH2(f−1fjxj), pH2(f−1fixi), pH2(x)).

Then, if x is projected in the triangle (pH2(fixi), pH2(fjxj), pH2(fkxk)),
we have a condition which can be written

det(fixi − fjxj , fixi − fkxk, fixi − x) > 0.

(we choose an orientation such that this det is > 0, but we could take the
other orientation, it will change nothing, the important fact is that the
condition is open).

For each equation, the set of solution is an open half-space delimited by
an affine hyperplane: the possible set of heights for the vertices (x1, . . . , xn)
is given by the intersection (of an infinite number) of open half-spaces.

This is a contractible open set. We want the vertices to stay in the unit
ball, then we must add for each vertex the condition that its height must
be (strictly) greater than 0 and less than (1 − a2

i − b2
i ), where ai and bi

are the horizontal coordinates of each xi (they are fixed by hypothesis):
we intersect the contractible open set with other open half-spaces, and the
intersection remains a contractible open set. This set is non-empty, as we
built examples of convex Fuchsian polyhedra. �

An open set of Tg(n) is parameterised by a (small) deformation of a
canonical polygon in the hyperbolic plane and a displacement of the marked
points inside this polygon. With a fixed height for the vertices, a small
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displacement of a convex Fuchsian polyhedron (corresponding to a path in
Tg(n)), is always convex (the convexity is a property preserved by a little
displacement of the vertices) and Fuchsian (by construction).

So we can endow P(n) with the topology which makes it a fiber space
based on Tg(n), with fibers homeomorphic to the open unit ball of Rn:

Proposition 3.4. — The space P(n) is a contractible manifold of di-
mension (6g − 6 + 3n).

Because Tg(n) is contractible manifold of dimension (6g − 6 + 2n), see
e.g. [12].

Triangulations.

Definition 3.5. — A (generalised) triangulation of a compact surface
S is a decomposition of S by images by homeomorphisms of triangles of
Euclidean space, with possible identification of the edges or the vertices,
such that the interiors of the faces (resp. of the edges) are disjoint.

This definition allows triangulations of the surface with only one or two
vertices. For example, take a canonical polygon such as defined in the pre-
ceding section. Take a vertex of this polygon, and join it with the other
vertices of the polygon. By identifying the edges of the polygon, we have a
triangulation of the resulting surface with only one vertex.

We want to know the number of edges e for such a triangulation with
n vertices of a compact surface of genus g. As the Euler characteristic is
χ(g) = (2− 2g) we have f − e+2 = 2− 2g, where f is the number of faces.

As the faces are supposed to be triangles, f =
2
3
a and then

a = 6g − 6 + 3n.

Local description of the space of polyhedra. Take a subdivision of
each face of a convex Fuchsian polyhedron P in triangles (such that the
resulting triangulation has no more vertices than the polyhedron, and is
invariant under the action of ρ(Γ)). For such a triangulation on P , we get a
map EdP which sends each convex Fuchsian polyhedron in a neighbourhood
of P in P(n) to the square of the length of the edges of the triangulation in
a fundamental domain for the Fuchsian group action. As this triangulation
of P provides a triangulation of the surface S, the map EdP has its values
in R6g−g+3n.

The map EdP associates to each Fuchsian polyhedron a set of (6g −
g + 3n) real numbers among all the dH3(γxi, µxj)2, where γ, µ ∈ ρ(Γ),
i, j = 1, . . . , n and (x1, . . . , xn) are the vertices of the polyhedron. It is in
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particular a C1 map (the description of the topology of P(n) says that
for a neighbourhood of P in P(n) the vertices belong to open sets of the
hyperbolic space).

By the local inverse theorem, Theorem 2.13 says exactly that EdP is a
local homeomorphism.

3.2. Set of metrics with conical singularities

By standard methods involving Voronoi regions and Delaunay cellula-
tions, it is known [15, 23, 8] that for each constant curvature metric with
conical singularities on S with constant sign singular curvature there ex-
ists a geodesic triangulation such that the vertices of the triangulation are
exactly the singular points. This allows us to see such a metric as a gluing
of (geodesic) hyperbolic triangles.

(Actually, we don’t need this result, because in the following we could
consider only the metrics given by the induced metric on convex Fuchsian
polyhedra. In this case, the geodesic triangulation of the metric is given by
a triangulation of the faces of the polyhedron).

We denote by
• M(n) the space of Riemannian metrics on S minus n points. It

is endowed with the following Ck topology: two metrics are close
if their coefficients until those of their kth derivative in any local
chart are close (we don’t care which k > 2);

• C̃one(n) ⊂ M(n) the set of hyperbolic metrics with n conical sin-
gularities of positive singular curvature on S, seen as Riemannian
metrics after removing the singular points;

• Cone(n) the quotient of C̃one(n) by the isotopies of S minus the n

marked points;
• M̃T - where T is a geodesic triangulation of an element of C̃one(n)

- the set of the metrics of C̃one(n) which admit a geodesic triangu-
lation homotopic to T ;

• Conf(n) the set of conformal structures on S with n marked points.

Topology of the set of metrics. A Theorem of Mc Owen–Troyanov
[11][24, Theorem A] says that there is a bĳection between C̃one(n) and
Conf(n)×]0, 2π[n. More precisely, for a conformal structure on S, n points
on S and n real numbers αi between 0 and 2π, there exists a unique con-
formal hyperbolic metric with cone singularities with angles αi on S (the
singular curvature is (2π − αi)).
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As the Teichmüller space Tg(n) is the quotient of Conf(n) by the isotopies
of S minus its marked points, Cone(n) is in bĳection with Tg(n)×]0, 2π[n,
and we endow Cone(n) with the topology which makes this bĳection a
homeomorphism:

Proposition 3.6. — The set Cone(n) is a contractible manifold of di-
mension (6g − 6 + 3n).

Local description of the set of metrics. We call ẼdT the map from
M̃T to R6g−6+3n which associates to each element of M̃T the square of
the length of the edges of the triangulation. The (square of) the distance
between two points of S is a continuous function from M(n) to R.

Remark that M̃T is non empty if we consider a metric given by the
induced metric on a convex Fuchsian polyhedron, on which we fix a trian-
gulation. Moreover, around a point of M̃T , ẼdT has its values in an open
set of R6g−6+3n: if we change a little the length of the (6g− 6 + 3n) edges,
the resulting metric will be still in M̃T , because the conditions to remain
a hyperbolic triangle and that the sum of the angles around each vertex
don’t exceed 2π are open conditions.

Let iT be the canonical inclusion of M̃T (endowed with the topology of
M(n)) in C̃one(n) (endowed with the topology of Conf(n)×]0, 2π[n).

The composition of iT with the projection onto Conf(n) is the map which
associates to each metric its conformal structure, and it is continuous map-
ping as by definition Conf(n) is the quotient of M(n) by the set of positive
real-valued functions on S minus its marked points; and the composition
of iT with the projection on ]0, 2π[n is obviously continuous.

Then iT is continuous and injective: it is a local homeomorphism and
then ẼdT is a continuous map on M̃T ⊂ C̃one(n). Moreover, modulo the
isotopies of the surface, the map ẼdT becomes an injective mapping EdT

from MT ⊂ Cone(n) (the quotient of M̃T by the isotopies) to R6g−6+3n.
And as it has its values in an open set of R6g−6+3n and as the dimension
of Cone(n) is (6g − 6 + 3n), EdT is a local homeomorphism from Cone(n)
to R6g−6+3n (defined around the images of Fuchsian polyhedra).

Realisation of metrics. We denote by I(n) the map from P(n) to
Cone(n), which associates to each convex Fuchsian polyhedral embedding
in hyperbolic space its induced metric. This map is well defined, because
the induced metric on the quotient of a convex Fuchsian polyhedron (by
ρ(Γ)) is isometric to a hyperbolic metric with conical singularities with
positive singular curvature on S.
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Let P be a convex Fuchsian polyhedron, and m its induced metric. We
consider a triangulation of m given by a subdivision of the faces of P

in triangles. Obviously, the (square of) the lengths of the edges of the
triangulation of P are the same that the (square of) the lengths of the
edges of the triangulation of m := I(n)(P ). It means that locally (recall
that the maps EdP and EdT are defined only locally around P and m):

EdT ◦ I(n) ◦ Ed−1
P = id.

P(n)
I(n)−−−−→ Cone(n)

EdP

y yEdT

R6g−6+3n R6g−6+3n

From this we deduce immediately that I(n) is continuous and locally in-
jective. Moreover, the map I(n) is proper: this will be proved in the next
paragraph.

Then I(n) is a covering map. But as P(n) and Cone(n) are connected
and simply connected, it is a homeomorphism.

Let Mod(n) be the quotient of the group of the homeomorphisms of S

minus n points by its subgroup of isotopies.
Then the homeomorphism I(n) gives a bĳection between P(n)/Mod(n)

and Cone(n)/Mod(n), and this is exactly the statement of Theorem 1.1.

Properness of I(n). We will use the following characterisation of a
proper map: I(n) is proper if, for each sequence (Pk)k in P(n) such that
the sequence (mk)k converges in Cone(n) (with mk := I(n)(Pk)), then
(Pk)k converges in P(n) (maybe up to the extraction of a sub-sequence).

Suppose that (mk)k converges to m∞ ∈ Cone(n). As each mk is a hyper-
bolic metric with n conical singularities with positive singular curvature on
S, the convergence implies:

i) a uniform bound on the distance between every pair of singular
points of the surface for all k;

ii) a uniform bound on the values of the angles at the singular points
for all k, strictly between 0 and 2π;

iii) a uniform bound on the lengths of the closed geodesics for all k;
iv) a uniform bound on the areas of the metrics for all k.

From this we deduce the following assertions (all supposed for a k suffi-
ciently big, and recall that we call the height of a vertex its distance from
PH2):

If the height of one vertex of the polyhedra goes to infinity, the heights of
all the vertices go to infinity.
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Suppose there exists a vertex which height doesn’t go to infinity, incident
to a vertex which height goes to infinity. Then the length of the geodesic
between them goes to infinity, that is impossible by i).

The heights of all the vertices can’t go to infinity.
By iv), on each Pk there is a subset R, homeomorphic to a closed disc,

bounding a fundamental domain for the action of ρk(Γ) and which area
is fixed for all k. We consider the projection Dk of R on the umbilic sur-
face realising the minimum dk of the distance between Pk and PH2 . By
orthogonality of the projection, the area of Dk is less than the area of R.
The projection of Dk on PH2 is a closed set Dk bounding a fundamental
domain for the action of ρk(Γ) on PH2 . The area of Dk is the area of Dk

times (cosh2)−1(dk), then it is less than the area of R, which is constant,
times (cosh2)−1(dk) (recall that the induced metric on an umbilic surface
at distance d from PH2 is cosh2(d)canH2 , where canH2 is the hyperbolic
metric induced on PH2).

If the heights of all the vertices goes to infinity, it implies that dk goes to
infinity, then the area of Dk goes to zero, and so the area of the fundamental
domain for the action of ρk(Γ) in PH2 goes to zero. This is impossible by
the Gauss–Bonnet Theorem: the area of a fundamental domain on PH2

for the action of a ρk(Γ) is constant for all k (equal to minus the Euler
characteristic of S).

The lengths of the edges of the canonical polygons associated to the Pk

and the distances between the marked points inside it don’t diverge.
The distance between two vertices of the canonical polygon associated

to Pk in PH2 is less than the distance on Pk between the points which are
projected onto these vertices (because by orthogonality of the projection
the distance in PH2 is smaller than the distance between the points of
Pk in H3, which is itself smaller than the induced distance on Pk), and
this distance is bounded by i), so it converges (maybe after extracting a
sub-sequence). The same argument shows that the distance between two
marked points inside the canonical polygon converges.

The distance between two marked points inside a canonical polygon can’t
go to 0.

If it occurs, it implies that the two vertices sk and s′k of Pk go to two
points on the geodesic joining sk and pH2(sk) (because we have seen that
the heights of the vertices are bounded). These limit points are distinct,
because the distance between two singular points is bounded. Then one is
lower than the other, say sk for example. As there is an infinite number
of vertices on each polyhedron accumulating on the entire boundary at
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infinity of PH2 , there exists at least three vertices lower than sk and such
that their projection on PH2 forms a triangle containing the projection of
sk: sk is contained in the interior of the convex hull of these vertices. Then
there exists a k′ such that for each k > k′, sk is in the convex hull of the
others vertices: Pk would be not convex, that is false.

No length of the edges of the canonical polygon goes to 0.
It is as above: if it occurs, there are two vertices of the canonical polygon

which collapse. The corresponding points on the polyhedra can’t collapse,
because the geodesic (on the polyhedron) between them corresponds to
a closed geodesic for the induced metric on S and the lengths of closed
geodesics are bounded by iii). Then these two points go to two points
on the same horizontal geodesic, and again it is in contradiction with the
convexity of the polyhedra.

These assertions prove that the sequence of canonical polygons associated
to the Pk converges to a compact polygon of PH2 , with exactly 4g edges and
n marked points. As the definition of a canonical polygon shows that the
limit of a converging sequence of canonical polygons is a canonical polygon,
then S(Pk) converges in Tg(n). We denote by [h] its limit.

For k sufficiently big, we can consider that all the S(Pk) are in a neigh-
bourhood of [h] sufficiently small to trivialise the fibration P(n). That
means that we can write the Pk as couples ([h]k,Hk), where Hk is the
heights of the vertices of Pk, and we have already seen that these heights
converge.

Then (Pk)k converges to a Fuchsian polyhedron. It remains to check that
it is convex with n vertices: by convexity of the Pk, no vertex converges to
a point inside the convex hull of the other vertices, and no one converges
to a point on the boundary of the convex hull of the other vertices, because
the angles at the singularities of m∞ are all less than 2π by ii).
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