
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Roland HUBER

A finiteness result for the compactly supported cohomology of rigid analytic
varieties, II
Tome 57, no 3 (2007), p. 973-1017.

<http://aif.cedram.org/item?id=AIF_2007__57_3_973_0>

© Association des Annales de l’institut Fourier, 2007, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2007__57_3_973_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
57, 3 (2007) 973-1017

A FINITENESS RESULT FOR THE COMPACTLY
SUPPORTED COHOMOLOGY OF RIGID ANALYTIC

VARIETIES, II

by Roland HUBER

Abstract. — Let h : X → Y be a separated morphism of adic spaces of finite
type over a non-archimedean field k with Y affinoid and of dimension 6 1, let L be
a locally closed constructible subset of X and let g : (X, L)→ Y be the morphism
of pseudo-adic spaces induced by h. Let A be a noetherian torsion ring with torsion
prime to the characteristic of the residue field of the valuation ring of k and let F
be a constant A-module of finite type on (X, L)ét. There is a natural class C (Y )
of A-modules on Yét generated by the constructible A-modules and the Zariski-
constructible A-modules. We show that, for every n ∈ N0, the higher direct image
sheaf with proper support Rng!F is generically constructible, and if h is locally
algebraic, Rng!F is an element of C (Y ). As an application we obtain a comparison
isomorphism for the `-adic cohomology of a separated scheme of finite type over k
and its associated adic space.

Résumé. — Soit h : X → Y un morphisme séparé d’espaces adiques de type
fini sur un corps non archimédien k avec Y affinoïde et de dimension 6 1. Soit L
un sous-ensemble constructible localement fermé dans X et soit g : (X, L) → Y
le morphisme d’espaces pseudo-adiques induit de h. Soit A un anneau noethérien
de torsion première à la caractéristique résiduelle de k et soit F un faisceau de
A-modules localement constant de type fini sur (X, L)ét. Il y a une classe natu-
relle C (Y ) des faisceaux de A-modules sur Yét engendrée par des faisceaux de A-
modules constructibles et des faisceaux de A-modules Zariski-constructibles. Nous
montrons que le faisceau image directe à support propre Rng!F est génériquement
constructible, et si h est localement algébrique, Rng!F est un élément de C (Y ). En
conséquence, on obtient un théorème de comparaison entre cohomologie `-adique
d’un schéma séparé de type fini sur k et de l’espace adique associé.

1. Introduction

Let k be a non-archimedean field, let h : X → Y be a separated morphism
of adic spaces of finite type over Spa(k, k◦) with Y affinoid and dimY 6 1,

Keywords: Rigid analytic spaces, adic spaces, compactly supported cohomology.
Math. classification: 14G22, 14F20.



974 Roland HUBER

let L be a locally closed constructible subset of X and let g : (X,L)→ Y be
the morphism of pseudo-adic spaces induced by h. Let A be a noetherian
torsion ring with torsion prime to char(k◦/k◦◦) and let F be a constant
A-module of finite type on (X,L)ét. There is a natural class C (Y ) of A-
modules on Yét generated by the constructible A-modules as defined in [9],
2.7 and the Zariski-constructible A-modules. We are interested to know if
Rmg!F ∈ C (Y ). In [11] is proved that this is fulfilled if char(k) = 0 and
|A| < ∞. In this paper we will show that without any restriction on the
characteristic of k and the cardinality of A the following two statements
hold

(I) For every m ∈ N0, Rmg!F is generically constructible on Y , i.e.,
there exists an open subset U of Y such that the restriction
Rmg!F |U is constructible on U and every x ∈ Y whose support
supp(x) = {c ∈ OY (Y ) | c(x) = 0} ∈ Spec OY (Y ) is a generic
point of Spec OY (Y ) is contained in U .

(II) If h is locally algebraic then, for every m ∈ N0, Rmg!F ∈ C (Y ).
As a consequence of (II) we will obtain a comparison isomorphism for `-
adic cohomology,

Hq
c (X, (Fn)n∈N) ∼−→ Hq

c (Xad, (F ad
n )n∈N),

where X is a separated scheme of finite type over Spec k (here k is as-
sumed to be algbraically closed) and Xad is its associated adic space over
Spa(k, k◦). (For char(k) = 0 this comparison theorem is already proved in
[10]).
The main new ingredient of the proof of (I) is a result on algebraization of
finite morphisms of adic spaces (Lemma 7.3).
(II) can be deduced from (I). In the following we sketch this. By virtue of
(I) it suffices to show that Rmg!F is constructible around each y ∈ Y (k)
(with k the algebraic closure of k). For simplicity let us assume that

Y := B1
k = Spa(k〈T 〉, k◦〈T 〉) , {y} := {0} = V (T ) ⊆ Y.

The topological space Spa(k〈T 〉, k◦〈T 〉) is a subspace of the valuation spec-
trum Spvk〈T 〉 of k〈T 〉,

0 ∈ Y = Spa(k〈T 〉, k◦〈T 〉) ⊆ Spvk〈T 〉.

The element 0 has no proper generalization in Spa(k〈T 〉, k◦〈T 〉) but there
is a unique valuation v ∈ Spvk〈T 〉 which is a proper generalization of 0 in
Spvk〈T 〉 and extends the valuation | | of k. One may expect that v can
be helpful to study, for a sheaf E on Spa(k〈T 〉, k◦〈T 〉)ét, the behavior of E
around 0. Some evidence for this appears in the paper [18]. In the present
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A FINITENESS RESULT FOR RIGID ANALYTIC VARIETIES 975

paper we use v in order to prove (II).
If (Un)n∈N is a fundamental system of neighbourhoods of zero in k then
(Un〈T 〉)n∈N is a fundamental system of neighbourhoods of zero in k〈T 〉
where Un〈T 〉 = {

∑
a`T

` ∈ k〈T 〉 | a` ∈ Un for all `}. Let k〈T 〉T be the lo-
calization of k〈T 〉 with respect to the multiplicative system {1, T, T 2, . . .}.
We endow k〈T 〉T with the ring topology such that (Tn · Un〈T 〉)n∈N is a
fundamental system of neighbourhoods of zero. We will show that the topo-
logical ring k〈T 〉T is strictly noetherian. Hence we have the affinoid adic
space

Y ′ := Spa(k〈T 〉T , k◦〈T 〉).

Since v(T ) 6= 0, the valuation v of k〈T 〉 extends uniquely to a valuation w

of k〈T 〉T . The valuation w is continuous with respect to the topology of
k〈T 〉T and w(b) 6 1 for all b ∈ k◦〈T 〉, i.e.,

w ∈ Y ′.

For an element a ∈ k∗ with |a| < 1 put

Y ′
ε := {x ∈ Y ′ | |a(x)|x < 1} ⊆ Y ′.

This set is independent of a. We have

(1) There is a natural morphism of adic spaces

π : Y − {0} −→ Y ′.

π is an open embedding and it extends to a homeomorphism

τ : Y −→ Y ′
ε

with τ(0) = w.

(Remark. The set Y ′ − Y ′
ε consists of exactly one element).

Since h : X → Y is locally algebraic, we may assume that the diagram of
pseudo-adic spaces

(X − h−1(0), L− h−1(0))

u

��
Y − {0}

π
// Y ′

TOME 57 (2007), FASCICULE 3



976 Roland HUBER

where u is the restriction of g can be extended to a cartesian diagram of
pseudo-adic spaces

(X − h−1(0), L− h−1(0)) π′ //

u

��

(X ′, L′)

g′

��
Y − {0}

π
// Y ′

where the morphism of adic spaces X ′ → Y ′ underlying g′ is of finite type
and separated and L′ is a locally closed constructible subset of X ′. Let
F ′ be the constant A-module on (X ′, L′)ét such that π′∗(F ′) = F |(X −
h−1(0), L− h−1(0)). Obviously,

(2) Rmg!F |Y − {0} = π∗Rmg′!F
′.

We will show that (I) holds analogously for g′ and F ′ instead of g and F .
Hence as the support of w is the generic point of Spec k〈T 〉T , we obtain
that Rmg′!F

′ is constructible at w. Then (1) and (2) imply that Rmg!F is
constructible around 0.

Throughout the paper is assumed that, for an affinoid analytic adic X,
OX(X) is a stictly noetherian Tate ring.

I thank S. Bosch for his reference to [19] in Remark 2.9.

2. Some strictly noetherian Tate rings

For a topological ring A, we call a subring of A which is open in A and
whose subspace topology is adic a ring of definition of A, and we call A a
Tate ring if it has a ring of definition and a topologically nilpotent unit ([7]).

Let A be a topological ring and let f be an element of A. Let Af be
the localization of the ring A with respect to the multiplicative system
{1, f, f2, . . .} and let ρ : A → Af be the natural mapping. There is a ring
topology on Af such that {ρ(fnU) | n ∈ N and U a neighbourhood of
0 in A} is a fundamental system of neighbourhoods of zero. The ring Af

equipped with this topology is denoted by Af . The mapping ρ : A→ Af is
a universal ring homomorphism from A to a topological ring which maps
f to a unit and is open.
If f ′ is an element of A such that we have an equality V (f) = V (f ′) of
subsets of SpecA then we have an equality of topological rings Af = Af ′ .

ANNALES DE L’INSTITUT FOURIER



A FINITENESS RESULT FOR RIGID ANALYTIC VARIETIES 977

If A is hausdorff (complete, resp.) and the ideal ker(ρ) = {a ∈ A | fna = 0
for some n ∈ N} is annihilated by some fm then Af is hausdorff (complete,
resp.). If there exists a unit s of A such that sf is topolgically nilpotent
in A then Af has a topologically nilpotent unit (e.g., ρ(sf)) and, for every
ring of definition A0 of A, ρ(A0) is a ring of definition of Af . Therefore, if
A is a Tate ring then Af is a Tate ring.

The aim of this section is to show that if A is a strictly noetherian Tate
ring then Af is strictly noetherian, too.

2.1. — Let A be a topological ring which has a fundamental system of
neighbourhoods of 0 consisting of additively closed subsets of A. We put,
for every subset U of A,

A〈X1, . . . , Xn〉 = {
∑

aνX
ν ∈ A[[X1, . . . , Xn]] | (aν)ν∈Nn

0
is a

zero sequence in A}

U〈X1, . . . , Xn〉 = {
∑

aνX
ν ∈ A〈X1, . . . , Xn〉 | aν ∈ U for all ν ∈ Nn

0}

U [X1, . . . , Xn] = {
∑

aνX
ν ∈ A[X1, . . . , Xn] | aν ∈ U for all ν ∈ Nn

0}.

In the following we endow A[X1, . . . , Xn] and A〈X1, . . . , Xn〉 with the ring
topology such that if U is the set of all neighbourhoods of 0 in A then
{U [X1, . . . , Xn] | U ∈ U } and {U〈X1, . . . , Xn〉 | U ∈ U } are fundamental
systems of neighbourhoods of 0 in A[X1, . . . , Xn] and A〈X1, . . . , Xn〉.
A complete Tate ring A is called strictly noetherian if, for every n ∈ N, the
ring A〈X1, . . . , Xn〉 is noetherian.

Remark 2.2. — (i) Let A be as in (2.1). Then (A[T ]T )∧ = A〈T 〉T .
(ii) For a ring B and an element s of B let (B, s) indicate that the

ring B is endowed with the sB-adic topology. Then (B[T ], sT )∧ =
((B, s)〈T 〉, sT ).

We say that a topological ring A satisfies (N) if every ideal I of A is finitely
generated and the natural A-module topology of I ([8], §2) agrees with the
subspace topology of I in A.

Remark 2.3. — (i) Let A be a topological ring and let I be a finitely
generated ideal of A. The natural A-module topology of I agrees
with the subspace topology of I in A if and only if for some (and
then for any) finite system of generators a1, . . . , an of I the map-
ping

(∗) An → I, (x1, . . . , xn) 7→ x1a1 + . . .+ xnan

TOME 57 (2007), FASCICULE 3



978 Roland HUBER

is open where An is equipped with the product topology and I is
equipped with the subspace topology of A.

(ii) Let A be a Tate ring that is hausdorff and unequal {0}. Let ‖ ‖
be a norm of A, i.e. ‖ ‖ is a mapping A→ R>0 such that
(a) ‖0‖ = 0, ‖1‖ = 1
(b) ‖x+ y‖ 6 max(‖x‖, ‖y‖) for all x, y ∈ A
(c) ‖xy‖ 6 ‖x‖ · ‖y‖ for all x, y ∈ A
(d) ({x ∈ A | ‖x‖ 6 r} | r ∈ R>0) is a fundamental system of

neighbourhoods of 0 in A.
Assume that there is a topologically nilpotent unit s of A such
that ‖s−1‖ = ‖s‖−1 or, equivalently, ‖sa‖ = ‖s‖ ·‖a‖ for all a ∈ A.
(Such a norm of A always exists).
Let I be an ideal of A with a finite system of generators a1, . . . , an.
Then the mapping (∗) in (i) is open if and only if
(∗∗) there exists some K ∈ R>0 such that for every x ∈ I there

exist x1, . . . , xn ∈ A with x = x1a1 + . . . + xnan and ‖xi‖ 6
K · ‖x‖ for i = 1, . . . , n.

(iii) A complete Tate ring satisfies (N) if and only if it is noetherian
([8], 2.4.ii).

Lemma 2.4. — Let A be a Tate ring that is hausdorff.

(i) If A〈T 〉 satisfies (N) then A[T ] satisfies (N).
(ii) If A and Â〈T 〉 satisfy (N) then A〈T 〉 and A[T ] satisfy (N).
(iii) Let n ∈ N such that A and Â〈T1, . . . , Tn〉 satisfy (N). For

i ∈ {1, . . . , n} let {i , i} be [ , ] or 〈 , 〉. Then the Tate ring
A{1 T1

1} . . . {n Tn
n} satisfies (N).

Proof. We fix a norm ‖ ‖ : A → R>0 of A such that ‖s−1‖ = ‖s‖−1 for
some topologically nilpotent unit s of A. We equip all rings occuring in (i)
and (ii) with the Gauss norm with respect to ‖ ‖.
i) We will show that every ideal I of A[T ] has a finite system of generators
a1, . . . , an for which (∗∗) in Remark 2.3(ii) holds.
First we reduce the situation to the case that I is T -saturated. So let I be an
ideal of A[T ] and let I ′ be the T -saturation of I. Assume that the assertion
holds for I ′, i.e., there exist a finite system of generators e′1, . . . , e′n of I ′

and some K ∈ R>0 such that for every x ∈ I ′ there exist x1, . . . , xn ∈ A[T ]
with x = x1e

′
1 + . . .+ xne

′
n and ‖xi‖ 6 K · ‖x‖ for i = 1, . . . , n. Let m ∈ N

such that Tme′i ∈ I for i = 1, . . . , n. For every r ∈ N0 let πr be the mapping

A[T ]→ A,
∑

apT
p 7→ ar.

ANNALES DE L’INSTITUT FOURIER



A FINITENESS RESULT FOR RIGID ANALYTIC VARIETIES 979

By hypothesis A〈T 〉 satisfies (N) and hence A satisfies (N), too. Let
er,1, . . . , er,n(r) be elements of I∩(T r·A[T ]) such that πr(er,1), . . . , πr(er,n(r))
generate the ideal πr(I ∩ (T r ·A[T ])) of A. Applying (∗∗) in Remark 2.3(ii)
to these generators, we obtain by induction on r = 0, 1, . . . that for every
r ∈ N0 there exists some Kr ∈ R>0 such that for every x ∈ I there exists
a family xij , i = 0, . . . , r, j = 1, . . . , n(i) in A such that

x−
∑

i=0,...,r
j=1,...,n(i)

xijeij ∈ I ∩ (T r+1 ·A[T ])

and ‖xij‖ 6 Ki · ‖x‖ for i = 0, . . . , r, j = 1, . . . , n(i). Therefore, in order
to prove the assertion for I it is enough to consider the elements x ∈
I ∩ (Tm · A[T ]). Then T−m · x ∈ I ′ and so there exist x1, . . . , xn ∈ A[T ]
with T−m · x = x1e

′
1 + . . . + xne

′
n and ‖xi‖ 6 K · ‖T−m · x‖ = K · ‖x‖

for i = 1, . . . , n. Then for ei := Tme′i ∈ I (i = 1, . . . , n) we get x =
x1e1 + . . .+ xnen. Thus we see that it is enough to prove the assertion for
I ′, i.e., we may assume that I is T -saturated.
For u, v ∈ N0 with u 6 v put

A[T ]u,v := {p ∈ Tu ·A[T ] | deg(p) 6 v}.

For x =
∑
apT

p ∈ A〈T 〉 and u ∈ N0 put

ux :=
∑
p6u

apT
p ∈ A[T ].

We consider the ideal of A〈T 〉 generated by I. Since A〈T 〉 satisfies (N), there
exist e1, . . . , en ∈ I such that for every x ∈ I there exist x1, . . . , xn ∈ A〈T 〉
with x = x1e1 + . . . + xnen and ‖xi‖ 6 ‖x‖ for i = 1, . . . , n. Then for
L := max(1, ‖e1‖, . . . , ‖en‖), m := max(deg(e1), . . . ,deg(en)), u := deg(x)
and y := x− u(x1)e1 − . . .− u(xn)en hold

y ∈ I ∩A[T ]u,u+m and ‖y‖ 6 L · ‖x‖.

Since I is T -saturated, we obtain

y = Tu · z for some z ∈ I ∩A[T ]0,m.

Therefore it suffices to consider the elements z ∈ I ∩A[T ]0,m. Similarly as
in the reduction above we get that there exist f1, . . . , fs ∈ I ∩A[T ]0,m and
K ∈ R>0 such that for every z ∈ I ∩ A[T ]0,m there exist z1, . . . , zs ∈ A

with z = z1f1 + . . .+ zsfs and ‖zi‖ 6 K · ‖z‖ for i = 1, . . . , s.
ii) By virtue of (i) it suffices to show that A〈T 〉 satisfies (N). Let I be an
ideal of A〈T 〉. We will show that there exists a finite system of generators
a1, . . . , an of I for which (∗∗) in Remark 2.3(ii) holds. As in the proof of
(i) we may assume that I is T -saturated. We consider the ideal of Â〈T 〉

TOME 57 (2007), FASCICULE 3



980 Roland HUBER

generated by I. Since Â〈T 〉 satisfies (N), there exist elements g1, . . . , gm of I
such that for every x ∈ I and every ε ∈ R>0 there exist x1, . . . , xm ∈ A〈T 〉
with ‖x −

∑m
i=1 xigi‖ < ε and ‖xi‖ 6 ‖x‖ for i = 1, . . . ,m. Let π denote

the ring homomorphism

A〈T 〉 → A,
∑

aiT
i 7→ a0.

Since A satisfies (N), there exist elements gm+1, . . . , gn of I such that for
every x ∈ π(I) there exist xm+1, . . . , xn ∈ A with x = xm+1π(gm+1)+ . . .+
xnπ(gn) and ‖xi‖ 6 ‖x‖ for i = m+ 1, . . . , n. We will show that for every
x ∈ I there exist x1, . . . , xn ∈ A〈T 〉 such that x = x1g1 + . . . + xngn and
‖xi‖ 6 ‖x‖ for i = 1, . . . , n.
Let x be an element of I with x 6= 0. We choose a decreasing zero sequence
(σp)p∈N0 in R>0 with σ0 = ‖x‖. We will construct, for every p ∈ N0,
elements yp,1, . . . , yp,n of A〈T 〉 such that

a) ‖yp,i‖ 6 σp for i = 1, . . . , n
b) If xp,i :=

∑p
q=0 T

qyq,i ∈ A〈T 〉 (i = 1, . . . , n) and zp := x −∑n
i=1 xp,i gi then ‖zp‖ 6 σp+1 and zp ∈ T p+1 ·A〈T 〉.

Then for
xi :=

∑
q∈N0

T qyq,i ∈ A〈T 〉 (i = 1, . . . , n)

we have x = x1g1 + . . .+ xngn and ‖xi‖ 6 ‖x‖ for i = 1, . . . , n.
Let p ∈ N0 such that yq,1, . . . , yq,n for q = 0, . . . , p − 1 are already con-
structed. Since zp−1 ∈ I ∩ (T p · A〈T 〉) (for p = 0 put zp−1 = x) and I is
T -saturated, we have T−p·zp−1 ∈ I. Choose yp,1, . . . , yp,m ∈ A〈T 〉 such that
if z := T−p·zp−1−(yp,1g1+. . .+yp,mgm) and λ := max(1, ‖gm+1‖, . . . , ‖gn‖)
then ‖z‖ · λ 6 σp+1 and ‖yp,i‖ 6 ‖T−p · zp−1‖ = ‖zp−1‖ for i = 1, . . . ,m.
Then choose yp,m+1, . . . , yp,n ∈ A such that π(z) = yp,m+1π(gm+1) + . . .+
yp,nπ(gn) and ‖yp,i‖ 6 ‖π(z)‖ for i = m+ 1, . . . , n.
iii) For i = 1, . . . , n the Tate ring (A{1 T1

1} . . . {i−1 Ti−1
i−1})∧〈Ti〉 =

Â〈T1, . . . , Ti〉 satisfies (N), since Â〈T1, . . . , Tn〉 satisfies (N). Then the as-
sertion follows from (ii) by induction on i. �

Proposition 2.5. — Let A be a Tate ring that is complete and strictly
noetherian. Then, for every f ∈ A, the Tate ring Af is complete and strictly
noetherian.

Proof. We may assume that f is power bounded in A. Then we have the
continuous ring homomorphism σ : A〈T 〉 → A with σ(a) = a for all
a ∈ A and σ(T ) = f . Consider the induced continuous ring homomor-
phism τ : A〈T 〉T → Af . The mapping τ is surjective and open, as σ is
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A FINITENESS RESULT FOR RIGID ANALYTIC VARIETIES 981

surjective and open . Hence it suffices to show that A〈T 〉T is strictly noe-
therian.
Remark 2.2(i) immediately implies that, for every n ∈ N,
A〈T 〉T 〈X1, . . . , Xn〉 = A[X1, . . . , Xn]〈T 〉T . By Lemma 2.4(iii) and Remark
2.3(iii) the ring A[X1, . . . , Xn]〈T 〉 satisfies (N), and hence it is noetherian.
Thus we obtain that A〈T 〉T 〈X1, . . . , Xn〉 is noetherian. �

Lemma 2.6. — Let A be a strictly noetherian complete Tate ring, let f
be an element of A, let ρ : A → Af be the natural mapping and let B be
a complete Tate ring of topologically finite type over Af ,

A
ρ−→ Af η−→ B.

Let A0 be a ring of definition of A, and so ρ(A0) is a ring of definition
of Af . Let B0 be a ring of definition of B of topologically finite type over
ρ(A0). Let C0 be the ring B0 equipped with the adic topology such that
the ring homomorphism η ◦ ρ : A0 → C0 is adic. Let C be the subring of
B generated by C0 and (η ◦ ρ)(A), endowed with the group topology such
that C0 is an open topological subgroup of C. (Then C is a Tate ring, the
mapping η ◦ ρ : A→ C is continuous and B = C(η◦ρ)(f)). Then

(i) The topological ring C satisfies (N).
(ii) The ring homomorphism η ◦ ρ : A → C∧ is of topologically finite

type, more precisely, the ring homomorphism η ◦ ρ : A0 → C∧
0 is

of topologically finite type.

Proof. We may assume that f ∈ A0. By virtue of the mapping τ : A〈T 〉T →
Af in the proof of Proposition 2.5 we may replaceA, f,B,A0, B0 byA〈T 〉, T ,
A〈T 〉T 〈X1, . . . , Xn〉, A0〈T 〉, ρA〈T 〉(A0〈T 〉)〈X1, . . . , Xn〉. Then with Remark
2.2(ii) we obtain C0 = A0[X1, . . . , Xn]〈T 〉, and hence C = A[X1, . . . , Xn]〈T 〉
which satisfies (N) by Lemma 2.4(iii) and Remark 2.3(iii). Furthermore,
C∧

0 = A0〈X1, . . . , Xn〉〈T 〉 is of topologically finite type over A0〈T 〉 �

For a ring A and a subset R of A, let us call an A-module M R-noetherian
if for every sub-A-module P of M there exists some n(P ) ∈ N such that for
every r ∈ Rn(P ) := {sn(P ) | s ∈ R} there exists a finitely generated sub-A-
module P ′ of M with rP ⊆ P ′ ⊆ P . The ring A is called R-noetherian if
the A-module A is R-noetherian. (Remark. In our application (Proposition
2.8, the valuation of k not discrete) holds that for every r ∈ R and every
n ∈ N there exists some t ∈ R with r ∈ tnA. Then if M is R-noetherian
then we can put n(P ) = 1 for every sub-A-module P of M).

Lemma 2.7. — Let A be a ring and R a subset of A.
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(i) If A is R-noetherian then every finitely generated A-module is R-
noetherian.

(ii) Assume that there exists a ring topology on A such that the fol-
lowing two conditions are satisfied
(a) A is an open topological subring of some topological ring B

which satisfies (N).
(b) If λ : A→ Â is the completion of A then the ring Â is λ(R)-

noetherian.
Then A is R-noetherian.

Proof. We proof (ii). Let I be an ideal of A. By hypothesis (b) there exists a
n(I ·Â) ∈ N such that for every r ∈ Rn(I·Â) there exists a finitely generated
ideal J of Â with r ·I ·Â ⊆ J ⊆ I ·Â. We will show that for every r ∈ Rn(I·Â)

there exists a finitely generated ideal K of A with rI ⊆ K ⊆ I.
By hypothesis (a) the ideal I ·B of B is finitely generated. Hence there exists
a finite subset S of I with I ·B = S ·B. Furthermore by (a) there exists an
open subset U of B with U ∩ (I ·B) = S ·A. Let r ∈ Rn(I·Â) be given and
let J be a finitely generated ideal of Â with r · I · Â ⊆ J ⊆ I · Â. We choose
a finite subset T of I with J ⊆ T · Â. Then rI ⊆ (S∪T ) ·A ⊆ I. Indeed, for
every x ∈ rI there exists a family (at)t∈T in A with x−

∑
t∈T at · t ∈ U ∩A.

Since U ∩ (I ·B) = S ·A, we obtain x−
∑

t∈T at · t ∈ S ·A. �

Proposition 2.8. — We consider ring homomorphisms

k
τ−→ A

ρ−→ Af η−→ B

where k is a complete non-archimedean field, A and B are complete Tate
rings, f is an element of A, ρ is the natural ring homomorphism and τ

and η are continuous ring homomorphisms of topologically finite type. Let
A0 be a ring of definition of A of topologically finite type over k◦ and let
B0 be a ring of definition of B of topologically finite type over the ring of
definition ρ(A0) of Af .
Then B0 is (η ◦ρ◦τ)(k◦◦)-noetherian. (If the valuation of k is discrete then
B0 is noetherian).

Proof. Let C0 and C be as in Lemma 2.6. Let λ : C0 → C∧
0 be the comple-

tion of C0. By Lemma 2.6(ii) the ring homomorphism σ := λ◦η◦ρ◦τ : k◦ →
C∧

0 is of topologically finite type. Then according to [14], Satz 5.1 the ring
C∧

0 is σ(k◦◦)-noetherian. By Lemma 2.6(i) the topological ring C satifies
(N). Then we can conclude from Lemma 2.7(ii) that B0 is (η ◦ ρ ◦ τ)(k◦◦)-
noetherian. �
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Remark 2.9. — Let k be a non-archimedean field (not necessarily com-
plete) and let n ∈ N. Then

(i) The topological ring k[X1, . . . , Xn] satisfies (N).
(ii) The ring k◦[X1, . . . , Xn] is k◦◦-noetherian

The first assertion follows from Lemma 2.4(iii). Since the completion
(k◦[X1, . . . , Xn])∧ = (k∧)◦〈X1, . . . , Xn〉 is (k∧)◦◦- noetherian ([14], Satz
5.1), the second assertion follows from the first one and Lemma 2.7(ii).
I learned from S. Bosch that a better result than (i) holds. Namely, if V is
a valuation ring then every (V − {0})-saturated ideal I of V [X1, . . . , Xn]
is finitely generated. Indeed, the ring V [X1, . . . , Xn]/I is flat and of finite
type over the integral domain V and hence of finite presentation over V by
[19], 3.4.7.

3. Some analytic adic spaces

We fix an affinoid analytic adic space X and an element f of OX(X). Put
A := OX(X) and A+ := O+

X(X).

According to Section 2 we have the Tate ring Af . The integral closure
(A+)c of A+ in Af is a ring of integral elements of Af . By Proposition
2.5 the Tate ring Af is strictly noetherian. Hence we have an adic space
associated with the affinoid ring (Af , (A+)c). We denote this space by Xf ,

Xf := Spa (Af , (A+)c).

If Y is a further affinoid adic space and h : Y → X is a morphism of
adic spaces then the continuous morphism of affinoid rings h∗ : (A,A+)→
(B,B+) with B := OY (Y ) induces a continuous morphism of affinoid rings
(Af , (A+)c)→ (Bh∗(f), (B+)c) and so we get a morphism of adic spaces

hf : Y h∗(f) → Xf .

(Remark. If h is of finite type, this does not imply in general that hf is of
finite type. This is the reason why in statement (II) of the introduction the
morphism h is required to be locally algebraic.)

The aim of this section is to compare X and Xf . Similar considerations
are contained in [21], 4.2.

Put Xf := X − V (f). The A-algebra homomorphism Af → OX(Xf ) is
continuous and maps (A+)c to O+

X(Xf ). (Indeed, if A→ B is a continuous
ring homomorphism from A to a topological ring B which maps f to a
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unit then the A-algebra homomorphism σ : Af → B is continuous, since
the mapping A→ Af is open. Furthermore, if B+ is a subring of B which
is integrally closed in B and contains the image of A+ in B then trivially
σ((A+)c) ⊆ B+). So we get by [8], 2.1(ii) a morphism of adic spaces

πX,f : Xf → Xf .

Proposition 3.1. — πX,f is an open embedding of adic spaces.

Proof. Let A0 be a ring of definition of A and let s be a topologically
nilpotent unit of A with s ∈ A0. We may assume that f ∈ sA0. Then A0 is
a ring of definition of Af and f is a topologically nilpotent unit of Af (more
precisely, the images of A0 and f in Af ). We consider rational subsets of
X and Xf ,

Un := RX(
sn

f
) = {x ∈ X | |sn(x)| 6 |f(x)|}

U ′
n := RXf (

sn

f
) = {x ∈ Xf | |sn(x)| 6 |f(x)|}.

Then Un⊆Un+1, Xf =
⋃

n∈N Un, U
′
n⊆U ′

n+1 and π−1
X,f (U ′

n) = Un. The mor-
phism of affinoid rings π∗X,f : (OXf (U ′

n),O+
Xf (U ′

n)) → (OX(Un),O+
X(Un))

is an isomorphism, since both affinoid rings are completions of the affinoid
ring (Af , A

+[ sn

f ]c) where A+[ sn

f ]c is the integral closure of A+[ sn

f ] in Af

and Af is equipped with the topology such that A0[ sn

f ] is a ring of defini-
tion with s ·A0[ sn

f ] (or, equivalently, f ·A0[ sn

f ]) an ideal of definition ([8],
Proposition 1.3). �

We put, for s a topologically nilpotent unit of A,

(Xf )ε := {x ∈ Xf | |s(x)| < 1}
(Xf )ι := {x ∈ Xf | |s(x)| > 1} = {x ∈ Xf | |s(x)| = 1}.

These subsets of Xf are independent of the choice of s. The set Xf
ι is

rational in Xf and the set Xf
ε is closed and constructible in Xf . Let (Xf

ε )◦

denote the interior of Xf
ε in Xf .

Proposition 3.2. — (i) (Xf
ε )◦ = im(πX,f : Xf → Xf )

(ii) Let B be the completion of A in the fA-adic topology and let B′

be the image of B in Bf . Then

OXf (Xf
ι ) = Bf , equipped with the topology such that B′ is a ring

of definition and fB′ is an ideal of definition

O+
Xf (Xf

ι ) = integral closure of B in Bf .
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Hence Xf
ι is the analytic adic space associated with the formal

completion of the scheme SpecA along its closed subset V (f).

Proof. i) We use the notations of the proof of Proposition 3.1 (in particular,
f is a topologically nilpotent unit of Af ). By the proof of Proposition 3.1
we have

im(πX,f ) =
⋃
n∈N
{x ∈ Xf | |sn(x)| 6 |f(x)|}

which is the interior of {x ∈ Xf | |s(x)| < 1} in Xf ([11], Lemma 1.3.ii).
ii) is obvious. �

For an analytic adic space Y and an element t of OY (Y ) and finite subsets
D,E of OY (Y ) with (D ∪ E ∪ {t}) · OY (Y ) = OY (Y ) we put

SY (
D|E
t

) := {y ∈ Y | |d(y)| 6 |t(y)| for every d ∈ D

and |e(y)| < |t(y)| for every e ∈ E}.

Then SY (D|E
t ) is a locally closed constructible subset of Y . If E = ∅ (resp.

D = ∅ ) then SY (D|E
t ) is open (resp. closed) ([9], 3.1).

Proposition 3.3. — There is a mapping

σX,f : Xf
ε → X

such that
(i) For any element t of A and finite subsets D,E of A with

(D ∪ E ∪ {t}) ·A = A,

σ−1
X,f (SX(

D|E
t

)) = SXf (
D|E
t

) ∩Xf
ε .

(ii) The mapping σX,f is spectral, i.e., σX,f is continuous and for any
quasi-compact open subset U of X the preimage σ−1

X,f (U) is quasi-
compact.

(iii) The composite map σX,f ◦ πX,f : Xf → X is the inclusion of Xf

into X.
(iv) σX,f is functorial in X, i.e., for any morphism r : S → T of affinoid

analytic adic spaces and for any g ∈ OT (T ) the diagram

(Sr∗(g))ε

σS,r∗(g) //

rg

��

S

r

��
(T g)ε σT,g

// T

commutes.

TOME 57 (2007), FASCICULE 3



986 Roland HUBER

The mapping σX,f is uniquely determined by (i). If A has a noetherian ring
of definition that is contained in A+ then σX,f is uniquely determined by
(ii) and (iii). The family (σX,f )X,f of all σX,f is uniquely determined by
(ii),(iii),(iv).

Proof. Let s be a topologically nilpotent unit of A. We consider the valua-
tion spectrum SpvA of A and the subset

W := {v ∈ SpvA | v(a) 6 1 for every a ∈ A+ and v(s) < 1}.

According to [7] we have

X = Spa (A,A+) = {v ∈W | Γv = cΓv}

and we have the retraction

r : W → X, v 7→ v|cΓv.

The ring homomorphism ρ : A→ Af induces the mapping

p := Spv(ρ) : SpvAf → SpvA.

Since Xf
ε ⊆ p−1(W ), we get the mapping

σX,f := r ◦ p : Xf
ε → X.

For any element t of A and finite subsets D,E of A with
(D ∪ E ∪ {t}) ·A = A, the subset of SpvA

{v ∈ SpvA | v(d) 6 v(t) for every d ∈ D
and v(e) < v(t) for every e ∈ E}

is closed under primary specializations and primary generalizations in SpvA.
Hence

σ−1
X,f (SX(

D|E
t

)) = SXf (
D|E
t

) ∩Xf
ε ,

i.e., (i) holds. (ii) follows from (i). (iii) and (iv) are easily checked.
For any x ∈ X, the set {x} is the intersection of all SX(D|E

t ) which contain
x. Hence σX,f is uniquely determined by (i).
The constructible topology of a spectral space is hausdorff. So the con-
structible topology of X is hausdorff. If A has a noetherian ring of defini-
tion that is contained in A+ (and so A+ = A◦, [13], 2.4.16) then the set of
all maximal points of Xf is dense in the constructible topology of Xf ([7],
Lemma 3.4), in particular (Xf

ε )◦ is dense in the constructible topology of
Xf

ε . By Proposition 3.2(i) we have (Xf
ε )◦ = im(πX,f ). Therefore σX,f is

uniquely determined by (ii) and (iii) if A has a noetherian ring of definition
that is contained in A+.
Let S be as in (iv) and let h be an element of OS(S). Let (ri : S → Ti)i∈I
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be the family of all morphisms from S to an affinoid analytic adic space Ti

such that OTi
(Ti) has a noetherian ring of definition contained in O+

Ti
(Ti)

and there is some ti ∈ OTi
(Ti) with h = r∗i (ti). Any x ∈ S is uniquely

determined by the family (ri(x))i∈I (i.e., if x, y are elements of S with
ri(x) = ri(y) for all i ∈ I then x = y). Hence the family of all σX,f is
uniquely determined by (ii),(iii),(iv). �

Lemma 3.4. — Put U := {x ∈ SpecA | f(x) 6= 0} and V := {x ∈ X |
f(x) = 0}.

(i) The mapping σ = σX,f : Xf
ε → X is generalizing, specializing and

closed.
(ii) If i : Y ↪→ X is the closed adic subspace of X corresponding to the

scheme-theoretic closure of U in SpecA then if : Y i∗(f) → Xf is
an isomorphism.

(iii) σ−1(V ) = Xf
ε − (Xf

ε )◦. If U is dense in SpecA then σ(Xf
ε −

(Xf
ε )◦) = V (and hence σ : Xf

ε → X is surjective).

Proof. We use the notations of the proofs of Proposition 3.1 and Proposi-
tion 3.3.
i) Let x be an element of Xf

ε and let v (resp. w) be a specialization (resp.
generalization) of σ(x). We consider σ(x), v, w as elements of SpvA. Then
v (resp. w) is a secondary specialization (resp. secondary generalization) of
σ(x) in SpvA, and p(x) ∈ SpvA is a primary generalization of σ(x). Hence
there exist v′, w′ ∈ SpvA such that v′ (resp. w′) is a primary generalization
of v (resp. w) and a secondary specialization (resp. secondary generaliza-
tion) of p(x) ([12], Lemma 1.2.5.ii,iv). Let v′′ and w′′ be the elements of
SpvAf with p(v′′) = v′ and p(w′′) = w′. Then v′′, w′′ ∈ Xf

ε and v′′ (resp.
w′′) is a specialization (resp. generalization) of x in Xf

ε and σ(v′′) = v

and σ(w′′) = w. This shows that σ is specializing and generalizing. As σ is
spectral (Proposition 3.3(ii)), we obtain that σ is closed.
ii) is obvious
iii) If x ∈ Xf

ε − (Xf
ε )◦ then |f(x)| < |s(x)|n for every n ∈ N (by the proof

of Proposition 3.2) and hence |f(σ(x))| < |s(σ(x))|n for every n ∈ N which
implies f(σ(x)) = 0, i.e. σ(x) ∈ V .
Assume that U is dense in SpecA. Let x be an element of V . We show
that there exists some y ∈ Xf

ε with x = σ(y). Since U is dense in SpecA,
there exists a prime ideal p of A such that p ⊆ supp(x) and f 6∈ p. By [12],
Lemma 1.2.6 there exists a primary generalization z of x in SpvA with
p = supp(z). Then for z(f) ∈ Γz ∪ {0} we have z(f) 6= 0 and z(f) < cΓz.
Let H be the smallest convex subgroup of Γz which contains z(f). Then
cΓz ⊆ H and so we have the primary specialization y := z|H ∈ SpvA.
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Since y(f) 6= 0, we can consider y as an element of SpvAf . It is easily seen
that y ∈ Xf

ε and x = σ(y). �

Example 3.5. — Assume that A is a Dedekind ring and f 6= 0. We want
to describe the topological space Xf .
For this we use the following natural inclusions of topological spaces

Xf ⊆ SpvAf ⊆ SpvA ⊇ X.

So we consider Xf and X as topological subspaces of SpvA. The elements
of SpvA are written as pairs (p, B) where p is a prime ideal of A and B is
a valuation ring of the quotient field qf(A/p). Put

W := {x ∈ SpecA | f(x) = 0} = {m ∈ MaxA | f ∈ m}
V := {x ∈ X | f(x) = 0} = {(m, B) ∈ X | m ∈W}.

If m is a maximal ideal of A and B is a valuation ring of A/m then
(m, B) ∈ SpvA is an element of X if and only if the image of A+ in A/m

is contained in B and, for some (and then for any) topologically nilpotent
unit s of A, the image of s in A/m is contained in the maximal ideal of B.
We divide Xf into the three subsets (Xf

ε )◦, Xf
ι , R := Xf

ε − (Xf
ε )◦ =

(Xf
ι )− −Xf

ι where (Xf
ι )− denotes the closure of Xf

ι in Xf .
a) By Proposition 3.1 and 3.2(i) the adic spaces (Xf

ε )◦ and Xf are isomor-
phic. Identifying Xf and X as topological subspaces of SpvA, we get the
equality

(Xf
ε )◦ = X − V.

b) By Proposition 3.2(ii) the mapping

ψ : W → Xf
ι , m 7→ ({0}, Am)

is a homeomorphism. So Xf
ι is a finite discrete topological space. For every

m ∈ W , the subset {ψ(m)} of Xf is rational and OXf ({ψ(m)}) = qf(Âm)
and O+

Xf ({ψ(m)}) = Âm where Âm denotes the completion of A in the
m-adic topology.
c) For a maximal ideal m of A and a valuation ring B of A/m, let P (m, B)
denote the preimage of B under the mapping Am → A/m. Then P (m, B)
is a valuation ring of qf(A). The mapping

V → R, (m, B) 7→ ({0}, P (m, B))

is a homeomorphism.
d) The restriction of the mapping σX,f : Xf

ε → X to R is a homeomorphism
from R onto V , namely it is the inverse mapping of the bĳection in (c).
Then σX,f : Xf

ε → X is bĳective. As σX,f is closed, we obtain that σX,f :
Xf

ε → X is a homeomorphism.

ANNALES DE L’INSTITUT FOURIER



A FINITENESS RESULT FOR RIGID ANALYTIC VARIETIES 989

Remark 3.6. — Let B be a Tate ring (not necessarily complete), let f be
an element of B and let B+ be a ring of integral elements of B. According
to Section 2 we have the Tate ring Bf . The integral closure (B+)c of B+

in Bf is a ring of integral elements of Bf . Assume that the completions
B∧ and (Bf )∧ of B and Bf are strictly noetherian. Then we have the adic
spaces

Y := Spa (B,B+)

Z := Spa (Bf , (B+)c).

(The natural morphism (Bf )∧ → (B∧)f is not an isomorphism in general
(see Remark 2.2(i)), and hence the natural morphism of adic spaces Y f →
Z is not an isomorphism in general.)
Let s be a topologically nilpotent unit of B and put

Zε := {z ∈ Z | |s(z)| < 1}
Zι := {z ∈ Z | |s(z)| > 1} = {z ∈ Z | |s(z)| = 1}.

The sets Zε and Zι are independent of s. As above (i.e., as in the case that
B is complete) one can define a morphism of adic spaces

π : Y − V (f)→ Z

and a mapping
σ : Zε → Y

for which (3.1)-(3.5) hold analogously.

4. Some constructible sheaves

Let A be a noetherian ring.

Definition 4.1. — For an analytic pseudo-adic space (X,L) with X affi-
noid, Z (X,L) denotes the class of all A-modules F on (X,L)ét which
satisfy the following equivalent conditions (Y := Spec OX(X))

(i) For every y ∈ Y there exist a morphism of schemes f : S → Y

and a constructible A-module G on Sét such that f is of finite
type, y ∈ f(S) and the restrictions of F and G to the étale site of
(X,L)×Y S are isomorphic.

(ii) For every y ∈ Y there exists a morphism of schemes f : S → Y

such that f is of finite type, y ∈ f(S) and the restriction of F to
the étale site of (X,L)×Y S is a constant A-module of finite type.
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(iii) For every y ∈ Y there exist a locally closed subscheme R of Y
and a surjective finite étale morphism of schemes S → R such that
y ∈ R and the restriction of F to the étale site of (X,L)×Y S is a
constant A-module of finite type.

(iv) There exist a decreasing sequence of closed adic subspaces of X

X = X0 ⊇ X1 ⊇ . . . ⊇ Xn = ∅

and, for every i ∈ {0, . . . , n− 1}, a finite morphism of adic spaces
fi : Ti → Xi such that f−1

i (Xi −Xi+1)→ Xi −Xi+1 is surjective
and étale and the restriction of F to the étale site of f−1

i (L∩(Xi−
Xi+1)) is a constant A-module of finite type.

(The equivalence of (ii) and (iii) follows from [5], 17.16.4).

Definition 4.2. — For an analytic pseudo-adic space (X,L), let C (X,L)
denote the class of all A-modules F on (X,L)ét such that, for every x ∈ L,
there exist a locally closed locally constructible subset P of L with x ∈ P
and a surjective étale morphism of pseudo-adic spaces (Y,M) → (X,P )
with Y affinoid such that the restriction of F to the étale site of (Y,M) is
an element of Z (Y,M).

If (X,L) is a pseudo-adic space then an A-module F on (X,L)ét is called
constructible if, for every x ∈ L, there exists a locally closed locally con-
structible subset P of L such that x ∈ P and the restriction of F to the
étale site of (X,P ) is a locally constant A-module finite type ([9], 2.7)
Every constructible A-module on (X,L)ét is an element of C (X,L).

Example 4.3. — Let k be a non-archimedean field, let T be a 1-dimensional
normal affinoid adic space of finite type over Spa(k, k◦) and let f be an
element of OT (T ). According to Section 3 we have the analytic adic space
X := T f (cf. Example 3.5). Let L be a convex locally pro-constructible
subset of X. An A-module F on (X,L)ét is an element of C (X,L) if and
only if the following two conditions are satisfied

(i) For every x ∈ L such that the support supp(x) := {s ∈ OX(X) |
s(x) = 0} ∈ Spec OX(X) is a generic point of Spec OX(X) there
exists a locally closed constructible subset P of L such that x ∈ P
and F |P is a locally constant A-module of finite type on Pét.

(ii) For every x ∈ L such that the support supp(x) ∈ Spec OX(X) is
not a generic point of Spec OX(X), the restriction of F to {x}ét is
a locally constant A-module of finite type and there exist an open
neighbourhood Y of x in X and a finite surjective morphism of
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adic spaces g : Z → Y such that g is étale over Y − {x} and the
restriction of F to g−1(Y ∩ L − {x})ét is a constant A-module of
finite type.

In order to check property (ii) of Example 4.3 we will use in the proof of
Theorem 5.2 the following criterion. This criterion is the reason why we
introduced in Section 3 the adic spaces Xf .

Lemma 4.4. — Let X be an affinoid analytic adic space such that B :=
OX(X) is normal, let L be a convex pro-constructible subset of X and let
F be an A-module on (X,L)ét. Let f be a non zero divisor of B and let
x be an element of L such that the support supp(x) ∈ SpecB is a generic
point of {p ∈ SpecB | f ∈ p}.
According to Section 3 we have the mapping σ : Xf

ε → X and we consider
X − V (f) as an open subspace both of X and Xf . Let u be the ele-
ment of Xf

ε with σ(u) = x. Then supp(u) ∈ SpecBf is a generic point of
SpecBf .
Assume that there exist a locally closed constructible subset Q of σ−1(L)
and a locally constant A-module G of finite type on Qét = (Xf , Q)ét such
that u ∈ Q and the restrictions of F and G to the étale site of Q∩(X−V (f))
are isomophic.
Then there exist a locally closed constructible subset P of L with x ∈ P
and an étale morphism h : Y → X with P ⊆ im(h) and a surjective finite
morphism g : Z → Y which is étale over Y −V (f) such that the restriction
of F to the étale site of (g◦h)−1(P −V (f)) is a constant A-module of finite
type. If x is a maximal point of X (i.e., the valuation corresponding to x
has rank 1) then one can choose h : Y → X as an open embedding and
P = h(Y ) ∩ L.

Proof. We may assume that there exist an affinoid adic space V and an
étale morphism r : V → Xf such that Q ⊆ r(V ) and the restriction of
G to r−1(Q) is a constant A-module of finite type. Since there exists an
affine scheme S étale over T := SpecBf such that V is an open subspace
of S×T X

f ([9], 1.7.3), there exists a finite morphism s : W → X such that
V is an open subspace of W s∗(f). We may assume that OW (W ) is normal.
Let v be an element of V with r(v) = u. Since u ∈ Xf

ε , we have v ∈W s∗(f)
ε .

The mapping σW : W s∗(f)
ε →W is closed (Lemma 3.4(i)). Furthermore, for

z := σW (v) ∈W we have σ−1
W (z) = {v}. Hence there exists an open subset

Z of W such that z ∈ Z and σ−1
W (Z) ⊆ V . The mapping s : W → X is open

(even universally open, [13], 3.4.7 and [12], 2.1.6). Hence Y := s(Z) is an
open neighbourhood of s(z) = x in X. Let g : Z → Y be the restriction of s
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and let P be a locally closed constructible subset of L such that x ∈ P ⊆ Y
and σ−1(P ) ⊆ Q. Since G|r−1(Q) is a constant A-module of finite type and
sinceG|Q∩(X−V (f)) ∼= F |Q∩(X−V (f)), we obtain that F |g−1(P−V (f))
is a constant A-module of finite type. If x is a maximal point of X then
there exists an open neighbourhood U of x in Y such that g−1(U)→ U is
finite. For an arbitrary x ∈ X, replacing (Y, x) by an étale neighbourhood
of (Y, x) we may assume that g : Z → Y is finite ([11], 3.2). �

Proposition 4.5. — Let f : X → Y be a finite morphism between affi-
noid analytic adic spaces. Let M be a convex locally pro-constructible sub-
set of Y and put L := f−1(M). Let g : (X,L)→ (Y,M) be the morphism
of pseudo-adic spaces induced by f .

(i) If F ∈ Z (X,L) then g∗F ∈ Z (Y,M).
(ii) Assume that M ⊆ f(X). If F is an A-module on (Y,M)ét with

g∗F ∈ Z (X,L) then F ∈ Z (Y,M).

Proof. (i) can be proved as the corresponding statement for constructible
sheaves on schemes, cf. [4], Lemma 4.11.
(ii) follows immediately from Definition 4.1. �

Proposition 4.6. — Let f : X → Y be a separated quasi-finite morphism
of finite type between analytic adic spaces. Let M be a convex locally pro-
constructible subset of Y and let L be a locally closed constructible subset
of f−1(M). Let g : (X,L)→ (Y,M) be the morphism of pseudo-adic spaces
induced by f .

(i) If F ∈ C (X,L) then g!F ∈ C (Y,M) and Rng!F = 0 for n > 0.
(ii) Assume that f(L) = M . If F is an A-module on (Y,M)ét with

g∗F ∈ C (X,L) then F ∈ C (Y,M).

Proof. i) By [9], 5.5.6, Rng!F = 0 for n > 0. We fix some y ∈M and show
that there exist a locally closed locally constructible subset P of M with
y ∈ P and a surjective étale morphism of pseude-adic spaces (Y ′, P ′) →
(Y, P ) with Y ′ affinoid such that the restriction of g!F to (Y ′, P ′) is an
element of Z (Y ′, P ′).
We may assume that Y is affinoid and M is convex and pro-constructible
in Y . First we show

(∗) We may assume that L = f−1(M) and that there exists an étale
morphism h : Z → X such that Z is affinoid and L ⊆ h(Z) and
F | (Z, h−1(L)) ∈ Z (Z, h−1(L)).

Proof of (∗). The topological space f−1(y) is finite and discrete. For every
x ∈ f−1(y) ∩ L we fix a quasi-compact open subset Ux of X and a locally
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closed constructible subset Lx of Ux ∩ L and a surjective étale morphism
hx : Zx → Ux with Zx affinoid such that x ∈ Lx and f−1(y)∩Ux = {x} and
F | (Zx, h

−1
x (Lx)) ∈ Z (Zx, h

−1
x (Lx)). LetQ be a locally closed constructible

subset of M such that y ∈ Q and f−1(Q) ∩ L ⊆
⋃

x∈f−1(y)∩L Ux and
f−1(Q)∩Ux ⊆ Lx (for all x ∈ f−1(y)∩L) and f−1(Q)∩Ux ∩Ux′ = ∅ (for
all x, x′ ∈ f−1(y) ∩ L with x 6= x′). Then we may replace

· M by Q
· X by X ′ :=

∐
x∈f−1(y)∩L Ux

· f by the morphism f ′ : X ′ → Y with f ′|Ux = f |Ux

· L by L′ := f ′−1(Q)
· g by the morphism g′ : (X ′, L′)→ (Y,Q) induced by f ′.

Put Z :=
∐

x∈f−1(y)∩L Zx and let h : Z → X ′ be the morphism with h|Zx =
hx. Then h is étale and L′ ⊆ h(Z) and Z is affinoid and F | (Z, h−1(L′)) ∈
Z (Z, h−1(L′)). Thus (∗) is shown.
Replacing (Y, y) by an étale neighbourhood of (Y, y) and replacing M by a
locally closed constructible subset of M containing y, we may assume that
the quasi-finite morphisms f : X → Y and f ◦ h : Z → Y are finite ([11],
3.2). Then h is finite. Then Proposition 4.5 gives that F ∈ Z (X,L) and
g!F ∈ Z (Y,M).
ii) Let y be an element of M . There exist a separated quasi-finite morphism
of finite type p : Z → Y and a locally closed locally constructible subset Q
of M with y ∈ Q such that Q ⊆ p(Z) and F | (Z, p−1(Q)) ∈ Z (Z, p−1(Q)).
(Indeed, for the A-module g∗F ∈ C (X,L) construct X ′, Z, f ′, h as in the
proof of (∗) above and put p := f ′◦h : Z → Y ). Replacing (Y, y) by an étale
neighbourhood of (Y, y) and replacing Q by a locally closed constructible
subset of Q containing y, we may assume that p : Z → Y is finite ([11],
3.2). Then F |(Y,Q) ∈ Z (Y,Q) by Proposition 4.5. �

Proposition 4.7. — Let k be a non-archimedean field, let T be an affinoid
adic space of finite type over Spa(k, k◦) with dimT 6 1, let f ∈ OT (T ) and
let L be a locally closed constructible subset of X := T f .

(i) If F,G ∈ C (X,L) and h : F → G is a morphism of A-modules
then ker(h),im(h),coker(h) ∈ C (X,L).

(ii) If 0 → F → G → H → 0 is an exact sequence of A-modules on
(X,L)ét and F,H ∈ C (X,L) then G ∈ C (X,L).

Proof. By Proposition 4.6(ii) we may assume that T is normal. Then we
can use Example 3.5 and 4.3, and the assertion is easily seen. �
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In [11] we defined, for an adic space X of finite type over Spa(k, k◦) with
k a non-archimedean field of characteristic zero and for a finite ring A,
quasi-constructible A-modules on Xét. Obviously, every element of C (X)
is quasi-constructible. Riemann’s existence theorem ([16], [18]) implies that
if dim(X) = 1 then every quasi-constructible A-module onXét is an element
of C (X).

5. Results

We fix a non-archimedean field k and a noetherian torsion ring A with
torsion prime to char(k◦/k◦◦).

The following two theorems are the main results of this paper.

Theorem 5.1. — Let (Y,M) be a quasi-compact pseudo-adic space such
that Y = T f for some affinoid adic space T of finite type over Spa(k, k◦)
with dimT 6 1 and for some f ∈ OT (T ). Let g : (X,L) → (Y,M) be
a morphism of pseudo-adic spaces such that the morphism of adic spaces
g : X → Y is of finite type and separated and L is a locally closed con-
structible subset of g−1(M). Let F ∈ C (X,L).
Then, for every m ∈ N0, the A-module Rmg!F is generically constructible
on (Y,M)ét, i.e., there exists an open subset U of M such that the re-
striction Rmg!F |U is constructible on U and every x ∈ M whose support
supp(x) = {c ∈ OY (Y ) | c(x) = 0} ∈ Spec OY (Y ) is a generic point of
Spec OY (Y ) is contained in U .

Theorem 5.1 will be proved in Section 7.

Theorem 5.2. — Let (Y,M) be as in Theorem 5.1. Let S → Spec OY (Y )
be a separated scheme of finite type over Spec OY (Y ), letX := S×Spec OY (Y )

Y be the adic space over Y associated with the scheme S over Spec OY (Y ),
and let g : X → Y be the projection. Let L be a quasi-compact locally
closed constructible subset of g−1(M) and let g : (X,L) → (Y,M) be the
morphism of pseodo-adic spaces induced by g. Let G be a constructible
A-module on Sét and let F be the pullback of G on (X,L)ét under the
natural morphism of sites (X,L)ét → Sét.
Then, for every m ∈ N0, Rmg!F ∈ C (Y,M).

For the proof of Theorem 5.2 we may assume that Y is normal (Proposition
4.6(ii)). Furthermore we may assume that M is constructible in Y . (Even
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more, we may assume that M = Y . Indeed, let L′ be a quasi-compact
locally closed constructible subset of X with L′ ∩ g−1(M) = L and con-
sider (X,L′)→ (Y, Y ) instead of (X,L)→ (Y,M)). Let y ∈M . If supp(y)
is a generic point of Spec OY (Y ) then by Theorem 5.1 there exists a lo-
cally closed constructible subset P of M such that y ∈ P and (Rmg!F )|P
is a locally constant A-module of finite type. If supp(y) is not a generic
point of Spec OY (Y ) then (Rmg!F )|{y} is a locally constant A-module of
finite type (apply Theorem 5.1 to the morphism X×Y Spaκ(y)→ Spaκ(y)
with κ(y) := (k(y), k(y)+)). Then Theorem 5.2 follows from the following
lemma.

Lemma 5.3. — In the situation of Theorem 5.2 assume that Y is normal
and M is constructible in Y . Let y ∈M such that supp(y) is not a generic
point of Spec OY (Y ). Then there exist an open neighbourhood W of y in
Y and a surjective finite morphism q : Z →W which is étale over W −{y}
such that, for every m ∈ N0, the restriction of Rmg!F to q−1(W ∩M−{y})
is a constant A-module of finite type.

Proof. Put (B,B+) := (OY (Y ),O+
Y (Y )). By Proposition 4.7 we my assume

that S = SpecE is affine. Let ϕ : B → E be the ring homomorphism
corresponding to the morphism of schemes S → Spec OY (Y ). We can equip
E with the structure of an affinoid ring, (E,E+), such that ϕ : (B,B+)→
(E,E+) is a continuous morphism of affinoid rings which is of algebraically
finite type (i.e., there exists a finite subset L of E such that E+ is the
integral closure of B+[L] in E and, for every ring of definition B0 of B,
B0[L] is a ring of definition of E) and such that Spa(E,E+) is an open
subspace of X containing L.
Let r be a non zero divisor ofB contained in supp(y). According to Section 2
and 3 we have the affinoid rings B̃ := (Br, (B+)c) and Ẽ := (Eϕ(r), (E+)c)
where (B+)c and (E+)c are the integral closures of B+ and E+ in Br

and Eϕ(r). The morphism of affinoid rings ϕ̃ : B̃ → Ẽ induced by ϕ is
of algebraically finite type and hence the completion ϕ̃∧ : B̃ → Ẽ∧ is
of topologically finite type. Since by Proposition 2.5 the Tate ring Br is
stricty noetherian, we get that the Tate ring (Eϕ(r))∧ is strictly noetherian,
and so we have the adic spaces Ỹ := SpaB̃ = Y r and X̃ := SpaẼ. Let
σ2 : Ỹε → Y and σ1 : X̃ε → Spa(E,E+) be the mappings from Proposition
3.3 and Remark 3.6. Put

g̃ := Spa(ϕ̃) : X̃ → Ỹ

L̃ := σ−1
1 (L) ⊆ X̃ε ⊆ X̃

M̃ := σ−1
2 (M) ⊆ Ỹε ⊆ Ỹ .
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Then M̃ is a locally closed constructible subset of Ỹ and L̃ is a locally
closed constructible subset of g̃−1(M̃). Let

g̃ : (X̃, L̃)→ (Ỹ , M̃)

be the morphism of pseudo-adic spaces induced by g̃. Let F̃ be the pullback
of G under the natural morphism of sites (X̃, L̃)ét → (SpecE)ét = Sét

(where G is as in Theorem 5.2). According to Proposition 3.1 and Remark
3.6 we consider Y − V (r) and Spa(E,E+)− V (ϕ(r)) as open subspaces of
Ỹ and X̃. Then g̃−1(Y −V (r)) = Spa(E,E+)−V (ϕ(r)), M ∩(Y −V (r)) =
M̃ ∩(Y −V (r)), L∩(Spa(E,E+)−V (ϕ(r))) = L̃∩(Spa(E,E+)−V (ϕ(r)))
and F |L ∩ (Spa(E,E+) − V (ϕ(r))) = F̃ | L̃ ∩ (Spa(E,E+) − V (ϕ(r))).
Hence (Rmg!F ) |M ∩ (Y −V (r)) = (Rmg̃!F̃ ) | M̃ ∩ (Y −V (r)). By Theorem
5.1 the A-module Rmg̃!F̃ on (Ỹ , M̃)ét is generically constructible. Now the
assertion follows from Lemma 4.4. �

In the following we deduce some consequences from Theorem 5.1 and The-
orem 5.2. These consequences concern results of [11] and [10] which were
proved there for char(k) = 0 and |A| < ∞ and which can be proved now
without any restriction on char(k) and |A|.
For the rest of this section, k is assumed to be algebraically closed.

Theorem 5.1 with Y = Spa(k, k◦) says

Corollary 5.4. — Let X be a separated adic space of finite type over
Spa(k, k◦), let L be a locally closed constructible subset of X and let F ∈
C (X,L). Then, for every m ∈ N0, the A-module Hm

c ((X,L), F ) is of finite
type.

The next corollary is a consequence of Corollary 5.4 (cf. proof of [11], Prop.
2.12).

Corollary 5.5. — Let X be a formal scheme locally of finite type over
Spf k◦, let d(X ) be the analytic adic space associated with X , let λ :
d(X )ét → Xét be the natural morphism of sites and let F ∈ C (d(X )).
Then, for every m ∈ N0, the A-module Rmλ∗F on Xét is constructible.

Corollary 5.6. — Let X,L, F be as in Corollary 5.4 (in fact, it suffices
that X is quasi-separated instead of separated). Then, for every m ∈ N0,
the A-module Hm((X,L), F ) is of finite type.

Proof. For a constructible A-module G on the étale site of a scheme Y of fi-
nite type over a separably algebraically closed field, the A-module Hn(Y,G)
is of finite type ([3], Th.finitude 1.10). Hence if L = X then the assertion
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follows immediately from Corollary 5.5. The general case can obviously
be reduced to this case. Namely, let U be a quasi-compact open subset of
X such that L is closed in U and let i : L → U be the inclusion. Then
i∗F = i!F ∈ C (X,U) = C (U) and Hm((X,L), F ) = Hm((X,U), i∗F ) =
Hm(U, i∗F ). �

5.7. — Let X be a separated adic space of finite type over Spa(k, k◦)
and let L be a closed constructible subset of X. Then there exist finitely
many quasi-compact open subsets U1, . . . , Up of X and fij ∈ OX(Ui) (i =
1, . . . , p, j = 1, . . . , q(i)) and sij

k` ∈ OX(Ui ∩ Uk) (i, k = 1, . . . , p, j =
1, . . . , q(i), ` = 1, . . . , q(k)) such that

· X = U1 ∪ . . . ∪ Up

· L ∩ Ui = {x ∈ Ui | |fij(x)| < 1 for j = 1, . . . , q(i)} (i = 1, . . . , p)

· fij |Ui∩Uk =
q(k)∑̀
=1

sij
k` ·(fk`|Ui∩Uk) (i, k = 1, . . . , p, j = 1, . . . , q(i))

· |sij
k`(x)| 6 1 for all x ∈ Ui ∩ Uk (i, k = 1, . . . , p, j = 1, . . . , q(i),

` = 1, . . . , q(k)).
For every ε ∈ |k∗| and a ∈ k∗ with ε = |a|, let Lε be the subset of X such
that for every i ∈ {1, . . . , p}

Lε ∩ Ui = {x ∈ Ui | |fij(x)| 6 |a(x)| for j = 1, . . . , q(i)}.

Then Lε is a quasi-compact open subset of X, and Lε ⊆ Lε′ for ε 6 ε′, and
if L◦ denotes the interior of L in X then

L◦ =
⋃

ε∈|k∗|,
ε<1

Lε.

From Theorem 5.1 one can deduce (cf. [11], Theorem 2.9)

Corollary 5.8. — In the situation of (5.7), for every F ∈ C (X) there is
an ε0 ∈ |k∗|, ε0 < 1 such that, for every ε ∈ |k∗| with ε0 < ε < 1 and every
n ∈ N0, the natural mapping

Hn
c (Lε, F ) −→ Hn

c (L◦, F )

is bĳective.

5.9. — Let X be a separated scheme of finite type over Spec k and let
Xad := X ×Spec k Spa(k, k◦) be the associated adic space over Spa(k, k◦).
Let T be a closed subscheme of X. Then there exist finitely many open
subsets U1, . . . , Up of X and fij ∈ OX(Ui) (i = 1, . . . , p, j = 1, . . . , q(i))
and sij

k` ∈ OX(Ui ∩ Uk) (i, k = 1, . . . , p, j = 1, . . . , q(i), ` = 1, . . . , q(k))
and constructible open subsets W1, . . . ,Wp of Xad such that
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· Wi ⊆ Uad
i (i = 1, . . . , p)

· Xad = W1 ∪ . . . ∪Wp, X = U1 ∪ . . . ∪ Up

· T ∩ Ui = V (fi1, . . . , fiq(i)) (i = 1, . . . , p)

· fij |Ui∩Uk =
q(k)∑̀
=1

sij
k` ·(fk`|Ui∩Uk) (i, k = 1, . . . , p, j = 1, . . . , q(i))

· |sij
k`(x)| 6 1 for all x ∈Wi ∩Wk (i, k = 1, . . . , p, j = 1, . . . , q(i),

` = 1, . . . , q(k)).

For every ε ∈ |k∗| and a ∈ k∗ with ε = |a|, let Eε be the subset of Xad

such that for every i ∈ {1, . . . , p}

Eε ∩Wi = {x ∈Wi | |fij(x)| < |a(x)| for j = 1, . . . , q(i)}.

Then Eε is a closed constructible subset of Xad, and Eε ⊆ Eε′ for ε 6 ε′,
and

T ad =
⋂

ε∈|k∗|

Eε.

Let L be a quasi-compact locally closed constructible subset of Xad. Put

Z := T ad ∩ L , U := L− Z
Sε := Eε ∩ L , Uε := L− Sε.

From Theorem 5.2 (more precisely, from Lemma 5.3) one can deduce (cf.
[11], 2.4-2.7)

Corollary 5.10. — In the situation of (5.9) let F be a constructible A-
module on Xét and let F ad be the associated A-module on (Xad)ét. Then
there is an ε0 ∈ |k∗| such that, for every ε ∈ |k∗| with ε 6 ε0, the following
equivalent properties are satisfied

(i) For every n ∈ N0, Hn
c (Sε − Z,F ad) = 0.

(ii) For every n ∈ N0, Hn
c (Sε, F

ad) ∼−→ Hn
c (Z,F ad).

(iii) For every n ∈ N0, Hn
c (Uε, F

ad) ∼−→ Hn
c (U,F ad).

Corollary 5.4 and Corollary 5.10 easily imply (cf. [1], [10])

Corollary 5.11. — Let R be a complete discrete valuation ring with
char(R/mR) 6= char(k◦/k◦◦) and char(R/mR) > 0. In the situation of (5.9),
for every constructible R.-module (Fn)n∈N on Xét and every q ∈ N0 the
natural mapping

Hq
c (U, (F ad

n )n∈N) −→ lim←−
n

Hq
c (U,F ad

n )

is bĳective.
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Applying Corollary 5.11 to a compactification of a k-scheme, we get the
following comparison theorem (cf. [1], [10])

Corollary 5.12. — Let R be as in (5.11). For every separated scheme
X of finite type over k and every constructible R.-module (Fn)n∈N on Xét

and every q ∈ N0 there is a natural isomorphism

Hq
c (X, (Fn)n∈N) ∼−→ Hq

c (Xad, (F ad
n )n∈N).

6. GAGA

For the proof of Theorem 5.1 we will need the classical GAGA theorem
for some projective curves over affinoid analytic adic spaces Y . The aim
of this section is to explain a proof of this theorem. If O(Y ) has a noe-
therian ring of definition then the GAGA theorem for proper schemes over
Y is an immediate consequence of the GAGA theorem for formal comple-
tions of noetherian schemes in [5], III.5.1. But we can not restrict ourselves
to the case that O(Y ) has a noetherian ring of definition, since the non-
archimedean field k in Theorem 5.1 is not assumed to be discretely valued.
Our proof of the GAGA theorem follows ideas of [14], [15],[20].

For the whole section we fix an affinoid analytic adic space Y . For a scheme
S locally of finite type over Spec O(Y ), let Sad := S ×Spec O(Y ) Y be the
adic space over Y associated with the scheme S over Spec O(Y ) and let
p : Sad → S be the projection. For an OS-module F , the OSad-module p∗F
is denoted by F ad.

Lemma 6.1. — The morphism of locally ringed spaces p : Sad → S is flat.

Proof. We may assume that S = An
Spec O(Y )

. In the proof of [9], 1.7.6 is
shown that the ring homomorphism O(Y )[T1, . . . , Tn] ⊆ O(Y )〈T1, . . . , Tn〉
is flat. Hence there is a covering (Ui)i∈I of Sad by affinoid open subspaces
Ui such that p∗ : O(S) → O(Ui) is flat for all i ∈ I. For affinoid analytic
adic spaces U, V where V is an open subspace of U , the ring homomorphism
O(U)→ O(V ) is flat ([13], 3.3.8 or (II.1.iv) in the proof of [8], 2.5). Hence
p : Sad → S is flat. �

Theorem 6.2. — Let S be a projective Spec O(Y )-scheme.
Then hold

(IS) For every coherent OS-module F and every q ∈ N0 the mapping
Hq(S, F )→ Hq(Sad, F ad) is bĳective.
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(IIS) For all coherent OS-modules F,G the mapping HomOS
(F,G) →

HomO
Sad (F ad, Gad) is bĳective.

If for every coherent OSad-module F the O(Y )-moduleH1(Sad, F ) is finitely
generated then holds

(IIIS) For every coherent OSad-module F there exists a coherent OS-
module G such that F and Gad are isomorphic.

Proof. Köpf proves in [15] the GAGA theorem for proper schemes over
affinoid rigid analytic spaces. The arguments of the proofs of 4.1, 4.7 and
4.11 in loc. cit. easily imply (IS) and (IIS).
We show by noetherian induction on the set of all closed subschemes of S
that (IIIS′) holds for every closed subscheme S′ of S. So we may assume
that (IIIS′) holds for every closed subscheme S′ of S with S′ 6= S.
Let F be a coherent OSad-module. In order to show that there exists a
coherent OS-module G with F ∼= Gad it suffices to show that there exists
a surjective morphism of OSad-modules Had → F with H a coherent OS-
module. There exists a largest sub-OSad-module F ′ of F such that there
exists a surjective morphism of OSad-modules Had → F ′ with H a coherent
OS-module. Let T be the support of F/F ′. We have to show that T = ∅.
For an invertible OS-module L and a section f ∈ Γ(S,L), let Z(f) ⊆ S

denote the zero scheme of f . We have

(1) Let L be a very ample invertible sheaf on S relative to Spec O(Y )
and let f ∈ Γ(S,L) such that fk ∈ Γ(S,Lk) is not the zero section
for every k ∈ N. Then there exists a morphism of OSad-modules
Had → F such that (Had)x → Fx is surjective for every x ∈
p−1(Z(f)) and H is of the shape

⊕m
i=1 L

−n with m,n ∈ N.

Indeed, by induction hypothesis (IIIZ(fk)) holds for every k ∈ N. Then one
can prove (1) with the arguments of [15], 5.9 and 5.10.
Fix a L and a f as in (1). The scheme S − Z(f) is affine and hence Sad −
p−1(Z(f)) is the union of an increasing sequence of affinoid open subspaces
of Sad. By (1) we have T ⊆ Sad − p−1(Z(f)). Hence we can equip T with
the structure of an adic space such that T is affinoid and a closed adic
subspace of Sad. Then T is finite over Y ([9], 1.4.7), and therefore there
exists a closed subscheme D of S−Z(f) such that D is finite over Spec O(Y )
and T = p−1(D).
Every closed point of S is contained in the image of p : Sad → S. Hence
from (1) we can deduce
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(2) For every very ample invertible sheaf L on S relative to Spec O(Y )
and every f ∈ Γ(S,L) such that fk ∈ Γ(S,Lk) is not the zero
section for all k ∈ N, we have D ∩ Z(f) = ∅.

If D is a proper subset of S then D = ∅ by (2). If D is not a proper subset
of S and hence S is finite over Spec O(Y ) then obviously (IIIS) holds. �

For an affinoid adic space X and a morphism X → Y of finite type, we call
a1, . . . , an ∈ O+(X) a system of generators of X over Y if the continuous
(O(Y ),O+(Y ))-morphism of affinoid rings (O(Y ),O+(Y ))〈T1, . . . , Tn〉 →
(O(X),O+(X)) with Ti 7→ ai is a quotient mapping. Let X̊Y be the set of
all x ∈ X for which the following equivalent conditions are satisfied ([13],
3.13)

· for every γ of the value group Γx of the valuation | |x associated
with x there exists a system of generators a1, . . . , an of X over Y
such that |ai(x)|x 6 γ for i = 1, . . . , n
· there exist a system of generators a1, . . . , an of X over Y and monic

polynomials p1, . . . , pn ∈ O+(Y )[T ] such that αi := |pi(ai)(x)|x is
cofinal in Γx (,i. e., for every γ ∈ Γx there exists some m ∈ N with
αm

i 6 γ) for i = 1, . . . , n
· for every a ∈ O+(X) there exists a monic polynomial p ∈ O+(Y )[T ]

such that |p(a)(x)|x is cofinal in Γx.

A morphism of adic spaces g : X → Y is called proper if g is of finite
type, separated and universally closed, and let us call g Kiehl-proper if the
following equivalent conditions are satisfied ([13], 3.13)

· g is proper and for every x ∈ X there exists an affinoid open subset
of X that contains the closure of {x} in X

· g is of finite type and separated and for every x ∈ X there exists
an affinoid open subset U of X such that x ∈ ŮY .

Theorem 6.3. — Let X be an adic space, let g : X → Y be a morphism
of adic spaces and let F be a coherent OX -module. If one of the following
conditions is satisfied

(a) g is proper and the Tate ring O(Y ) has a noetherian ring of defi-
nition

(b) g is Kiehl-proper and there exist a complete Tate ring D of topo-
logically finite type over a complete non-archimedean field and a
f ∈ D such that O(Y ) is of topologically finite type over Df

then for every q ∈ N0 hold
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(i) The O(Y )-module Hq(X,F ) is finitely generated.
(ii) Let Hq(X,F ) ⊗ OY denote the OY -module associated with the

OY (Y )-moduleHq(X,F ). Then the natural morphism of OY -modules

Hq(X,F )⊗ OY −→ Rqg∗F

is an isomorphism.

Proof. i) Let s be a topologically nilpotent unit of O(Y ), let U1, . . . , Un

be affinoid open subsets of X and, for i ∈ {1, . . . , n}, let ai1, . . . , aim(i) ∈
O+(Ui) be a system of generators of Ui over Y . Put Vi := {x ∈ Ui | |aij(x)| 6
|s(x)| for j = 1, . . . ,m(i)}. Assume that X = V1∪. . .∪Vn. Let C = C(V, F )
be the alternating Čech complex to F and the covering V := (Vi)i∈{1,...,n}.
The arguments of [14], §1, §2 give

(α) Let q ∈ N0 such that Cq = Zq(C) (e.g., q = n − 1). Then the
O(Y )-module Hq(X,F ) is finitely generated and Bq(C) is closed
in Cq.

(β) Assume that there exist a ring of definition B of O(Y ) and an
r ∈ B∩O(Y )∗ such that, for every finitely generated B-module M
and every sub-B-module N of M , there exists a finitely generated
sub-B-module N ′ of M with rN ⊆ N ′ ⊆ N .
Then, for every q ∈ N0, the O(Y )-module Hq(X,F ) is finitely
generated and Bq(C) is closed in Cq (the latter is equivalent to
the fact that the differential Cq−1 → Cq is strict).

By virtue of (β), Lemma 2.7(i) and Proposition 2.8 we obtain that (i) holds
if condition (b) is satisfied. If condition (a) is satisfied then (i) holds by [13],
3.12.13.
ii) Again by [13], 3.12.13 we know that (ii) holds if (a) is satisfied. So let
us assume that condition (b) is fulfilled. Let Ui, Vi, C(V, F ) be as in the
proof of (i). For an open subset U of Y put H(U) := Hq(g−1(U), F ), and
for open subsets U and V of Y with U ⊆ V let

cV,U : H(V )⊗O(V ) O(U) −→ H(U)

be the natural O(U)-linear mapping. We have to show that, for every ra-
tional subset U of Y , the mapping cY,U is bĳective. First we show

(1) cY,U is bĳective if there exists a power bounded element t of O(Y )
such that U = {y ∈ Y | 1 6 |t(y)|}.

Proof. As t is power bounded, there exists a ring of definition of O(Y )
containing t. Let C(V, F )t be the localization of the complex C(V, F ) with
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respect to the multiplicative system {1, t, t2, . . .}. There are natural topolo-
gies on the components Cq(V, F )t such that

C(V ∩ g−1(U), F ) = (C(V, F )t)∧

(see [8], §1,§2). From the proof of (i) we know that the differentials of
C(V, F ) are strict. Then the differentials of C(V, F )t are strict, too. Hence
if we endow Zq(C(V, F )t) with the subspace topology of Cq(V, F )t and
Hq(C(V, F )t) with the quotient topology T with respect to Zq(C(V, F )t)→
Hq(C(V, F )t) then we have

Hq((C(V, F )t)∧) = (Hq(C(V, F )t))∧

([2], III.2.12, Lemma 2 or [13], 3.14(B.3) ). For every finitely generated
O(Y )-module M , the natural O(Y )-module topology of M is the unique
complete O(Y )-module topology of M which has a countable fundamental
system of neighbourhoods of 0. Hence the quotient topology ofHq(C(V, F ))
with respect to Zq(C(V, F )) → Hq(C(V, F )) (where Zq(C(V, F )) carries
the subspace topology of Cq(V, F )) equals the natural O(Y )-module topol-
ogy of Hq(C(V, F )). This implies that T equals the natural module topol-
ogy of Hq(C(V, F )t) = Hq(C(V, F ))t over the topological ring O(Y )( 1

t )
(with O(Y )( 1

t ) defined as in [8], §1). Then

(Hq(C(V, F )t))∧ = Hq(C(V, F ))t ⊗O(Y )( 1
t ) (O(Y )(

1
t
))∧

= Hq(C(V, F ))⊗O(Y ) O(U).

This shows (1).

We may assume that O+(Y ) = O(Y )◦. Then according to hypothesis (b)
there exist a complete non-archimedean field k, an affinoid adic space T of
finite type over Spa(k, k◦), a f ∈ OT (T ) and a morphism of adic spaces
` : Y → T f such that ` has a factorization Y

u→ Y ′ v→ T f where Y ′ is
an affinoid adic space, v is of finite type and u∗ : O(Y ′) → O(Y ) is an
isomorphism of topological rings. Put

Yε := `−1(T f
ε )

Yι := `−1(T f
ι ).

We have
(2) cY,U is bĳective if U is a rational subset of Y such that U ⊆ Yε or

U ⊆ Yι .
Proof. First let us assume that U ⊆ Yε . Then U ⊆ (Yε)◦ = `−1((T f

ε )◦).
According to Proposition 3.1 and 3.2(i), O(U) is of topologically finite type
over k. Then the bĳectivity of cY,U can be be proved as the corresponding
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statement in [14], 3.5. Now let U ⊆ Yι. By virtue of Proposition 3.2(ii), Yι

is an affinoid adic space such that O(Yι) has a noetherian ring of definition.
Then cYι,U is bĳective. By (1), cY,Yι

is bĳective. Thus we obtain that cY,U

is bĳective and (2) is proved.

Let U be a rational subset of Y . We show that cY,U is bĳective. It is
enough to show that, for every maximal ideal m of O(U), the mapping
cY,U ⊗O(U) O(U)m is bĳective. For this we choose a maximal point y of
U with supp(y) = m and a rational subset V of Y such that y ∈ V ⊆ U

and V ⊆ Yε or V ⊆ Yι. By (2) the mapping cY,V is bĳective. Replac-
ing Y by U , we get correspondingly that cU,V is bĳective. As cY,V =
cU,V ◦ (cY,U ⊗O(U) O(V )), we obtain that cY,U ⊗O(U) O(V ) is bĳective.
The ring homomorphism O(U)→ O(V ) is flat, and m = supp(y) lies in the
image of Spec O(V )→ Spec O(U) since y lies in the image of the inclusion
V ⊆ U . This shows that cY,U ⊗O(U) O(U)m is bĳective. �

Corollary 6.4. — If the Tate ring O(Y ) satisfies one of the following
conditions

(a) O(Y ) has a noetherian ring of definition
(b) there exist a complete Tate ring D of topologically finite type over

a complete non-archimedean field and a f ∈ D such that O(Y ) is
of topologically finite type over Df

then (IS), (IIS), (IIIS) hold for every proper Spec O(Y )-scheme S.

Proof. If S is a projective Spec O(Y )-scheme then (IS), (IIS), (IIIS) hold by
Theorem 6.2 and Theorem 6.3(i). From this and Chow’s lemma (and The-
orem 6.3(ii)) one obtains the general case of a proper Spec O(Y )-scheme,
cf. [6], XII.4. �

Corollary 6.5. — Let S be a Spec O(Y )-scheme such that there exists a
finite Spec O(Y )-morphism S → P1

Spec O(Y )
. Then (IS), (IIS), (IIIS) hold.

Proof. By virtue of (i.α) in the proof of Theorem 6.3, for every coherent
OSad-module F the O(Y )-module H1(Sad, F ) is finitely generated. Then
the assertion follows from Theorem 6.2. �

7. Proof of Theorem 5.1

We fix a noetherian torsion ring A and assume that, for every pseudo-adic
space W , the torsion of A is prime to char+(W ).

The starting-point of the proof of Theorem 5.1 is the following finiteness
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Proposition 7.1. — Let f : X → Y be a smooth separated quasi-
compact morphism of analytic pseudo-adic spaces and let F be a con-
structible A-module on Xét. Then, for every n ∈ N0, the A-module Rnf!F

on Yét is constructible.

Proof. In [9], 6.2.2 this statement is proved under the hypothesis that there
exists a morphism Y → Spa(K,K◦) with K a non-archimedean field, and
it is remarked that this hypothesis is not necessary if Lütkebohmert’s result
[17], 5.3 on compactifications of smooth morphisms of affinoid rigid analytic
spaces holds, more generally, for smooth morphisms of affinoid analytic adic
spaces. An inspection of the proof of loc. cit. shows that this is fulfilled. �

Next we want to deduce, for some morphisms of analytic pseudo-adic spaces
f : X → Y such that dim(f) 6 1 and {x ∈ X | f is not smooth at x} is
quasi-finite over Y and for constant A-modules F of finite type on Xét, a
finiteness of Rnf!F (Lemma 7.5).

Lemma 7.2. — Let S be an analytic adic space which is local, i.e., there
exists a point s0 ∈ S such that every element of S is a generalization of s0.
We assume that the valuation ring k(s0)+ is henselian. Let f : X → S be
a partially proper morphism of adic spaces and let U be a constructible
open subset of f−1(s0). Put B := {x ∈ U | x has a specialization in
f−1(s0)− U}.
Then, for every constructible open subset W of X with B ⊆W , there exists
a smallest subset PW of X such that W ∪ PW is an open subset of X that
contains U . The set PW is constructible and closed in X. If G denotes the
set of all generalizations in X of all elements of U then PW = G−W .

Remark. If the ring k(s0)+ is finite dimensional but not necessarily henselian
then PW := G −W is the smallest subset of X such that W ∪ PW is an
open subset of X that contains U . Furthermore, PW is constructible in X.
But PW is not closed in X in general.

Proof. We have
(1) For every x ∈ X, the set {x} ∩ f−1(s0) is connected.

Proof of (1). Let K be the residue class field of k(x)+ and let k be the
residue class field of k(f(x))+. So we consider k as a subfield of K. Let
D be the valuation ring of k corresponding to s0 ∈ S. Since f is partially
proper, {x} ∩ f−1(s0) is homeomorhpic to {C ∈ SpvK | C ∩ k = D}. By
assumption k(s0)+ is henselian. Then D is henselian, too. So by [12], 2.4.4
the topological space {C ∈ SpvK | C ∩ k = D} is connected. This proves
(1).
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Put

H := {x ∈ X | x specializes to an element of B}
I := {x ∈ X | x specializes to an element of U and

to an element of f−1(s0)− U}.

Then
(2) (i) H = I

(ii) G−H = {x ∈ X | {x} ∩ f−1(s0) ⊆ U}
(iii) G−H is ind-constructible in X

(iv) G is pro-constructible in X.
Proof of (2). i) Obviously, H ⊆ I. Let x be an element of I and put
T := {x} ∩ f−1(s0). Then U ∩ T is a constructible open subset of T with
∅ 6= U∩T 6= T , and by (1) T is connected. Hence there exists some y ∈ U∩T
that has a specialization in T − U , i.e., y ∈ B. This shows that x ∈ H.
ii) Since {x} ∩ f−1(s0) 6= ∅ for every x ∈ X, we have G − I = {x ∈
X | {x} ∩ f−1(s0) ⊆ U}. Then the assertion follows from (i).
iii) Let x be an element of G − H. X is taut ([9], 5.1.4), i.e., the closure
of every quasi-compact subset of X is quasi-compact. Therefore there exist
quasi-compact open subsets V1, V2 of X such that {x} ⊆ V1 and V1 ⊆ V2.
By (ii), {x} ∩ f−1(s0) ⊆ U . Hence there exits a closed constructible subset
D of V2 with x ∈ D ⊆ V1 and D∩ f−1(s0) ⊆ U . Again by (ii), D ⊆ G−H.
iv) Let V1, V2 be quasi-compact open subsets of X with V1 ⊆ V2. Let (Ui)i∈I

be the family of all constructible open subsets of V2 containing U∩V2. Then
V1 ∩G = V1 ∩

⋂
i∈I Ui.

This concludes the proof of (2).

Let W be a constructible open subset of X containing B. Put

PW := G−W.

Since H ⊆W , we have PW = (G−H)∩ (X −W ). Then by (2.iii,iv) PW is
ind-constructible and pro-constructible and so constructible, and by (2.ii)
PW is closed under specializations in X and hence closed in X. The set
W ∪ PW = W ∪G is closed under generalizations in X and hence open in
X. If C is a subset of X such that W ∪C is open in X and contains U then
G ⊆W ∪ C and therefore PW = G−W ⊆ C. �

Lemma 7.3. — Let X = Spa(B,B+) be an affinoid analytic adic space,
let S be a separated SpecB-scheme such that there exists a quasi-finite
SpecB-morphism S → P1

Spec B
, let Sad := S ×Spec B X be the adic space

over X associated with the scheme S over SpecB, let U be a quasi-compact
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open subset of Sad, and let g : Z → U be a finite morphism of adic spaces
such that ∆ := {z ∈ Z | g is not étale at z} is quasi-finite over X and g is
of constant degree over U − g(∆).
Then, for every x0 ∈ X, there exist an étale neighbourhood
(X ′ = Spa(B′, B′+), x′0) of (X,x0) and a finite morphism of schemes

t : T −→ S′ := S ×Spec B SpecB′

such that the following holds: If

Z ′ g′−→ U ′ ⊆ (Sad)′

denotes the base extension of Z g−→ U ⊆ Sad from X to X ′, and

tad : T ×Spec B′ X
′ −→ S′ ×Spec B′ X

′ = (Sad)′

denotes the morphism induced by t, and

f ′ : (Sad)′ −→ X ′

denotes the structure morphism of (Sad)′ then there exists an open subset V
of U ′ such that g′ : g′−1(V )→ V and tad : (tad)−1(V )→ V are isomorphic
over V and f ′−1(x′0) ∩ U ′ ⊆ V .

Remark. i) The proof of Lemma 7.3 relies on Lemma 7.2. If the valua-
tion ring k(x0)+ is henselian (or, equivalently, the completion (k(x0)+)∧

is henselian) (for example, this is fulfilled if x0 is a maximal point of X)
then X ′ can be choosen as an open neighbourhood of x0 in X. If x0 is a
maximal point of X then there exists an affinoid open neighbourhood W

of x′0 in X ′ such that f ′−1(W ) ∩ U ′ ⊆ V , and therefore, replacing X ′ by
W we may assume that V = U ′.
ii) For the proof of Lemma 7.3 we will use Corollary 6.5. If we can apply
Corollary 6.4 (,i.e., if B satisfies one of the conditions (a) and (b) of Corol-
lary 6.4) then S can be an arbitrary separated scheme of finite type over
SpecB with dim(S/SpecB) 6 1.

Proof. Let P → SpecB be a scheme over SpecB such that there exists a
finite SpecB-morphism P → P1

Spec B
and S is SpecB-isomorphic to an

open subscheme of P . We consider the open subspaces

U ⊆ Sad ⊆ P ad := P ×Spec B X.
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Let e : P ad → X be the structure morphism. Put

R := {x ∈ U ∩ e−1(x0) | x has a specialization in

e−1(x0)− U}
= {x ∈ U ∩ e−1(x0) | x has a specialization in

(e−1(x0) ∩ Sad)− U}.

The set R is finite since dim(S/SpecB) 6 1. Put

Rg := {x ∈ P ad | x is a maximal point of P ad and

a generalization of some element of R}.

Then Rg ⊆ U . So we have a natural morphism of adic spaces

q : L :=
∐

x∈Rg

Spa(k(x), k(x)+) −→ U.

Composing this morphism with the natural morphism of locally ringed
spaces U → P , we obtain a morphism of locally ringed spaces

p : L −→ P.

From the approximation theorem for independent valuations ([2], VI.7.2)
we can conclude that there exists a finite morphism of schemes

r : W → P

which is étale over every point of im(p) and such that there exists a L-
isomorphism

L×U Z ∼= L×P W.

For every x ∈ Rg and every y ∈ R with x � y, let Ay be the valuation ring
of k(x) such that Ay ⊆ k(x)+ and Ay ∩ k(y) = k(y)+. Put

A(x) :=
⋂

y∈R,
x�y

Ay.

Then A(x) is a ring of definition of the Tate ring k(x) and so we have the
adic space

L′ :=
∐

x∈Rg

Spa(k(x), A(x)).

By [2], VI.7.1, Cor.3 every valuation ring of k(x) containing A(x) contains
one of the Ay. Hence we get a morphism of adic spaces

q′ : L′ −→ U
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whose underlying continuous mapping is a homeomorphism from L′ to the
set of all generalizations of the elements of R. Let

p′ : L′ −→ P

be the composition of q′ and the morphism U → P . The isomorphism
L×U Z ∼= L×P W from above extends to an isomorphism

L′ ×U Z ∼= L′ ×P W,

and this isomorphism extends to a F -isomorphism

g−1(F ) = F ×U Z ∼= F ×P W = (rad)−1(F )

where F is an open neighbourhood of R in U and rad : W ad → P ad is the
morphism of adic spaces associated with r : W → P .
Let H := Spa(K,K+) → X be the strict henselization of X at x0 (so
K is a separable algebraic closure of k(x0) and K+ is a valuation ring
of K extending k(x0)+ ([9], 2.5.13.i)). For an adic space Y over X put
Y(H) := Y ×XH. The open inclusions F ⊆ U ⊆ P ad give the open inclusions

F(H) ⊆ U(H) ⊆ (P ad)(H).

Let ` : (P ad)(H) → H be the structure morphism and let h0 be the closed
point of H. We apply Lemma 7.2 to ` : (P ad)(H) → H, `−1(h0)∩U(H), F(H)

and obtain that there exists a closed constructible subset C of (P ad)(H)

such that C ⊆ U(H), F(H) ∩ C = ∅, F(H) ∪ C is open in (P ad)(H) and
`−1(h0) ∩ U(H) ⊆ F(H) ∪ C.
H is the projective limit of all pointed étale neighbourhoods of (X,x0).
Hence there exists an affinoid étale neighbourhood (M,m0) of (X,x0) and
a closed constructible subset D of (P ad)(M) := P ad ×X M such that D ⊆
U(M), F(M) ∩D = ∅, F(M) ∪D is open in (P ad)(M) and w−1(m0)∩U(M) ⊆
F(M) ∪D (with w : (P ad)(M) →M the structure morphism).
We cover (P ad)(M) by the open subsets

E1 := F(M) ∪D
E2 := (P ad)(M) −D.

The finite morphisms of adic spaces g : Z → U and rad : W ad → P ad give
by base extensions the finite morphisms

π1 : Z ×U E1 −→ E1

π2 : W ad ×
P

ad E2 −→ E2.

π1 and π2 are isomorphic over E1∩E2 = F(M) because of the F -isomorphism
g−1(F ) ∼= (rad)−1(F ) from above. Hence π1 and π2 glue together to a
finite morphism of adic spaces π̃ : Ẽ → (P ad)(M). Put P ′ :=
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P ×Spec B Spec OM (M). Then (P ad)(M) = P ′ ×Spec OM (M) M , and by
Corollary 6.5 there exists a finite morphism of schemes π : E → P ′ such
that π̃ = πad := π ×Spec OM (M) M . �

For an analytic pseudo-adic space (X,L), let Db(X,L) be the bounded
derived category of the category of A-modules on (X,L)ét. We define sub-
classes S1(X,L) ⊆ S2(X,L) ⊆ S3(X,L) ⊆ S4(X,L) of the class of ob-
jects of Db(X,L) as follows.
S1(X,L) is the smallest subclass of the class of objects of Db(X,L) which
satisfies the following three properties

(i) Every object F of Db(X,L) such that, for every n ∈ Z, the A-
moduleHn(F ) on (X,L)ét is constructible is an element of S1(X,L).

(ii) If F is an object of Db(Spec OX(X)) such that, for every n ∈ Z, the
A-module Hn(F ) on (Spec OX(X))ét is constructible then i∗F ∈
S1(X,L) where i : (X,L)ét → (Spec OX(X))ét is the natural mor-
phism of sites.

(iii) If (B,C,D) is a distinguished triangle in Db(X,L) and two of the
three objects B,C,D belong to S1(X,L) then also the third.

S2(X,L) is the class of all objects of Db(X,L) which are direct summands
of elements of S1(X,L).
S3(X,L) is the class of all objects F of Db(X,L) such that, for every x ∈ L,
there exists a locally closed locally constructible subset M of L such that
x ∈M and F |(X,M) ∈ S2(X,M).
S4(X,L) is the class of all objects F of Db(X,L) such that, for every
x ∈ L, there exists a locally closed locally constructible subset M of L and
a surjective étale morphism of pseudo-adic spaces (Y,N) → (X,M) such
that x ∈M and F |(Y,N) ∈ S2(Y,N).

Lemma 7.4. — Let

X
a //

f

��

P

h

��
Y

b // Q

be a commutative diagram of locally ringed spaces where h : P → Q is
a separated morphism of finite type between schemes, f : X → Y is a
morphism of analytic adic spaces, Q is affin and Y is affinoid, and X =
P ×Q Y . Let M be a convex pro-constructible subset of Y and let L be
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a quasi-compact locally closed constructible subset of f−1(M). Let g :
(X,L) → (Y,M) be the morphism of pseudo-adic spaces induced by f ,
and let F be the constant A-module on (X,L)ét associated with a finitely
generated A-module C. Put X ′ := {x ∈ X | f is not smooth at x} and
X ′′ := {x ∈ X ′ | f |X ′ : X ′ → Y is quasi-finite at x}. Then

(i) If X ′ ∩ f−1(M) ⊆ L and h is proper then Rg!F ∈ S1(Y,M).
(ii) If X ′ ∩ L ⊆ X ′′ then Rg!F ∈ S3(Y,M).

Proof. i) Since h is proper, f is quasi-compact and separated. Let U be a
quasi-compact open subset of f−1(M) such that L is a closed subset of U ,
and put V := f−1(M)−U and W := U−L. Let s : (X, f−1(M))→ (Y,M)
be the morphism of pseudo-adic spaces induced by f , and let G and H be
the constant A-modules on (X, f−1(M))ét and Pét associated with the A-
module C. Since we have the distinguished triangle (R(s|U)!(G|U), Rs!G,
R(s|V )!(G|V )) in Db(Y,M) and since R(s|V )!G ∈ S1(Y,M) (by Propo-
sition 7.1) and Rs!G = j∗Rh!H ∈ S1(Y,M) (with j : (Y,M)ét → Qét

the morphism induced by b : Y → Q), we obtain that R(s|U)!(G|U) ∈
S1(Y,M). Similarly, since we have the distinguished triangle (R(s|W )!(G|W ),
R(s|U)!(G|U), Rg!F ) in Db(Y,M) and since R(s|W )!(G|W ) ∈ S1(Y,M)
(by Proposition 7.1), we obtain that Rg!F ∈ S1(Y,M).
ii) Replacing h by a compactification of h we may assume that h is proper.
We fix an element m of M . As X ′ is Zariski-closed in X, X ′ is pro-
constructible in X and closed under specializations and generalizations
in X. Furthermore, for every x ∈ X ′′ ∩ f−1(m), the set {x} is closed un-
der specializations and generalizations in X ′ ∩ f−1(m). By assumption,
L ∩ X ′ ⊆ X ′′. Hence (L ∪ X ′) ∩ f−1(M) is a convex pro-constructible
subset of f−1(M) and L∩ f−1(m) is closed under specializations and gen-
eralizations in (L ∪ X ′) ∩ f−1(m), i.e., L ∩ f−1(m) is closed and open in
(L ∪X ′) ∩ f−1(m). Then there exist a locally closed constructible subset
V of M and a locally closed constructible subset T of f−1(V ) such that
m ∈ V, (L ∪X ′) ∩ f−1(V ) ⊆ T and L ∩ f−1(V ) is open and closed in T .
Let r : (X,T )→ (Y, V ) be the morphism of pseudo-adic spaces induced by
f and let G be the constant A-module on (X,T )ét with G|L ∩ f−1(V ) =
F |L ∩ f−1(V ). Since X ′ ∩ f−1(V ) ⊆ T , we obtain from (i) that Rr!G ∈
S1(Y, V ). As L∩f−1(V ) is a direct summand of T , we get that (Rg!F )|V =
R(r|L∩f−1(V ))!(G|L∩f−1(V )) is a direct summand of Rr!G and therefore
an element of S2(Y, V ). This shows that Rg!F ∈ S3(Y,M). �

Lemma 7.5. — Let X = Spa(B,B+) be an affinoid analytic adic space.
Let S be a separated SpecB-scheme such that there exists a quasi-finite
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SpecB-morphism S → P1
Spec B

. (Remark. If B satisfies one of the condi-
tions (a) and (b) of Corollary 6.4 then S can be an arbitrary separated
scheme of finite type over SpecB with dim(S/SpecB) 6 1). Assume that
{s ∈ S | S is not smooth over SpecB at s} is quasi-finite over SpecB.
Let Sad := S ×Spec B X be the adic space over X associated with the
scheme S over SpecB and let f : Sad → X be the structure morphism.
Let U be a quasi-compact open subset of Sad and let g : Z → U be a
finite morphism of adic spaces such that ∆ := {z ∈ Z | g is not étale at
z} is quasi-finite over X and g is of constant degree over U − g(∆). Let
M be a convex locally pro-constructible subset of X and let L be a locally
closed constructible subset of (f ◦ g)−1(M). Let h : (U,L) → (X,M) be
the morphism of pseudo-adic spaces induced by f ◦ g. Let F be a constant
A-module of finite type on (U,L)ét.
Then Rh!F ∈ S4(X,M).

Proof. The assertion follows from Lemma 7.3 and Lemma 7.4(ii). �

In order to arrange the quasi-finiteness of ∆ over X in Lemma 7.5 we will
need the following two lemmata.

Lemma 7.6. — (i) Let f : X → Y be a morphism locally of finite
type between analytic adic spaces. Then every x ∈ X has an open
neighbourhood U in X such that the restriction f |U has a factor-
ization

U
g //

f ��?
??

??
??

? Bn
Y

q
~~}}

}}
}}

}}

Y

where g is locally quasi-finite and q is the natural morphism and
n 6 dim(f).

(ii) Let Y be an analytic adic space, let n be a natural number, let
W be an analytic adic space locally of finite type over Y with
dim(W/Y ) < n, and let g : W → Bn

Y be a locally quasi-finite
Y -morphism. Then, for every w ∈ W , there exist an open neigh-
bourhood U of w in W and a Y -automorphism h : Bn

Y → Bn
Y such

that if q : Bn
Y → Bn−1

Y denotes the projection then

q ◦ h ◦ (g|U) : U −→ Bn−1
Y

is locally quasi-finite.
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Proof. This lemma is stated in [11], 3.3 under the assumption that Y is
locally of finite type over some non-archimedean field. But this assumption
is not needed in the proof of loc. cit.. �

Lemma 7.7. — Let Y be an adic space of the shape Y = T f where T is a
1-dimensional normal affinoid adic space of finite type over Spa(k, k◦) with
k a non-archimedean field and f ∈ OT (T ). Let X be an affinoid adic space
which is connected (or, equivalently, X̃ := Spec OX(X) is connected), and
let g : X → Y be a smooth morphism of adic spaces. Let Z̃ be an irreducible
closed subset of X̃ with Z̃ 6= X̃ and let Z be the corresponding closed subset
of X. Then dim(Z/Y ) < dim(X/Y ) or there exists a maximal ideal m of
OY (Y ) with Z ⊆ g−1(V (m)).

Proof. We consider the subsets Yι = (T f )ι and Yε = (T f )ε of Y . By Propo-
sition 3.1 and Proposition 3.2(i) we have Y ◦

ε = T − V (f). According to
Example 3.5 the rational subset Yι of Y is finite and discrete and, for every
y ∈ Yι, the rational subspace {y} of Y is of the shape {y} = Spa(L,L◦)
with L a discretely valued non-archimedean field.
For every x ∈ X, OX,x is a normal integral domain. Since the ring homo-
morphism OX(X)supp(x) → OX,x is flat, we can conclude that OX(X) is
a normal integral domain.
We have

(∗) dim(g−1(y) ∩ Z) < dim(g−1(y)) for every y ∈ Yι with g−1(y) 6= ∅.
Indeed, if dim(g−1(y)∩Z) = dim(g−1(y)) then g−1(y)∩Z contains a con-
nected component U of g−1(y). Since U is a rational subset of X, the ring
homomorphism OX(X)→ OX(U) is flat. Then we obtain that Z̃ contains
the generic point of Spec OX(X), in contradiction to our assumption that
Z̃ 6= Spec OX(X).
Assume that there exists a maximal point y of Y such that g−1(y) 6= ∅
and dim(g−1(y) ∩ Z) = dim(g−1(y)). By (∗) we have y ∈ Y ◦

ε = T − V (f).
Then according to [9], 1.8.10 there exists a maximal ideal m of OY (Y )
such that, for the point s of Y with {s} = V (m), we have g−1(s) 6= ∅
and dim(g−1(s) ∩ Z) = dim(g−1(s)). So there exists an irreducible com-
ponent W of V (m · OXX)) ⊆ Spec OX(X) = X̃ that is contained in Z̃.
Let a be a non-zero element of the image of m in OX(X). Then W is an
irreducible component of V (a) ⊆ X̃ and hence W is 1-codimensional in X̃.
Since W ⊆ Z̃ $ X̃ and Z̃ is irreducible, we obtain Z̃ = W and therefore
Z ⊆ g−1(V (m)). �

Proof of Theorem 5.1. Replacing T by its normalization we may assume
that T is normal. We use induction on dim(X/Y ). If dim(X/Y ) = 0 then
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the assertion follows from Proposition 4.6 and Example 4.3. Let n :=
dim(X/Y ) > 0. By Lemma 7.6(i) we may assume that g : X → Y has
a factorization

X
` //

g
��?

??
??

??
? Bn

Y

r
~~}}

}}
}}

}}

Y

with ` quasi-finite and r the natural morphism. Then g has a factorization

(X,L) ` //

g
$$IIIIIIIII

(Bn
Y , r

−1(M))

r
xxpppppppppp

(Y,M)

where ` and r are the morphisms of pseudo-adic spaces induced by ` and
r. Then Rg!F = Rr!(`!F ) and `!F ∈ C (Bn

Y , r
−1(M)) (by Proposition 4.6).

Hence it suffices to prove the assertion for r and `!F , i.e., we may assume
that X = Bn

Y and L = g−1(M).
Étale locally and constructible locally F is an element of Z (−). Therefore
we may assume that X is affinoid, F ∈ Z (X,L) and g : (X,L) → (Y,M)
has a factorization

(X,L) ` //

g
$$IIIIIIIII

(Bn
Y , r

−1(M))

r
xxpppppppppp

(Y,M)

where ` : X → Bn
Y is an étale morphism of adic spaces and r : Bn

Y → Y

is the natural morphism. Furthermore we may assume that Y and X are
connected.
Since F ∈ Z (X,L), there exist a finite morphism h : X ′ → X and a
Zariski-closed subset X ′′ of X such that h is étale of constant degree over
X−X ′′ and X ′′ 6= X and F |h−1(L∩(X−X ′′)) is the constant A-module on
h−1(L ∩ (X − X ′′))ét associated to a finitely generated A-module P . By
Lemma 7.7 there exists a Zariski-closed subset Y ′ of Y such that Y ′ 6= Y

and g−1(Y − Y ′) ∩ X ′′ is over Y − Y ′ of relative dimension 6 n − 1.
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Replacing X by an affinoid open subspace of g−1(Y −Y ′), we may assume
that dim(X ′′/Y ) 6 n − 1. By Lemma 7.6(ii) we may assume that the
composition

X ′′ `−→ Bn
Y

q
−→ Bn−1

Y

is quasi-finite.
Let h : (X ′, h−1(L)) → (X,L) be the morphism of pseudo-adic spaces in-
duced by h : X ′ → X and let F ′ be the constantA-module on (X ′, h−1(L))ét
associated with the A-module P . Since dim(X ′′/Y ) 6 n− 1, the induction
hypothesis implies that it suffices to show that, for every m ∈ N0, the
A-module Rm(g ◦ h)!F ′ on (Y,M)ét is generically constructible (more pre-
cisely, we have to show this for X ′ ×X X ′ × . . .×X X ′ instead of X ′). Let
t : Bn−1

Y → Y be the projection, and let t : (Bn−1
Y , t−1(M)) → (Y,M)

and q : (Bn
Y , r

−1(M))→ (Bn−1
Y , t−1(M)) be the morphisms of pseudo-adic

spaces induced by t and q. Then

g = r ◦ ` = t ◦ q ◦ `

and so

g ◦ h = t ◦ (q ◦ ` ◦ h).

Put B := OBn−1
Y

(Bn−1
Y ). Since ` : X → Bn

Y is étale, there exists by [9], 1.7.3
an affine SpecB-scheme,

S → SpecB,

such that there exists an étale SpecB-morphism S → A1
Spec B

and such

that X is an open subspace of S ×Spec B Bn−1
Y and q ◦ ` is the restriction

of the projection S ×Spec B Bn−1
Y → Bn−1

Y to X. Then by Lemma 7.5,
R(q ◦ ` ◦ h)!(F ′) ∈ S4(Bn−1

Y , t−1(M)). This and the induction hypothesis
imply that Rmt!(R(q ◦ ` ◦ h)!(F ′)) is generically constructible on (Y,M)ét
for every m ∈ N0. �

Remark 7.8. — The proof of Theorem 5.1 shows that the open subset U
of M in Theorem 5.1 is of the following shape.
Let Y0 be the set of all points y ∈ Y whose support supp(y) ∈ Spec OY (Y ) is
not a generic point of Spec OY (Y ). Put M0 = Y0∩M . We define inductively,
for every n ∈ N0, a set Mn of subsets of M : Let M0 be the set of all finite
subsets of M0 and, for every n > 0, let Mn be the set of all subsets P of
M such that there exists a finite subset L of M0 such that L ⊆ P and, for
every quasi-compact open subset W of M − L, the intersection P ∩W is
an element of Mn−1. Then for every n ∈ N0
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(i) Every element of Mn is contained in M0 and is closed in M (even
closed in Y ). Every P ∈ Mn is a 0-dimensional spectral space,
and therefore a subset Q of P is pro-constructible if and only Q

is closed in P . For every P ∈ Mn, a subset Q of P is an element
of Mn if and only if Q is closed in P . (This follows from the fact
that every element of Y0 is a closed point of Y ).

(ii) If P,Q ∈Mn then P ∪Q ∈Mn.
(iii) Mn ⊆Mn+1.

The proof of Theorem 5.1 shows that if U is the greatest open subset of
M such that, for every m ∈ N0, Rmg!F |U is constructible then M − U ∈
Mdim(X/Y )

.
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