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EXPONENTIAL SUMS WITH COEFFICIENTS 0 OR 1
AND CONCENTRATED Lp NORMS

by B. ANDERSON, J. M. ASH, R. L. JONES,
D. G. RIDER & B. SAFFARI (*)

Abstract. — A sum of exponentials of the form f(x) = exp (2πiN1x) +
exp (2πiN2x) + · · · + exp (2πiNmx), where the Nk are distinct integers is called
an idempotent trigonometric polynomial (because the convolution of f with itself
is f) or, simply, an idempotent. We show that for every p > 1, and every set E of
the torus T = R/Z with |E| > 0, there are idempotents concentrated on E in the
Lp sense. More precisely, for each p > 1, there is an explicitly calculated constant
Cp > 0 so that for each E with |E| > 0 and ε > 0 one can find an idempotent f

such that the ratio
(∫

E
|f |p
/∫

T |f |
p
)1/p

is greater than Cp − ε. This is in fact a
lower bound result and, though not optimal, it is close to the best that our method
gives. We also give both heuristic and computational evidence for the still open
problem of whether the Lp concentration phenomenon fails to occur when p = 1.

Résumé. — Une somme d’exponentielles de la forme f(x) = exp (2πiN1x) +
exp (2πiN2x)+ · · ·+exp (2πiNmx), où les Nk sont des entiers distincts, est appelée
un polynôme trigonométrique idempotent (car f ∗ f = f) ou, simplement, un
idempotent. Nous prouvons que pour tout réel p > 1, et tout E ⊂ T = R/Z avec
|E| > 0, il existe des idempotents concentrés sur E au sens de la norme Lp. Plus
précisément, pour tout p > 1, nous calculons explicitement une constante Cp > 0
telle que pour tout E avec |E| > 0, et tout réel ε > 0, on puisse construire un

idempotent f tel que le quotient
(∫

E
|f |p
/∫

T |f |
p
)1/p

soit supérieur à Cp−ε. Ceci
est en fait un théorème de minoration qui, bien que non optimal, est proche du
meilleur résultat que notre méthode puisse fournir. Nous présentons également des
considérations heuristiques et aussi numériques concernant le problème (toujours
ouvert) de savoir si le phénomène de concentration Lp a lieu ou non pour p = 1.

Keywords: Idempotents, idempotent trigonometric polynomials, Lp norms, Dirichlet ker-
nel, concentrating norms, sums of exponentials, L1 concentration conjecture, weak re-
stricted operators.
Math. classification: 42A05, 42A10, 42A32.
(*) The second author was partially supported by NSF Grant DMS-9707011.

The third author was partially supported by NSF Grant DMS-9531526.



1378 B. ANDERSON, J. M. ASH, R. L. JONES, D. G. RIDER & B. SAFFARI

1. Introduction

1.1. Concentrated Lp norms

Let e(x) := exp(2πix). A sum of exponentials of the form

f(x) =
m∑

k=1

e (Nkx) , (x ∈ R) ,

where the Nk are distinct integers is called an idempotent trigonometric
polynomial (because the convolution of f with itself is f) or, simply, an
idempotent. In the sequel we adopt the term “idempotent” for brevity, and
we denote by ℘ the set of all such idempotents:

℘ :=
{∑

n∈S

e(nx) : S is a finite set of non-negative integers
}

.

The simplest example of an f ∈ ℘ is (one form of) the Dirichlet Kernel of
length n, defined by

(1.1) Dn(x) :=
n−1∑
ν=0

e(νx) =
sin(nπx)
sin(πx)

· ei(n−1)πx.

Consider any function g ∈ Lp(T), where T = R/Z, and any set E ⊂ T with
|E| > 0. (Throughout, |E| denotes the Lebesgue measure of E.) If

(1.2)
(∫

E

|g(x)|pdx
/∫

T
|g(x)|pdx

)1/p

> α

(where 1 6 p < ∞ and 0 < α < 1), we say that “at least a proportion α of
the Lp norm of g is concentrated on E” or, equivalently, that “the function
g has Lp concentration > α on E.” We will now recall a challenging (and
still partially open) problem on idempotents which can be expressed in
terms of this notion of Lp concentration.

About 25 years ago it was discovered that for any (arbitrarily small) arc
J of the torus T with |J | > 0, there always exists an idempotent f with at
least 48% of its L2 norm concentrated on J . The origin of this curious fact
occurred about 1977 when one of us (J. M. Ash) was attempting to show
that an operator T defined on L2(T), commuting with translations, and
of restricted weak type (2, 2) is necessarily a bounded operator on L2(T).
That T is of restricted weak type (2, 2) means that there is a constant
C = C(T ) > 0 such that, for every characteristic function χ of a subset
of T,

sup
α>0

(
α2 measure{x ∈ T : |Tχ(x)| > α}

)
6 C‖χ‖2

L2 .

ANNALES DE L’INSTITUT FOURIER
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Ash [2] was only able to show that this condition was equivalent to there
being some positive amount of L2 concentration for idempotents. More
explicitly, define the absolute constant C∗

2 as the largest real number such
that for every arc J ⊂ T with |J | > 0, we have the inequality

(1.3) sup
f∈℘

(∫
J

|f(x)|2dx
/∫

T
|f(x)|2dx

)1/2

> C∗
2 .

Thus the issue was whether C∗
2 was 0 or positive. Luckily, at just the same

time, Michael Cowling [5] proved, by another method, that every commut-
ing with translations weak restricted type (2, 2) operator is necessarily a
bounded operator on L2. (Actually Cowling [5] proved more. His result
allowed the underlying group to be any amenable group, not just T.) This
proved, of course, that C∗

2 was indeed positive, but did not give any effec-
tive estimate for it. However, a series of concrete estimates quickly followed.
The referee of [2] obtained C∗

2 > .01, S. Pichorides [14] obtained C∗
2 > .14,

H. L. Montgomery [12] and J.-P. Kahane [9] obtained several better lower
bounds. (The ideas of H. L. Montgomery were “deterministic” while those
of J.-P. Kahane used probabilistic methods from [10].) Finally, in [4], three
of us achieved the lower bound

(1.4) γ2 := max
x>0

sinx√
πx

= .4802 . . . ,

which, in [7], was proved to be best possible. (See [6] for a more detailed
exposition of the contents of [7].)

To get a little more feel for what to expect, let ζ be any point of
density (also called “Lebesgue point”) of a set E ⊂ T. Then for every
p ∈ [1,∞[ the sequence of functions {gn}, where gn(x) := Dn(x − ζ) =∑n−1

ν=0 e(−νζ) · e(νx), have Lp concentration tending to 1 as n →∞. How-
ever, the trigonometric polynomials gn are not idempotents, since the non-
zero coefficients are not all equal to 1. Note, however, that all the coefficients
do have modulus 1. The difficulty of the matters studied in [4] and [7], as
well as those of the present paper lies precisely in the fact that the trigono-
metric polynomials f ∈ ℘ have all their coefficients equal to 0 or 1, which
is a very drastic constraint.

At this stage we make an obvious remark: in all the L2 concentration
problems on (small) arcs of T studied in [4] and [7] and in all their Lp

analogues studied in the present paper, it is equivalent to work on arcs of
T or on intervals of [0, 1]. We usually find it convenient to use “arcs of T”
in statements of theorems, but “intervals of [0, 1]” in their proofs!

TOME 57 (2007), FASCICULE 5
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1.2. The L2 and Lp problems

The results in [4] and [7] were satisfying but, as usual, they led to further
questions. The first two were:

a) Can we replace “arc” (or “interval”) with “set of positive measure?”
b) Can we replace L2 with Lp for any p > 1?

For each p ∈ [1,∞[, define Cp as the largest number such that for every
set E, E ⊂ T with |E| > 0, the inequality

(1.5) sup
f∈℘

‖f‖Lp,E

/
‖f‖Lp := sup

f∈℘

(∫
E

|f |pdx
/∫

T
|f |pdx

)1/p

> Cp

holds. Similarly, define C∗
p as the largest number such that for every arc J ,

J ⊂ T, the inequality

(1.6) sup
f∈℘

‖f‖Lp,J /‖f‖Lp := sup
f∈℘

(∫
J

|f |pdx

/∫
T
|f |pdx

)1/p

> C∗
p

holds. The definitions of Cp and C∗
p are extended to the limit cases p = ∞

in the usual way. Obviously,

(1.7) Cp 6 C∗
p .

With regard to question a), although the definitions allow the possibility
for C2 to be smaller than C∗

2 , in [4] it is shown that both are equal to the
constant γ2 defined in (1.4). Whatever the value of p > 1, there is no result
in this paper which changes when the supremum is taken over all sets of
positive measure rather than over all arcs. So we conjecture that inequality
(1.7) is in fact an equality:

(1.8) Cp = C∗
p ,

although we have no proof of this except for p = 2 and p = ∞.

Question b) is harder. In [7], the constant γ2 defined in (1.4) is shown to
be a lower bound for every Cp when p > 2. This is not altogether satisfying
for two reasons. First, the cases 1 6 p < 2 are not addressed. Second, since
the constant function 1 is in ℘, and ‖1‖L∞,A /‖1‖L∞ = 1 for any non-empty
set A ⊂ T, so that C∞ = 1, one might hope to show that limp→∞ Cp = 1.

In Section 1.3 we state new results for the Lp cases, together with some
remaining open problems.

ANNALES DE L’INSTITUT FOURIER



EXPONENTIAL SUMS WITH COEFFICIENTS 0 OR 1 1381

1.3. Statement of the result

This paper is devoted to proving one single theorem, Theorem 1.1 below.
It was announced in the Comptes Rendus note [1] (in a weaker form, and
presented as two distinct results). The aim of this paper is to supply the
proofs of [1], to strengthen the first result thereof, and to unify the results in
the form of a single theorem (which is valid for all sets of positive measure
and not just for all arcs). Our theorem is stated in terms of the “constants”
cp and c∗p, defined as follows:

cp := sup
0<ω<1/2

sin(πω)/(πω)

21+1/p
(
b1/ωc+ 1 + 1

p−1

(
3
8

)p b1/ωc
)1/p

,

where for a real number r,

dre = ceiling of r = the smallest integer greater than or equal to r,

brc = floor of r = the greatest integer less than or equal to r;

and

c∗p :=
(

2
πp+1

∫ ∞

0

∣∣∣∣ sinx

x

∣∣∣∣p dx

)1/p

· max
06ω61

sin(πω)
ω1−1/p

.

As p increases from 1 to +∞ (resp. from 2 to +∞), cp (resp. c∗p) increases
from 0 to .5 (resp. from γ2 = 0.48 . . . to 1). That c∗p tends to 1 as p →
∞ follows from an easy calculation, which is done in Remark 1.2 for the
reader’s convenience.

Theorem 1.1. — Whenever 1 < p < ∞, we have the estimate

Cp >

{
cp if 1 < p 6 2

c∗p if 2 6 p < ∞
.

In other words, if p > 1 and ε > 0 are given, then for each set E ⊂ T with
|E| > 0, there is a finite set of integers S = S(E, p, ε) such that

(1.9)
∫

E

∣∣∣∑
n∈S

e(nx)
∣∣∣pdx

/∫
T

∣∣∣∑
n∈S

e(nx)
∣∣∣pdx >

{
cp
p − ε if 1 < p 6 2

c∗pp − ε if 2 6 p < ∞
.

Furthermore, c∗p (and a fortiori Cp) tends to 1 as p tends to infinity.

For a slightly larger lower estimate of Cp, see inequality (2.19) at the end
of Section 2 (where Part I of Theorem 1.1 is proved).

TOME 57 (2007), FASCICULE 5
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Remark 1.2. — The estimate in Part II of Theorem 1.1, which is quite
good although not optimal, does have two virtues. First, it is sharp when
p = 2, since

2
π

∫ ∞

0

∣∣∣∣ sinx

x

∣∣∣∣2 dx = 1.

Second, it implies that limp→∞ Cp = 1. Indeed

lim inf
p→∞

Cp > lim inf
p→∞

c∗p

= lim inf
p→∞

(
max

06ω61

sinπω

πω1−1/p

)
lim

p→∞

( 2
π

)1/p

lim
p→∞

(∫ ∞

0

∣∣∣∣ sinx

x

∣∣∣∣p dx
)1/p

> lim
p→∞

sinπ(1/p)
π(1/p)1−1/p

· 1·Essup
∣∣∣ sinx

x

∣∣∣
= lim

p→∞

sin(π/p)
(π/p)

lim
p→∞

(1/p)1/p = 1.

To prove Theorem 1.1, it obviously suffices to prove the inequalities Cp >
cp (for all p > 1) and Cp > c∗p (for all p > 2). These two inequalities will
be proved, respectively, in the next Sections 2 and 3.

As for the open problems pertaining to the case p = 1 (conjectures of
non-concentration in the L1 sense), we shall state them in Section 4 at the
end of the paper.

2. Proof of Theorem 1.1 ; Part I: Cp > cp (for all p > 1)

2.1. Since the proof is quite technical and computational, before giving
the full proof we start by sketching a (heuristic) outline of the beginning
of the proof.

Outline of (the beginning of) the proof. — Let q be a large odd pos-
itive integer and let m be an integer at least as large. We begin with
the special case of J = [ 1q −

1
mq , 1

q + 1
mq ], where m > q. The idea of

the proof is to think of T (or rather of some suitable interval of length
1, which is more convenient in the proofs) as “partitioned” (except for
common endpoints) into q congruent arcs of the form

[
2ν−1

2q , 2ν+1
2q

]
, with

centers at ν
q , (ν = 0, 1, . . . , q − 1) and common length 1

q . The idempotent
Dmq(qx), where Dn(x) is the Dirichlet kernel defined by the relation (1.1)
of the introduction, has period 1/q and when restricted to

[
− 1

2
1
q , 1

2
1
q

]
be-

haves approximately like the Dirac measure. Now consider the idempotent

ANNALES DE L’INSTITUT FOURIER
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Dωq(x), where ω ∈]0, 1/2[ is chosen to make ωq an integer. This, when
restricted to a small neighborhood of the set

{
0
q , 1

q , 2
q , . . . , q−1

q

}
, behaves

roughly (as far as its modulus is concerned) like the function 1/x. Thus the
idempotent $(x) = Dmq(qx)Dωq(x) satisfies

∫ 1

0
|$(x)|pdx ≈

∑q
j=1 1/jp

and
∫

J
|$(x)|pdx ≈ 1−p. Concentration at 1/q follows since

∑q
j=1 j−p is

bounded.

This outline will be made rigorous in the proof below. We will also have to
treat the problem of concentration at points which are not of the form 1/q.

2.2. To prove Theorem 1.1 we need the following lemma, which will be
used in the proof of Part II as well.

Lemma 2.1. — Let DN (x) be the Dirichlet Kernel defined by (1.1), so
that |DN (x)| = |sin (πNx) / sin(πx)| , and let p be greater than 1. Then∫ 1

0

|DN (x)|p dx = δpN
p−1 + op(Np−1), N →∞

where

δp =
2
π

∫ ∞

0

∣∣∣ sinu

u

∣∣∣pdu

and op is the “little o” notation of Landau modified to emphasize the
dependence of the associated constant on p.

More precisely, ∫ 1

0

|DN (u)|pdu = δpN
p−1 + Rp(N),

where the error term Rp(N) satisfies:

Rp(N) =


Op

(
Np−3

)
if p > 3

O(log N) if p = 3

Op(1) if 1 < p < 3

.

Proof. — This result is classical, but we give the full proof for the reader’s
convenience. Since DN is even, we need only estimate 2

∫ 1/2

0
|DN (x)|p dx.

By the triangle inequality, this differs from

Ap(N) := 2
∫ 1/2

0

∣∣∣ sinNπu

πu

∣∣∣pdu

by at most

Ep(N) := 2
∫ 1/2

0

| sinNπu|p
(

1
sinp πu

− 1
(πu)p

)
du.

TOME 57 (2007), FASCICULE 5
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Substituting x := Nπu yields

Ap(N) =
2

πN

∫ Nπ/2

0

∣∣∣ sinx

x/N

∣∣∣pdx

=
(

2
π

∫ ∞

0

∣∣∣ sinx

x

∣∣∣pdx

)
Np−1 − 2

π
Np−1

∫ ∞

Nπ/2

∣∣∣ sinx

x

∣∣∣pdx

= δpN
p−1 + Op (1) ,

since ∫ ∞

Nπ/2

∣∣∣ sinx

x

∣∣∣pdx <

∫ ∞

Nπ/2

x−pdx =
π−p+12p−1

p− 1
N−(p−1).

So proving the lemma reduces to proving that

Ep(N) =


Op

(
Np−3

)
if p > 3

O (log N) if p = 3

Op (1) if 1 < p < 3

.

For 0 < u 6 1/2, the inequality

1
sinp (πu)

− 1
(πu)p 6

(πu)p − sinp (πu)
(πu)p sinp (πu)

= Op (1)
up
(
1−

(
1 + O

(
u2
))p)

u2p
= Op

(
u2−p

)
immediately leads to the two estimates

(2.1) | sinNπu|p
( 1

sinp πu
− 1

(πu)p

)
= (Nπu)p

Op

(
u2−p

)
= Op

(
Npu2

)
and

(2.2) | sinNπu|p
( 1

sinp πu
− 1

(πu)p

)
= 1 ·Op

(
u2−p

)
= Op

(
u2−p

)
.

If 1 < p < 3, from estimate (2.2) we have

Ep(N) 6
∫ 1/2

0

Op

(
u2−p

)
du = Op (1) ;

if p = 3, from estimates (2.1) and (2.2) we have

E3(N) 6
∫ 1/N

0

O
(
N3u2

)
du +

∫ 1/2

1/N

O
(
u2−3

)
du

6 O
(
N3N−3

)
+ O (log N) = O (log N) ;
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and if p > 3, again from estimates (2.1) and (2.2) we have

Ep(N) 6
∫ 1/N

0

Op

(
Npu2

)
du +

∫ 1/2

1/N

Op

(
u2−p

)
du

= Op

(
NpN−3

)
+ Op

(
N−(3−p)

)
= Op

(
Np−3

)
.

Thus the lemma is proved. �

2.3. We now proceed to prove Theorem 1.1 in detail. We find it con-
venient to split the proof into eight steps. The first three steps deal with
concentration at 1/q and the remaining five steps with the general case.

First Step. Concentration at 1/q: lower estimation of numerator.
Let ω = ω(q) be a constant in (0, 1/2) such that ωq is an integer. We

will estimate

(2.3)
(∫

J

|$(x)|pdx
/∫ 1

0

|$(x)|pdx

)1/p

,

where $(x) := Dmq(qx)Dωq(x).

We begin with the numerator, N, of (2.3).

Suppose that | 1q − x| 6 1
mq , and let δ := 1

q − x. Then, since sinx has a
bounded derivative,

|Dωq(x)| = |Dωq(
1
q
− δ)| =

∣∣∣∣∣ sinπω + O (δq)
sin π

q + O(δ)

∣∣∣∣∣
=

∣∣∣∣∣ sinπω

sin π
q

∣∣∣∣∣+ O(1) =

∣∣∣∣∣ sinπω
π
q

∣∣∣∣∣+ O(1),

since m > q. Using this and Minkowski’s inequality in the form

‖F + G‖Lp > ‖F‖Lp − ‖G‖Lp ,

we have

(2.4) N >

(∫
J

|Dmq(qx)|p
(q sinπω

π

)p

dx

)1/p

−O

((∫
J

|Dmq(qx)|pdx
)1/p

)
.

Substitute u = qx to get

(2.5) N >

{(
sinπω

π

)
q1−1/p −O

(
q−1/p

)}(∫ 1/m

−1/m

|Dmq(u)|pdu

)1/p

.

TOME 57 (2007), FASCICULE 5
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Define ∆ :=
(∫ 1

0
|Dmq(u)|pdu

)1/p

. Since Dmq is even, we may write∫ 1/m

−1/m

|Dmq(u)|pdu = ∆p − 2
∫ 1/2

1/m

|Dmq(u)|pdu.

Use the estimates |sinmqπu| 6 1 and |sinπu| > 2u to control the last
integral, thereby obtaining the estimate∫ 1/m

−1/m

|Dmq(u)|pdu = ∆p −O
(
mp−1

)
.

By the lemma, ∆p ' δpq
p−1mp−1, which together with (2.5) implies

(2.6) N > ∆
{(

sinπω

π

)
q1−1/p −O

(
q−1/p

)}{
1−O

(
q−1+1/p

)}
,

or, more simply,

(2.7) N > ∆
(

sinπω

π

)
q1−1/p {1− o(1)} .

Second Step. Concentration at 1/q: upper estimation of denominator.
Passing now to the estimate of the denominator, D, of (2.3), we have

(2.8) Dp =
∫ 1

0

|Dmq(qx)|p |Dωq(x)|p dx.

We now estimate this in great detail. We decompose

Dp =
q−1∑
j=0

∫ j+1
q

j
q

|Dmq(qx)|p |Dωq(x)|p dx.

Let x = y + j
q , dy = dx, to get

Dp =
q−1∑
j=0

∫ 1
q

0

|Dmq(qy + j)|p
∣∣∣∣Dωq

(
y +

j

q

)∣∣∣∣p dy.

Since |Dmq(qy + j)| = |Dmq(qy)| for any integer j,

Dp =
q−1∑
j=0

∫ 1
q

0

|Dmq(qy)|p
∣∣∣∣Dωq

(
y +

j

q

)∣∣∣∣p dy.

Let t = qy to get

Dp =
1
q

q−1∑
j=0

∫ 1

0

|Dmq(t)|p
∣∣∣∣Dωq

(
t

q
+

j

q

)∣∣∣∣p dt.
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Interchange sum and integral:

(2.9) Dp =
∫ 1

0

|Dmq(t)|p
1
q

q−1∑
j=0

∣∣∣∣Dωq

(
t

q
+

j

q

)∣∣∣∣p dt.

Replace the sum by its supremum over all t ∈ [0, 1] which is the same as

sup
x∈[0, 1

q )

q−1∑
j=0

∣∣∣∣Dωq

(
x +

j

q

)∣∣∣∣p ,

so recalling that ∆p =
∫ 1

0
|Dmq(t)|p dt, we have

Dp 6 ∆p 1
q

sup
x∈[0, 1

q )

q−1∑
j=0

∣∣∣∣Dωq

(
x +

j

q

)∣∣∣∣p .

Since Dωq is even and has period 1,

Dp 6 2∆p 1
q

sup
x∈[0, 1

q )

q−1
2∑

j=0

∣∣∣∣Dωq

(
x +

j

q

)∣∣∣∣p .

Break the sum into two pieces using the standard estimates

|Dωq(x + j/q)| 6 ωq

when j 6 b1/ωc and

sup
x∈[0, 1

q )

∣∣∣∣Dωq(x +
j

q
)
∣∣∣∣ 6 1/ sin

(
πj

q

)
6

q

2j

when j ∈ [b1/ωc+ 1, (q − 1)/2] . We have

Dp 6 2∆p 1
q


b 1

ω c∑
j=0

(ωq)p +

q−1
2∑

j=b 1
ω c+1

(
q

2j

)p


6 2∆p 1

q

{(⌊
1
ω

⌋
+ 1
)

(ωq)p +
(q

2

)p
∫ ∞

b 1
ω c

dx

xp

}

= 2∆pqp−1ωp

{(⌊
1
ω

⌋
+ 1
)

+

⌊
1
ω

⌋
p− 1

(
1
2

)p
(

1
ω⌊
1
ω

⌋)p}

= 2∆pqp−1ωp

{⌊
1
ω

⌋
+ 1 +

⌊
1
ω

⌋
ρ

p− 1

}
,

where

ρ =
(

1
2

1/ω

b1/ωc

)p

.
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Third Step. Concentration at 1/q: conclusion.
Now combine this estimate with estimate (2.7) to get

N

D
>

∆
(

sin πω
π

)
q1−1/p {1− o(1)}(

2∆pqp−1ωp
{⌊

1
ω

⌋
+ 1 + b 1

ω cρ
p−1

})1/p

or
N

D
>

(
sin πω

πω

)
{1− o(1)}(

2
{⌊

1
ω

⌋
+ 1 + b 1

ω cρ
p−1

})1/p
.

The numbers ω = ω (q) appearing in the above two steps are, by construc-
tion, rational numbers. However it is clear, from their definition, that as q

varies these ω (q) are everywhere dense in [0, 1/2] . (Cf. also eighth step of
this proof.) As will be made explicit below, this estimate, when extended to
general intervals, is sufficient to prove Theorem 1.1. (Notice that ρ < (3/8)p

since ω < 1/2.)

Fourth Step. General case: heuristic search for the concentrated expo-
nential sum.

From now on, our goal is to extend the above estimate (of the third step)
to any interval. This fourth step is purely heuristic.

Given any interval J ⊂]0, 1[, we can find q (and in fact infinitely many
such q’s) so that for some integer k ∈ [1, q[, [k

q −
1

qm , k
q + 1

qm ] ⊂ J, where
m := q. (This choice of m is for technical reasons that will become clear in
the eighth step of the proof.) It is convenient to pick q prime, which implies
that k and q are relatively prime. Hence there exists a unique pair (a, b) of
integers such that

(2.10) ak − bq = 1, (0 < a < q and 0 < b < k)

i.e., (the conjugate class of) a is the multiplicative inverse of k in the finite
field Zq = GF (q) . Multiplication by a, when reduced modulo q, defines a
bĳection α from {0, 1, . . . , q − 1} to itself. Furthermore, α(k) = 1. For the
sake of this heuristic argument, temporarily suppose that (as previously)
ω is chosen so that ωq is an integer. (In fact, in the rigorous argument
below, we shall choose ω according to another criterion, so that ωq will
not be an integer, but instead of ωq we shall use the integer dωqe . Now
the idempotent Dωq(ax) behaves very much like the idempotent Dωq(x),
except that the former does at k/q what the latter does at 1/q. Since
Dmq(qx) is constant and large on the set

{
0
q , 1

q , 2
q , . . . , q−1

q

}
, and Dωq(ax)

restricted to this set takes on the same set of values as Dωq(x) did, but
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has its maximum at k/q (instead of at 1/q); it seems reasonable that,
the idempotent Dmq(qx)Dωq(ax) should work here. The definition of the
idempotent G(x) analyzed below was motivated by these considerations.

Fifth Step. General case: the desired concentrated exponential sum.
Let E be a subset of T of positive measure and let ε > 0 be given. First

we will find an integer Q, and an η = η (Q, ε) > 0; then an interval J of the
form J =

[
k
q −

1
mq , k

q + 1
mq

]
so that |J ∩ E| > (1− η) |J |; and finally we

will define an idempotent f depending on k and Q which is ε-close to being
sufficiently concentrated on first J and then E. Actually in what follows we
will always take m to be equal to q, but we leave m in the calculations since
some increase of the concentration constants may be available by taking
other values of m.

First we define η. The function f will have the form

f(x) = G(x)
mQ−1∑
n=0

e (nqx) .

Since G will turn out to be a sum of 6 q exponentials (see (2.13), ‖G‖∞ 6 q;
so the decomposition J = (J r E) ∪ (J ∩ E) allows∫

J\E
|f |p dx 6 η |J | (‖f‖∞)p 6 η

2
mq

(qmQ)p = (ηQ) 2qp−1 (mQ)p−1
.

In the sixth step below, we will get∫
J

|f |p dx >
( sinπω

π

)p

qp−1δp (mQ)p−1 + o
(
qp−1 (mQ)p−1

)
as long as q is large enough. Pick η (Q, ε) so small that from this will follow∫

J∩E

|f |p dx =
∫

J

|f |p dx−
∫

J\E
|f |p dx(2.11)

> (1− ε)p
( sinπω

π

)p

qp−1δp (mQ)p−1
.

Now that we know how to choose η, we show how to find J = J (E, η).
We will use m = q while choosing J . Almost every point ξ has the property
that there are infinitely many primes q and integers k for which

(2.12)
∣∣∣∣ξ − k

q

∣∣∣∣ < 1
q2

. (See [8].)

We may assume that E has an irrational point of density ξ for which
inequality (2.12) holds for infinitely many primes q. Suppose that the prime
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q is so large that K =
[
ξ − 2

q2 , ξ + 2
q2

]
satisfies |K�E| 6 η

2 |K| and such

that condition (2.12) holds. With J =
[

k
q −

1
q2 , k

q + 1
q2

]
, we have

|J�E| 6 |K�E| 6 η

2
|K| = η

2
4
q2

= η
2
q2

= η|J |,

so that |J ∩ E| > (1− η) |J |, as required.
Let a be (uniquely) defined by (2.10), which in turn uniquely defines the

bĳection from {0, 1, . . . , q − 1} into itself (reduction modulo q of multipli-
cation by a). We have α (r) = ra − sq where s is the largest (necessarily
non-negative) integer such that sq 6 ra. This leads us to consider the fol-
lowing sets Ej , j = 1, 2, . . .. For each integer j > 0 let Ej denote the set of
those r ∈ {0, 1, . . . , q − 1} such that α (r) = ra − jq. A priori the Ej are
pairwise disjoint, and it is straightforward to check that

Ej =

{
{r ∈ N : tj 6 r < tj+1} if 0 6 j < a

∅ if j > a
,

where {tj} is the (strictly increasing) finite sequence of integers defined by
t0 := 0, tj = djq/ae if 0 < j < a, and tj = q if j = a.

Thus {Ej}06j<a is a partition of {0, 1, . . . , q − 1} , and we have α (r) =
ra− jq when r ∈ Ej .

Now pick ω ∈ ]0, 1/2[ so that ωa is an integer ` at our disposal (with
the obvious constraint 0 < ` < a/2). Instead of the “heuristic” idempotent
Dωq(x) suggested in the Fourth Step above, we now consider the idempo-
tent

(2.13) G(x) :=
t`−1∑
r=0

e(α(r)x),

where, in view of the above calculations, t` = d`q/ae = dωqe . To make
good use of this G(x), we now need to perform a long calculation:

G(x) =
`−1∑
j=0

tj+1−1∑
r=tj

e(α(r)x) =
`−1∑
j=0

tj+1−1∑
r=tj

e((ra− jq)x)

=
`−1∑
j=0

e(−jqx)
tj+1−tj−1∑

s=0

e((sa + tja)x)

=
`−1∑
j=0

e(−jqx)e(tjax)
tj+1−tj−1∑

s=0

e(sax)
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=
`−1∑
j=0

e((tja− jq)x)
(e((tj+1 − tj)ax)− 1

e(ax)− 1

)

=
1

e(ax)− 1

`−1∑
j=0

e(−jqx)
(
e(tj+1ax)− e(tjax)

)

=
1

e(ax)− 1

(∑̀
j=1

e(−(j − 1)qx)e(tjax)−
`−1∑
j=0

e(−jqx)e(tjax)
)

=
1

e(ax)− 1

(∑̀
j=1

e(−jqx)e(qx)e(tjax)−
`−1∑
j=0

e(−jqx)e(tjax)
)

=
1

e(ax)− 1

{`−1∑
j=1

e(−jqx)e(tjax)
(
e(qx)− 1

)
+ e(−`qx)e(qx)e(t`ax)− 1

}
=

e(qx)− 1
e(ax)− 1

{`−1∑
j=1

e(−jqx)
(
e(tjax)− 1

)
+

`−1∑
j=1

e(−jqx)
}

+
1

e(ax)− 1
{
e(t`ax)

(
e(−`qx)e(qx)− 1

)
+ e(t`ax)− 1

}
=

e(qx)− 1
e(ax)− 1

{`−1∑
j=1

e(−jqx)
(
e(tjax)− 1

)
+ e(−qx)

e(−(`− 1)qx)− 1
e(−qx)− 1

}
+

1
e(ax)− 1

{
e(t`ax)

(
e(−(`− 1)qx)− 1

)
+ e(t`ax)− 1

}
=

e(qx)− 1
e(ax)− 1

{`−1∑
j=1

e(−jqx)
(
e(tjax)− 1

)}

+
e(qx)− 1
e(ax)− 1

e(−qx)
e(−(`− 1)qx)− 1

e(−qx)− 1

+ e(t`ax)
(e(−(`− 1)qx)− 1

e(ax)− 1

)
+

e(t`ax)− 1
e(ax)− 1

=
e(qx)− 1
e(ax)− 1

{`−1∑
j=1

e(−jqx)
(
e(tjax)− 1

)}

+
e(−(`− 1)qx)− 1

e(ax)− 1

(
−1 + e(t`ax)

)
+

e(t`ax)− 1
e(ax)− 1
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=
e(qx)− 1
e(ax)− 1

{`−1∑
j=1

e(−jqx)
(
e(tjax)− 1

)}

+
e(t`ax)− 1
e(ax)− 1

(
e(−(`− 1)qx)− 1 + 1

)
.

Hence we may write

G(x) =
e(qx)− 1
e(ax)− 1

`−1∑
j=1

e(−jqx) (e(tjax)− 1)

+
e(t`ax)− 1
e(ax)− 1

e(−(`− 1)qx) =: G1 + G2.

Let S := {qn+α(r) : r = 0, 1, . . . , t`− 1 and n = 0, 1, . . . ,mq− 1}. Also let

f(x) :=
∑
j∈S

e(jx) =
mQ−1∑
n=0

e(nqx)G(x).

This will be the desired concentrated sum of exponentials. Thus for each
p > 1, we must estimate the ratio

(2.14) r :=
(∫

J∩E

|f(x)|p dx

/∫ 1

0

|f(x)|p dx

)1/p

.

Sixth Step: General case: lower estimation of the numerator.
We now estimate the numerator of the ratio (2.14).

As in the fourth step, we may assume without loss of generality that J is
centered at k

q and has length 2
mq , where m = q. If x ∈ J, write x =: k

q + y,

so that |y| 6 1
mq . Then

G(x) =
t`−1∑
r=0

e(
r

q
)e(α(r)y),

so that

G(x) =
t`−1∑
r=0

e(
r

q
) +

t`−1∑
r=0

e(
r

q
)O(

1
m

) =
t`−1∑
r=0

e(
r

q
) + O(

t`
m

)

=
e(t`/q)− 1
e(1/q)− 1

+ O(
ωq

m
).

Thus on J we have

|G(x)| =
∣∣∣∣ sinπ (t`/q)
sinπ (1/q)

∣∣∣∣+ O(
ωq

m
) =

∣∣∣∣ sinπ (ω + (dωqe − ωq) /q)
sinπ (1/q)

∣∣∣∣+ O(
ωq

m
)

=
sinπω

π
q + O(1)

ANNALES DE L’INSTITUT FOURIER



EXPONENTIAL SUMS WITH COEFFICIENTS 0 OR 1 1393

since m > q. Also
∑mQ−1

j=0 e(qjx) = DmQ(qx), so applying Minkowski’s
inequality to the numerator in the ratio (2.14), we have(∫

J

|f(x)|p dx

)1/p

=
(∫

J

∣∣∣∣ sinπω

π
q + O(1)

∣∣∣∣p |DmQ(qx)|p dx

)1/p

>
sinπω

π
q

(∫
J

|DmQ(qx)|p dx

)1/p

−O

(∫
J

|DmQ(qx)|p dx

)1/p

.

The same reasoning that led to equation (2.6) above now produces the
following estimate for the numerator of (2.14):(∫

J

|f(x)|p dx

)1/p

>
sinπω

π
q1−1/p∆−O(q−1/p∆),

where ∆ =
(∫ 1

0
|DmQ(u)|p du

)1/p

. Taking (2.11) into account brings us to

(2.15)
(∫

J∩E

|f |p dx

)1/p

> (1− ε)
sinπω

π
q1−1/pδ1/p

p (mQ)1−1/p .

Seventh Step. General case: upper estimation of the denominator.
We now estimate the denominator of the ratio (2.14). To do this we will

need the following lemmas.

Lemma 2.2. — Let p > 1, 0 < θ < 1, and

Kθ,N =
{
(x, y) ∈ Z2 : x + θ−1y 6 N,x > 0, y > 0

}
.

Then for arbitrary N > 4,∫ 1

0

∫ 1

0

∣∣∣∣ ∑
(m,n)∈Kθ,N

e(mx + ny)
∣∣∣∣pdxdy 6 CpN

2p−2

uniformly with respect to θ and N .

See [3] for the proof of this. That proof extends (and is much indebted
to) work of Yudin and Yudin [15] for p = 1 to higher values of p. (Cf. [13].)

Lemma 2.3. — Let p > 1, 0 < θ < 1, and

Lθ,N =
{
(x, y) ∈ Z2 : x + θ−1y 6 N,x > 0, y > 0

}
.

Then for arbitrary N > 4,∫ 1

0

∫ 1

0

∣∣∣∣ ∑
(m,n)∈Lθ,N

e (mx + ny)
∣∣∣∣pdxdy 6 CpN

2p−2

uniformly with respect to θ and N .
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Proof. — This is immediate from the last lemma because Kθ,N is the
disjoint union of Lθ,N and {(0, n) : n = 0, 1, . . . , bθNc}; and by Lemma 2.1,∫ 1

0

∫ 1

0

∣∣∣∣bθNc∑
n=0

e (0x + ny)
∣∣∣∣pdxdy =

∫ 1

0

∣∣∣∣DbθNc (y)
∣∣∣∣pdy � Np−1 < N2p−2.

�

To study the denominator of the ratio (2.14), because of Minkowski’s
inequality

(2.16) ‖f‖p 6

∥∥∥∥ sinπmqQx

sinπqx
G1

∥∥∥∥
p

+
∥∥∥∥ sinπmqQx

sinπqx
G2

∥∥∥∥
p

=: A + B,

it is enough to estimate these last two terms separately. For the first of
these we have

Ap =
∫ 1

0

∣∣∣∣ sinπmqQx

sinπqx

∣∣∣∣p ∣∣∣∣ sinπqx

sinπax

∣∣∣∣p
∣∣∣∣∣
`−1∑
n=1

e(−nqx) (e(tnax)− 1)

∣∣∣∣∣
p

dx

=
∫ 1

0

|sinπmqQx|p
∣∣∣∣∣
`−1∑
n=1

e(−nqx)
e(tnax)− 1

sinπax

∣∣∣∣∣
p

dx

=
∫ 1

0

|sinπmqQx|p
∣∣∣∣∣
`−1∑
n=1

e(−nqx)Dtn (ax)

∣∣∣∣∣
p

dx

6
∫ 1

0

∣∣∣∣∣
`−1∑
n=1

e(−nqx)Dtn (ax)

∣∣∣∣∣
p

dx

=
q−1∑
j=0

∫ (j+1)/q

j/q

∣∣∣∣∣
`−1∑
n=1

e(−nqx)Dtn (ax)

∣∣∣∣∣
p

dx

=
q−1∑
j=0

∫ 1/q

0

∣∣∣∣∣
`−1∑
n=1

e(−nx− ajn)Dtn (ax + aj/q)

∣∣∣∣∣
p

dx

=
q−1∑
j=0

∫ 1/q

0

∣∣∣∣∣
`−1∑
n=1

e(−nx)Dtn (ax + aj/q)

∣∣∣∣∣
p

dx

=
q−1∑
j=0

∫ 1/q

0

∣∣∣∣∣
`−1∑
n=1

e(−nx)Dtn (ax + j/q)

∣∣∣∣∣
p

dx

=
1
q

q−1∑
j=0

∫ 1

0

∣∣∣∣∣
`−1∑
n=1

e(−ny/q)Dtn (ay/q + j/q)

∣∣∣∣∣
p

dy
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where the last five steps are justified by the identity

[0, 1] = ∪q−1
j=0 [j/q, (j + 1) /q] ,

the substitutions x → x+ j/q, the periodicity of e(x) being 1, the fact that
t → at is a one to one correspondence on Zq, and the substitution x = y/q.
Summarizing,

Ap 6
1
q

q−1∑
j=0

∫ 1

0

|Py (ay/q + j/q)|p dy

where Py(x) =
∑`−1

n=1 e(−ny)Dtn (x). But a theorem of Marcinkiewicz and
Zygmund [16] asserts

1
q

q−1∑
j=0

|Py (ay/q + j/q)|p �
∫ 1

0

|Py(x)|p dx.

We may now apply Lemma 2.3 since the index set of Py (x) is Lθ,N with
θ = a/q and N = (`− 1) q/a to get

Ap �
∫ 1

0

∫ 1

0

|Py(x)|p dxdy � q2p−2,

(2.17) A < Cq2−2/p.

Passing to the other term, we have

Bp =
∫ 1

0

∣∣∣∣ sinπmqQx

sinπqx

∣∣∣∣p ∣∣∣∣ sinπt`ax

sinπax

∣∣∣∣p |e(−(`− 1)qx)|p dx

=
∫ 1

0

|DmQ(qx)|p
∣∣Ddωqe(ax)

∣∣p dx.

This is estimated in a very similar way to the way D was estimated above,
but with a couple of twists.

Bp =
q−1∑
j=0

∫ j+1
q

j
q

|DmQ(qx)|p
∣∣Ddωqe(ax)

∣∣p dx.

Let x = y + j
q , dy = dx, to get

Bp =
q−1∑
j=0

∫ 1
q

0

|DmQ(qy + j)|p
∣∣∣∣Ddωqe

(
ay +

ja

q

)∣∣∣∣p dy.

Since |DmQ(qy + j)| = |DmQ(qy)| for any integer j,

Bp =
q−1∑
j=0

∫ 1
q

0

|DmQ(qy)|p
∣∣∣∣Ddωqe

(
ay +

ja

q

)∣∣∣∣p dy.
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Let t = qy to get

Bp =
1
q

q−1∑
j=0

∫ 1

0

|DmQ(t)|p
∣∣∣∣Ddωqe

(
at

q
+

ja

q

)∣∣∣∣p dt.

Interchange sum and integral:

Bp =
∫ 1

0

|DmQ(t)|p 1
q

q−1∑
j=0

∣∣∣∣Ddωqe

(
at

q
+

ja

q

)∣∣∣∣p dt.

Now as j varies between 0 and q− 1, so does ja, modulo q. Thus the inner
sum of this term may be written as

q−1∑
j=0

∣∣∣∣Ddωqe

(
at

q
+

j

q

)∣∣∣∣p .

The supremum of this over all t ∈ [0, 1] is the same as

sup
x∈[0, 1

q )

q−1∑
j=0

∣∣∣∣Ddωqe

(
x +

j

q

)∣∣∣∣p ,

so recalling that ∆p =
∫ 1

0
|DmQ(t)|p dt, we have

Bp 6 ∆p 1
q

sup
x∈[0, 1

q )

q−1∑
j=0

∣∣∣∣Ddωqe

(
x +

j

q

)∣∣∣∣p .

Since
∣∣Ddωqe

∣∣ is even and has period 1,

Bp 6 2∆p 1
q

sup
x∈[0, 1

q )

q−1
2∑

j=0

∣∣∣∣Ddωqe

(
x +

j

q

)∣∣∣∣p .

Break the sum into two pieces using the standard estimates
∣∣Ddωqe(x)

∣∣ 6
dωqe when j 6

⌊
1
ω

⌋
and,

sup
x∈[0, 1

q )

∣∣∣∣Ddωqe(x +
j

q
)
∣∣∣∣ 6 1/ sin

(
πj

q

)
6

q

2j
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when j ∈ [b1/ωc , (q − 1) /2] . We have

Bp 6 2∆p 1
q


b 1

ω c∑
j=0

dωqep +

q−1
2∑

j=b 1
ω c+1

(
q

2j

)p


6 2∆p 1

q

{
(b1/ωc+ 1) dωqep +

(q

2

)p
∫ ∞

b1/ωc

dx

xp

}

= 2∆pqp−1ωp

{
(b1/ωc+ 1) (dωqe /ωq)p +

b1/ωc
p− 1

(
1
2

)p( 1/ω

b1/ωc

)p}
.

Clearly dωqe / (ωq) 6 2, whence

(2.18) Bp 6 2p+1∆pqp−1ωp

(
b1/ωc+ 1 +

b1/ωc
p− 1

ρ

)
,

where

ρ =
(

1
4

1/ω

b1/ωc

)p

.

Eighth Step. General case: estimation of the ratio.
Combine the last inequality with inequalities (2.15)–(2.18) to obtain

r >
(1− ε)

sinπω

π
q1−1/pδ

1/p
p (mQ)1−1/p

Cq2−2/p + ∆q1−1/pω21+1/p

(
b1/ωc+ 1 +

b1/ωc
p− 1

ρ

)1/p

=
(1− ε)

sinπω

π

C

δ
1/p
p

(
q

mQ

)1−1/p

+ ω21+1/p

(
b1/ωc+ 1 +

b1/ωc
p− 1

ρ

)1/p

+ o(1)

>
(1− ε)

sinπω

π

ε + ω21+1/p
(
b1/ωc+ 1 + b1/ωc

p−1 ρ
)1/p

+ o (1)
,

where we have used ∆ ' δ
1/p
p (mQ)1−1/p. Here finally is the choice of Q:

since q/m 6 1, Q = Q (ε, p) is chosen to make the first term of the denom-
inator less than ε. Now since ε was arbitrary, we can take it to be zero and
then we can take q as large as we need to get rid of the o(1) term. In other
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words,we have

(2.19) Cp >
sinπω/ (πω)

21+1/p
(
b1/ωc+ 1 + b1/ωc

p−1

(
1
4

1/ω
b1/ωc

)p)1/p
.

Since the numbers ω in the right hand side of inequality (2.19) are easily
seen to be everywhere dense in [0, 1/2], this ends the proof of Part I of
Theorem 1.1.

A little more was proved than what was stated in terms of the constant
cp, in fact:

Remark 2.4. — It is possible to get numerical estimates for particular
values of p by picking a value of ω that maximizes the right hand side of this
inequality. For example, if p = 2, then setting ω = .34 produces c2 = .13,

which compares reasonably well with the known fact that C2 = .48 . . . .

Since ω ∈ (0, .5), 1/ω ∈ (2,∞) so that ρ 6 (3/8)p < 1. (In the statement of
the theorem we have very slightly degraded estimate (2.19) by substituting
(3/4)p for ρ.) Hence as p → ∞, the denominator of the right hand side
tends to 1/2 and therefore the right side becomes

1
2

sinπω

πω
which may be made as close to 1 as you like by picking ω small enough.
In other words, as p tends to ∞, cp tends to 1/2. Also our estimate, if
sharp, would show that the constant is O(p− 1) as p ↘ 1, which would be
consistent with our conjecture that concentration fails for L1.

3. Proof of Theorem 1.1; Part II: Cp > c∗p (for all p > 2)

First pick ω = ω(p) so that
sinp πω

ωp−1
= sup

t∈(0,1/2]

sinp πt

tp−1
.

Let ξ be an irrational point of density of E and fix ε > 0. Pick δ > 0 so
small that J := [ξ − δ, ξ + δ](mod 1) satisfies

(3.1) |J\E| < ε|J |.

Set Sθ := {n integer: 1 6 n 6 N, ‖nξ − θ‖ 6 ω
2 } and fθ :=

∑
n∈Sθ

e(nx).
Equation (7) on page 901 of [4] asserts that

(3.2)
∫ 1

0

|fθ(x)|2dθ >

(
sinπω

π

)2

|DN (x− ξ)|2.
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Combining this with Hölder’s inequality,(∫ 1

0

|fθ(x)|pdθ

)1/p(∫ 1

0

1p′dθ

)1/p′

>

(∫ 1

0

|fθ(x)|2dθ

)1/2

,

we get∫ 1

0

|fθ(x)|pdθ >

(∫ 1

0

|fθ(x)|2dθ

)p/2

>

(
sinπω

π

)p

|DN (x− ξ)|p.

Now integrate this in x over J to get∫ 1

0

∫
J

|fθ(x)|pdx dθ >

(
sinπω

π

)p ∫ ξ+δ

ξ−δ

|DN (x− ξ)|pdx(3.3)

=
(

sinπω

π

)p ∫ δ

−δ

|DN (u)|pdu.

Recall from the lemma of Section 2 that∫ 1

0

|DN (u)|pdu = `pN
p−1 + Rp(N),

where `p = (2/π)
∫∞
0
|sinx/x|p dx and

Rp(N) =


Op

(
Np−3

)
if p > 3

O(log N) if p = 3

Op(1) if 1 < p < 3

.

We can now make the estimate∫ δ

−δ

|DN (u)|pdu =
∫ 1/2

−1/2

−2
∫ 1/2

δ

= `pN
p−1 − 2

πp

∫ π/2

δ

| sinNπu|p/updu + Rp(N)

> `pN
p−1 − 2

πp

∫ π/2

δ

1/updu + Rp(N)

= `pN
p−1 − 2

(p− 1)πp
(1/δ)p−1 + Rp(N).

Putting this into estimate (3.3) yields∫ 1

0

∫
J

|fθ(x)|pdxdθ

>

(
sinπω

π

)p(
`pN

p−1 − 2
(p− 1)πp

(1/δ)p−1 + Rp(N)
)

.

TOME 57 (2007), FASCICULE 5



1400 B. ANDERSON, J. M. ASH, R. L. JONES, D. G. RIDER & B. SAFFARI

Hence there must be at least one θ for which

(3.4)
∫

J

|fθ(x)|pdx >

(
sinπω

π

)p
(

`pN
p−1 − 2

(p− 1)πp

(
1
δ

)p−1

+ Rp(N)

)
.

Next observe that

(3.5) cardSθ = Nω + ε(N)N,

where ε(N) → 0 as N → ∞. (To see this one can, for example, trace
through the proof of Weyl’s theorem given on pages 11–13 of Körner’s
Fourier Analysis [11]. When the interval [2πa, 2πb] appearing there is trans-
lated, the functions f+ and f− are also. But translating a function amounts
to multiplying its Fourier coefficients by factors of modulus 1, whence it is
easy to see that all of the estimates depend only on b − a and not on the
value of a.) It follows that∫ 1

0

|fθ(x)|pdx =
∫ 1

0

|fθ(x)|p−2|fθ(x)|2dx

6 (Nω + ε(N)N)p−2
∫ 1

0

|fθ(x)|2dx

= (Nω + ε(N)N)p−2 (Nω + ε(N)N)

= (Nω)p−1 + ε1(N)Np−1,

where ε1(N) → 0 as N →∞. Thus

(3.6)
∫ 1

0

|fθ(x)|pdx 6 (Nω)p−1 + ε1(N)Np−1.

It also follows from relations (3.1) and (3.5) that∫
E

|fθ(x)|pdx
/∫ 1

0

|fθ(x)|pdx >
∫

J∩E

|fθ(x)|pdx
/∫ 1

0

|fθ(x)|pdx

=
∫

J

|fθ(x)|pdx
/∫ 1

0

|fθ(x)|pdx−
∫

J\E
|fθ(x)|pdx

/∫ 1

0

|fθ(x)|pdx.

Denote the last two ratios by I and II respectively. We complete the
proof by showing that I is big and that II is small. To estimate I we use
relations (3.4) and (3.6).

I >
((sinπω)/π)p (

`pN
p−1 − 2(p− 1)−1π−p(1/δ)p−1 + Rp(N)

)
(Nω)p−1 + ε1(N)Np−1

=
sinp πω

πpωp−1

(
`p − 2(p− 1)−1π−p

(
1

Nδ

)p−1
)

+ ε2(N),
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where ε2(N) → 0 as N → ∞. Since [0, 1] ⊃ J, we may use the estimate
(3.4) for the denominator of II, obtaining

II <
ε|J | supx |fθ(x)|p

((sinπω)/π)p
Np−1

(
`p − 2(p− 1)−1π−p (1/(Nδ))p−1 + o(1)

)
so using |J | = 2δ and the estimate (3.5), we obtain

II <
2εNδω

(sinp πω) π−pω1−p
(
`p − 2(p− 1)−1π−p (1/(Nδ))p−1

) + ε3(N),

where ε3(N) → 0 as N → ∞. Combine the estimates for I and II to
achieve

C∗
p >

sinp πω

πpωp−1

(
`p − 2(p− 1)−1π−p (1/(Nδ))p−1

)
− 2εNδω

(sinp πω) π−pω1−p
(
`p − 2(p− 1)−1π−p (1/(Nδ))p−1

) − ε3(N).

Given any η > 0, find M so large that 2(p − 1)−1π−p (1/(Nδ))p−1
< η,

whenever Nδ > M. Then pick ε > 0 so small that
2ε(M + 1)ω

(sinp πω) π−pω1−p (`p − η)
< η.

Next pick δ > 0 so small that estimate (3.1) holds for this ε. Finally choose
N so that M < Nδ < M + 1. It then follows from our last estimate for C∗

p

that (
C∗

p

)p
>

sinp πω

πpωp−1
(`p − η)− η − ε3(N).

Since η was arbitrary and since increasing M also shrinks ε3(N),(
C∗

p

)p
>

sinp πω

πpωp−1
`p =

sinp πω

πpωp−1

2
π

∫ ∞

0

∣∣∣ sinx

x

∣∣∣pdx.

Thus Part II of Theorem 1.1 is proved.

4. Does concentration fail when p = 1?

Conjecture 4.1. — Concentration fails for L1. More specifically, there
is an absolute constant D such that if J = [1q −

1
mq , 1

q + 1
mq ], where m > q2,

then for every idempotent f,

(4.1)
∫

J

|f |dx

/∫ 1

0

|f |dx 6
D

ln q
.
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Define a special idempotent to be a idempotent of the form Dk(lx)Dm(x)
for positive integers k, l,and m. Our main reason for believing this conjec-
ture is that (1) estimates of the type made in Section 2 above show that the
conjecture holds for all special idempotents and (2) the special idempotents
do provide both the correct asymptotic behavior at p = ∞ and also the
exact maximizing constant when p = 2.

To see that this last point is so, we must sharpen the estimates that we
made in Section 2 above. Set p = 2 and use the exact calculation∫ 1

0

|Dmq(qx)Dωq(x)|2dx = mωq2

for the denominator in the quantity (2.3), estimate the numerator as was
done in Section 2, and then replace dmq by its exact value mq; then our
estimate for (2.3) is improved to

mq ((sinπω) /π)2 q

mq · ωq
=

sin 2πω

π · πω
,

which shows that, for the appropriate choice of ω, the best possible constant
is achievable even if the supremum is taken only over the small subclass of
special idempotents.

Conjecture 4.1 is supported even more strongly by evidence that the
following conjecture might be true.

Conjecture 4.2. — Let ℘n :=
{∑n−1

k=0 εke(kx) : εk is 0 or 1
}
. Then

there is an absolute constant c such that for every n,

sup
f∈℘n

∫ 1
q + 1

mq

1
q−

1
mq

|f(x)|dx
/∫ 1

0

|f(x)|dx

6 c · sup
f ∈ ℘n

f special

∫ 1
q + 1

mq

1
q−

1
mq

|f(x)|dx
/∫ 1

0

|f(x)|dx.

We should remark that this conjecture is trivial when n 6 2, since the
smallest idempotent that is not special is e(0x)+e(1x)+e(3x). It is easy to
see that Conjecture 4.2 easily implies Conjecture 4.1. Supporting numerical
evidence for Conjecture 4.2 consists primarily of the fact that for those
values of q we have looked at, the vast majority of the ”best” functions
(i.e. functions which produced the largest ratio) were special. (If this were
always the case, Conjecture 4.2 would hold with c = 1, which would be a
spectacular result.) However, there are some non-special functions which
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do beat out the special functions for certain values of n, hence the need
for the constant c. For instance, when q = 6 the special functions were not
always found to be the best. In particular, the function

f = e(0x) + e(1x) + e(5x) + e(6x) + e(7x) + e(12x)

produces the largest ratio for n 6 13, yet this is not a special function. But
the best special function for n 6 13 is

D2(6x)D3(x) = e(0x) + e(1x) + e(2x) + e(6x) + e(7x) + e(8x),

whose ratio is only .98 of the ratio produced by f . Table 1 lays out the
smallest values of c observed for various values of q. It should be noted

q c n’s studied minimum c at best projection at highest n
2 1 3,. . . ,14 – D8(2x)
3 1 3,. . . , 15 – D6(3x)
4 1 3,. . . ,16 – D2(x)D4(4x)
5 .87 3,. . . ,16 n=15 D7(x)(1− e(2x) + e(4x))
6 .98 3,. . . ,18 n=13 D3(x)D3(6x)
7 .87 3,. . . ,16 n=15 D2(x)D3(7x)
8 .97 3,. . . ,22 n=18 D4(x)D3(8x)
10 .98 3,. . . ,22 n=22 D3(x)(1+e(9x)+e(19x))+e(12x)
12 1 3,. . . ,20 – D6(x)D2(12x)
16 1 3,. . . ,20 – D6(x)D2(15x)
32 1 3,. . . ,16 – D15(x)

Table 4.1. Some observed upper bounds for c

that some values of q were studied to larger values of n than others. Clearly,
the computation time is exponential in n, so going up to say n = 22 amounts
to computing 222 ratios of integrals.

Acknowledgment. — We thank the referee for many improvements. In
particular, he suggested Lemma 2.2 and explained to us how to use it to
guarantee concentration on sets of positive measure, rather than just on
intervals, when 1 < p < 2.
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