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LOGARITHMIC SURFACES AND HYPERBOLICITY

by Gerd DETHLOFF & Steven S.-Y. LU (*)

Abstract. — In 1981 J. Noguchi proved that in a logarithmic algebraic man-
ifold, having logarithmic irregularity strictly bigger than its dimension, any entire
curve is algebraically degenerate.

In the present paper we are interested in the case of manifolds having logarithmic
irregularity equal to its dimension. We restrict our attention to Brody curves, for
which we resolve the problem completely in dimension 2: in a logarithmic surface
with logarithmic irregularity 2 and logarithmic Kodaira dimension 2, any Brody
curve is algebraically degenerate.

In the case of logarithmic Kodaira dimension 1, we still get the same result
under a very mild condition on the Stein factorization map of the quasi-Albanese
map of the log surface, but we show by giving a counter-example that the result is
not true any more in general.

Finally we prove that a logarithmic surface having logarithmic irregularity 2
admits certain types of algebraically non degenerate entire curves if and only if its
logarithmic Kodaira dimension is zero, and we also give a characterization of this
case in terms of the quasi-Albanese map.

Résumé. — J. Noguchi a démontré en 1981 que toute courbe entière est algébri-
quement dégénérée dans une variété algébrique logarithmique ayant une irrégularité
logarithmique strictement plus grande que sa dimension.

Nous nous intéressons ici à des variétés dont l’irrégularité logarithmique est égale
à la dimension. Nous nous restreignons au cas des courbes de Brody, pour lequel
nous obtenons une solution complète du problème en dimension 2 : toute courbe de
Brody dans une surface logarithmique ayant une irrégularité logarithmique égale
à 2 et de dimension de Kodaira logarithmique égale à 2 est algébriquement dégé-
nérée.

Nous obtenons encore le même résultat pour les variétés de dimension de Kodaira
logarithmique égale à 1, sous une condition très faible portant sur la factorisation de
Stein de l’application quasi-Albanese de la surface logarithmique. Nous démontrons
également, par un contre-exemple, que le résultat ne tient plus sans cette condition.

Nous prouvons finalement qu’une surface logarithmique ayant une irrégularité
logarithmique égale à 2 admet un certain type de courbes entières algébriquement
non dégénérées si et seulement si leur dimension de Kodaira logarithmique est
égale à zéro ; nous donnons également une caractérisation de ce cas en termes de
l’application quasi-Albanese.

Keywords: Classification of logarithmic surfaces, quasi-Albanese, foliations.
Math. classification: 14J29, 32Q45, 14K12, 14K20, 32Q57, 32H25, 53C12, 53C55.
(*) Partially supported by an NSERC grant and the DFG-Leibniz program.
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1. Introduction and results

We first introduce some notations (see Section 2 for the precise defi-
nitions). Let X be a projective manifold and D ⊂ X a normal crossing
divisor. We call the pair (X, D) a log manifold and denote X = X \ D.
It is called a log surface if dim X = 2. Let T ∗

X
be its cotangent bundle

and T
∗
X its log cotangent bundle. We denote by q

X
= dim H0(X, T ∗

X
) its

irregularity and qX = dim H0(X, T
∗
X) its log irregularity. We denote its

log canonical bundle by KX =
∧dim X

T
∗
X = K

X
(D) and its log Kodaira

dimension by κX = κ(X, KX), the L-dimension of KX . We call (X, D)
to be of log general type if κX = dim X . Finally let αX : X → AX be the
quasi-Albanese map. It is a holomorphic map which extends to a rational
map αX : X · · · → ĀX (Iitaka ’76 [16]), where ĀX is some compactification
of AX (see §2.2).

We know by the log-Bloch Theorem (Noguchi ’81 [24]) that for any log
manifold such that qX > dim X , any entire holomorphic curve f : C→ X

is algebraically degenerate (this means f(C) is contained in a proper al-
gebraic subvariety of X ). More generally, by results of Noguchi-Winkel-
mann ’02 [26] one has (defining the log structure and qX on a Kähler
manifold in a similar way as above:

Theorem 1.1 (Noguchi, Noguchi-Winkelmann). — Let X be a com-
pact Kähler manifold and D be a hypersurface in X . If q̄X > dim X , then
any entire holomorphic curve f : C → X is analytically degenerate (this
means contained in a proper analytic subset of X ).

In this paper we are interested in the case of log surfaces (X, D) with
qX = dim X = 2.

The first part of this paper deals with the case of surfaces of log general
type, that is κX = 2. We restrict our attention to Brody curves, this means
entire curves f : C → X with bounded derivative f ′ in X , for which we
resolve the problem completely in the following main theorem of our paper.

Theorem 1.2. — Let (X, D) be a log surface with log irregularity
qX = 2 and with log Kodaira dimension κX = 2. Then every Brody curve
f : C→ X is algebraically degenerate.

The proof and some applications are given in Section 3.

The second part of this paper complements Theorem 1.2.
Let (X,D) be a log surface with log irregularity qX = 2. Let αX :

X · · · → ĀX be the compactified quasi-Albanese map, I its finite set of
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points of indeterminacy and α0 = αX |X\I . In the case of dominant αX ,
we consider the following condition:

(*) For all z ∈ AX and E a connected component of the Zariski clo-
sure of α−1

0 (z) with E ∩ X 6= ∅, any connected component of D

intersecting E is contained in E (i.e. E is a connected component
of E ∪D).

We remark that condition (*) can be expressed intrinsically (see subsec-
tion 4.2) and is implied by the condition that all the fibers of αX : X → AX

are compact. In particular, this condition is much weaker than the proper-
ness of αX .

In the case κX = 1 we have the following result:

Theorem 1.3. — Let (X, D) be a log surface with log irregularity
qX = 2 and with log Kodaira dimension κX = 1. Assume condition (*)
in the case of dominant αX . Then every entire curve f : C → X is alge-
braically degenerate.

The proof and some applications are given in Section 4.
As our counterexample in Proposition 4.7 shows, the additional condi-

tion (*) is necessary for the theorem to hold. Some reflections on our proof
will reveal also that our condition (*) can in fact not be weakened fur-
ther, at least when mild restrictions are imposed, for whose discussion and
generalization to higher dimensions will be relegated to another paper.

Remark 1.4. — It is easily obtained from Hodge theory due to Deligne ’71
[8] (see, for example, Catanese ’84 [7]) that we have, for (X, D) a log surface

(1.1) rankZ NS(X ) > rankZ
{
c1(Di)

}k

i=1
= k − qX + q

X

where D1, . . . , Dk are the irreducible components of D and NS(X ) denotes
the Neron-Severi group of X . This may be deduced from the proof of
Theorem 1.2 (i) of Noguchi-Winkelmann ’02 [26], p. 605. But there does
not seem to be an easy way to profit from this, unless one assumes some
bound on the Neron-Severi group of X .

Connected with this, we would like to mention again the work of Noguchi-
Winkelmann ’02 [26], which deals with the question of algebraic degeneracy
in all dimensions and even with Kähler manifolds, especially with log tori or
with log manifolds having small Neron-Severi groups, under the additional
condition that all irreducible components Di of D are ample. But as can
be seen from the equation (1.1) above, their results never concern the case
of log surfaces with log irregularity qX 6 2.

TOME 57 (2007), FASCICULE 5



1578 Gerd DETHLOFF & Steven S.-Y. LU

We would also like to mention the preprint of Noguchi-Winkelmann-
Yamnoi ’05 [28] that we just received, which deals with the case of algebraic
manifolds whose quasi-Albanese map is proper. More precisely, Noguchi-
Winkelmann-Yamanoi ’05 [28] deals with arbitrary holomorphic curves into
arbitrary dimensional algebraic varieties of general type (this is the essen-
tial case), but only with proper Albanese map. Although we deal entirely
with surfaces and mainly with Brody curves, our result do not require any
condition in the case of log general type and our condition (*), which we use
in the general case, is still much weaker than the condition of properness
of the quasi-Albanese map as can, for example, be seen from the following
simple example: Let X be the complement of a smooth ample divisor D

in an abelian surface X . Then KX = D and so κX = 2. Also qX = q
X

= 2
by equation (1.1). This means that the compactified quasi-Albanese map
is the identity map and so the Albanese map is not proper.

We now give an indication of our methods of proof.
We first discuss the ideas of the proof for Theorem 1.2. We will reduce

the proof of this theorem by a result of McQuillen and ElGoul and by log-
Bloch’s theorem to the claim that under the conditions of Theorem 1.2,
αX ◦ f : C → AX is a translate of a complex one parameter subgroup
of AX .

In the case q
X

= 2, the compactified quasi-Albanese map αX is a mor-
phism and so the claim is trivial. If q

X
< 2, αX can have points of inde-

terminacy so that Brody curves are not preserved by αX in general. But
from value distribution theory, the order of growth of a holomorphic curve
is preserved under rational maps and Brody curves are of order at most 2.
Using this, the key analysis in this proof consists of a detailed study of the
geometry of the quasi-Albanese map (in particular at its points of indeter-
minacy) with respect to f to reduce the order of αX ◦ f to 1 or less. Then
αX ◦ f is either constant or a leaf of a linear foliation on AX . We do this
componentwise where in the case q

X
= 1, we use the fact from Noguchi-

Winkelmann-Yamanoi ’02 [27] that one can choose a metric on ĀX which
lifts to the product metric on the universal cover C × P1 of ĀX . In the
case q

X
= 0 we take rational monomials of the components of αX moti-

vated by arranging residues in a way that allows us to control the points
of indeterminacy of the resulting map with respect to f .

We now discuss our proof for Theorem 1.3. We first prove the analogue
in Proposition 4.3 of the structure theorem of Kawamata for open subsets
of finite branched covers of semi-abelian varieties. We follow essentially the
original ideas of Kawamata but with several new ingredients. For example,
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in the case κX = 1, one needs to observe that even though the quasi-
Albanese map to the semi-abelian variety is not proper, the restriction to
the generic fiber is. In the case κX = 0, we need to observe that a com-
plement of a (singular) curve in a semi-abelian variety is of log general
type unless the curve is a translate of a algebraic subgroup. We reduce this
observation by the addition theorem of Kawamata to the case where the
semi-abelian variety is a simple abelian variety. For Theorem 1.3, the main
observation is that condition (*) is equivalent to a condition on the Stein
factorization of a desingularization of the quasi-Albanese map and that
this allows us to use Proposition 4.3 to conclude that the base of the Iitaka
fibration is hyperbolic.

We remark that we can give an elementary proof of the result of McQuil-
lan and El Goul in the case of linear foliations on AX by using techniques
similar to those given in Bertheloot-Duval ’01 [2].

The first named author would like to thank C.Peters and F.Catanese for
valuable discussions some years ago on configurations of boundary curves
of log surfaces in relation to log 1-forms. Finally we would like to thank the
referee for many suggestions on how to clarify and improve the presentation
of this paper.

2. Some Preliminaries

2.1. Log manifolds and residues of log 1-forms

Let X be a complex manifold with a normal crossing divisor D. This
means that around any point x of X , there exist local coordinates z1, . . . , zn

centered at x such that D is defined by z1z2 · · · z` = 0 in some neighborhood
of x and for some 0 6 ` 6 n. The pair (X, D) will be called a log-manifold.
Let X = X \D.

Following Iitaka ’82 [17], we define the logarithmic cotangent sheaf

T
∗
X = ΩX = Ω(X, log D)

as the locally free subsheaf of the sheaf of meromorphic 1-forms on X ,
whose restriction to X is T ∗X = ΩX (where we identify from now on vector
bundles and their sheaves of sections) and whose localization at x ∈ X is
of the form

(2.1) (T
∗
X)x =

∑̀
i=1

O
X,x

dzi

zi
+

n∑
j=`+1

O
X,x

dzj ,

TOME 57 (2007), FASCICULE 5



1580 Gerd DETHLOFF & Steven S.-Y. LU

where the local coordinates z1, . . . , zn around x are chosen as before. Its
dual, the logarithmic tangent sheaf T X = T (X,− log D), is a locally free
subsheaf of the holomorphic tangent bundle T

X
over X . Its restriction to X

is identical to TX , and its localization at x ∈ X is of the form

(2.2) (T X)x =
∑̀
i=1

O
X,x

zi
∂

∂zi
+

n∑
j=`+1

O
X,x

∂

∂zj
·

Let ω be a log 1-form defined around x, so that by (2.1) we have

(2.3) ωx =
∑̀
i=1

(hi)x
dzi

zi
+

n∑
j=`+1

(hj)xdzj .

Then we call, for i = 1, . . . , `, the complex number (hi)x(x) ∈ C the residue
of ω at x on the local irreducible branch of D given by zi = 0. Since we
do not assume simple normal crossing, we may have several such local
irreducible components for D at x even if D is irreducible. But if X is
compact, it is easy to see that for any (global) irreducible component Dj

of D, the residue is constant on Dj (meaning it is the same for all points
x ∈ Dj). In fact, whether X is compact or not, we have the exact sequence
of sheaves

(2.4) 0→ Ω
X
−→ ΩX

Res
−−→ O

D̂
→ 0,

where D̂ is the normalization of D.

2.2. Quasi-Albanese maps

We first recall the definition and some basic facts on semi-abelian vari-
eties (see Iitaka ’76 [16]).

A quasi-projective variety G is called a semi-abelian variety if it is a
complex commutative Lie group which admits an exact sequence of groups

(2.5) 0→ (C∗)` −→ G
π−→ A→ 0,

where A is an abelian variety of dimension m. An important point in our
analysis is that this exact sequence is not unique, but depends on a choice of
` generators for the kernel of π, which is an algebraic torus of dimension `.

From the standard compactification (C∗)` ⊂ (P1)`, which is equivariant
with respect to the (C∗)` action, we obtain a completion G of G as the (P1)`

fiber bundle associated to the (C∗)` principal bundle G → A. This is a

ANNALES DE L’INSTITUT FOURIER
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smooth compactification of G with a simple normal crossing boundary di-
visor S. The projection map

π : G −→ A

has the structure of a (P1)`-bundle. Here, π and G depend on the choice
of the ` generators that identified our algebraic torus as (C∗)`.

We denote the natural action of G on G on the right as addition. It follows
that the exponential map from the Lie algebra Cn to G is a group homo-
morphism and, hence, it is also the universal covering map of G = Cn/Λ,
where Λ = π1(G) is a discrete subgroup of Cn and n = m + `.

Following Iitaka ’76 [16], we have the following explicit trivialization of
the log tangent and cotangent bundles of G: Let z1, . . . , zn be the standard
coordinates of Cn. Since dz1, . . . , dzn are invariant under the group action
of translation on Cn, they descend to forms on G. There they extend to
logarithmic forms on G along S, which are elements of H0(G, T

∗
G). These

logarithmic 1-forms are everywhere linearly independent on G. Thus, they
globally trivialize the vector bundle T G. Finally, we note that these log
1-forms are invariant under the group action of G on G, and, hence, the
associated trivialization of T G over G is also invariant.

Let now (X,D) be again a log surface and α
X

: X → A
X

the Albanese
map of X (it can be constant if q

X
= 0). Taking into account also the log

1-forms, Iitaka ’76 [16] introduced the quasi-Albanese map αX : X → AX ,
which is a holomorphic map to the semi-abelian variety AX , which comes
equipped with the exact sequence

(2.6) 0→ (C∗)` → AX
π−→ A

X
→ 0

(Iitaka makes a noncanonical choice of ` generators for the algebraic torus
for this construction). We have the commutative diagram

(2.7)

X
α

X

α
X





y

  y















y

π

A

A

X

X

TOME 57 (2007), FASCICULE 5
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Iitaka also proved that αX extends to a rational map αX : X · · · → ĀX ,
and the diagram (2.7) extends to

(2.8)

X
α

X

α
X





y

  y















y

π

A

A

X

X

In general the (P1)`-bundle ĀX
π̄−→ A

X
is not trivial. But Noguchi-

Winkelmann-Yamanoi ’02 [27] observed that the transition functions of
the (P1)`-bundle π : ĀX → AX

(as the structure group (C∗)` can always
be reduced to the subgroup defined by |zi| = 1, i = 1, . . . , `) can be chosen
to be isometries with respect to the product Fubini-Study metric on (P1)`.

Proposition 2.1. — There exists a metric h on ĀX so that the uni-
versal cover map(

Cm × (P1)`, eucl.× product FS
)
→ (ĀX , h)

is a local isometry.

We first consider the case dim X = 2 and q
X

= 0. This means we have
a morphism αX : X → C∗×C∗ extending to a rational map αX : X · · · →
P1 × P1. Let ω ∈ H0(X, T

∗
X) be a log 1-form with residues aj ∈ Z along

the irreducible components Dj of D, j = 1, . . . , k. We define a holomorphic
function

(2.9) Φ : X −→ C∗, Φ(x) = exp
( ∫ x

x0

ω
)
,

where x0 is a fixed point in X. It is well defined since by the condition
q

X
= 0, there are no non trivial periods in X , and since the periods

around the components of the divisor D ⊂ X of the integral have values
which are entire multiples of 2π, and, hence, are eliminated by taking the
exp-function. We claim that this function extends to a rational function
Φ : X · · · → P1: Let P ∈ D1 (resp. P ∈ D1 ∩ D2) and let z1, z2 be local
coordinates around P such that D1 = {z1 = 0} (resp. D1 = {z1 = 0} and
D2 = {z2 = 0}). Then it follows from equation (2.9) that there exists a
holomorphic function h : U(P ) → C∗ on a neighborhood U(P ) of P such
that

(2.10) Φ(z1, z2) = za1
1 h(z1, z2)

(
resp. Φ(z1, z2) = za1

1 za2
2 h(z1, z2)

)
.
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In more detail, if D1 = {z1 = 0} around P , then we have

ω = h1(z)
dz1

z1
+ h2(z)dz2 = a1

dz1

z1
+

h1(z)− a1

z1
dz1 + h2(z)dz2.

By the first Riemann extension theorem, the function (h1(z)− a1)/z1 ex-
tends to a holomorphic function, so we have ω = a1dz1/z1 + ωhol, where
ωhol is a holomorphic form. Now by (2.9) we get

Φ(z) = exp
( ∫ z

x0

ω
)

= exp
( ∫ z

x0

a1
dz1

z1
+ ωhol

)
= exp

(
a1(log z1 + 2πiZ)

)
· exp

(
h̃(z)

)
=

(
exp(log z1 + 2πiZ)

)a1 · exp
(
h̃(z)

)
= za1

1 h(z).

The other equality follows in the same way.

From this we get by the second Riemann extension theorem, GAGA and
by the local description of points of indeterminacy the following.

Proposition 2.2. — The holomorphic map Φ : X → C∗ given by
(2.9) extends to a rational function Φ : X → P1. It is a morphism out-
side the points of intersection of pairs of different irreducible components
D1, . . . , Dk of D. In particular points of indeterminacy never occur at self-
intersection points of a component. More precisely, a point of Dj1∩Dj2 ⊂ X

is in the set I of points of indeterminacy of Φ if and only if aj1 · aj2 < 0,
and Φ(Dj \ I) ≡ 0 (resp. ∞) if and only if the residue aj of ω along Dj

is > 0 (resp. < 0).

Using this we now describe the components of the map

αX =
(
(αX)1, (αX)2

)
: X −→ (C∗)2

in more detail. The following basic facts follow from the exact sequence
(2.4) and duality in Hodge theory, and they can be found for example in
Noguchi-Winkelmann ’02 [26]:

Proposition 2.3. — We can choose the basis ω1, ω2 ∈ H0(X, T
∗
X)

such that the residue aij ∈ Z for all i = 1, 2 and j = 1, . . . , k, where aij is
the residue of ωi along the irreducible component Dj of D. The matrix of
residues so obtained has rank 2:

(2.11)
D1 D2 · · · Dk

ω1 a11 a12 · · · a1k

ω2 a21 a22 · · · a2k

TOME 57 (2007), FASCICULE 5
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and we have, as in (2.9),

(2.12) (αX)i(x) = exp
( ∫ x

x0

ωi

)
,

where x0 is a fixed point in X.

Henceforth, in the case q
X

= 0, we assume that the components of αX

are given by such a choice of basis.

Next we consider the case where dim X = 2 and q
X

= 1. Let x ∈ D be
a point. By diagram (2.8) and the notation thereof, as A

X
is an elliptic

curve, there is a small open neighborhood W of α
X

(x) such that π−1(W ) '
P1 ×W . Let V ⊂ α−1

X
(W ) be a small open ball centered at x in X . Then

on V = V ∩X, αX can be written as

αX = (α
X

,Φ)

where Φ : V → C∗ is as in (2.9) (see Noguchi-Winkelmann ’02 [26]). The
same argument as we gave for Proposition 2.2 gives us:

Proposition 2.4. — The holomorphic map Φ : V → C∗ given by
(2.9) extends to a rational function Φ : V → P1. It is a morphism out-
side the points of intersection of pairs of different irreducible components
D1, . . . , Dk of D. In particular points of indeterminacy never occur at self-
intersection points of a component. More precisely, a point of Dj1∩Dj2 ⊂ X

is in the set I of points of indeterminacy of Φ if and only if aj1 · aj2 < 0,
and Φ(Dj \ I) ≡ 0 (resp. ∞) if and only if the residue aj of ω along Dj

is > 0 (resp. < 0).

2.3. Brody curves, maps of order 2 and limit sets of
entire curves

Let (X, D) be a log manifold and f : C → X be an entire curve. We
recall that f is a Brody curve if the derivative of f with respect to some
(and so any) hermitian metric on X is bounded.

Following Noguchi-Ochiai ’90 [25], we have the characteristic function
Tf (r, ω) =

∫ r

1
dt/t

∫
|z|<t

f∗ω of a holomorphic map f : C→ Y with respect
to a real continuous (1, 1)-form ω on a Kähler manifold Y . If Y is compact
and ωH denotes the (1, 1)-form associated to a hermitian metric H on Y ,
then it is easy to see (see [25], (5.2.19)) that

ρf := lim
r→∞

log Tf (r, ωH)
log r

ANNALES DE L’INSTITUT FOURIER
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is independent of the hermitian metric H. The map f is said to be of
order at most 2 if ρf 6 2. Since the derivative of a Brody curve in the
projective variety X is bounded with respect to hermitian metrics on X ,
Brody curves are easily seen to be of order at most 2. By a classical theorem
of Weierstrass, we get also that a curve f : C → PN of order at most 2
which omits the coordinate hyperplanes can be written in the form (1 :
exp(P1(z)) : · · · : exp(Pn(z))) where the Pi’s are polynomials of degree at
most 2 in the variable z ∈ C.

We now prove that the property of having order at most 2 is preserved
under rational maps (see also [11] for a similar result).

Lemma 2.5. — Let f : C→ PN be a curve of order at most 2 and

R : PN · · · → PM

be a rational map (not necessarily dominant) such that f(C) is not con-
tained in the set of indeterminacy of R. Then the curve R ◦ f : C→ PM is
of order at most 2.

Proof. — Let f = (f0 : · · · : fN ) be a reduced representation and

R = (R0 : · · · : RM )

be a (not necessarily reduced) representation by polynomials R0, . . . , RM

of degree p. Then (
fp
0 : · · · : fp

N : R0 ◦ f : · · · : RM ◦ f
)

is a reduced representation of a curve F : C→ PN+M+1, and without loss
of generality R0 ◦ f 6≡ 0. We have by [25], p. 183,

TF (r, ωFS) =
∫ 2π

0

1
2

log
(
|fp

0 |2 + · · ·+ |fp
N |

2 + |R0 ◦ f |2

+ · · ·+ |RM ◦ f |2
)
dθ + O(1)

6
∫ 2π

0

1
2

log
(
|C|(|fp

0 |2 + · · ·+ |fp
N |

2)
)
dθ + O(1)

=
∫ 2π

0

p

2
log

(
|f0|2 + · · ·+ |fN |2

)
dθ + O(1)

= p · Tf (r, ωFS) + O(1).
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By Noguchi-Ochiai ’90 [25] (5.2.29) and (5.2.30) we get

TR◦f (r, ωFS) 6
M∑

j=1

TRj◦f/R0◦f (r, ωFS)

6 M · TF (r, ωFS) + O(1) 6 M · p · Tf (r, ωFS) + O(1).

From this the lemma follows. �

Finally, we need the definition and some simple observations on the limit
set of an entire curve f : C → X as given by Nishino-Suzuki ’80 [23]
(Proposition 1 on p. 463 and Proposition 3 on p. 466). For r > 0, put
∆c

r = {z ∈ C : |z| > r}. Let f(∆c
r) ⊂ X be the closure (with respect to

the usual topology) of f(∆c
r) in X , and f(∞) :=

⋂
r>0 f(∆c

r). We remark
that f(∞) is exactly the set of all points p ∈ X such that there exists a
sequence (zv)v∈N with |zv| → ∞ and f(zv)→ p.

Proposition 2.6. — Let f : C→ X be as above for a log surface (X,D).

a) f extends to a holomorphic map f̂ : P1 → X if and only if f(∞)
consists of exactly one point.

b) If f(∞) is contained in a proper algebraic subvariety C ⊂ X and is
not a point, then f(∞) is equal to a union of some of the irreducible
components of C.

Lemma 2.7. — For a ∈ C∗, consider the entire curve f : C→ C∗ × C∗,
given by z 7→ (exp(az), exp(z2)). Then f(∞) ⊂ P1×P1 contains {0,∞}×P1.

Proof. — Since f(∞) is closed and since we can change the sequence
(zµ)µ∈N to the sequence (−zµ)µ∈N, it suffices to prove that f(∞) contains
the points (∞, c) with c ∈ C∗. Let c ∈ C∗ fixed and b ∈ C be such that
c = exp b. We consider the four sequences zµ = ±

√
b± 2πiµ, µ ∈ N, where

the four different sequences are obtained by the four different choices of
signs. Then we always have exp(z2

µ) = c, and for the arguments we have
that arg(zµ) converges to one of the numbers 1

4π, 3
4π, 5

4π, 7
4π according to

the choice of signs. Then |azµ| → ∞ and arg(azµ) converges to one of the
numbers arg(a)+ 1

4π, arg(a)+ 3
4π, arg(a)+ 5

4π, arg(a)+ 7
4π. Since one of these

four numbers is contained, modulo 2πiZ, in the open interval (− 1
2π, 1

2π),
there exists a choice of signs such that exp(azµ)→∞. �

Lemma 2.8. — Let (X, D) and (Y , E) be log surfaces, Ψ : X → Y a
morphism and Ψ : X · · · → Y the rational extension of Ψ. Then

Ψ
(
f(∞)

)
⊃ Ψ ◦ f(∞),
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where we understand Ψ(x) to be a curve for x a point of inderminancy
of Ψ.

Proof. — Let Q ∈ Ψ ◦ f(∞). Then there is a sequence (zµ)µ∈N in C such
that limµ→∞ |zµ| = ∞ and limµ→∞ Ψ ◦ f(zµ) = Q. Let Ψ̂ : X̂ → Y be
a desingularization of Ψ via r̄ : X̂ → X and f̂ : C → X̂ the lift of f

to X̂ . As X̂ is compact, after passing to a subsequence, f̂(zµ) converges to
a point P̂ ∈ X̂ and by continuity of r̄, P = r̄(P̂ ) lies in f(∞). Hence, the
continuity of Ψ̂ gives Q = Ψ̂(P̂ ) ∈ Ψ(P ) ⊂ Ψ(f(∞)). �

2.4. Foliations and the theorem of McQuillan-ElGoul

We first recall some basic notations and facts on foliations as given in
Brunella ’00 [4]: A foliation on the surface X can be defined by a collection
of 1-forms ωi ∈ Ω1

X
(Ui) with isolated singularities such that Ui, i ∈ I

is an open covering of X , and that we have ωi = fij · ωj on Ui ∩ Uj

with fij ∈ O∗X (Ui∩Uj). These isolated singularities are called singularities
of the foliation. The local integral curves of the forms ωj glue together,
up to reparametization, giving the so-called leaves of the foliation. Any
meromorphic 1-form ω on X gives a foliation, namely choose an open
covering Ui, i ∈ I of X and meromorphic functions fi on Ui such that
ωi := fi ·ω|Ui

are holomorphic forms on Ui with isolated singularities, only.
Then ωi, i ∈ I gives a foliation. By Brunella ’00 [4] for algebraic X any
foliation can be obtained like this, and, moreover, there is a one to one
correspondance between foliations on the one hand and rational 1-forms
modulo rational functions on the other hand.

We will use the following result of McQuillan ’98 [22] and Brunella ’99
[3], extended to the log context by El Goul ’03 [13, Theorem 2.4.2] (in
order to avoid misunderstandings we would like to point out that in this
Theorem 2.4.2 of El Goul ’03 [13] the foliation does not need to be tangent
to the boundary divisor):

Theorem 2.9. — Let (X,D) be a log surface of log general type. Let
f : C→ X be an entire curve. Suppose that there exists a foliation F on X

such that f is (contained in) a leaf of F . Then f is algebraically degenerate
in X .

What we will need for the proof of Theorem 1.2 is only a corollary of a
very special case of Theorem 2.9:
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Proposition 2.10. — Let (X, D) be a log surface of log general type.
Let Ψ : X → AX be a dominant morphism which extends to a rational
map Ψ : X · · · → ĀX . Let f : C→ X be an entire curve. Assume that the
map Ψ ◦ f : C → AX is linearly degenerate with respect to the universal
cover C2 → AX . Then f is algebraically degenerate.

Proof. — The map Ψ◦f : C→ AX is linearly degenerate with respect to
the universal cover C2 → AX . Hence, Ψ ◦ f is a leaf of the linear foliation
given by a 1-form with constant coefficients on C2, descending to a nowhere
vanishing log 1-form ω on ĀX (see subsection 2.2). It corresponds to a
meromorphic nowhere vanishing 1-form on ĀX without poles on AX . Now
Ψ : X− → ĀX is a dominant rational map, and so the meromorphic form
ω pulls back via Ψ

∗
to a nonvanishing meromorphic 1-form Ψ

∗
ω which

is holomorphic over X. By construction we have that f∗(Ψ
∗
ω) ≡ 0. Let

S ⊂ X be the divisor given by the meromorphic 1-form Ψ
∗
ω, namely the

divisor given by the fi, i ∈ I with respect to an open covering Ui, i ∈ I

such that fi · (Ψ
∗
ω)|Ui

is a holomorphic 1-form with isolated singularities
only on Ui for all i ∈ I. If f(C) ⊂ S then f is algebraically degenerate.
Otherwise f is contained in a leaf of the foliation given by the 1-form Ψ

∗
ω,

namely by the fi·(Ψ
∗
ω)|Ui

. By Theorem 2.9 it follows that f is algebraically
degenerate, which finishes the proof of Proposition 2.10. �

2.5. The case of non-dominant quasi-Albanese map

The following is a direct consequence of the log-Bloch theorem and the
universal property of the quasi-Albanese map.

Proposition 2.11. — Let (X,D) be a log surface with log irregu-
larity qX = 2. Assume that the compactified quasi-Albanese map αX :
X · · · → ĀX is not dominant. Then Y = αX(X) ∩ AX is a hyperbolic
algebraic curve. Hence every entire curve f : C → X is algebraically de-
generate.

Proof. — The image Y := αX(X ) ⊂ ĀX of X under the compactified
quasi-Albanese map αX : X → ĀX is a proper algebraic subvariety. Since
qX = 2, so in particular X admits nontrivial log 1-forms, Y cannot degen-
erate to a point, and so we have dim Y = 1. By the log Bloch’s theorem
due to Noguchi ’81 [24], the Zariski closure of the image of an entire curve
in AX is a translate of an algebraic subgroup of AX . But by the universal
property of the quasi-Albanese map (see Iitaka ’76 [16]), Y = Y ∩AX can-
not be such a translate. Hence, Y is a hyperbolic algebraic curve. So the
map αX ◦ f is constant, and, hence, f is algebraically degenerate. �
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3. Proof of Theorem 1.2 and some applications

3.1. Reduction of the proof

We will reduce the proof of Theorem 1.2 by a result of McQuillen and
ElGoul (which is Theorem 2.9 above) and by log-Bloch’s theorem to the
following.

Claim: Let (X,D) be a log surface with qX = 2 and dominant αX and
with log Kodaira dimension κ̄X = 2. Let f : C → X be a Brody curve.
Assume that f is not algebraically degenerate. Then αX ◦ f : C→ AX is a
translate of a complex one parameter subgroup of AX .

For if αX is not dominant, then Theorem 1.2 follows from Proposi-
tion 2.11. If αX is dominant and f is not algebraically degenerate, then
by the Claim αX ◦ f : C → AX is a translate of a complex 1-parameter
subgroup of AX . Then Theorem 1.2 follows from Proposition 2.10.

So it suffices to prove the Claim for the various cases of q
X

below.

3.2. The case q
X

= 2

The euclidean metric of the universal cover C2 of the Albanese torus A
X

descends to a metric h on it. We may choose a hermitean metric g on X

such that α∗
X

h 6 g and we have

C f−→ (X, g)
α

X−→ (A
X

, h)←− (C2, eucl.).

Now since f is a Brody curve, we have |f ′|g 6 C. By composing with the
Albanese map, we therefore get∣∣(α

X
◦ f)′

∣∣
h

6 C.

After lifting to C2, the components of (α
X
◦ f)′ are bounded holomorphic

functions. Hence, by Liouville’s theorem, they are constant. So the map
α

X
◦f : C→ AX is a translated complex 1-parameter subgroup of AX . �

TOME 57 (2007), FASCICULE 5



1590 Gerd DETHLOFF & Steven S.-Y. LU

3.3. The case q
X

= 1

We have the following diagram (see (2.8)):

(3.1)

X
α

X

α
X





y

  y















y

π

A

A

X

X
C

f
→

As in the case q
X

= 2, we get that α
X
◦ f is linear with respect to the

coordinates from the universal covering C → A
X

. If α
X
◦ f is constant,

then f is algebraically degenerate and we are done. So we assume from now
on that this linear function is nonconstant.

Let I ⊂ D ⊂ X be the (finite) set of points of indeterminacy of αX ,
U ⊂ A

X
a neighborhood of the finite set α

X
(I) consisting of small disks

around each point of α
X

(I). Let V = α−1

X
(U) and W = f−1(V ).

Since αX is a morphism on the compact set X \V , (αX ◦f)′ is bounded
on C \W with respect to any hermitian metric h on ĀX .

Brody curves are of order 6 2. Hence, by Lemma 2.5,

αX ◦ f : C −→ AX ⊂ ĀX

is of order 6 2.
Let C× P1 → ĀX be the universal cover, and let

˜(αX ◦ f) : C→ C× C∗ ⊂ C× P1

be a lift of the map αX ◦ f : C→ AX ⊂ ĀX to C×P1. If pr1 : C× P1 → C
(resp. pr2 : C × P1 → P1) denote the projections to the first respectively
the second factor, we get that pr1 ◦ ˜(αX ◦ f) is a lift of α

X
◦ f through the

universal cover C → A
X

, which we know already to be a linear function.
Define

Φ := pr2 ◦ ˜(αX ◦ f) : C −→ C∗ ⊂ P1.

If we prove that Φ is of the form Φ(z) = exp(P (z)) with a linear polynomial
P (z), then α

X
◦f : C→ AX is a translated complex 1-parameter subgroup

of AX .
By Proposition 2.1, there exists a metric h on ĀX such that the universal

covering map (C × P1, eucl. × FS) → (ĀX , h) is a local isometry. By this,
we get the existence of a constant C such that

(3.2)
∣∣(Φ|C\W )′

∣∣
FS

6 C.
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Furthermore, we get the following estimate for the characteristic function.

TΦ(r, ωFS) =
∫ r

1

dt

t

∫
|z|<t

Φ∗ωFS 6
∫ r

1

dt

t

∫
|z|<t

˜(αX ◦ f)
∗
ωeucl.×FS

=
∫ r

1

dt

t

∫
|z|<t

(αX ◦ f)∗ωh = T(αX◦f)(r, ωh).

Hence, from ρ(αX◦f) 6 2, it follows ρΦ 6 2. So Φ(z) = exp(P (z)) with
deg P 6 2. If deg P 6 1, the proof is finished. So we may assume deg P = 2.
We may assume that P (z) = z2 + c by a linear transformation z 7→ az + b

in C. Then, by a multiplicative transformation w 7→ exp(c) · w, we may
assume

P (z) = z2.

Since U ⊂ A
X

is a small neighborhood of the finite set α
X

(I) and the
map α

X
◦ f is linear with respect to the coordinates from the universal

cover of A
X

, we get that α
X
◦ f is also a universal covering map. Hence,

up to a translation, α
X
◦ f is a group morphism with kernel Γ ⊂ C. Then

W = (α
X
◦ f)−1(U) is the union of the translations by the lattice Γ of a

finite number of small disks in C.
Hence, there exists a sequence on the diagonal

(zv = xv + ixv)v→∞ ⊂ C \W with xv →∞.

We have

|Φ′|FS(z) =
|2z| exp(x2 − y2)

1 + exp (2(x2 − y2))
and, hence, since Φ′ is bounded on C \W by (3.2):

C >
∣∣Φ′∣∣

FS
(zv) =

|2zv| exp(0)
1 + exp(0)

−→∞,

This is a contradiction since |zv| → ∞. So the assumption deg P = 2 was
wrong. �

3.4. The case q
X

= 0

Let (X,D) be the log surface and assume f : C → X is a Brody curve
which is not algebraically degenerate with f(∞) its limit set. We recall
(subsection 2.2) that for a rational function Φ : X · · · → P1 which extends
a holomorphic function Φ : X → C∗, we always have Φ◦ f(z) = exp(P (z)),
with P (z) a polynomial of degree at most 2.
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Lemma 3.1. — Assume there exists a rational function Φ : X · · · → P1

which extends a holomorphic function Φ : X → C∗ such that Φ ◦ f(z) =
exp(P (z)), with P (z) a polynomial of degree (exactly) 2. Then we have
f(∞) =

⋃`
j=1 Dj , where D1, . . . , D` is a subset of the set of the irreducible

components D1, . . . , Dk of D. Moreover, for any such rational function Φ,
we have Φ(Dj \ I

Φ
) ≡ 0 or ≡ ∞ for j = 1, . . . , `, where I

Φ
denotes the set

of points of indeterminacy of Φ.

Proof. — Let Φ : X · · · → P1 be a rational function which extends a
holomorphic function Φ : X → C∗ such that Φ ◦ f(z) = exp(P (z)), with
P (z) a polynomial of degree (exactly) 2, and let I

Φ
be the set of points of

indeterminacy of Φ. We first prove

(3.3) Φ(f(∞) \ I
Φ

) ⊂ {0,∞} ⊂ P1.

We may assume by a linear coordinate change in C and a multiplicative
transformation in C∗ ⊂ P1, that

P (z) = z2.

Assume that (3.3) does not hold. Then there exists a point p ∈ f(∞) \ I
Φ

such that Φ(p) ∈ C∗. Let U(p) ⊂ X be a neighborhood such that its topo-
logical closure (with respect to the usual topology) Ū(p) does not contain
any points of I

Φ
. Note that Φ is a holomorphic function in a neighborhood

of U (p) ⊂ X . Since p ∈ f(∞), there exists a sequence (zv) = (xv + iyv),
v ∈ N, such that |zv| → ∞ and f(zv) → p. Without loss of generality, we
may assume that f(zv) ∈ U(p) for all v ∈ N. Then we have

exp(x2
v − y2

v) =
∣∣ exp(x2

v − y2
v) · exp(2ix2

vy2
v)

∣∣ =
∣∣ exp(z2

v)
∣∣(3.4)

=
∣∣Φ ◦ f(zv)

∣∣ −→ ∣∣Φ(p)
∣∣ = C1 > 0.

Since f is a Brody curve, its derivative is uniformly bounded on C, and
since U (p) ⊂ X is compact, the derivative of Φ|

U (p)
is bounded too. Hence,

there exists a constant C2 > 0 such that |(Φ ◦ f)′|FS 6 C2 on f−1(U (p)).
So in particular

C2 > |(Φ ◦ f)′(zv)|FS =
|2zv| · | exp(z2

v)|
1 + | exp(z2

v)|2
(3.5)

=
2|zv| · exp(x2

v − y2
v)

1 + (exp(x2
v − y2

v))2
−→∞

by (3.4) and as |zv| → ∞. This contradiction proves (3.3).
Now assume that there exists a rational function Φ : X · · · → P1 which

extends a holomorphic function Φ : X → C∗ such that Φ◦f(z) = exp(P (z)),

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC SURFACES AND HYPERBOLICITY 1593

with P (z) a polynomial of degree (exactly) 2. By (3.3) we have(
f(∞) \ I

Φ

)
⊂ Φ

−1({0,∞}
)
⊂ D ⊂ X.

Now the Lemma follows from Proposition 2.6. �

For the rest of this subsection, we assume qX = 2 and q
X

= 0. Let
Φi = (αX)i : X · · · → P1, i = 1, 2, be the two components of the quasi-
Albanese map (see subsection 2.1).

Lemma 3.2. — Let M =
(

m11 m12
m21 m22

)
∈ M(2 × 2, Z) be a nonsingular

matrix (not necessarily invertible over Z). Then the map

(Ψ1, Ψ2) = (Φ
m11

1 Φ
m12

2 , Φ
m21

1 Φ
m22

2 ) : X . . . −→ (P1)2

is a dominant rational map extending the dominant morphism

(Ψ1,Ψ2) : X −→ (C∗)2,(3.6)

x 7−→
(

exp
( ∫ x

x0

m11ω1 + m12ω2

)
, exp

( ∫ x

x0

m21ω1 + m22ω2

))
.

(We remark that the map (Ψ1,Ψ2) is not the quasi-Albanese map in
general, but it factors through the quasi-Albanese map by a finite étale
map.)

Proof. — It suffices to prove that the morphism (Ψ1,Ψ2) : X → (C∗)2
is dominant, the rest is clear from the properties of the quasi-Albanese
map. Let ω1, ω2 be the two linearly independent log forms corresponding
to Φ1,Φ2. By construction (Ψ1,Ψ2) : X → (C∗)2 is of the form

(Ψ1,Ψ2)(x)(3.7)

=
(

exp
( ∫ x

x0

m11ω1 + m12ω2

)
, exp

( ∫ x

x0

m21ω1 + m22ω2

))
where x0 is a fixed point in X. It suffices to prove that the lift of this map
to the universal cover, X −→ C2,

x 7−→
(
m11

( ∫ x

x0

ω1

)
+ m12

( ∫ x

x0

ω2

)
,m21

( ∫ x

x0

ω1

)
+ m22

( ∫ x

x0

ω2

))
has rank 2 in some points. But this is true since M is non singular and
since the lift to the universal cover of the quasi-Albanese map, this means

X −→ C2, x 7−→
( ∫ x

x0

ω1,

∫ x

x0

ω2

)
has this property. �
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By Lemma 2.5, we have Ψi ◦ f = exp (Qi(z)) with deg Qi 6 2. Then if
one of the Qi has degree 0, it follows immediately that f is algebraically
degenerate (since Ψi ◦ f is constant then). Our aim is now to choose the
nonsingular matrix M such that deg Qi 6 1 for i = 1, 2. Then if one of
the Qi has degree 0, one is done. If both polynomials Qi have degree 1,
then (Ψ1,Ψ2) ◦ f : C → C∗ × C∗ is a translate of a complex 1-parameter
subgroup of C∗ × C∗. But we have the commutative diagram

C2 M−−−−−→ C2y y
AX −−−−→ (C∗)2

where M is a linear isomorphism given by the matrix M and the vertical
arrows are the universal covering maps. So α

X
◦ f : C → AX is also a

translated complex 1-parameter subgroup of AX .
By Lemma 2.5 we have Φi ◦ f = exp(Pi(z)) with deg Pi 6 2 for the two

components of the quasi-Albanese map. If deg Pi 6 1 for i = 1, 2, we put
M = I2, the identity matrix, and the proof is finished. Otherwise we may
assume without loss of generality that deg P2 = 2. Then by Lemma 3.1, we
have f(∞) =

⋃`
j=1 Dj . Consider the submatrix of the residues of ω1, ω2

with respect to the first ` divisors forming f(∞)

(3.8)
D1 D2 . . . D`

ω1 a11 a12 . . . a1`

ω2 a21 a22 . . . a2`

If this matrix has rank 2, there exists a nonsingular matrix M with coef-
ficients in Z such that after passing from the log forms ω1, ω2 correspond-
ing to the map (Φ1,Φ2), to the forms m11ω1 + m12ω2,m21ω1 + m22ω2

corresponding to (Ψ1,Ψ2), the matrix of residues (3.8) has at least one
residue = 0 in every line.

If the matrix of residues (3.8) of (Φ1,Φ2) has rank 1, we can choose the
nonsingular matrix M with m11 6= 0, m21 = 0 and m22 = 1 such that after
passing from the log forms ω1, ω2 corresponding to the map (Φ1,Φ2), to
the forms m11ω1 + m12ω2,m21ω1 + m22ω2 corresponding to (Ψ1,Ψ2) the
matrix of residues (3.8) has all residues = 0 in the first line. Here, there is
the difficult case where the resulting matrix does not have any zero in the
second line.

If the matrix of residues (3.8) of (Φ1,Φ2) has rank 0, we just take M = I2

the identity matrix.
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In all cases, except the difficult one, there exist some residues = 0 in
every line of the residue matrix for (Ψ1,Ψ2). So by Lemma 3.1 and equa-
tion (2.10), we have deg Qi 6 1 for i = 1, 2, and we are done.

So we are left with the only (difficult) case that the matrix of residues of
(Ψ1,Ψ2) with respect to the log forms ω̃1 := m11ω1 + m12ω2 and ω2 looks
as follows (with a2j 6= 0 for all j = 1, . . . , `)

(3.9)
D1 D2 . . . D`

ω̃1 0 0 . . . 0
ω2 a21 a22 . . . a2`

and that Ψi ◦ f = exp (Qi(z)) with deg Q1 6 1 (which follows again by
Lemma 3.1 and equation (2.10)) and deg Q2 = 2. In this case, we have to
use the explicit geometry of the entire curve f with respect to the map
(Ψ1,Ψ2) in a similar way as we did in the proof for the case q

X
= 1 above.

Lemma 3.3. — a) The rational function Ψ1 : X · · · → P1 is a morphism
in a neighborhood of f(∞) =

⋃`
j=1 Dj ⊂ X .

b) There exists at most one irreducible component of f(∞), say D1, such
that Ψ1(D1) = P1. If it does not exist, then for all points x ∈ Di we have
Ψ1(x) ∈ C∗. If it exists, there exists exactly one point x0 ∈ f(∞) and
exactly one point x∞ ∈ f(∞), both lying in D1, such that Ψ1(x0) = 0
and Ψ1(x∞) = ∞ (in particular, for all points x ∈ f(∞) \ {x0, x∞} ,
we have Ψ1(x) ∈ C∗). Furthermore, x0 respectively x∞ are intersection
points of D1 with components Dj with j > `+1 (meaning components not
belonging to f(∞)) with residues a1j > 0 respectively a1j < 0.

Proof. — a) This follows immediately from Proposition 2.2 since by (3.9),
all the residues of Ψ1 on all components of f(∞) are = 0.

b) Since Ψ1 is a morphism around f(∞), the image of every irreducible
component of f(∞) is a (closed) subvariety in P1, and hence a single point
or all of P1. Since the residue of Ψ1 on each component of f(∞) is 0, it
follows by (2.10) that the image of each component, if it is a single point,
has to lie in C∗. By the same token, we also get that any point x ∈ f(∞)
which is mapped to 0 respectively to ∞ by Ψ1 has to be an intersection
point with a component of D having residue > 0 respectively < 0, and
which cannot be one of the components of f(∞). Since D is a normal
crossing divisor, no three irreducible components meet in one point, and
so no point mapping to 0 or to ∞ can lie on the intersection of different
irreducible components of f(∞). We will now prove that there can exist
at most one point x = x0 ∈ f(∞) with Ψ̄1(x) = 0 and at most one point
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x = x∞ ∈ f(∞) with Ψ̄1(x) = ∞. From this it follows immediately that
there can be at most one component of f(∞) mapping onto P1, which then
has to contain both x0 and x∞.

Let {(x0)1, . . . , (x0)m} = {x ∈ f(∞) : Ψ1(x) = 0}. Take a neighborhood
U(f(∞)) such that Ψ1 is still a morphism in a neighborhood of the closure
U (f(∞)) of U(f(∞)) (this is possible since there is only a finite number of
points of indeterminacy of Ψ1). Take small neighborhoods Up = Up((x0)p),
p = 1, . . . ,m, such that their closures are still contained in U(f(∞)).

Assume m > 2. For p = 1, 2, take sequences (z(p)
v ), v ∈ N, such that

|z(p)
v | → ∞ and f(z(p)

v )→ (x0)p. Without loss of generality, we may assume
that f(z(p)

v ) ∈ Up for all v ∈ N. Let [z(1)
v , z

(2)
v ] ⊂ C be the (linear) segment

between z
(1)
v and z

(2)
v in C. Then there exists a point

wv ∈
(
[z(1)

v , z(2)
v ] ∩ f−1

(
U(f(∞))

))
\

m⋃
p=1

f−1(Up).

The image of the segment [z(1)
v , z

(2)
v ] under f joins the two points f(z(1)

v ) ∈
U1 and f(z(2)

v ) ∈ U2. Since the two neighborhoods are disjoint, it has to
cross the boundaries of both of them. Let wv be the inverse image of such
a crossing point with one of these boundaries.

By (3.9) we have Ψ1 ◦ f(z) = exp(az + b) with a, b ∈ C. Since f(z(p)
v )→

(x0)p we get Ψ1 ◦f(z(p)
v )→ Ψ1((x0)p) = 0, p = 1, 2. So exp(az

(p)
v +b)→ 0,

meaning Re(az
(p)
v + b)→ −∞, p = 1, 2. Now wv ∈ [z(1)

v , z
(2)
v ], so there exist

λv with 0 6 λv 6 1 such that wv = λvz
(1)
v + (1− λv)z(2)

v . Then we have

Re(awv + b) = Re
(
λv(az(1)

v + b) + (1− λv)(az(2)
v + b)

)
(3.10)

= λvRe
(
az(1)

v + b) + (1− λv

)
Re

(
az(2)

v + b
)
−→ −∞

since λv, 1− λv > 0. In particular |wv| → ∞.
Consider the sequence f(wv), v ∈ N. After passing to a subsequence, we

get f(wv) → P ∈ X . By construction, we have P ∈ f(∞), and by (3.10)
we get

(3.11) Ψ1(P ) = lim
v→∞

Ψ1

(
f(wv)

)
= lim

v→∞
exp(awv + b) = 0.

But wv ∈ f−1(U(f(∞)))\
⋃m

p=1 f−1(Up((x0)p)), so P 6= (x0)v, v = 1, . . . ,m.
This is a contradiction, since{

(x0)1, . . . , (x0)m

}
=

{
x ∈ f(∞) : Ψ̄1(x) = 0

}
3 P.

So our assumption m > 2 was wrong, and there exists at most one point
x0 ∈ f(∞) such that Ψ1(x0) = 0.
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The proof for x∞ is exactly the same, just change 0 and ∞ in the proof
above, and in (3.10), change −∞ to +∞. �

Now we can finish up the proof of the claim: If there does not exist
an irreducible component D1 of f(∞) such that Ψ1(D1) = P1 (case 1),
we leave (Ψ1,Ψ2) as it is. If it does exist (case 2), then we may assume
x0 ∈ D1 ∩Dl+1. The matrix of residues (3.9) extends to

(3.12)
D1 D2 . . . D` D`+1

ω̃1 0 0 . . . 0 a1,`+1

ω2 a21 a22 . . . a2` a2,`+1

with a1,`+1 > 0. We put

ω̃2 := a1,`+1ω2 − a2,`+1ω1

Then the new matrix of residues becomes

(3.13)
D1 D2 . . . D` D`+1

ω̃1 0 0 . . . 0 a1,`+1

ω̃2 a21 a22 . . . a2` 0

By Proposition 2.2, we get that x0 ∈ D1 ∩ D`+1 cannot be a point of
indeterminacy of Ψ2, since the corresponding product of residues is zero. In
both cases we get, by a linear coordinate change in C and a multiplicative
transformation in C∗ ⊂ P1, that

(Ψ1,Ψ2) ◦ f(z) =
(
exp(az), exp(z2)

)
, a ∈ C∗.

By Lemma 2.7 and Lemma 2.8, we get

(3.14) {0} × P1 ⊂ (Ψ1,Ψ2) ◦ f(∞) ⊂ (Ψ1, Ψ2)(f(∞)).

We will reach a contradiction to (3.14) in both cases. In case 1, we have
Ψ1(f(∞)) ⊂ C∗, so

(Ψ1, Ψ2)
(
f(∞)

)
∩

(
{0} × P1

)
= ∅,

contradicting (3.14). In case 2, we get that (Ψ1|f(∞))−1(0) = {x0} and x0

is not a point of indeterminacy of Ψ2. So we have(
Ψ1, Ψ2)(f(∞)

)
∩

(
{0} × P1

)
= {0} ×

{
Ψ2(x0)

}
which is strictly contained in {0} × P1, contradicting (3.14).

This concludes the proof of the claim, and, by the reduction in subsec-
tion 3.1, the proof of Theorem 1.2. �
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3.5. Some applications

Theorem 1.2 gives us the following corollaries on hyperbolicity.

Corollary 3.4. — Let (X,D) a log surface with log irregularity qX = 2
and log Kodaira dimension κX > 0. Suppose that X does not contain non-
hyperbolic algebraic curves and that D is hyperbolically stratified (this
means that every irreducible component minus all the others is a hyper-
bolic curve). Then X is complete hyperbolic and hyperbolically imbedded
in X .

Proof. — One has κX 6= 1, otherwise the Iitaka fibration of X would con-
tain non-hyperbolic fibers and so X would have non-hyperbolic algebraic
curves. Hence this follows from Theorem 1.2 and from the main result of
Green ’77 [14]. �

Another consequence of Theorem 1.2 is the “best possible” result for
algebraic degeneracy in the three component case of complements of plane
curves (see Dethloff-Schumacher-Wong ’95 [11] and [12], Bertheloot-
Duval ’01 [2]):

Corollary 3.5. — Let D ⊂ P2 be a normal crossing curve of degree
at least 4 consisting of three components. Then every Brody curve f : C→
P2 \D is algebraically degenerate.

Proof. — K (P2\D) = O((deg D) − 3) is very ample and, hence, big. Let
Di = {fi = 0}, where fi is a homogeneous equation for Di, for i = 1, 2, 3.
Then

ωj = d log
(fdeg f3

j

f
deg fj

3

)
, j = 1, 2,

are linearly independent log forms, and it is easy to see that there are no
others. Hence, q(P2\D) = 2. �

4. Proof of Theorem 1.3 and applications

4.1. Kawamata’s Theorem

Recall that for a fibered variety, i.e., a dominant algebraic morphism be-
tween irreducible, reduced quasiprojective varieties with irreducible general
fibers, we have the following addition theorem of Kawamata ’77 ([18]) in
dimension two:
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Theorem 4.1. — Let f : V → B be a fibered variety for a nonsingular
algebraic surface V and a nonsingular algebraic curve B. Let F be a general
fiber of f . Then

κV > κF + κB .

Recall also the following result of Kawamata ’81 [19, Theorems 26, 27]:

Theorem 4.2. — Let X be a normal algebraic variety, A a semi-abelian
variety and let f : X → A be a finite morphism. Then κX > 0 and there
exist a connected complex algebraic subgroup B ⊂ A, étale covers X̃ of X

and B̃ of B, and a normal algebraic variety Ỹ such that
(i) Ỹ is finite over A/B;
(ii) X̃ is a fiber bundle over Ỹ with fiber B̃ and translations by B̃ as

structure group;
(iii) κ

Ỹ
= dim Ỹ = κX .

If further κX = 0 and f is surjective, then f is an étale morphism.

For the proof of Theorem 1.3 we will need the following extension of this
theorem in the case of surfaces.

Proposition 4.3. — Let X be a normal algebraic surface, A a semi-
abelian surface and let f : X → A be a finite morphism. Let X0 ⊂ X be
an open algebraic subvariety.

1) In the case κX0 = 1, let Φ : X∗ → Y ∗ be the logarithmic Iitaka fibra-
tion of X0, Ψ : X∗ → X0 the birational morphism relating X0 to X∗, and
for y ∈ Y ∗, let X∗

y = Φ−1(y), Xy = Ψ(X∗
y ) ⊂ X0 ⊂ X and By = f(Xy).

Then for generic y ∈ Y ∗, Xy ⊂ X is a closed subvariety and By is a trans-
late of a complex one parameter algebraic subgroup B of A. Moreover,
there are étale covers X̃ of X and B̃ of B, and a smooth algebraic curve Ỹ

such that
(i) Ỹ is finite over A/B.
(ii) X̃ is a fiber bundle over Ỹ with fiber B̃ and translations by B̃ as

structure group. In particular, X and X̃ are smooth.
(iii) dim Ỹ = κX0 = 1.

In particular, for generic y ∈ Y ∗, Xy ⊂ X is equal to the image of a suitable
fiber of the fiber bundle X̃ over Ỹ , and the image of a generic fiber of this
fiber bundle is of the form Xy for y ∈ Y ∗.

2) If κX0 = 0, then f is an étale morphism and X \X0 is finite.

Proof. — Since the proof uses among others the same ideas as that given
by Kawamata in [19] (see Theorems 13, 23, 26 and 27 of Kawamata’s pa-
per [19]), we just indicate the differences and what has to be added:

TOME 57 (2007), FASCICULE 5



1600 Gerd DETHLOFF & Steven S.-Y. LU

1) In the case κX0 = 1, the key point is to observe that despite the
composed map X∗ Ψ→ X0 ↪→ X being not proper in general, for generic
y ∈ Y ∗, Xy ⊂ X is a closed subvariety. In order to see this, let X y ⊂ X

be the (Zariski) closure of Xy in X (it is the curve Ψ(X
∗
y)). Then X y ∩X

is the closure of Xy in X, By = f(X y ∩X) is the closure of By ⊂ A and
we have for the logarithmic Kodaira dimensions (for generic y ∈ Y ∗):

0 = κX∗
y

= κXy
> κ

Xy∩X
> κ

By
> 0,

where the last inequality follows since we can restrict the constant 1-forms
of A to By, and all the others follow by lifting back log multi-canonical
forms through logarithmic (!) morphisms. So we get in particular for the
inclusion of algebraic curves Xy ⊂ X y ∩ X that 0 = κXy = κ

Xy∩X
(re-

mark that Xy ⊂ X is algebraic since Xy ⊂ X0 is algebraic and X0 ⊂ X is
an open algebraic subvariety). But an algebraic curve having log Kodaira
dimension zero is either isomorphic to an elliptic curve or to C∗ ⊂ P1,
and if we delete any other point of any of these algebraic curves, they be-
come hyperbolic, so their log Kodaira dimension becomes one. This means
Xy = X y ∩ X is a closed subvariety of X. The rest of the proof is ex-
actly analogous to the proof of Kawamata’s Theorem 27. We observe here
that the normal curve Ỹ , having singularities only in codimension 2, is
automatically smooth.

2) As f is a finite morphism between algebraic surfaces, it is surjective.
So the first part of Theorem 4.2 gives 0 = κ̄X0 > κ̄X > 0. Hence the first
part of our claim follows from the last part of Theorem 4.2. Since X is finite
and étale over A, X is also a semi-abelien variety since it is a quotient of
affine space by a discrete subgroup and the kernel in X of the map to the
abelian variety quotient of A is a finite cover of that of A. Let X be a
compactification of X as given in subsection 2.2. If X \ X0 is not finite,
then there exist a curve C in X intersecting X but not X0. We will reach
a contradiction.

Assume that X is not a simple abelian surface. We follow the proof of
Theorem 26 in [19] to obain a contradiction. As X is semi-abelian, it is
a fiber bundle over a flat curve B, i.e. B has trivial log-canonical bundle
so that B is either C∗ or an elliptic curve. Moreover, the fiber bundle
has flat curves as fibers. Now the log-Kodaira dimension becomes positive
if we remove a finite nonempty set from a flat curve, whose log-Kodaira
dimension is 0. If C intersects the generic fiber of this fiber bundle, then we
have a contradiction with the addition theorem above. Hence, C is vertical

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC SURFACES AND HYPERBOLICITY 1601

and so X \ C is a fiber space over a curve of positive Kodaira dimension.
This again contradicts the addition theorem.

Hence we may assume that X is a simple abelian surface. Now it is well
known that C is then an ample divisor in X so that its L-dimension is 2.
This latter fact can be seen directly as follows.

If C2 > 0, then Riemann-Roch gives that

h0(mC)− h1(mC) + h2(mC) = O(m2)

while Serre-duality gives h2(mC) = h0(−mC) = 0. Hence h0(mC) =
O(m2) and the L-dimension of C is 2. If C2 6 0, then the algebraic sub-
group G = {t ∈ X | C + t = C} must contain differences of points in C and
so is at least 1-dimensional. As X is simple, G = X which is a contradiction.

To compute the log-Kodaira dimension of X \ C, we blow up X suc-
cessively until the total reduced transform of C becomes normal cross-
ing, where we let Ei be the exceptional divisor at the i-th step. Then
we know that at each step, the resulting canonical divisor is

∑
i Ei and

C = C̃ +
∑

i miEi as divisors (mi > 0), where we have suppressed the
pullback symbols and C̃ is the strict transform of C ⊂ X . Hence, for
the final blown up variety X̂ of X, the log-canonical divisor of (X̂, C̃) is
K = C̃ +

∑
i Ei. But this means that a multiple of K is C plus an effec-

tive divisor and therefore the log-Kodaira dimension of X̂ \ C̃ is 2. This is
a contradiction since then X0 ⊂ X̂ \ C̃ must have the same log-Kodaira
dimension. �

4.2. Stein factorization and condition (*)

Let (X, D) be a log surface with log irregularity qX = 2 . Let αX :
X · · · → ĀX be the compactified Albanese map, I its finite set of points of
indeterminacy and α0 = αX |X\I . We assume in this subsection that αX

is dominant. Recall the following condition:
(*) For all z ∈ AX and E a connected component of the Zariski clo-

sure of α−1
0 (z) with E ∩ X 6= ∅, any connected component of D

intersecting E is contained in E (i.e. E is a connected component
of E ∪D).

Condition (*) is a natural condition in the sense that all the data can
be read directly from two linearly independent log 1-forms, ω1, ω2 without
referring to αX or αX . Indeed, αX is not dominant if and only if ω1∧ω2 ≡ 0
and a curve C in X such that neither ω1 nor ω2 is identically ∞ along C
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is exceptional with respect to αX if and only if i∗ω1 ≡ 0 ≡ i∗ω2 where
i : C → X is the inclusion map.

Proposition 4.4. — Condition (*) is equivalent to the following condi-
tion: If ¯̂αX : ¯̂

X → ĀX is a desingularization of the rational map αX which

is biholomorphic on X, then for the Stein factorization X̂
β−→ Y

γ−→ ĀX of
the morphism α̂X we have that β(X) ⊂ Y is an open algebraic subvariety.

Proof. — We first prove the following lemma.

Lemma 4.5. — Let α̂X : X̂ → ĀX be a desingularization of the rational

map αX via r : X̂ → X which is biholomorphic on X and X̂
β→ Y

γ̄→ ĀX

the Stein factorization of the morphism α̂X . We identify X and r−1(X) and
let D̂ be the reduced total transform of D. Then condition (*) is equivalent
to the following condition.

(**) For all z ∈ AX and Ê a connected component of α̂−1
0 (z) with

Ê ∩X 6= ∅, any connected component of D̂ intersecting Ê is con-
tained in Ê (i.e. Ê is a connected component of Ê ∪ D̂).

Proof of the lemma. — (*) implies (**). Assume that (**) does not hold.
Then there exist z ∈ AX and a connected component Ê of α̂−1(z) with
nonempty intersection with X. Also there is a connected component of D̂

having nonempty intersection with but not contained in Ê . Let
∑

k D̂k

be its decomposition into irreducible components. We may assume that
D̂1 6⊂ Ê so that α̂X |D̂1

6≡ z and that there is a point x̂ ∈ D̂1 ∩ Ê .

Now r(Ê) is a connected subset of a connected component E of the
Zariski closure of α−1

0 (z). We distinguish two cases.
Case 1 : r(D̂1) ⊂ D is a curve. — Then r(D̂1) is an irreducible compo-

nent of D intersecting E at r(x̂), but r(D̂1) 6⊂ E because αX |r(D̂1)\I
6≡ z.

This contradicts (*).
Case 2 : r(D̂1) ⊂ D is a point. — In this case r(x̂) ∈ I is a point where

αX has a point of indeterminacy. By Propositions 2.2 and 2.4, r(x̂) ∈ E is
an intersection point of two irreducible components Di and Dj of D such
that the form ω defining Φ (only around r(x̂) in the case of q

X
= 1) has

strictly opposite signs along Di and Dj , and αX maps Di \ I and Dj \ I

to ĀX \ AX and so, in particular, αX |Di\I 6≡ z and so (*) cannot hold.

(**) implies (*). Assume that (*) does not hold. Then there exist z

in AX , a connected component E of the Zariski closure of α−1
0 (z) with

E ∩ X 6= ∅ and a connected component D0 of D such that D0 ∩ E 6= ∅
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and D0 6⊂ E . Let D̂0 and Ê be the proper transforms of D0 and E under
r : X̂ → X respectively. Then any connected component of Ê intersects
D̂0 or is connected to D̂0 by the exceptional divisor F of r. Let Ê0 be
such a component. Since D0 6⊂ E , we have D̂0 6⊂ α̂−1

X (z) ⊃ Ê0. So there
is a component of F ∪ D̂0 intersecting with but not contained in Ê0. This
contradicts (**). �

We now continue with the proof of the proposition.
Assume (**), we prove that β(X) ⊂ Y is an open algebraic subvariety

by giving an explicit description for it: By definition of the Stein factor-
ization, points of Y corresponds to connected components of the fibers of
the morphism α̂X : X̂ → ĀX , and β : X̂ → Y is the canonical surjective
map which contracts these connected components to points. Since β is a
proper birational morphism, β(D̂) ⊂ Y is algebraic. Since αX is dominant,
Y is a surface and so β(D̂) can be decomposed into a pure 1-dimensional
subvariety Γ and a finite set G = {y1, . . . , ys} in Y . Let y ∈ β(X), then
y = β(x̂) for some x̂ ∈ X. Let z = α̂X(x̂). By the definition of β , β

−1
(y)

is a connected component Ê of α̂−1(z). By (**), all connected components
of D̂ intersecting Ê map to the point y, and the others map to a closed
algebraic set not containing y. This means that y 6∈ Γ and so β(X) is
just Y \ Γ minus a finite number of points in G, which is an algebraic set.

Conversely, assume that (**) does not hold. Then there exist z ∈ AX ,
a connected component Ê of α̂−1(z) with Ê ∩ X 6= ∅ and an irreducible
component D̂0 of D̂ with x̂ ∈ D̂0∩ Ê and D̂0 6⊂ E . So Γ = β(D̂0) ⊂ Y is a
1-dimensional subvariety containing the point y0 = β(x̂) = β(Ê). So β has
a 1-dimensional fiber over y0 and so all other fibers over a neighborhood U

of y0 are single points. Hence U ∩ Γ∩ β(X) = {y0} and β(X) ⊂ Y cannot
be open. �

4.3. End of the proof of Theorem 1.3

For this proof we adopt the notations of Theorem 4.2, meaning we allow
arbitrary boundary divisors. This is not a problem since we do not need the
condition that f : C→ X is Brody in this theorem and since we can always
lift an entire curve f through a birational map which is biholomorphic on X

and the property of f to be algebraically degenerate is of course invariant
under such a birational map.
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By the same token we also may assume that αX : X → ĀX is (already)
a morphism. Hence, let

X
β−→ Y

γ̄−→ ĀX

be a Stein factorization of the morphism αX and β = β |X . Then Y is a
normal variety which compactifies Y = (γ)−1(AX), and f is algebraically
degenerate (in X) if and only if the map β ◦ f is algebraically degenerate
(in Y ).

We apply Proposition 4.3 to the finite morphism γ = γ |Y : Y → AX

and to Y0 := β(X) ⊂ Y , which is an open subvariety by Proposition 4.4.
In order to simplify notations, we assume that X is the total space of the
Iitaka fibration of Y0 (there is no problem with this since the entire curve
f : C→ X lifts through a birational morphism over X). So let Φ : X → Z∗

be the log Iitaka fibration. Then Proposition 4.3 says that there exist a
semi-abelian curve B ⊂ AX , étale covers Ỹ and B̃ of Y and B, respectively,
and a smooth curve Z̃ such that

1) Z̃ is finite over AX/B;
2) Ỹ is a fiber bundle over Z̃ with fiber B̃ and translations by B̃ as

structure group.

Moreover, if for z ∈ Z∗ we put Xz = Φ−1(z), Yz = β(Xz) ⊂ Y0 ⊂ Y and
Bz = γ(Yz), then for generic z ∈ Z∗, Yz ⊂ Y is a closed subvariety, which
is equal to the image of a suitable fiber of the fiber bundle p : Ỹ → Z̃, and,
vice versa, the image of a generic fiber of this fiber bundle is of the form Yz

for generic z ∈ Z∗.
Let Ỹ0 ⊂ Ỹ be the inverse image of Y0 in Ỹ under the étale cover Ỹ → Y ,

and let Z̃0 ⊂ Z̃ be the image of Ỹ0 under the fiber bundle projection p :
Ỹ → Z̃. Then Z̃0 ⊂ Z̃ is an open algebraic subcurve: In fact, since Ỹ0 ⊂ Ỹ

is an open algebraic subsurface, its complement can only contain a finite
number of curves or isolated points, which can only contain a finite number
of fibers of the fiber bundle Ỹ → Z̃, so the complement of Z̃0 in Z̃ contains
at most a finite number of points. Let still W̃0 ⊂ Ỹ be the inverse image
of Z̃0 under the fiber bundle projection p : Ỹ → Z̃.

We claim that W̃0 \ Ỹ0 is of codimension at least 2 in W̃0: In fact, by
Proposition 4.3 the generic fiber of the fiber bundle Ỹ → Z̃ projects to a
fiber Yz ⊂ Y0, so is contained in Ỹ0. We know that since Ỹ0 ⊂ Ỹ is an open
algebraic subsurface, its complement can only contain a finite number of
(closed) curves or isolated points. But since such a closed curve does not
hit the generic fiber of the fiber bundle (so it is contained in the union of a
finite number of fibers since the base Z̃ is of dimension 1), it is itself equal
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to a fiber, but then it is also in the complement of W̃0. This proves the
claim.

We now claim that W̃0 is of log Kodaira dimension κ
W̃0

> 1: Since

p : Ỹ → Z̃ is a fiber bundle over the smooth curve Z̃ and Ỹ is étale over Y ,
both Y and Ỹ are smooth. Let X+ = β

−1
(Y0) ⊂ X . Then X+ has the same

log Kodaira dimension as Y0 as they are properly birational. But X+ \X

lies only on the fibers of β above Y0 and so any pluricanonical logarithmic
form for (X, D) must actually be a pluricanonical form over X+ by the
Riemann extension theorem applied to Y0. Hence 1 = κX = κX+ = κY0 6
κ

Ỹ0
= κ

W̃0
where the last equality follows again by the Riemann extension

theorem.
Next we claim that κ

Z̃0
= 1: Let s1, s2 ∈ H0(Ỹ ,mK

W̃0
) be two linearly

independent log multi-canonical sections. Consider the exact sequence of
locally free sheaves

0→ p∗K
Z̃0
−→ Ω

W̃0
−→ K

Ỹ /Z̃
→ 0,

from which it follows that K
W̃0

is isomorphic to p∗K
Z̃0
⊗K

Ỹ /Z̃
. But K

Ỹ /Z̃

is dual to

ker
(
d̄p : T

W̃0
→ π∗T

Z̃0

)
and this latter has a global nowhere vanishing section v (that generates
the Lie group action) and, hence, is trivial. So K

W̃0
is isomorphic to K

Z̃0
.

Hence s1, s2 give two linearly independent sections of mK
Z̃0

.
Theorem 1.3 is now immediate: In fact, let f : C → X be an entire

curve. If p : Ỹ → Z̃ denotes the fiber bundle projection, then the entire
curve β ◦ f : C → Y0 lifts by the étale cover Ỹ → Y to a curve having
image in Ỹ0 ⊂ W̃0, projecting by p to an entire curve having image in the
curve Z̃0. But since κ

Z̃0
= 1, the curve Z̃0 is hyperbolic, so this entire curve

is constant. Hence, the image of the entire curve β ◦f lies in the image in Y

of a fiber of the fiber bundle Ỹ → Z̃, and so the entire curve f : C→ X is
algebraically degenerate. �

Remark. — The counter-example in Proposition 4.7 shows that, with-
out condition (*), it can happen that entire curves f : C → X can be
Zariski-dense. In fact, condition (*) does not hold in this counter-example:
With the notations as in Proposition 4.7, αX = α

X
: X → E × E

is the blowup morphism of the two points Q1, Q2 and the exceptional
fibers α−1

X
(Q1) and α−1

X
(Q2) intersect D but do not contain it.
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4.4. Some applications

The following result generalizes Kawamata’s theorem for normal surfaces
finite over a semi-abelian surface to surfaces with log irregularity 2 by
relating it to entire holomorphic curves.

Theorem 4.6. — Let (X, D) be a log surface with log irregularity
qX = 2 . In the case of dominant αX , assume condition (*). Then the
following are equivalent:

1) There is an entire curve f : C → X such that f∗w ≡ 0 for some
w ∈ H0(T

∗
X) and f is not algebraically degenerate.

2) κX = 0.
3) αX is birational and AX \ αX(X) is finite.

Proof. — We use Theorem 1.3 and the theorem of McQuillan-ElGoul to
deduce 2) from 1). To deduce 3) from 2), we use the addition theorem of
Kawamata for open surfaces and Proposition 4.3. Finally, we deduce 1)
from 3) by elementary methods.

1)⇒ 2). Suppose that there exists an algebraically nondegenerate entire
curve in X lying in the foliation defined by a log 1-form. By Theorem 2.9
and Proposition 2.11 we may assume that αX is dominant and κX 6 1.
This means in particular that there are linearly independent log 1-forms
whose wedge is not identically 0. But this wedge gives a log 2-form and
hence κX 6= −∞. But κX 6= 1 by Theorem 1.3. Hence κX = 0.

2) ⇒ 3). Assume that αX (and hence α̂X) is not dominant. Then α̂X

factors through a morphism α : X̂ → Y ⊂ ĀX where Y = Y ∩ AX is a
hyperbolic curve by Proposition 2.11 and so κY = 1. Let F be a general
fiber of α, then F is a smooth projective curve having transversal intersec-
tion with D̂, the reduced total transform of D. Hence, by the smoothness
of α along F , we have the following exact sequence

0→ KF −→ Ω(X̂ , D̂)|
F
−→ OF → 0.

Hence KX |F = ∧2Ω(X̂ , D̂)|
F

= KF . Since κX > 0, there is a nontriv-
ial section of some tensor power of the log canonical sheaf KX over ¯̂

X.
Since this section remains nontrivial over F , we see that κF > 0. By The-
orem 4.1, we have 0 = κX > κF + κB > 1. This contradiction shows
that αX is dominant (This fact also follows directly from Theorem 28
of [19]). Keeping the same notation as Proposition 4.4 with the normal
surface Y = (γ)−1(AX), then γ = γ |Y : Y → AX is a surjective finite
map and we have κY > 0 by Theorem 4.2. As β = β |X is a morphism
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to Y , we have 0 = κX > κY . Hence, κY = 0 and Y is étale over AX by
Theorem 4.2. This means that Y is a semi-abelian variety and so by the
universal property of the Albanese map α, γ : Y → AX is an isomorphism.
By condition (*) and Proposition 4.4, we have that Y0 = β(X) is an open
subvariety of the normal surface Y . As β = β |X is a morphism to Y0, we
have 0 = κX > κY0 > κY = 0; thus forcing equality. Hence Y \ Y0 is finite
by Theorem 4.3 and the result follows.

3) ⇒ 1). Keeping the same notation as in Proposition 4.4, Y0 = αX(X)
is an open subset of AX with finite complement. Let X+ = ¯̂α

−1
(Y0). As

¯̂α is a birational morphism on X+ that restricts to αX on X, we see that
X+ \ X is an exceptional divisor of ¯̂α in X+ whose image is contained
in the image of the exceptional divisor E of αX . Consider the finite sets
S1 := αX(E) ⊂ AX , S2 := AX \ Y0 and S′ = S1 ∪ S2. By a translation if
necessary, we may assume that the universal covering map h : C2 → AX

is a morphism of additive groups and that Γ = kerh does not intersect
S = h−1(S′). Consider the linear map f0 : C→ C2, z 7→ (z, az) for a ∈ C.
Then f∗0 w ≡ 0 for the linear 1-form w = dz2 − adz1 where (z1, z2) is the
standard coordinate for C2. Now if f1 = h ◦ f0 is algebraically degenerate,
then its image lies in an elliptic curve or a rational curve in ĀX and the
latter must intersect the boundary of AX at at least and hence exactly two
points. In either case f1 is an étale covering over its image, which is either C∗
or an elliptic curve, and so f−1

0 (Γ) = ker f1 6= {(0, 0)}. Therefore, since log
1-forms on AX correspond bĳectively with linear 1-forms on C2, it suffices
to produce an a such that f−1

0 (Γ′∪S) = ∅, Γ′ = Γ\{(0, 0)}, for then f1(C)
does not intersect S′ and α−1

X ◦f1 would be the required holomorphic curve
on X as α−1

X is a well defined holomorphic map outside S′. For this, we only
need to choose a ∈ C outside the countable set {v/u | (u, v) ∈ Γ′ ∪ S}. �

The additional condition (*) on αX is essential for Theorems 1.3 and 4.6,
as the following counterexamples shows. We remark here however that it
can be weakened still for Theorem 4.6, as can be seen from the proofs
we give. We also remark that one can prove that 2) and 3) of Theorem 4.6
are equivalent even without condition (*).

Proposition 4.7 (Counterexample for κX = 1). — Let E be an elliptic
curve and p : E ×E → E the projection to the first factor. Let P1, P2 ∈ E

be two distinct points, and Qi ∈ p−1(Pi), i = 1, 2 two points. Let b : X →
E × E be the blow up of E × E in the points Q1, Q2. Let D be the union
of the proper transforms of p−1(Pi), i = 1, 2 in X , and X := X \D. Then
qX = 2 and κX = 1, but X admits entire curves f : C → X which are
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neither algebraically degenerate nor linearly degenerate (i.e. the condition
given in 1) of Theorem 4.6).

Proof. — First it is easy to see that qX > 2, since qE×E = 2 and linearly
independent 1-forms on E × E lift to linearly independent 1-forms on X .

The fact that there exist entire curves f : C → X which are not alge-
braically degenerate is an easy application of the main result of Buzzard-
Lu ’00 [6]: The map p◦ b : X → E is a surjective holomorphic map defining
X into an elliptic fibered surface over the curve E without any branching.
So by Theorem 1.7 of [6], X is dominable by C2 and there are (a lot of)
entire curves f : C → X which are neither algebraically degenerate nor
linearly degenerate (i.e. the condition given in 1) of Theorem 4.6). By The-
orem 1.1 this still implies in particular that qX 6 2, so qX = 2.

It is easy to see that κX 6 1: Since KE×E = 0 and by the standard
formula for the relation of the canonical divisors under blow ups of points
we get

KX = (p ◦ b)−1(P1) + (p ◦ b)−1(P2).

Hence, for a generic point P ∈ E, the fiber F := (p ◦ b)−1(P ) has the
property that the restriction to F of the line bundles (KX)⊗m are trivial,
hence, their sections cannot seperate points. Hence, κX 6 1.

It remains to prove that κX > 1. By the Riemann-Roch theorem for
the curve E and the divisor P1 + P2 ⊂ E of degree 2 (see for exam-
ple Hartshorne ’77 [15], p. 295), we get that for the log curve E0 := E \
{P1, P2} ⊂ E, we have

h0(E, KE0) = h0(E,P1 + P2) = deg(P1 + P2) = 2.

Hence, there exist two linearly independent log 1-forms η1, η2 on E0 ⊂ E.
The key point is now that we can use them to construct two linearly inde-
pendent sections of the line bundle KX on X (since this will prove κX > 1).

Locally, let x be the base coordinate and y the fiber coordinate of the
projection p : E × E → E, both linear with respect to the linear structure
of E. We blow up the origin of (x, y) and let X = X \D, where D is the
proper transform of x = 0 by b. Then in a neighborhood of the point of
interection of the exceptional curve of b and the proper transform of y = 0
by b, X is parametrized by x, z where y = zx. Any log 1-form of E \ {0}
is of the form f(x)dx/x near 0. Now

dy = zdx + xdz

is a 1-form on X and, hence,

(4.1) f(x)
dx

x
∧ dy = f(x)dx ∧ dz
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is a log 2-form on (X, {x = 0}), which by (4.1) doesn’t have any poles on X

and, hence, is a log 2-form on (X,D). By this local argument we thus see
that the forms η1∧ dy, η2∧ dy are two linearly independent global sections
of the line bundle KX on X . �
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