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57, 6 (2007) 1863-1882

NEW MODELS FOR THE ACTION OF HECKE
OPERATORS IN SPACES OF MAASS WAVE FORMS

by Ian KIMING

Abstract. — Utilizing the theory of the Poisson transform, we develop some
new concrete models for the Hecke theory in a space Mλ(N) of Maass forms with
eigenvalue 1/4−λ2 on a congruence subgroup Γ1(N). We introduce the field Fλ =

Q(λ,
√

n, nλ/2 | n ∈ N) so that Fλ consists entirely of algebraic numbers if λ = 0.
The main result of the paper is the following. For a packet Φ = (νp | p - N)

of Hecke eigenvalues occurring in Mλ(N) we then have that either every νp is
algebraic over Fλ, or else Φ will – for some m ∈ N – occur in the first cohomology
of a certain space Wλ,m which is a space of continuous functions on the unit circle
with an action of SL2(R) well-known from the theory of (non-unitary) principal
representations of SL2(R).

Résumé. — En utilisant la théorie de la transformation de Poisson on obtient
des modèles concrets nouveaux de la théorie de Hecke dans un espace Mλ(N) de
formes d’onde de Maass avec la valeur propre 1/4 − λ2 sur un sous-groupe de
congruence Γ1(N). On introduit le corps Fλ = Q(λ,

√
n, nλ/2 | n ∈ N) qui est

constitué exclusivement des nombres algébriques si λ = 0.
Le résultat principal est le suivant. Si Φ = (νp | p - N) est un paquet de

valeurs propres de Hecke apparaissant dans Mλ(N) alors ou bien chaque νp est
algébrique sur Fλ ou bien il y a un nombre m ∈ N tel que Φ apparaît dans le
premier groupe de cohomologie d’un certain espace Wλ,m de fonctions continues
sur le cercle unité avec une action de SL2(R) bien connue dans la théorie des
représentations principales (non-unitaires) de SL2(R).

1. Introduction

We shall fix the following notation throughout the paper: N is a natural
number, p always denotes a prime number, Γ is the congruence subgroup
Γ1(N) 6 SL2(Z), G := SL2(R), T := R/πZ, λ is a complex number, and
Mλ(N) denotes the complex vector space of Maass forms g on Γ with

Keywords: Maass wave forms, Hecke operators, Hecke eigenvalues, Poisson transform.
Math. classification: 11F70, 11R39, 22E50.



1864 Ian KIMING

eigenvalue 1
4 −λ

2 for the Laplacian ([8]), i.e., real-analytic functions g(x, y)
on the upper half plane H := {x + iy | y > 0} with the following 3
properties:

(i) −y2

(
∂2

∂x2
+

∂2

∂y2

)
g =

(
1
4
− λ2

)
g,

(ii) g(γ.z) = g(z), z = x+ iy, for all γ ∈ Γ,

where γ. denotes the usual action of γ ∈ Γ on H,
(iii) There is a positive number d such that

g(x+ iy) = O(yd) for y → +∞

and
g(x+ iy) = O(y−d) for y → 0+,

uniformly in x.
As usual, an element g ∈Mλ(N) is said to be a cusp form, if it is bounded

as a function on H.

Let ∆1(N) be the set of matrices
(
a b

c d

)
with a, b, c, d ∈ Z, a ≡ 1 (N),

c ≡ 0 (N), and positive determinant. Then for α ∈ ∆1(N) we have a Hecke
operator Tα acting on Mλ(N): Suppose that ΓαΓ =

⋃
i Γαi as a disjoint

union, and that g ∈Mλ(N). Then g | Tα is the form given by:

(g | Tα)(z) := (detα)−1/2
∑

i

g(αi.z).

For primes p - N we shall denote as usual by Tp the Hecke operator be-

longing to α =
(

1 0
0 p

)
. Also, T = TN will denote the Hecke algebra

generated over C by the operators Tp, p - N , acting on Mλ(N). Thus, T is
a commutative C-algebra.

If W is a complex vector space which is also a T-module, and if Φ =
(νp | p - N) is a system of complex numbers, we say that Φ occurs in W ,
if T has a (non-zero) eigenvector in W such that νp equals the eigenvalue
corresponding to Tp, for all p - N .

From an arithmetical point of view, the interest in the Hecke theory of the
spaces Mλ(N) centers around the case λ = 0, because a part of ‘Langlands’
philosophy’ predicts that a system Φ = (νp | p - N) occurs as a system of
Hecke eigenvalues in the subspace of cusp forms in M0(N), precisely if there
exists an irreducible Galois representation ρ : Gal(Q̄/Q) → GL2(C) with
finite image, Artin conductor dividing N , (det ρ)(complex conjugation) =
1, and such that νp = Trρ (Frobenius at p), ∀p - N . A consequence of

ANNALES DE L’INSTITUT FOURIER



HECKE OPERATORS IN SPACES OF MAASS WAVE FORMS 1865

this prediction is the conjecture that for every such system Φ, every νp

is an algebraic integer. In [2], [3], an interesting attempt was made to
prove this conjecture; however, as discovered by Henniart [7], the approach
was unfortunately irreparably flawed. Thus, the conjecture is – in its full
generality – still completely open.

It seems clear that any progress in connection with this problem must
involve the development of new and more structured models for the Hecke
theory in the spaces Mλ(N). The purpose of the present paper is to suggest
and initiate the study of some new such models. Here is a rough description
of the ideas involved. First we utilize the Poisson transform to transform
the space Mλ(N) to a space of distributions on the unit circle T, – equipped
with a certain on λ depending action of GL+

2 (R). The basic idea is then
– roughly speaking – to study “point values” – and the action of Hecke
operators on them – of these distributions for points in a certain countable
dense subset Ξ ⊆ T. The actual realization of this idea is a bit technical:
By representing the space of distributions in question as derivatives of
continuous functions, one ultimately ends up – for some k ∈ N0 – with a
very short exact sequence of (cohomological) Hecke modules

(∗) H0(Γ, Uλ,k) −→Mλ(N) −→ H1(Γ, Vλ,k) ;

here, Uλ,k is the space of (k + 1)-tuples of continuous functions on T with
absolutely converging Fourier series and equipped with a certain GL+

2 (R)-
action, and Vλ,k is a subspace of Uλ,k that is shown to have a natural
filtration whose successive quotients are isomorphic to spaces Wλ,m, 1 6
m 6 k, introduced in definition 2.4 below: These are spaces consisting
of continuous functions on T with a certain growth condition on their
Fourier coefficients and equipped with an – on (λ,m) depending – action
of GL+

2 (R) that is easily recognizable from the theory of (non-unitary)
principal series representations (of SL2(R)). Apart from some remarks at
the end of the paper, we shall make no further references to representation
theory of SL2(R) as we shall introduce all concepts in a completely explicit
and self-contained manner.

Using (∗) combined with a study of the evaluation of elements of H0(Γ,
Uλ,k) at points of the above Ξ ⊆ T, and by using the Ash-Stevens “lifting
lemma” for packages of Hecke eigenvalues ([1]), we are then able to prove
the following theorem.

Theorem 1.1. — Let Φ = (νp | p - N) be a system of Hecke eigenvalues
occurring in Mλ(N). Then either

(1) Every νp is algebraic over the field Q(λ,
√
n, nλ/2 | n ∈ N),
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1866 Ian KIMING

or
(2) Φ occurs in H1(Γ,Wλ,m) for some m ∈ N.

2.

In this section we prove Theorem 1.1. We proceed first by recalling some
facts about the action of Hecke operators on cohomology of Hecke-modules,
then with various preliminary constructions before introducing the spaces
Wλ,m and proving Theorem 1.1.

2.1.

In the terminology of [1], section 1.1, we will be concerned with the Hecke
algebra H of the Hecke pair (Γ,∆1(N)), so that our T introduced above
is a subalgebra of H ⊗ C. So, if M is a right C∆1(N)-module, we have a
natural right action of T on the cohomology groups Hi(Γ,M), i > 0, cf.
loc. cit.. In particular, we have a right action of T on the Γ-fixed points
of M that we consistently denote MΓ, and also on H1(Γ,M): Explicitly, if
α ∈ ∆1(N) with ΓαΓ = ∪iΓαi (disjoint), the action of the Hecke operator
Tα on a homogeneous 1-cocycle c : Γ× Γ →M is given by

(c | Tα)(γ0, γ1) :=
∑

i

c(ti(γ0), ti(γ1)) | αi,

where ti : Γ → Γ is the map determined by the requirements Γαiγ = Γαj ,
for some j depending on i and γ, and αiγ = ti(γ)αj .

Let us also recall that the right action of T commutes with the long exact
cohomology sequence associated with a short exact sequence of C∆1(N)-
modules.

2.2.

In this subsection, we shall consider the Poisson-transformation asso-
ciated with the upper half plane H interpreted as the symmetric space
SL2(R)/SO2(R), use this to pull back the action of GL+

2 (R) on ∆-eigen-
functions on H to the space of distributions on T = R/πZ, and establish
an isomorphism as Hecke-modules between Mλ(N) and a certain space of
distributions on T. Let us first introduce the appropriate actions:

ANNALES DE L’INSTITUT FOURIER



HECKE OPERATORS IN SPACES OF MAASS WAVE FORMS 1867

For γ =
(
a b

c d

)
∈ GL+

2 (R) and θ ∈ T, we put:

j(γ, θ) :=
(
(a cos θ + b sin θ)2 + (c cos θ + d sin θ)2

)1/2
,

so that for fixed γ, j(γ, ·) is a C∞ function on T. Secondly, we define
γ.θ ∈ T by the requirement

(cos γ.θ, sin γ.θ) = ±
(
a cos θ + b sin θ

j(γ, θ)
,
c cos θ + d sin θ

j(γ, θ)

)
,

where the sign is chosen such that γ.θ ∈ [0, π[. One immediately verifies
that (γ, θ) 7→ γ.θ actually defines an action of GL+

2 (R) on T, and that we
have

j(γ1γ2, θ) = j(γ1, γ2.θ)j(γ2, θ).

With this, we see that we have a right action |λ of GL+
2 (R) on C∞-functions

on the torus T given by:

(ϕ |λ γ)(θ) := (det γ)1+λ/2j(γ, θ)−1−λ · ϕ(γ.θ), for ϕ ∈ C∞(T).

Definition 2.1. — Define Dλ to be the complex vector space of dis-
tributions on T with the (on λ depending) right action of GL+

2 (R) given
by:

(Λ |λ γ)ϕ := Λ(ϕ |λ γ−1)

for Λ ∈ Dλ, ϕ ∈ C∞(T), and γ ∈ GL+
2 (R).

With this definition, the space DΓ
λ is also endowed with the structure of

a T-module. Explicitly, if Λ ∈ DΓ
λ and α ∈ ∆1(N) with ΓαΓ =

⋃
i Γαi as a

disjoint union, then
Λ | Tα :=

∑
i

(Λ |λ αi).

Proposition 2.2. — Suppose that Re(λ) > 0. Then

DΓ
λ
∼= Mλ(N)

as T-modules.

Proof. — Consider the maximal compact subgroup

K := SO2(R) =
{
r(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
| θ ∈]− π, π]

}
in G. We identify H with the symmetric space G/K; explicitly, x+ iy ∈ H

is identified with the coset gx,yK where

gx,y :=
(
y1/2 xy−1/2

0 y−1/2

)
.

TOME 57 (2007), FASCICULE 6



1868 Ian KIMING

We shall now utilize the Poisson transform and the Helgason isomorphism
associated with this situation. We shall use the particular version given in
[6], Chap. IV, Theorem 5, and proceed now with introducing the necessary
notation.

Consider the following standard subgroups of G:

A :=
{(

a 0
0 a−1

)
| a ∈ R+

}
,

whose Lie algebra a we identify with R, and

N :=
{(

1 t

0 1

)
| t ∈ R

}
, M :=

{(
±1 0
0 ±1

)}
,

so that we have the Iwasawa decomposition G = KAN , and can identify
K/M with T. Explicitly, r(θ)M is identified with

θ (mod π) ∈ T,

and the Iwasawa decomposition of an element g =
(
a b

c d

)
∈ G has the

shape

g = r(θ)
(
u 0
0 u−1

) (
1 v

0 1

)
,

with u := (a2 + c2)1/2 and θ ∈] − π, π] determined by cos θ = a/u,
sin θ = c/u. The map h : G −→ a is the map uniquely determined by
the requirement

g ∈ K exp(h(g))N, for g ∈ G.
Explicitly, one finds (with the identification of a with R)

h

((
a b

c d

))
= log(a2 + c2)1/2.

Finally, define for g ∈ G:

|g| := traceg(ad(ggt)),

where gt is the transpose of g, and g the Lie algebra of G. One shows that
|k1gk2| = |g| for k1, k2 ∈ K, so that it makes sense to define the notion of
at the most exponential growth for functions f on G/K by the requirement

|f(g)| 6 a|g|b

with some constants a ∈ R+, b ∈ R.
Now we specialize Chap. IV, 2 of [6], in particular Theorem 5 (ii), to our

present situation: We identify elements λ of the space of linear forms on the
complexified Lie algebra aC with complex numbers. The Poisson transform

ANNALES DE L’INSTITUT FOURIER



HECKE OPERATORS IN SPACES OF MAASS WAVE FORMS 1869

Pλ associated with λ is then a linear map from the space D(K/M) of
distributions on K/M to the space Eλ of C∞ functions on G/K with at the
most exponential growth and are eigenfunctions for the Laplace-Beltrami
operator on G/K with an eigenvalue that we specify below; Pλ is given
explicitly by

(∗) (PλΛ)(gK) := Λ
(
kM 7→ e(−λ−1)·h(g−1k) , k ∈ K

)
,

for Λ ∈ D(K/M). Furthermore, Theorem 5 (ii) of loc. cit. implies that Pλ

is an isomorphism, provided that Re(λ) > 0 which is insured in the present
case by assumption. Using the above identification of K/M with T and of
G/K with H via x+ iy ↔ gx,yK, it is straightforward to verify that we can
rewrite (∗) as

(∗∗) (PλΛ)(x+ iy) = Λ
(
θ 7→ b(x, y, θ)

−1−λ
2 , θ ∈ T

)
,

where

b(x, y, θ) := y−1
(
cos2 θ + x2 sin2 θ − 2x cos θ sin θ

)
+ y sin2 θ,

which arises because of

h(g−1
x,yr(θ)) =

1
2

log b(x, y, θ).

From this, one readily checks that elements of Eλ viewed as C∞ functions
on H have ∆-eigenvalue 1/4−λ2. Furthermore, it is tedious but straightfor-
ward to check that we have defined the action of GL+

2 (R) on D precisely so
as to make Pλ equivariant w.r.t. to GL+

2 (R)-action. Thus, we may conclude
that

DΓ ∼= EΓ
λ ,

as T-modules. Hence the proof is concluded by showing that

Mλ(N) = EΓ
λ .

Now, the growth condition on elements of f ∈ Eλ viewed as functions on
H requires the existence of constants a ∈ R+ and b ∈ R (depending on f)
such that

|f(x+ iy)| 6 a|gx,y|b,
and as a simple computation shows that

|gx,y| = 1 + 2x2y−2 + (y + x2y−1)2 + y−2 > max{y2, y−2},

it is immediately clear that Mλ(N) 6 EΓ
λ . On the other hand, one sees that

|gx,y| 6 (const.) · (y2 + y−2) for x ∈ [0, 1], so that if f ∈ EΓ
λ then certainly

for some positive d we have

f(x+ iy) = O(yd) as y → +∞

TOME 57 (2007), FASCICULE 6



1870 Ian KIMING

and
f(x+ iy) = O(y−d) as y → 0+

uniformly in x ∈ [0, 1]. But since f is invariant under the substitution
x 7→ x+ 1, this holds uniformly in x ∈ R. Thus, f ∈Mλ(N). �

If f is a continuous complex-valued function on T, we shall write

f ∼
∑
n∈Z

ane
2inθ

(only) to signal that the Fourier coefficients of f are being denoted by an,
n ∈ Z.

If Λ ∈ D(T), the Fourier coefficients of Λ are

an := Λ(e−2inθ),

and as is well-known, a given sequence (an) of complex numbers is the
sequence of Fourier coefficients of some distribution Λ ∈ D(T) if and only
if there exists an integer m > 0 such that∑

n

(1 + n2)−m|an|2 <∞ ;

if this is the case, there is then an integer s > 0 such that the series∑
n

(1 + 2in)−s · an

converges absolutely. Then

f(θ) :=
∑

n

(1 + 2in)−sane
2inθ

defines a continuous function on T, and with the notation

∂ := 1 +
d

dθ
,

we have Λ = ∂sf in the usual sense, i.e.,

Λϕ =
1
π

∫
T

f(θ)(∂sϕ)(θ)dθ

for ϕ ∈ C∞(T). It will be convenient for us to consider distributions rep-
resentable in slightly more general form

(†) Λ =
s∑

j=0

∂jfj ,

where the fj are continuous functions on T with absolutely converging
Fourier series. We now define some auxiliary objects, and then the spaces
occurring in Theorem 1.1.

ANNALES DE L’INSTITUT FOURIER



HECKE OPERATORS IN SPACES OF MAASS WAVE FORMS 1871

Definition 2.3. — For s ∈ N0, denote by Dλ,s the subspace of D(T)
consisting of distributions Λ representable in the form (†) and with the
right GL+

2 (R)-action given in Definition 2.1. Define also Uλ,s to be the
complex vector space consisting of (s+ 1)-tuples (f0, . . . , fs) of continuous
functions on T with absolutely converging Fourier series, and define Vλ,s

to be the subspace of Uλ,s consisting of tuples (f0, . . . , fs) with∑
j

∂jfj = 0

in the distribution sense. Because of Proposition 2.2 and [8], Satz 5, the
space DΓ

λ is finite-dimensional. Consequently, there exists a non-negative
integer k such that

DΓ
λ 6 Dλ,k,

so that obviously,

DΓ
λ,k = DΓ

λ .

Definition 2.4. — Let m ∈ N. We define Wλ,m as the complex vector
space consisting of continuous functions f ∼

∑
n∈Z ane

2inθ on T with∑
n∈N

|n||an| <∞,

and with the following on (λ,m) depending right action of GL+
2 (R):

(f |λ,m γ)(θ) := f(γ.θ)(det γ)−m−λ/2j(γ, θ)(2m−1)+λ.

Using the fact that j(γ, ·) ∈ C∞(T), we have j(γ, ·) ∈ Wλ,m for every
m ∈ N, and it is easily verified that · |λ,m γ actually maps Wλ,m into itself
so that the definition makes sense.

The definitions of Uλ,s and Vλ,s are such that we have a natural exact
sequence of complex vector spaces

0 −→ Vλ,s −→ Uλ,s −→ Dλ,s −→ 0,

where the map Uλ,s −→ Dλ,s is given by (f0, . . . , fs) 7→
∑

j ∂
jfj . In the

next subsection we lift the action of GL+
2 (R) on Dλ,s to the space Uλ,s so

that this sequence becomes an exact sequence of ∆1(N)-modules, and we
show that the Wλ,m appear as subquotients of the modules Vλ,s. In sub-
section 2.4, we prove a theorem concerning eigenvalues of Hecke operators
acting on the space UΓ

λ,s of Γ-fixed points of Uλ,s. With this preparation,
we then proceed in subsection 2.5 to finish the proof of Theorem 1.1.

TOME 57 (2007), FASCICULE 6



1872 Ian KIMING

2.3.

Lemma 2.5. — For each s ∈ N0 and to each γ ∈ GL+
2 (R) there exist on

λ depending, uniquely determined C∞ functions us,j
γ (θ), j ∈ Z, on T with

us,j
γ = 0 for j < 0 and for j > s, and with the following properties.
(1) For all ϕ ∈ C∞(T) we have

∂s(ϕ |λ γ)(θ) = (det γ)1+λ/2
s∑

j=0

us,j
γ (θ) · (∂jϕ)(γ.θ).

(2) For all s,
us,s

γ (θ) = j(γ, θ)−1−λ−2s · (det γ)s.

(3) For all s and j = 0, . . . s, the function j(γ, θ)λus,j
γ (θ) is a polynomial

in the functions
d`

dθ`
j(γ, θ) , ` = 0, . . . , s− j,

with coefficients in Z[λ, (det γ)].
(4) For γ1, γ2 ∈ GL+

2 (R),

us,j
γ1γ2

(θ) =
s∑

`=j

us,`
γ2

(θ) · u`,j
γ1

(γ2.θ).

Proof. — This is a completely trivial exercise in differential calculus so
we shall be very brief. Define first us,j

γ (θ) := 0 for j < 0 and for j > s. Put
u0,0

γ (θ) := j(γ, θ)−1−λ, and recursively (w.r.t. s)

us+1,j
γ (θ) := ∂us,j

γ (θ) + (det γ) · j(γ, θ)−2
(
us,j−1

γ (θ)− us,j
γ (θ)

)
,

for j = 0, . . . s+1. Then (2) and (3) are immediately clear, and (1) is easily
proved by induction on s using the relation ∂(fg) = −fg + f(∂g) + (∂f)g
and that

d(γ.θ)
dθ

= (det γ) · j(γ, θ)−2.

Notice that the case s = 0 in (1) is merely the definition of the action
|λ γ on C∞ functions. Uniqueness for a given γ of functions us,j

γ (θ) with
property (1), is shown by assuming functions ws,j

γ (θ) given with

0 =
s∑

j=0

ws,j
γ (θ) · (∂jϕ)(γ.θ)

for all ϕ ∈ C∞(T). Using this on test functions ϕ(θ) = e2imθ, m ∈ N,
changing variables θ 7→ γ−1.θ, and letting m→∞, one obtains successively
ws,s

γ = 0, . . . , ws,0
γ = 0.

ANNALES DE L’INSTITUT FOURIER



HECKE OPERATORS IN SPACES OF MAASS WAVE FORMS 1873

Finally, uniqueness for each fixed γ of functions us,j
γ with (1) proves (4):

Applying ∂s to the a function ϕ |λ γ1γ2 = (ϕ |λ γ1) |λ γ2, we see that (1)
holds for γ = γ1γ2 if us,j

γ1γ2
is replaced by the function

s∑
`=0

us,`
γ2

(θ) · u`,j
γ1

(γ2.θ) =
s∑

`=j

us,`
γ2

(θ) · u`,j
γ1

(γ2.θ).

By uniqueness, (4) follows. �

Definition 2.6. — Define for s ∈ N0 and γ ∈ GL+
2 (R) a matrix func-

tion (depending on λ) of size (s+ 1)× (s+ 1) by

A(s)
γ (θ) :=

(
(det γ)−λ/2j(γ, θ)−2uµ,ν

γ−1(γ.θ)
)

06µ,ν6s
,

θ ∈ T, where the uµ,ν
γ−1 are the uniquely determined functions from Lemma

2.5.
Define also for (f0, . . . , fs) ∈ Uλ,s

(f0, . . . , fs) |λ γ = (f̃0, . . . , f̃s),

where
(f̃0(θ), . . . , f̃s(θ)) := (f0(γ.θ), . . . , fs(γ.θ)) ·A(s)

γ (θ),

and the linear map hs : Uλ,s −→ Dλ,s by

hs(f0, . . . , fs) :=
∑

j

∂jfj .

Proposition 2.7.
(1) The map |λ γ defines a right GL+

2 (R)-action on Uλ,s such that hs is
a homomorphism of GL+

2 (R)-modules.
(2) If s > 0, the natural injection ιs−1 : Uλ,s−1 −→ Uλ,s given by

(f0, . . . , fs−1) 7→ (f0, . . . , fs−1, 0)

is a GL+
2 (R)-homomorphism that injects Vλ,s−1 into Vλ,s.

(3) For s > 0, if Vλ,s−1 is viewed as a GL+
2 (R)-submodule of Vλ,s, we

have
Vλ,s/Vλ,s−1

∼= Wλ,s

as GL+
2 (R)-modules, and hence also as T-modules.

Proof. — (1) Notice first that A(s)
γ (θ) has C∞ coefficients so that |λ γ

actually maps Uλ,s into itself. That we have thus defined a right GL+
2 (R)-

action follows from the formula

A(s)
γ1γ2

(θ) = A(s)
γ1

(γ2.θ)A(s)
γ2

(θ)

which is easily verified on the basis of Lemma 2.5, (4).
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To see that hs commutes with the action of GL+
2 (R), suppose that

F := (f0, . . . , fs) ∈ Uλ,s,

put Λ := hs(F ), and suppose that ϕ ∈ C∞(T). Then by definition of |λ γ
and A

(s)
γ (θ), the function hs(F |λ γ)ϕ equals
1
π

∫
T

∑
`,j

(
fj(γ.θ) · (det γ)−λ/2j(γ, θ)−2uj,`

γ−1(γ.θ)
)
· (∂`ϕ)(θ)dθ,

where the summation is over `, j = 0, . . . , s. Making the change of vari-
ables θ 7→ γ−1.θ, using d(γ.θ)

dθ = (det γ) · j(γ, θ)−2, and remembering the
properties of the uj,`

γ−1 , we find that this integral equals

Λ(ϕ |λ γ−1) = (Λ |λ γ)ϕ.

(2) That ιs−1 is a GL+
2 (R)-homomorphism is a consequence of the def-

inition of the action of GL+
2 (R) combined with the observation that the

matrix A(s)
γ (θ) is an upper triangular (s+ 1)× (s+ 1) matrix whose upper

left s× s minor coincides with A
(s−1)
γ (θ). That ιs−1 maps Vλ,s−1 into Vλ,s

is trivial.
(3) Suppose that s > 0 and that (f0, . . . , fs) ∈ Vλ,s. Denote the Fourier

coefficients of fj by an(fj), n ∈ Z. By definition of Vλ,s, the distribution
Λ =

∑
j ∂

jfj ∈ D(T) is 0, and hence every Fourier coefficient an(Λ) of Λ
vanishes. But we have

an(Λ) =
s∑

j=0

(1 + 2in)jan(fj),

hence

(1 + 2in)an(fs) = −
s−1∑
j=0

(1 + 2in)j−s+1an(fj)

for each n ∈ Z. As each of the series
∑

n an(fj) is absolutely convergent,
the same holds for the series

∑
n(1+2in)an(fs). It follows that fs lies in the

space Wλ,s. Consequently, we can define a linear map ψs : Vλ,s −→ Wλ,s

by
ψs(f0, . . . , fs) := fs.

Then clearly the kernel of ψs is Vλ,s−1 viewed as a subspace of Vλ,s via
ιs−1. We claim that ψs is surjective. Suppose that f ∈ Wλ,s with Fourier
coefficients an(f). Then if we define the numbers

an := −(1 + 2in)an(f)

for n ∈ Z, the series
∑

n an converges absolutely. There is thus a con-
tinuous function g on T with Fourier coefficients an(g) = an, and F :=
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(0, . . . , 0, g, f) is an element of Uλ,s. The Fourier coefficients of the distri-
bution

∂s−1g + ∂sf

are all 0, so F is in fact an element of Vλ,s. But ψs(F ) = f .
It remains to be seen that ψs commutes with the action of the group

GL+
2 (R). Let f := (f0, . . . , fs) ∈ Vλ,s and let γ ∈ GL+

2 (R). By the definition
of f |λ γ we find

f |λ γ = (. . . , fs(γ.θ)(det γ)−λ/2j(γ, θ)−2us,s
γ−1(γ.θ)).

Together with Lemma 2.5 (2) and j(γ−1, γ.θ) = j(γ, θ)−1, this gives

(ψs(f |λ γ))(θ) = fs(γ.θ)(det γ)−s−λ/2j(γ, θ)2s−1+λ,

which is precisely the definition of fs |λ,s γ for fs ∈Wλ,s. �

2.4.

The purpose of this subsection is to prove a statement concerning possible
eigenvalues of Hecke operators acting on the spaces UΓ

λ,s. We proceed with
some preparations.

Let us denote by Fλ the field occurring in Theorem 1.1, (1), i.e., ,

Fλ := Q(λ,
√
n, nλ/2 | n ∈ N).

Denote also by Ξ the subset of T = R/πZ consisting of those θ ∈ T for
which cot θ ∈ P1(Q), i.e., ,

Ξ := {0} ∪ {0 6= θ ∈ T | cot θ ∈ Q} .

Lemma 2.8.

(1) Ξ is dense in T and stable under the action on T of the group
GL+

2 (Q).
(2) Suppose that θ0 ∈ Ξ, ` ∈ N0, and γ ∈ GL+

2 (Q). Then

d`

dθ`
j(γ, θ)|θ=θ0 ∈ F0.

(3) Suppose that θ0 ∈ Ξ, s ∈ N0, and γ ∈ GL+
2 (Q). Then the matrix

A(s)
γ (θ0)

(definition 2.6) is a (s+ 1)× (s+ 1) matrix with coefficients in Fλ.
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Proof. — (1) The first statement is clear, and the second follows from
the formula

cot γ.θ =
a cot θ + b

c cot θ + d

for γ ∈ GL+
2 (R).

(2) Notice first that cos θ, sin θ ∈ F0 if θ ∈ Ξ. Now, if ` = 0, the statement
is clear if sin θ0 = 0, and also if sin θ0 6= 0 since then

j(γ, θ0) = ± sin θ0
(
(a cot θ0 + b)2 + (c cot θ0 + d)2

)1/2 ∈ F0.

For ` > 1, the statement follows from this by induction on ` when one
shows by induction on ` > 1 that

d`

dθ`
j(γ, θ) = j(γ, θ)−` · pγ,`(θ),

where pγ,`(θ) is a polynomial with rational coefficients in cos θ, sin θ and
the dµ

dθµ j(γ, θ), µ = 0, . . . , `− 1.
(3) This follows from (2), the definition of A(s)

λ (θ), and from Lemma 2.5,
(3). �

Now let s ∈ N0 and α ∈ ∆1(N). We shall consider the action of the
Hecke operator Tα on a space UΓ

λ,s = H0(Γ, Uλ,s). The action of Tα on this
space is as a cohomological Hecke operator which we can describe explicitly
as follows. Let

ΓαΓ = ∪r
µ=1Γαµ , αµ ∈ ∆1(N),

as a disjoint union. Then if f = (f0, . . . , fs) ∈ UΓ
λ,s, we have

(f |λ Tα)(θ) :=
r∑

µ=1

((f0, . . . , fs) |λ αµ)(θ)

=
r∑

µ=1

(f0(αµ.θ), . . . , fs(αµ.θ))A(s)
αµ

(θ).

Let us also as usual denote by Γ∞ :=
〈
±

(
1 1
0 1

) 〉
the stabilizer in Γ

of the cusp ∞ ∈ P1(Q). Notice that if Γ is viewed as acting on T then Γ∞
is precisely the stabilizer of 0 ∈ T. Choose a decomposition of SL2(Z) in
double cosets w.r.t. (Γ,Γ∞):

SL2(Z) = ∪m
ν=1ΓγνΓ∞,
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so that the set {γν} is in 1-1 correspondence with the cusps w.r.t. Γ. We
define a linear map φs of UΓ

λ,s into Matm,s+1(C) ∼= Cm(s+1) by

φs(f0, . . . , fs) :=

 f0(γ1.0) . . . fs(γ1.0)
...

...
f0(γm.0) . . . fs(γm.0)

 .

Theorem 2.9. — The space UΓ
λ,s is finite-dimensional and for any α ∈

∆1(N), the eigenvalues of the Hecke operator Tα acting on UΓ
λ,s are alge-

braic over the field Fλ.

Proof. — Retain the above notation. We first show that the linear map
φs is injective which will prove the first part of the theorem. So, suppose
that (f0, . . . , fs) ∈ UΓ

λ,s with

φs(f0, . . . , fs) = 0.

We must show f0 = . . . = fs = 0. View SL2(Z) as acting on T. One finds
that SL2(Z).0 = Ξ which is dense in T (Lemma 2.8 (1)). As the fj are
continuous it thus suffices to show that f0(g.0) = . . . = fs(g.0) = 0 for all
g ∈ SL2(Z). Let then g ∈ SL2(Z) and write

g = γ · γν · γ∞,

with 1 6 ν 6 m, γ ∈ Γ, and γ∞ ∈ Γ∞. Then,

(f0(g.0), . . . , fs(g.0)) = (f0(γ.(γν .0)), . . . , fs(γ.(γν .0)))

= ((f0, . . . , fs) |λ γ)(γν .0) ·A(s)
γ (γν .0)−1

= (f0(γν .0), . . . , fs(γν .0))A(s)
γ (γν .0)−1

= (0, . . . , 0).

Secondly we show the existence of an endomorphism tα of Cm(s+1) with
the following 2 properties:
(i) The diagram

UΓ
λ,s

Tα

��

φs // Cm(s+1)

tα

��
UΓ

λ,s

φs // Cm(s+1)

is commutative.
(ii) tα is defined over the field Fλ (i.e., given by a matrix with coefficients
in Fλ).
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Together with the injectivity of φs, this will then prove the rest of the
theorem.

Let µ ∈ {1, . . . , r} and ν ∈ {1, . . . ,m}. Now, αµγν .0 ∈ Ξ ⊆ T, and as
Ξ = SL2(Z).0 there is gµ,ν ∈ SL2(Z) such that gµ,ν .0 = αµγν .0. We can
write

gµ,ν = βµ,νγξµ(ν)γ∞,

where βµ,ν ∈ Γ, ξµ is some map of {1, . . . ,m} into itself, and γ∞ ∈ Γ∞.
Then

αµγν .0 = βµ,νγξµ(ν).0.

Define then the endomorphism tα of Matm,s+1(C) by

tα

 x1,0 . . . x1,s

...
...

xm,0 . . . xm,s

 :=

r∑
µ=1


(xξµ(1),0, . . . , xξµ(1),s)A

(s)
βµ,1

(γξµ(1).0)−1A
(s)
αµ(γ1.0)

...
(xξµ(m),0, . . . , xξµ(m),s)A

(s)
βµ,m

(γξµ(m).0)−1A
(s)
αµ(γm.0)

 .

Then claim (ii) above is clear because of Lemma 2.8 (3). We proceed to
show (i). So, let f = (f0, . . . , fs) ∈ UΓ

λ,s. Then,

φs(f |λ Tα) =
r∑

µ=1

φs(f |λ αµ)

=
r∑

µ=1


...

(f0(αµγν .0), . . . , fs(αµγν .0))A(s)
αµ(γν .0)

...



=
r∑

µ=1


...

(f0(βµ,νγξµ(ν).0), . . . , fs(βµ,νγξµ(ν).0))A(s)
αµ(γν .0)

...

 .

As f ∈ UΓ
λ,s we have

(f0(βµ,ν .θ), . . . , fs(βµ,ν .θ)) = (f0(θ), . . . , fs(θ))A
(s)
βµ,ν

(θ)−1,
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for all θ ∈ T. Consequently,

φs(f |λ Tα) =

r∑
µ=1


...

(f0(γξµ(ν).0), . . . , fs(γξµ(ν).0))A(s)
βµ,ν

(γξµ(ν).0)−1A
(s)
αµ(γν .0)

...



= tα


...

f0(γν .0), . . . , fs(γν .0)
...

 = tαφs(f),

as desired. �

2.5.

Proof of Theorem 1.1. — Fix λ ∈ C with Re(λ) > 0. Recall (Defini-
tion 2.3) that we have fixed a non-negative integer k such that

DΓ
λ,k = DΓ

λ
∼= Mλ(N),

where the isomorphism is as T-modules, cf. Proposition 2.2. Let Φ = (νp |
p - N) be a system of Hecke eigenvalues occurring in Mλ(N) and hence also
in DΓ

λ,k. Let 0 6= v ∈ DΓ
λ,k be a corresponding T-eigenvector, i.e., Tpv = νpv

for p - N . Recall (Definition 2.3 and Proposition 2.7 (1)) that we have a
short exact sequence of ∆1(N)-modules

0 −→ Vλ,k −→ Uλ,k −→ Dλ,k −→ 0,

which gives rise to the very short exact sequence of T-modules

UΓ
λ,k

α−→ DΓ
λ

β−→ H1(Γ, Vλ,k),

with T acting as an algebra of cohomological Hecke operators. Suppose
that βv = 0 so that v ∈ Im(α). Then Φ occurs in Im(α), and because of
Theorem 2.9 the tautological homomorphism

α : UΓ
λ,k −→ Im(α)

is a surjective homomorphism of T-modules that are finite-dimensional as
complex vector spaces. Using Proposition 1.2.2 of [1], we may then conclude
that Φ occurs in UΓ

λ,k. According to Theorem 2.9 all eigenvalues νp are then
algebraic over the field

Fλ := Q(λ,
√
n, nλ/2 | n ∈ N).
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We then suppose that βv 6= 0 and will show that Φ occurs inH1(Γ,Wλ,m)
for some 0 6 m 6 k. This then finishes the proof of Theorem 1.1.

Recall that according to Proposition 2.7 (3) we may consider the spaces
Vλ,m, 0 6 m 6 k, as a filtration

0 = Vλ,0 6 . . . Vλ,m−1 6 Vλ,m . . . 6 Vλ,k

of T-submodules of Vλ,k where the successive quotients are isomorphic to
the Wλ,m as T-modules. Now, our assumption βv 6= 0 implies that Φ occurs
in a finite-dimensional sub-T-module of H1(Γ, Vλ,k) namely β(DΓ

λ); notice,
that we must have k > 1. We shall assume that Φ occurs in some finite-
dimensional, sub-T-module X of H1(Γ, Vλ,m) for some m with 1 6 m 6 k

and will show that then either Φ occurs in H1(Γ,Wλ,m) or else in some
finite-dimensional, sub-T-module of H1(Γ, Vλ,m−1). By induction on k, this
gives the desired conclusion as Vλ,0 = 0.

Consider the short exact sequence of T-modules

0 −→ Vλ,m−1 −→ Vλ,m −→Wλ,m −→ 0

coming from Proposition 2.7 (3). This gives rise to a long exact sequence
of T-modules:

WΓ
λ,m −→ H1(Γ, Vλ,m−1)

ε−→ H1(Γ, Vλ,m)
η−→ H1(Γ,Wλ,m).

Now, it is easy to see that the space WΓ
λ,m is 0: Suppose that f ∈WΓ

λ,m. As
f is continuous, f is bounded. However, the definition of j(γ, θ) shows that
j(γn, θ), n ∈ N, is unbounded if 0 6= θ ∈ T where γn denotes the matrix

γn :=
(

1 n

0 1

)
∈ Γ.

So, the definition of the Γ-structure on Wλ,m implies that f(θ) vanishes for
every θ 6= 0 and hence for all θ.

Thus, ε is an injection and the very short exact sequence

ε−1(X) −→ X −→ η(X)

is an exact sequence of finite-dimensional T-modules. Applying Proposi-
tion 1.2.2 of [1] as above, we conclude that either Φ occurs in ε−1(X), and
thus a fortiori in H1(Γ, Vλ,m−1), or else in η(X) and so also in H1(Γ,Wλ,m).

�

Remarks. — The reader will notice that our use of continuous coeffi-
cients in the above – as opposed to L2-coefficients – is necessitated by the
use we made of the evaluation maps φs in the proof of Theorem 2.9 above.
Thus, the use of continuous coefficients is indispensable for our approach.
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However, we wish to remark here that the there is a certain price to be
paid for this, notably the following.

The author does not have concrete examples of triples (Γ, λ, s) where he
can prove that the space UΓ

λ,s is actually non-zero. However, given the in-
jectivity of the evaluation map φs, the proof of Theorem 2.9 shows that any
eigenvalue of a Hecke operator Tα acting on the space UΓ

λ,s is also an eigen-
value of the linear operator tα acting on Cm(s+1); moreover, the eigenvalues
of tα can – for any concretely given triple (Γ, λ, s) – be computed numeri-
cally. Such numerical experiments seem to indicate that Hecke eigenvalues
on the spaces UΓ

λ,s are probably not very interesting, and that one could
at the most retrieve packages of Hecke eigenvalues which are readily recog-
nizable as belonging to certain standard Eisenstein series. Thus, it would
appear that the interesting packages of Hecke eigenvalues should be the
ones occurring in the spaces H1(Γ,Wλ,m).

There are certain reasons that make it not wholly unreasonable to ven-
ture the conjecture that the spaces H1(Γ,Wλ,m) are in fact finite-dimen-
sional. For instance, the methods of the papers [5] and more specifically
[4], might show the way towards analyzing this question. It will be seen
however, that because the Wλ,m are spaces of continuous functions, an
attempt to use the methods of these papers to approach the question of
finite-dimensionality of the H1(Γ,Wλ,m) will quickly lead to some serious
analytical difficulties.
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