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STRONG DIAMAGNETISM FOR GENERAL DOMAINS
AND APPLICATION

by Soeren FOURNAIS & Bernard HELFFER (*)

Abstract. — We consider the Neumann Laplacian with constant magnetic
field on a regular domain in R2. Let B be the strength of the magnetic field and
let λ1(B) be the first eigenvalue of this Laplacian. It is proved that B 7→ λ1(B)
is monotone increasing for large B. Together with previous results of the authors,
this implies the coincidence of all the “third” critical fields for strongly type 2
superconductors.

Résumé. — Nous considérons le Laplacien de Neumann avec champ magnétique
constant dans un domaine régulier de R2. Si B désigne l’intensité de ce champ et
si λ1(B) désigne la première valeur propre de ce Laplacien, il est démontré que λ1

est une fonction monotone croissante de B pour B grand. En combinant avec des
résultats antérieurs des auteurs, ceci implique la coïncidence de toutes les défini-
tions raisonables du troisième champ critique pour les matériaux supraconducteurs
de type II.

1. Introduction and main result

Let Ω ⊂ R2 be a bounded, simply connected domain with regular bound-
ary. We keep this assumption in the entire paper.
Let F(x) = (F1, F2) = (−x2/2, x1/2)—a standard choice for a vector po-
tential generating a unit magnetic field: curl F = 1. We consider H(B), the
self-adjoint operator associated with the closed, symmetric quadratic form,

W 1,2(Ω) 3 u 7→ QB(u) =
∫

Ω

|(−i∇+BF)u|2 dx.

Keywords: Spectral theory, bottom of the spectrum, Neumann condition, super-
conductivity.
Math. classification: 35P15, 35J55, 82D55.
(*) Both authors were supported by the European Research Network “Postdoctoral
Training Program in Mathematical Analysis of Large Quantum Systems” with con-
tract number HPRN-CT-2002-00277 and by the ESF Scientific Programme in Spectral
Theory and Partial Differential Equations (SPECT).
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We will use the notation pA = (−i∇+ A). Then, more explicitly, H(B) is
the differential operator p2

BF with domain {u ∈W 2,2(Ω)
∣∣∣ ν ·pBFu|∂Ω = 0},

where ν is the unit interior normal to ∂Ω.
We choose and fix a smooth parametrization γ : |∂Ω|

2π S1 7→ ∂Ω of the
boundary. We may assume that |γ′(s)| = 1 for all s. We will further pa-
rametrize |∂Ω|

2π S1 by [−|∂Ω|/2, |∂Ω|/2] with periodicity being tacitly under-
stood.

For a point p = γ(s) ∈ ∂Ω we define k(p)—also denoted by k(s)—to be
the curvature of the boundary at the point γ(s), i.e.

γ′′(s) = k(s)ν(s),

where ν(s) is the interior normal (to the boundary) vector at the point
γ(s). The maximum of k will play an important role, we define therefore,
kmax := maxs{k(s)}.

Define λ1(B) = inf SpecH(B) to be the lowest eigenvalue of H(B). The
diamagnetic inequality tells us that

λ1(B) > λ1(0),

for all B > 0.
One may ask whether the more general inequality

0 < B1 < B2 ⇒ λ1(B1) 6 λ1(B2),

which one can consider as a strong form of diamagnetism, holds (see [7],
[8] and [13]).

In this paper we prove that strong diamagnetism holds for sufficiently
large B.

Theorem 1.1. — The one sided derivatives,

λ′1,+(B) = lim
ε→0+

λ1(B + ε)− λ1(B)
ε

,

λ′1,−(B) = lim
ε→0+

λ1(B)− λ1(B − ε)
ε

exist for all B > 0 and λ′1,+(B) satisfies

lim inf
B→∞

λ′1,+(B) > 0.(1.1)

Furthermore, there exists a universal constant Θ0 > 0 such that if Ω is not
a disc, then the limit actually exists and satisfies,

lim
B→∞

λ′1,−(B) = lim
B→∞

λ′1,+(B) = Θ0.(1.2)

ANNALES DE L’INSTITUT FOURIER



DIAMAGNETISM 2391

If Ω is a disc, then

lim sup
B→∞

λ′1,+(B) > Θ0,

0 < lim inf
B→∞

λ′1,+(B) < Θ0.

In particular, in any case, there exists B0 > 0 such that λ1(B) is strictly
increasing on [B0,∞).

Results similar to (1.1) have been proved recently in [9] under extra
assumptions. First of all (in [19]) a complete asymptotics of λ1(B) was de-
rived for Ω satisfying a certain “generic” assumption, i.e. that the boundary
curvature only has a finite number of maxima, all being non-degenerate.
This complete asymptotics was then used to obtain (1.1). The most promi-
nent domain excluded in this approach is the disc—where the curvature is
constant. However, [9] includes a special analysis of the disc proving that
Theorem 1.1 remains true in that case.

What remained was the study of all the other “non-generic” cases. Also
it seemed desirable to be able to establish Theorem 1.1 without using the
existence of a complete asymptotic expansion, since such expansions are
difficult to obtain and their structure depends heavily on the different kinds
of maxima of the boundary curvature. In this paper we realize such a
strategy. It turns out that for all domains, except the disc, one can modify
the approach from [9] to obtain (1.1) with only very limited knowledge
on the asymptotic behavior of λ1(B). For the disc one can use the special
symmetry (separation of variables) of the domain to conclude.

Thus the structure of the proof of Theorem 1.1 is as follows. The state-
ments for the disc follow from the analysis in [9] which will not be repeated.
Thus we only consider the case where Ω is not a disc. If Ω is not a disc
then there exists a part of the boundary where the ground state will be
very small. Thus one can choose a gauge such that |Âψ| � 1 (for large B
and in the L2-sense), where Â is the vector field F in the new gauge. This
new input to the proof in [9] allows us to differentiate the leading order
asymptotics for λ1(B).

Notice that if Ω is not a disc, then it satisfies the following assumption :

Assumption 1.2. — If we denote by Π the set of maxima for the cur-
vature, i.e.

Π =
{
p ∈ ∂Ω

∣∣ k(p) = kmax

}
,

then
Π 6= ∂Ω.

TOME 57 (2007), FASCICULE 7



2392 Soeren FOURNAIS & Bernard HELFFER

Finally, we will prove in Section 3 (Theorem 3.3) that all the natural
definitions of the third critical field appearing in the theory of supercon-
ductivity coincide without any other geometric assumption than regularity
and simply connectedness.

2. The analysis of the diamagnetism

Two universal constants Θ0, C1 will play an important role in this paper,
as in any investigation of the magnetic Neumann Laplacian. For detailed
information about these constants, one can refer to [11]. For the second
constant C1, we only use the fact that it is strictly positive. The first,
Θ0 can be defined as the ground state energy of the magnetic Neumann
Laplacian with unit magnetic field in the case of the half-plane,

Θ0 := λ1(B = 1), for Ω = R2
+.

The numerical value of Θ0 can be calculated with precision (Θ0 ≈ 0.59),
however for our purposes the following (easily established) rigorous bounds

0 < Θ0 < 1,

suffice.
We recall the following general, leading order asymptotics of λ1(B) pro-

ved in [11].

Proposition 2.1. — As B → +∞, then

λ1(B) = Θ0B + o(B).(2.1)

If a state u is localized away from the boundary, i.e. u ∈ C∞0 (Ω), we have
the following standard inequality

〈u,H(B)u〉 > B‖u‖2L2(Ω),

where, for v, w in L2(Ω), 〈v, w〉 denotes the L2 scalar product of v and w.
Using that Θ0 < 1 it is therefore a standard consequence of (2.1) (for
the proof see [11]) that ground states are exponentially localized near the
boundary.

Lemma 2.2 (Normal Agmon estimates). — There exists α,M,C > 0
such that if B > 1 and ψ1( · ;B) is a ground state of H(B) then∫

Ω

e2α
√

B dist(x,∂Ω)
{
|ψ1(x;B)|2 +

1
B
|pBFψ1( · ;B)|2

}
dx(2.2)

6 C

∫
{
√

B dist(x,∂Ω)6M}
|ψ1(x;B)|2 dx.

ANNALES DE L’INSTITUT FOURIER
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In particular, for all N > 0,∫
dist(x, ∂Ω)N |ψ1(x;B)|2 dx = O(B−N/2).(2.3)

From [11, Proposition 10.5] we also get the following (stronger than (2.1))
result,

Proposition 2.3. — Let Θ0, C1 be the usual universal constants and
define, for C > 0

UB(x) =

{
B, dist(x, ∂Ω) > 2B−1/6,

Θ0B − C1k(s)
√
B − CB1/3, dist(x, ∂Ω) 6 2B−1/6.

Then, if B > 1 and C is sufficiently big, we have for all ψ ∈W 2,2(Ω),

〈ψ , H(B)ψ〉 >
∫

Ω

UB(x)|ψ(x)|2 dx.

Proposition 2.3 and a corresponding improved upper bound (also proved
in [11]),

λ1(B) = Θ0B − C1kmax

√
B + o(

√
B),(2.4)

imply, by suitable Agmon estimates, that ground states have to be localized
near the set Π. We actually only need the following very weak version of
this localization.

Lemma 2.4. — Let ε0 > 0. Then, for all N > 0, there exists C > 0 such
that if ψ1( · ;B) is a ground state for H(B), then∫

{dist(x,Π)>ε0}
|ψ1(x;B)|2 dx 6 C B−N .

We now introduce adapted coordinates near the boundary. Define, for
t0 > 0

Φ :
|∂Ω|
2π

S1 × (0, t0) → Ω, Φ(s, t) = γ(s) + tν(s).

For t0 sufficiently small we have that dist(Φ(s, t), ∂Ω) = t and that Φ is a
diffeomorphism with image {x ∈ Ω | dist(x, ∂Ω) < t0}. Furthermore, the
Jacobian satisfies |DΦ| = 1− tk(s).

Lemma 2.5. — Let us define for ε 6 min(t0/2, |∂Ω|/2) and s0 ∈ ∂Ω

Ω(ε, s0) :=
{
x = Φ(s, t)

∣∣ t 6 ε, |s− s0| > ε
}
.

Then there exists φ ∈ C∞(Ω) such that Â = F +∇φ satisfies

|Â(x)| 6 C dist(x, ∂Ω),

for x ∈ Ω(ε, s0).

TOME 57 (2007), FASCICULE 7



2394 Soeren FOURNAIS & Bernard HELFFER

Proof. — Let Ã = (Ã1, Ã2) be the magnetic 1-form pulled back to (s, t)
coordinates,

F1dx+ F2dy = Ã1ds+ Ã2dt.

Taking the exterior derivative, and using dx ∧ dy = |DΦ|ds ∧ dt, we find

curl s,t Ã = ∂sÃ2 − ∂tÃ1 = (1− tk(s)).

Since {(s, t) | t 6 ε, |s− s0| > ε} is simply connected there exists a function
φ̃ ∈ C∞(Φ−1(Ω(ε, s0))) such that

Ã +∇s,tφ̃ = (t− t2k(s)/2, 0).

Let χ ∈ C∞(Ω),

χ = 1 on {x | t 6 ε, |s− s0| > ε} ,
χ = 0 on {x | dist(x, ∂Ω) > 2ε or |s− s0| 6 ε/2} ,

and define φ(x) = φ̃(Φ−1(x))χ(x). Then φ solves the problem. �

Proof of Theorem 1.1. — Let φ ∈ C∞(Ω) be such that F := F + ∇φ
satisfies F · ν = 0 on ∂Ω. The existence of such a φ is easy to prove. Define
H(B) to be the self-adjoint operator associated to the closed quadratic
form

W 1,2(Ω) 3 u 7→
∫

Ω

| − i∇u+BFu|2 dx.

Then H(B) and H(B) are unitarily equivalent and so they have the same
spectrum. Furthermore, the domain of H(B) is

D(H(B)) = {u ∈W 2,2(Ω): ν · ∇u
∣∣
∂Ω

= 0},

in particular, D(H(B)) is independent of B. Applying analytic perturbation
theory to H(B) we get the existence of λ′1,+(B), λ′1,−(B).

We recall that Theorem 1.1 was proved already in [19] in the case of the
disk, so it remains to consider the case where Ω is not the disc. Thus Ω
satisfies Assumption 1.2. Therefore, there exist s0 ∈ [−|∂Ω|/2, |∂Ω|/2] and
0 < ε0 < min(t0/2, |∂Ω|/4) such that

[s0 − 2ε0, s0 + 2ε0] ∩Π = ∅.

Let Â be the vector potential defined in Lemma 2.5, Q̂B the quadratic
form

W 1,2(Ω) 3 u 7→ Q̂B(u) =
∫

Ω

| − i∇u+BÂu|2dx,

ANNALES DE L’INSTITUT FOURIER
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and Ĥ(B) be the associated operator. Then Ĥ(B) and H(B) are unitarily
equivalent: Ĥ(B) = eiBφH(B)e−iBφ, for some φ independent of B. By an-
alytic perturbation theory applied to H(B) there exists an analytic branch
of eigenfunctions,

H(β)ψ1,+( · ;β) = λ1(β)ψ1,+( · ;β),

for β ∈ [B,B + ε), some ε > 0, with ‖ψ1,+(β)‖ = 1.
With ψ+

1 ( · ;β) := eiβφψ1,+( · ;β) being the corresponding eigenfunctions of
Ĥ(β), we get

λ′1,+(B) =
d

dβ
Q̂β(ψ+

1 (β))
∣∣
β=B

(2.5)

= 〈Âψ+
1 ( · ;B) , p

BÂ
ψ+

1 ( · ;B)〉

+ 〈p
BÂ

ψ+
1 ( · ;B) , Âψ+

1 ( · ;B)〉+ 2<{Q̂B(v, ψ+
1 (B))},

where v = d
dβψ

+
1 (β)

∣∣
β=B

. The last term in (2.5) vanishes because ψ+
1 is a

normalized eigenfunction of Ĥ, and therefore,
(2.6)
λ′1,+(B) = 〈Âψ+

1 ( · ;B) , p
BÂ

ψ+
1 ( · ;B)〉+ 〈p

BÂ
ψ+

1 ( · ;B) , Âψ+
1 ( · ;B)〉.

We now obtain for any β > 0,

λ′1,+(B) =
Q̂B+β(ψ+

1 ( · ;B))− Q̂B(ψ+
1 ( · ;B))

β
− β

∫
Ω

|Â|2 |ψ+
1 (x;B)|2 dx

(2.7)

>
λ1(B + β)− λ1(B)

β
− β

∫
Ω

|Â|2 |ψ+
1 (x;B)|2 dx.

By Lemma 2.5 we can estimate

(2.8)
∫

Ω

|Â|2 |ψ+
1 (x;B)|2 dx 6 C

∫
Ω

dist(x, ∂Ω)2|ψ+
1 (x;B)|2 dx

+ ‖Â‖2∞
∫

Ω\Ω(ε0,s0)

|ψ+
1 (x;B)|2 dx.

Combining Lemmas 2.2 and 2.4 we therefore find the existence of a constant
C > 0 such that : ∫

Ω

|Â|2 |ψ+
1 (x;B)|2 dx 6 C B−1.(2.9)

We now choose β = η B, where η > 0 is arbitrary. By the weak asymptotics
(2.1) for λ1(B), we therefore find :

lim inf
B→∞

λ′1,+(B) > Θ0 − η C.(2.10)

TOME 57 (2007), FASCICULE 7



2396 Soeren FOURNAIS & Bernard HELFFER

Since η was arbitrary this implies

lim inf
B→∞

λ′1,+(B) > Θ0.(2.11)

Applying the same argument to the derivative from the left, λ′1,−(B), we
get (the inequality gets turned since β < 0)

lim sup
B→∞

λ′1,−(B) 6 Θ0.(2.12)

Since, by perturbation theory, λ′1,+(B) 6 λ′1,−(B) for all B, we get (1.2).
�

3. Application to superconductivity

As appeared from the works of Bernoff-Sternberg [3], Del Pino-Felmer-
Sternberg [18], Lu-Pan [15, 14, 16], and Helffer-Pan [12], the determination
of the lowest eigenvalues of the magnetic Schrödinger operator is crucial
for a detailed description of the nucleation of superconductivity (on the
boundary) for superconductors of Type II and for accurate estimates of
the critical field HC3 . In this section we will clarify the relation between
the different definitions of critical fields considered in the mathematical or
physical literature and all supposed to describe the same quantity. This
is a continuation and an improvement of [9] : we will be indeed able to
eliminate all the geometric assumptions of that paper.

We recall that the Ginzburg-Landau functional is given by

(3.1) E [ψ,A] = Eκ,H [ψ,A] =
∫

Ω

{
|pκHAψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

+ κ2H2| curl A− 1|2
}
dx,

with (ψ,A) ∈W 1,2(Ω; C)×W 1,2(Ω; R2).
We fix the choice of gauge by imposing that

div A = 0 in Ω , A · ν = 0 on ∂Ω .(3.2)

We recall that the domains Ω are assumed to be smooth, bounded and
simply-connected and refer the reader to [4],[5] and [6] for the analysis of
the case with corners.

ANNALES DE L’INSTITUT FOURIER
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By variation around a minimum for Eκ,H we find that minimizers (ψ,A)
satisfy the Ginzburg-Landau equations,

p2
κHAψ = κ2(1− |ψ|2)ψ

curl 2 A = − i
2κH (ψ∇ψ − ψ∇ψ)− |ψ|2A

}
in Ω;(3.3a)

(pκHAψ) · ν = 0
curl A− 1 = 0

}
on ∂Ω,(3.3b)

with
curl 2 A = (∂x2(curl A),−∂x1(curl A)).

It is known that, for given values of the parameters κ,H, the functional
E has (possibly non-unique) minimizers. However, after some analysis of
the functional, one finds (see [10] for details) that, for any κ > 0, there
exists H(κ) such that if H > H(κ) then (0,FΩ) is the only minimizer of
Eκ,H (up to change of gauge).
Here we choose FΩ as the unique solution in Ω of curl FΩ = 1 satisfying
(3.2). Following Lu and Pan [15], one can therefore first define

(3.4) HC3
(κ) = inf {H > 0 : (0,FΩ) is a minimizer of Eκ,H} .

In the physical interpretation of a minimizer (ψ,A), |ψ(x)| is a measure of
the superconducting properties of the material near the point x. Therefore,
HC3

(κ) is the value of the external magnetic field, H, at which the material
loses its superconductivity completely.

Actually, as already used implicitly in [15] and more explicitly in [9], we
should also introduce an upper critical field, HC3

(κ) 6 HC3(κ), by

(3.5) HC3(κ) = inf
{
H > 0 : for all H ′ > H, (0,FΩ)

is the only minimizer of Eκ,H′
}
.

The physical idea of a sharp transition from the superconducting to the
normal state, requires the different definitions of the critical field to coin-
cide.

Most works analyzing HC3
relate (more or less implicitly) these global

critical fields to local ones given purely in terms of spectral data of the
magnetic Schrödinger operator H(B), i.e. in terms of a linear problem.
The local fields are defined as follows.

H
loc

C3
(κ) = inf

{
H > 0 : for all H ′ > H, λ1(κH ′) > κ2

}
,(3.6)

H loc
C3

(κ) = inf
{
H > 0 : λ1(κH) > κ2

}
.

The difference between H
loc

C3
(κ) and H loc

C3
(κ)—and also between HC3(κ)

and HC3
(κ)—can be retraced to the general non-existence of an inverse

TOME 57 (2007), FASCICULE 7
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to the function B 7→ λ1(B), i.e. to lack of strict monotonicity of λ1. In
the previous section, we have solved this monotonicity question and we
now explain, following mainly [9], how this permits to close the discussion
about this “third” critical field in the high κ regime.

The next theorem, which is proved in [9], is typical of Type II materials,
in the sense that it is only valid for large values of κ.

Theorem 3.1. — There exists a constant κ0 > 0 such that, for κ > κ0,
we have

HC3
(κ) = H loc

C3
(κ) , HC3(κ) = H

loc

C3
(κ) .(3.7)

On the other hand, we have from Theorem 1.1 :

Proposition 3.2. — There exists κ0 such that, if κ > κ0, then the
equation for H:

λ1(κH) = κ2 ,(3.8)

has a unique solution H(κ).

In other words, for large κ, the upper and lower local fields, defined in
(3.6), coincide. We define, for κ > κ0, the local critical field H loc

C3
(κ) to be

the solution given by Proposition 3.2, i.e.

λ1(κH loc
C3

(κ)) = κ2 .(3.9)

Using Proposition 3.2 we can identify the lower and upper local fields
and therefore find the following result.

Theorem 3.3. — Suppose Ω is smooth, bounded and simply connected.
There exists κ0 > 0 such that, when κ > κ0, then

H loc
C3

(κ) = HC3
(κ) = HC3(κ) .(3.10)

Remark 3.4. — This result was established in [9] under the additional
assumption that Ω was either a disk or a domain whose boundary has only
a finite number of points of maximal curvature (with in addition some non
degeneracy condition).

ANNALES DE L’INSTITUT FOURIER
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