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JACOBIANS IN ISOGENY CLASSES OF ABELIAN
SURFACES OVER FINITE FIELDS

by Everett W. HOWE,
Enric NART & Christophe RITZENTHALER (*)

Abstract. — We give a complete answer to the question of which polynomials
occur as the characteristic polynomials of Frobenius for genus-2 curves over finite
fields.

Résumé. — Nous donnons une réponse complète à la question de savoir quels
sont les polynômes caractéristiques du Frobenius des courbes de genre 2 sur les
corps finis.

1. Introduction

The Weil polynomial of an abelian variety over a finite field Fq is the
characteristic polynomial of its Frobenius endomorphism; the Weil polyno-
mial of a curve over Fq is the Weil polynomial of its Jacobian. In this paper
we determine which polynomials occur as the Weil polynomials of genus-2
curves over a finite field.

Weil’s ‘Riemann Hypothesis’ shows that the Weil polynomial of an
abelian surface over Fq has the form

x4 + ax3 + bx2 + aqx+ q2,

and the Honda-Tate theorem [36] makes it a straightforward matter to
determine which such polynomials come from abelian surfaces (see [31,
Thm. 1.1], [25, Thm. 2.9], and the Appendix to this paper). Since two
abelian varieties over Fq are isogenous to one another if and only if they

Keywords: Curve, Jacobian, abelian surface, zeta function, Weil polynomial, Weil
number.
Math. classification: 11G20, 14G10, 14G15.
(*) The second author was supported in part by project MTM2006-11391 from the
Spanish MEC.



240 Everett W. HOWE, Enric NART & Christophe RITZENTHALER

have the same Weil polynomial [35], we may phrase our main question as
follows.

Question 1.1. — (cf. [1, Question 11.3]) Suppose f = x4 +ax3 + bx2 +
aqx+ q2 is the Weil polynomial for an isogeny

class of abelian surfaces over Fq. Is there a projective smooth genus-2
curve over Fq whose Weil polynomial is equal to f ?

While this question has been settled in many special cases (as we ex-
plain in detail below), until now there have been two kinds of isogeny
classes for which the question has remained largely unanswered: the split
isogeny classes and the supersingular isogeny classes. We analyze these two
remaining cases and provide a complete answer to Question 1.1.

Theorem 1.2. — Let f = x4 + ax3 + bx2 + aqx+ q2 be the Weil poly-
nomial of an isogeny class A of abelian surfaces over Fq, where q is a power
of a prime p.

(1) Suppose that A contains a product of elliptic curves, so that f can
be written as a product

f = (x2 − sx+ q)(x2 − tx+ q)

where the two factors are the Weil polynomials of isogeny classes
of elliptic curves over Fq and where we may assume that |s| > |t|.
Then A does not contain a Jacobian if and only if the conditions
in one of the rows of Table 1.1 are met.

(2) Suppose that A is simple. Then A does not contain a Jacobian if
and only if the conditions in one of the rows of Table 1.2 are met.

The analog of Question 1.1 for elliptic curves was answered by Water-
house [37, Thm. 4.1]. The generalization from elliptic curves to genus-2
curves is surely quite natural, but to the best of our knowledge Ques-
tion 1.1 did not occur in print until 1990, when Rück [31] provided some
sufficient conditions for a positive answer to the question. In the literature
starting with Rück we find a large variety of methods and techniques that
provide both positive and negative answers to Question 1.1 for particular
classes of Weil polynomials. Almost all of the positive results are based on
the following theorem of Weil; the version we give here is due to González,
Guàrdia, and Rotger [3, Thm. 3.1].

Theorem 1.3 (Weil). — Let (A, λ) be a principally polarized abelian
surface defined over a field k. Then (A, λ) is either

(a) the polarized Jacobian of a genus-2 curve over k,
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JACOBIANS IN ISOGENY CLASSES 241

(b) the product of two polarized elliptic curves over k, or
(c) the restriction of scalars of a polarized elliptic curve over a quadratic

extension of k.

Furthermore, these three possibilities are mutually exclusive.

Let us say that an isogeny class of abelian varieties is principally polariz-
able if it contains a principally polarized variety. In light of Weil’s theorem,
if an isogeny class of abelian surfaces over Fq is simple over Fq2 , then it
contains a Jacobian if and only if it is principally polarizable. The prob-
lem of determining the principally polarizable isogeny classes of abelian
varieties was studied by the first author in a series of papers [7], [8], [9],
where he expressed the obstruction to the existence of principal polar-
izations in terms of the vanishing of an element of a group constructed
from the Grothendieck group of the category of finite group schemes that
can be embedded in varieties in the isogeny class. Recall that an abelian
surface over a field of characteristic p > 0 is said to be ordinary when
its p-rank is 2, almost ordinary when its p-rank is 1, and supersingular
when its p-rank is 0; the p-rank of an abelian surface over a finite field can
be read from the Newton polygon of the Weil polynomial in a well-known
way. The principally polarizable isogeny classes of ordinary abelian surfaces
over a finite field were determined in [7, Thm. 1.3]. In [25] it was proved

p-rank Condition Conditions
of A on p and q on s and t

— — |s− t| = 1
2 — s = t and t2 − 4q ∈ {−3,−4,−7}

q = 2 |s| = |t| = 1 and s 6= t

1 q square s2 = 4q and s− t squarefree
p > 3 s2 6= t2

p = 3 and q nonsquare s2 = t2 = 3q
0 p = 3 and q square s− t is not divisible by 3

√
q

p = 2 s2 − t2 is not divisible by 2q
q = 2 or q = 3 s = t

q = 4 or q = 9 s2 = t2 = 4q

Table 1.1. Conditions that ensure that the split isogeny class with Weil
polynomial (x2−sx+q)(x2−tx+q) does not contain a Jacobian. Here
we assume that |s| > |t|.

TOME 59 (2009), FASCICULE 1



242 Everett W. HOWE, Enric NART & Christophe RITZENTHALER

p-rank Condition Conditions
of A on p and q on s and t

— — a2 − b = q and b < 0 and
all prime divisors of b
are 1 mod 3

2 — a = 0 and b = 1− 2q
p > 2 a = 0 and b = 2− 2q
p ≡ 11 mod 12 and q square a = 0 and b = −q

0 p = 3 and q square a = 0 and b = −q
p = 2 and q nonsquare a = 0 and b = −q
q = 2 or q = 3 a = 0 and b = −2q

Table 1.2. Conditions that ensure that the simple isogeny class with
Weil polynomial x4 +ax3 +bx2 +aqx+q2 does not contain a Jacobian.

that all almost-ordinary isogeny classes over a finite field are principally
polarizable by applying criteria developed in [8]; in particular, since the
simple almost-ordinary classes are absolutely simple they always contain
Jacobians. Finally, the supersingular case was worked out in [14] using the
ideas of [8] and [9]. Gathering all these results one obtains:

Theorem 1.4 ([14]). — Let A be an isogeny class of abelian surfaces
over Fq with Weil polynomial x4 + ax3 + bx2 + aqx + q2. Then A is not
principally polarizable if and only if the following three conditions are sat-
isfied:

(a) a2 − b = q,
(b) b < 0, and
(c) all prime divisors of b are congruent to 1 modulo 3.

This result, together with Weil’s theorem, answers Question 1.1 for every
isogeny class that is simple over Fq2 .

The answer to Question 1.1 for the simple ordinary isogeny classes that
split over Fq2 was determined by the first author and Maisner. The Weil
polynomial of such an isogeny class is of the form x4 + bx2 + q2. The first
author [25, App.] proved that when b = 1 − 2q there is no curve with the
given Weil polynomial by showing that such a curve would have an au-
tomorphism whose existence is incompatible with the number of rational
points on the curve over Fq2 . For p > 2, the first author [10] used a counting
argument to show that when b = 2 − 2q there is again no curve with the
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JACOBIANS IN ISOGENY CLASSES 243

given Weil polynomial. He found explicit formulas for the number of princi-
pally polarized surfaces (A, λ) with A belonging to the given isogeny class,
as well as for the number of these polarized surfaces that are restrictions
of scalars of elliptic curves over Fq2 . The formulas for these two numbers
both involve arithmetic invariants of the biquadratic field generated by the
Weil polynomial, and a comparison of the two numbers using the Brauer
relations shows that they coincide; thus, all (A, λ) are non-Jacobians. Mais-
ner [23] extended these ideas to show that for all other values of b coming
from simple isogeny classes, there is a curve with the given Weil polynomial.

For supersingular surfaces over finite fields of characteristic 2, Ques-
tion 1.1 was answered by Maisner and the second author [24] by an explicit
computation of the zeta functions of all supersingular curves of genus 2,
using ideas of van der Geer and van der Vlugt [2]. For supersingular sur-
faces over finite fields of characteristic 3, the question was answered by the
first author [11], again by explicit methods.

McGuire and Voloch [26, §3] determined which isogeny classes of split
almost-ordinary abelian surfaces contain Jacobians, and gave the complete
details of the argument in the case that one factor of the Weil polynomial
of the isogeny class is x2 ± 2

√
qx+ q.

In this paper we cover the last steps to get a complete answer to Ques-
tion 1.1. In Part 1 we deal with the split isogeny classes not covered by the
work of McGuire and Voloch, and in Part 2 we study the simple supersin-
gular isogeny classes that split over Fq2 . These cases are solved with the
use of completely different techniques. For the split case we use a result of
Kani [19] that characterizes when two elliptic curves can be tied together
along finite subgroups to get a common covering by a curve of genus two;
Kani’s result reduces the question of whether there is a Jacobian isoge-
nous to a product E × F of two elliptic curves to the question of whether
for some n > 1 there is an isomorphism from E[n] to F [n] that is an
anti-isometry with respect to the Weil pairing (and that is ‘non-reducible’,
see §3). In order to understand the split supersingular case, we determine
the Galois twists of the Dieudonné modules of certain supersingular ellip-
tic curves. For the simple supersingular case we use results of Oort [29],
Katsura and Oort [20], and Ibukiyama, Katsura, and Oort [16] on super-
singular abelian surfaces over the algebraic closures of finite fields and their
polarizations. Using these results, together with the theory of twists and
work of Hashimoto and Ibukiyama [5] and Ibukiyama [15] on quaternion
hermitian forms, we determine which simple supersingular isogeny classes
contain geometrically non-split principally polarized surfaces.

TOME 59 (2009), FASCICULE 1



244 Everett W. HOWE, Enric NART & Christophe RITZENTHALER

In our analyses of the supersingular isogeny classes, both split and simple,
it is convenient to assume that the characteristic of the base field is larger
than 3. We may make this assumption because the characteristic 2 case is
settled in [24] and the characteristic 3 case in [11].

Conventions and notation. When we speak of a variety over a finite
field k, we mean a variety defined over the algebraic closure k of k together
with Galois descent data. By a morphism of varieties over a finite field k,
we mean a morphism of varieties over k that is Galois-equivariant. By a
geometric morphism of varieties over k, we mean a morphism of varieties
over k. Thus, if E1 and E2 are elliptic curves over a finite field, we will
often speak of geometric isogenies from E1 to E2. As a consequence of this
convention, operators such as Hom and End applied to varieties over k will
always refer to k-rational homomorphisms and endomorphisms.

If q is a power of a prime p, say q = pm, we let Qq denote the unramified
degree-m extension of the p-adic numbers Qp, and we let Zq denote the
ring of integers of Qq. We will sometimes denote by A(a,b) the isogeny class
of abelian surfaces over Fq with Weil polynomial x4 +ax3 + bx2 +aqx+ q2.

Part 1. Split abelian surfaces as Jacobians

2. Introduction

In this part of the paper we determine the Weil polynomials of the split
isogeny classes of abelian surfaces that contain Jacobians.

Our first two theorems concern the case of isogeny classes that contain
product surfaces of the form E1 ×E2, where E1 and E2 are elliptic curves
over Fq that are not isogenous to one another and that are not both su-
persingular. Let s and t be the traces of the Frobenius endomorphisms of
E1 and E2, respectively, so that s 6= t and so that the Weil polynomial of
E1 × E2 is

(x2 − sx+ q)(x2 − tx+ q).

Theorem 2.1. — Suppose that neither s2 nor t2 is equal to 4q and that
E1 and E2 are not both supersingular. Then there is a Jacobian isogenous
to E1 × E2 if and only if |s− t| 6= 1 and {q, {s, t}} 6= {2, {1,−1}}.

Theorem 2.2. — Suppose that E2 is ordinary and that s2 = 4q, so
that E1 is supersingular. Then there is a Jacobian isogenous to E1 ×E2 if
and only if s− t is divisible by the square of an integer greater than 1.
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Theorem 2.2 was proven by McGuire and Voloch [26], who also mention
the special case of Theorem 2.1 in which one of the curves is supersingular.
We reprove their results here for completeness.

Next we consider isogeny classes that contain squares of ordinary elliptic
curves.

Theorem 2.3. — Let E be an ordinary elliptic curve over Fq with trace
of Frobenius equal to t. Then there is a Jacobian isogenous to E×E if and
only if t2 − 4q is neither −3 nor −4 nor −7.

Finally, we turn to the split supersingular isogeny classes. We restrict
our attention to finite fields of characteristic greater than 3, because the
characteristic 3 case is considered in [11] and the characteristic 2 case is
considered in [24]. Suppose that E1 and E2 are supersingular elliptic curves
over a finite field Fq of characteristic greater than 3, and let s and t be the
traces of Frobenius of E1 and E2, respectively.

Theorem 2.4. — There is a Jacobian isogenous to E1×E2 if and only
if s2 = t2.

Our main tool in proving these theorems is a result of Kani [19], which
we review in §3. In §4 we state and prove a few elementary lemmas that
we will need later in the paper. In §5, §6, and §7 we prove our theorems for
split non-supersingular isogeny classes. In §8 we compute certain twists of
the Dieudonné modules of supersingular elliptic curves, and in §9 we use
these computations to prove Theorem 2.4.

3. Tying elliptic curves together along torsion subgroups

In this section we review a result of Kani that gives necessary and suffi-
cient conditions for certain split abelian surfaces to be Jacobians.

Suppose E1 and E2 are elliptic curves over a field k and let n be a
positive integer. Suppose ψ : E1[n] → E2[n] is an isomorphism of group
schemes over k that is an anti-isometry with respect to the Weil pairings
on E1[n] and E2[n]. Let A be the abelian surface (E1×E2)/Graph(ψ) and
let ϕ : E1 × E2 → A be the natural isogeny. Then A fits in a diagram

E1 × E2

ϕ

��

n // E1 × E2

A
λ // Â.

ϕ̂

OO

TOME 59 (2009), FASCICULE 1



246 Everett W. HOWE, Enric NART & Christophe RITZENTHALER

Here the top arrow is the multiplication-by-n map and Â is the dual
abelian surface of A. The existence of the bottom arrow follows from the
fact that the graph of ψ is a maximal isotropic subgroup of the n-torsion of
E1 ×E2 (see [27, Prop. 16.8, p. 135]). In fact, the induced map λ : A→ Â

is a polarization, and by looking at the degrees of the maps in the diagram
we see that λ is a principal polarization. Conversely, if λ is a principal po-
larization of a non-simple abelian surface A over k, then λ can be obtained
in this way from a pair of elliptic curves (E1, E2) and an anti-isometry
E1[n]→ E2[n], for some n.

Kani [19] gives a criterion that allows one to determine when a principally
polarized surface (A, λ) obtained from an anti-isometry ψ : E1[n] → E2[n]
is isomorphic to the Jacobian of a curve. The criterion is easiest to state
when n is a prime.

Theorem 3.1 (Kani [19, Thm. 3, p. 95]). — Suppose n is a prime, and
let E1, E2, and ψ be as in the discussion above. The principally polarized
surface

(E1 × E2)/Graph(ψ)

is not a Jacobian if and only if there is an integer i (with 0 < i < n) and a
geometric isogeny ϕ : E1 → E2 of degree i(n− i) such that iψ = ϕ|E1[n].

There is a more complicated criterion when n is composite. We will only
need to use the case n = 4.

Theorem 3.2 (Kani). — Suppose n = 4 and the characteristic of the
base field k is not equal to 2. Let E1, E2, and ψ be as in the discussion
above. The principally polarized surface

(E1 × E2)/Graph(ψ)

is not a Jacobian if and only if one of the following conditions holds:

(a) There is a geometric isogeny ϕ : E1 → E2 of degree 3 such that
ψ = ϕ|E1[n].

(b) There are two order-2 subgroups G1 and G2 of E1(Fq) and a geo-
metric isomorphism ϕ : E1 → E2 such that the graph of ψ is equal
to the set of points (x, ϕ(y)) in E1[4](Fq) × E2[4](Fq) such that
x+ y ∈ G1 and x− y ∈ G2.

Proof. — This follows from Theorem 2.6 of [19]. We make the assumption
about the characteristic of k not being 2 only so that condition (b) can be
stated in terms of groups and not group-schemes. �
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We say that an anti-isometry ψ : E1[n] → E2[n] is reducible if (A, λ)
is not a Jacobian. If ψ is not reducible, then we refer to the process of
constructing a Jacobian from E1, E2, and ψ as tying E1 and E2 together
along their n-torsion subgroups via ψ.

4. Useful lemmas

In this section we present some lemmas that will be helpful in later
sections.

Suppose that E is an elliptic curve over Fq with trace of Frobenius t,
and suppose that t2 6= 4q. Let π be the Frobenius endomorphism of E and
let R be the subring Z[π] of End(E). Then R is an imaginary quadratic
order of discriminant t2 − 4q. Let O be the integral closure of R in R⊗Q.
The endomorphism ring of E is an order that is contained in O and that
contains R. Let ` be a prime integer. We say that E is maximal at ` if `
does not divide the index of End(E) in O. We say that E is minimal at `
if ` does not divide the index of R in End(E).

Given an E as above, let ` be a prime that does not divide both t and
q. Then it follows from [37, Thm. 4.2] that there is a curve isogenous to E
that is minimal at `.

Lemma 4.1. — Let E be an elliptic curve over Fq whose Weil polynomial
is x2 − tx + q, and suppose that t2 6= 4q. Let ` be a prime that does not
divide both t and q, and suppose that E is minimal at `. Then the minimal
polynomial of Frobenius acting on E[`] is x2 − tx+ q ∈ F`[x].

Proof. — The characteristic polynomial of Frobenius on E[`] is x2− tx+
q, and the only way that this might not be the minimal polynomial of
Frobenius is if t2 − 4q ≡ 0 mod `.

Suppose t2 − 4q ≡ 0 mod `. Let b be an integer such that t ≡ 2b mod `,
and let π be the Frobenius endomorphism of E. Then the characteristic
polynomial of π on E[`] is (x − b)2, and the minimal polynomial will be
x−b if and only if (π−b)/` lies in End(E). But the index of Z[π] in End(E)
is coprime to ` by assumption. �

Lemma 4.2. — Let ` be either 4 or an odd prime and let K be an
imaginary quadratic field whose discriminant is not equal to −`. Then
there are infinitely many rational primes m that split in K and that are
nonsquares modulo `.
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Proof. — Let ∆ be the discriminant of K. The splitting of a rational
prime in K depends only on its congruence class modulo ∆. If ∆ is coprime
to `, then we can choose a congruence class modulo `∆ such that every
prime m in this congruence class splits in K and is a nonsquare modulo `.
So from this point on we consider the case where ` and ∆ have a common
factor.

We first consider the case where ` is prime.
Write ∆ = −2e`D for some odd positive D, and suppose that D > 1. If

m is a prime that is congruent to 1 modulo 8, that is not a square modulo
`, and such that the Jacobi symbol (m/D) is −1, then we have(

∆
m

)
=

(
−1
m

) (
2
m

)e (
`

m

) (
D

m

)
= 1 · 1 ·

(m
`

) (m
D

)
= 1.

So when D > 1, there are infinitely many primes that split in K and that
are not squares modulo `.

Suppose D = 1, so that either ∆ = −8` or ∆ = −4`. Suppose ∆ = −8`.
Then if m is a prime that is congruent to 5 modulo 8 and that is a nonsquare
modulo `, then(

∆
m

)
=

(
−1
m

) (
2
m

) (
`

m

)
= 1 · (−1) ·

(m
`

)
= 1.

On the other hand, suppose that ∆ = −4`. This can only happen if ` ≡
1 mod 4. If m is a prime that is congruent to 3 modulo 4 and that is a
nonsquare modulo `, then(

∆
m

)
=

(
−1
m

) (
`

m

)
= (−1) ·

(m
`

)
= 1.

Thus, in every case there are infinitely many primes that split in K and
that are not squares modulo `.

Next we consider the case where ` = 4.
Suppose ∆ = −4D for some odd D > 1. This can only be the case if

D ≡ 1 mod 4. If m is a prime that is congruent to 3 modulo 4 and such
that the Jacobi symbol (m/D) is −1, then we have(

∆
m

)
=

(
−1
m

) (
D

m

)
= (−1) ·

(m
D

)
= 1,

and we see that there are infinitely many primes that split in K and that
are not squares modulo `.

Suppose ∆ = −8D for some odd D > 0 (with D = 1 being allowed).
Suppose D ≡ 1 mod 4. Then if m is a prime that is 3 modulo 8 and such
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that the Jacobi symbol (m/D) is 1, we have(
∆
m

)
=

(
−1
m

) (
2
m

) (
D

m

)
= (−1) · (−1) ·

(m
D

)
= 1.

On the other hand, if D ≡ 3 mod 4, we can consider primes m that are 7
modulo 8 and such that the Jacobi symbol (m/D) is −1, so that(

∆
m

)
=

(
−1
m

) (
2
m

) (
D

m

)
= (−1) · 1 ·

(m
D

)
= 1.

Again we see that in both cases there are infinitely many primes that split
in K and that are not squares modulo `. �

Next we present a lemma that provides us with a large supply of anti-
isometries. This lemma and the one that follows it will refer to integers `
that are assumed to be either prime or equal to 4. It will be convenient to
define `∗ to be the unique prime divisor of such an integer `.

Lemma 4.3. — Let E1 and E2 be elliptic curves over a finite field Fq
and let s and t be their traces of Frobenius. Suppose that |s− t| is neither 0
nor 1 and that neither s2 nor t2 is equal to 4q. Let ` be a divisor of s−t that
is either 4 or a prime, and assume that ` is coprime to q if either E1 or E2 is
supersingular. If ` = 2 then let m = 1; otherwise, let m be a positive integer
coprime to ` whose image in (Z/`Z) is a nonsquare. Suppose that E1 and
E2 are minimal at `∗, and that E′

1 is an elliptic curve that is m-isogenous
to E1. Then either there is an Fq-defined anti-isometry from E1[`] to E2[`],
or there is one from E′

1[`] to E2[`].

Proof. — By Lemma 4.1 the minimal polynomials of Frobenius on E1[`∗]
and E2[`∗] are both equal to x2− tx+ q ∈ F`[x]. It follows easily that there
are points P1 ∈ E1[`](Fq) and P2 ∈ E2[`](Fq) that generate the Galois
modules E1[`](Fq) and E2[`](Fq), respectively.

We claim that the k-group schemes E1[`] and E2[`] are isomorphic. If
p 6= `∗ then we can see this by defining an isomorphism E1[`] → E2[`] by
sending P1 to P2 and extending by Galois equivariance. If p = `∗, then
E1[`] and E2[`] are both products of a reduced group scheme of rank ` and
a local group scheme of rank `. On each of the reduced group schemes, the
Frobenius acts as multiplication-by-t, so the reduced subschemes of E1[`]
and E2[`] are isomorphic. But the local subschemes are the duals of the
reduced subschemes, so the local subschemes are isomorphic as well. Thus
E1[`] and E2[`] are isomorphic.

Let ψ : E1[`] → E2[`] be an isomorphism of group schemes over Fq. For
each i = 1, 2 let ei be the Weil pairing Ei[`]×Ei[`]→ µ`. Then there is an
element r of Autµ` ∼= (Z/`Z)∗ such that the diagram commutes:
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E1[`]× E1[`]
(ψ,ψ) //

e1

��

E2[`]× E2[`]

e2

��
µ`

r // µ`

Let F be an elliptic curve isogenous to E1, and suppose ϕ : F → E1 is an
isogeny of degree coprime to `. If we replace E1 by F and ψ by ψ ◦ϕ, then
r is replaced with r times the degree of ϕ. Using multiplication by integers
in End(E1), we can modify r in this way by arbitrary squares in (Z/`Z)∗.
Using the isogeny E′

1 → E1, we can modify r by the integer m, which is a
nonsquare modulo ` when ` 6= 2. Therefore we can modify r so that it is
equal to −1; in other words, we can find an anti-isometry that maps either
E1[`] or E′

1[`] to E2[`]. �

The next lemma is a useful special case of Lemma 4.3.

Lemma 4.4. — Let E1 and E2 be elliptic curves over a finite field Fq
and let s and t be their traces of Frobenius. Suppose that |s− t| is neither
0 not 1 and that neither s2 nor t2 is equal to 4q. Write s2−4q = f2

1 ∆1 and
t2 − 4q = f2

2 ∆2 for integers fi and fundamental discriminants ∆i. Let ` be
a divisor of s− t that is either 4 or a prime, and assume that ` is coprime
to q if either E1 or E2 is supersingular. Suppose that ∆1 and ∆2 are not
both equal to −`. Then there are elliptic curves F1 and F2, isogenous to
E1 and E2, respectively, for which there is an Fq-defined anti-isometry
F1[`]→ F2[`].

Proof. — By symmetry, we may assume that ∆1 6= −`.
Replace E1 and E2 with isogenous curves that are minimal at `∗. If ` = 2

then Lemma 4.3 shows that there is an anti-isometry E1[`]→ E2[`], so we
may assume that ` > 2.

Let m be a prime number. If m splits in End(E1) ⊗ Q ∼= Q(
√

∆1) then
there is a degree-m isogeny from E1 to some other elliptic curve F . (Indeed,
Ito [18] proves that there is a degree-m isogeny from E1 to some F if
and only if either m splits or ramifies in End(E1) ⊗ Q ∼= Q(

√
∆1) or m

divides f1.) Lemma 4.2 says that there are infinitely many m that are
nonsquares modulo ` and that split in End(E1)⊗Q, so we know there is an
elliptic curve E′

1 that is m-isogenous to E1 for some m that is not a square
modulo `. Using Lemma 4.3, we see that there is either an anti-isometry
E1[`]→ E2[`] or an anti-isometry E′

1[`]→ E2[`], and we are done. �

We end with a lemma that will help us show that certain anti-isometries
are not reducible.
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Lemma 4.5. — Suppose E and F are ordinary elliptic curves over a
finite field k, let F ′/k be a twist of F , and let χ : F ′ → F be a geometric
isomorphism. Suppose that E and F ′ are isogenous over k. Let ` be a prime,
and suppose ψ : E[`] → F [`] is a Galois-equivariant anti-isometry. If ψ is
reducible, then χ|F ′[`] is Galois equivariant.

Proof. — Suppose ψ is reducible. Then Theorem 3.1 shows that there
is an integer i and a geometric isogeny ϕ : E → F of degree i(n − i) such
that iψ = ϕ|E[`]. The left-hand side of this equality is Galois equivariant,
so ϕ|E[`] is Galois equivariant.

Every geometric isogeny E → F can be written as the composition of
a geometric isogeny E → F ′ with the geometric isomorphism χ : F ′ → F ,
so we may write ϕ = χ ◦ ϕ′ for a geometric isogeny ϕ′ : E → F ′. Since E
and F ′ are ordinary, all of their endomorphisms are defined over k, and
all isogenies from E to F ′ are defined over k. It follows that ϕ′ is Galois
equivariant. Also, ϕ′ gives an isomorphism E[`] → F ′[`], so χ induces a
Galois equivariant isomorphism from F ′[`] to F [`]. �

5. Proof of Theorem 2.1

Suppose that |s− t| = 1. Then a result of Serre (see [21, Lem. 1] or [12,
Thm. 1(a)]) shows that there is no Jacobian isogenous to E1 × E2.

Suppose that |s − t| > 1. The remainder of the proof of Theorem 2.1
breaks into five cases:

(1) E1 and E2 are geometrically non-isogenous.
(2) E1 and E2 become isogenous to one another over a degree-2 exten-

sion.
(3) E1 and E2 become isogenous to one another over a degree-3 exten-

sion.
(4) E1 and E2 become isogenous to one another over a degree-4 exten-

sion, but not over a degree-2 extension.
(5) E1 and E2 become isogenous to one another over a degree-6 exten-

sion, but not over a degree-2 or degree-3 extension.
To see that these cases include all possibilities, we note that if E1 and

E2 are geometrically isogenous to one another then they must both be
ordinary (because the hypotheses of the theorem preclude them from both
being supersingular). Let π1 and π2 be the Weil numbers of E1 and E2,
considered as elements of Q. If E1 and E2 become isogenous over a degree-
n extension (and no smaller extension), then πn1 and πn2 are conjugate
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quadratic integers; replacing π1 with its conjugate, if necessary, we may
assume that πn1 = πn2 . Then the two quadratic fields Q(π1) and Q(π2)
are equal, and they contain the primitive n-th root of unity π1/π2. This
restricts the possible values for n to be 2, 3, 4, and 6.

We will consider these cases separately. In each case, we will denote the
characteristic of Fq by p.

5.1. Case 1: E1 and E2 are geometrically non-isogenous

Pick a prime ` dividing s−t. Since E1 and E2 are not both supersingular,
` is not equal to p if either curve is supersingular.

Let π1 and π2 be the Weil numbers of E1 and E2, respectively, and let
K1 and K2 be the imaginary quadratic fields generated by π1 and π2. If
one of these fields has discriminant unequal to −`, then Lemma 4.4 shows
that we can replace E1 and E2 with isogenous curves for which there is an
Fq-defined anti-isometry E1[`]→ E2[`]. Since E1 and E2 are geometrically
non-isogenous by assumption, Theorem 3.1 shows that we can tie E1 and
E2 together along their `-torsion to get a genus-2 curve with Jacobian
isogenous to E1 × E2.

We are left to consider the case where K1 and K2 are both isomorphic
to the imaginary quadratic field K of discriminant −`. In this case, we may
view π1 and π2 as elements of K.

If E1 and E2 are both ordinary, then their Weil numbers must differ
from one another by a root of unity (and perhaps complex conjugation).
But then E1 and E2 become isogenous to one another after a base field
extension, contradicting our hypotheses.

So suppose one of our elliptic curves, say E1, is supersingular and the
other is ordinary. We have already noted that in this case ` 6= p. Now, we
know the possible Weil numbers for supersingular elliptic curves — see [32]
or [37, Thm. 4.2] for example — and the only way a supersingular Weil
number can generate an imaginary quadratic field of prime discriminant
unequal to −p is if that field is Q(

√
−3) and if p 6= 1 mod 3. But then p

does not split in Q(
√
−3), so there are no ordinary elliptic curves over Fq

with CM by Q(
√
−3), contradicting the existence of E2.

5.2. Case 2: E1 and E2 become isogenous to one another over
a degree-2 extension

In this case, there is an integer t such that the Weil polynomials of E1

and E2 are x2−tx+q and x2+tx+q. Also, E1 and E2 are both ordinary. Let
∆ = t2− 4q and let R be the imaginary quadratic order of discriminant ∆.
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We have two arguments that each cover many cases, and that together
cover all but one case.

Lemma 5.1. — If the class number of R is greater than 1, there is a
Jacobian isogenous to E1 × E2.

Proof. — If the class number of R is greater than 1, we can choose E1 and
E2 to have endomorphism ring R, and to be geometrically non-isomorphic.
Then E1 and E2 are minimal at 2, so Lemma 4.3 shows that there is an
anti-isometry ψ : E1[2]→ E2[2]. Theorem 3.1 shows that ψ is not reducible
because there are no geometric isomorphisms E1 → E2. Thus we can tie
E1 and E2 together along their 2-torsion to get a Jacobian isogenous to
E1 × E2. �

Lemma 5.2. — If |t| > 1 then there is a Jacobian isogenous to E1×E2.

Proof. — Let ` be a prime divisor of t.
First suppose that ` is odd. Note that ` is not equal to p, because `

divides t and E1 and E2 are not both supersingular. It follows that ` does
not divide ∆ = t2 − 4q. Then Lemma 4.4 shows that we can replace E1

and E2 with isogenous curves for which there is an Fq-defined anti-isometry
ψ : E1[`]→ E2[`]. Let E′

2 be the quadratic twist of E2 and let χ : E′
2 → E2

be the standard geometric isomorphism. Then Lemma 4.5 shows that if ψ
is reducible, then χ induces a Galois-equivariant isomorphism from E′

2[`]
to E2[`]. But from the definition of the quadratic twist, we know that
χ(Pσ) = −(χ(P ))σ for all geometric points P , where σ denotes the q-th
power Frobenius automorphism of Fq. From this it is clear that χ does not
give a Galois-equivariant isomorphism E′

2[`]→ E2[`], because ` > 2. Thus
ψ is not reducible, and we can tie E1 and E2 together along their `-torsion
via ψ to get a Jacobian isogenous to E1 × E2.

Next suppose ` = 2. Lemma 4.4 shows that we can replace E1 and E2

with isogenous curves for which there is an anti-isometry ψ : E1[4]→ E2[4].
According to Lemma 4.5, there are two ways in which ψ might be reducible.
In the first way, there is a geometric isogeny ϕ : E1 → E2 of degree 3 such
that ϕ|E1[`] = ±ψ. But as in the argument for odd `, we obtain a contra-
diction from the facts that ±ψ is Galois equivariant while ϕ|E1[`] is not.

The other way that ψ can be reducible is if there is a geometric isomor-
phism ϕ : E1 → E2 and two order-2 subgroups G1 and G2 of E1(Fq) such
that the graph of ψ is equal to the set of (x, ϕ(y)) in E1[4](Fq)×E2[4](Fq)
such that x+ y ∈ G1 and x− y ∈ G2.

In particular, if E2 is not the quadratic twist of E1 then ψ is not re-
ducible. Suppose E2 is the quadratic twist of E1 and that ψ is reducible.
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Identify E2[4] with E1[4] provided with the negative Galois action. Pick
4-torsion points X and Y of E1(Fq) such that G1 = 〈2X〉 and G2 = 〈2Y 〉.
Then ψ(aX + bY ) = ϕ(aX − bY ) for some automorphism ϕ of E2. Since
E2 is ordinary, all of its automorphisms are defined over Fq, so ψ is Galois
equivariant if and only if ϕ−1 ◦ ψ is Galois equivariant, and one can show
that this is the case if and only if 2Xσ = 2Y and 2Y σ = 2X; here σ denotes
the Frobenius element of Gal(Fq/Fq).

So assume that 2Xσ = 2Y and 2Y σ = 2X. Under this assumption, we
can compute the number of reducible Galois equivariant anti-isometries.
The only choices for G1 and G2 are G1 = 〈2X〉, G2 = 〈2Y 〉 and G1 = 〈2Y 〉,
G2 = 〈2X〉, and swapping G1 and G2 is equivalent to replacing ϕ with −ϕ.
Thus we see that the automorphism group of E2 acts transitively on the
set of reducible Galois-equivariant anti-isometries.

Let us compute the number of Galois equivariant anti-isometries there
are from E1[4] to E2[4]. To make the computation simpler, we replace Y
with Xσ (this does not change the group G2), and write Y σ = εX + fY ,
where ε = ±1 and f ∈ {0, 2}. Note that it follows that the characteristic
polynomial of Frobenius on the 4-torsion of E1 is x2+fx−ε. Since the Weil
polynomial of E1 is x2−tx+q, we see that ε ≡ −q mod 4 and f ≡ t mod 4.

A Galois-equivariant map χ : E1[4] → E2[4] that sends X to aX + bY

must send Y to bqX− (a+ tb)Y , and χ will be an anti-isometry if and only
if a2+tab+qb2 ≡ 1 mod 4. There are four pairs (a, b) of elements of (Z/4Z)
that satisfy this condition if q ≡ −1 mod 4 and eight if q ≡ 1 mod 4, so
there are either exactly 4 or exactly 8 Galois-equivariant anti-isometries.

If # AutE2 = 2 then we have only 2 reducible Galois-equivariant anti-
isometries, so there are at least two nonreducible ones. If # AutE2 = 6
then either there are 8 Galois-equivariant anti-isometries in total and we
can choose a nonreducible one, or else there are only 4 Galois-equivariant
anti-isometries, in which case AutE2 cannot act faithfully on the reducible
Galois-equivariant anti-isometries; but since the automorphism −1 doesn’t
act trivially, the kernel of the action must be of order 3, and once again we
see that there are only two reducible Galois-equivariant anti-isometries.

If # AutE2 = 4 then ∆ = t2 − 4q = −4, and the Frobenius can be writ-
ten π = (t/2) + i. Note that therefore q ≡ 1 mod 4. We noted above that
in this case there are eight Galois-equivariant anti-isometries, so we have
four nonreducible ones to choose from. �

The only situations not covered by Lemmas 5.1 and 5.2 are those in
which t = 1 and in which ∆ lies in the set

{−3,−12,−27,−4,−16,−7,−28,−8,−11,−19,−43,−67,−163}.
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That means the only cases left to consider are those in which (q,∆) is one
of

{(2,−7), (3,−11), (5,−19), (7,−27), (11,−43), (17,−67), (41,−163)}.

Suppose q is odd. Then characteristic polynomial of Frobenius is congru-
ent to x2 + x+ 1 modulo 2. In this case there are three Galois-equivariant
anti-isometries from E1[2] to E2[2]. If they are all reducible then we must
have # AutE1 = 6, so that ∆ = −3. But this is not one of the ∆’s on our
list of (q,∆) pairs.

Finally we are left with t = 1 and q = 2. We find, by explicitly enumer-
ating the genus-2 curves over F2, that none of them has Weil polynomial
(x2 + x+ 2)(x2 − x+ 2).

5.3. Case 3: E1 and E2 become isogenous to one another over
a degree-3 extension

In this case the Weil numbers of E1 and E2 must both live in Q(ω), where
ω2 +ω+ 1 = 0, and they can be chosen so that they differ multiplicatively
by ω. So let us write

π1 = a+ bω

π2 = ωπ1 = b+ aω.

Note that

q = π1π1 = a2 − ab+ b2

s = 2a− b
t = 2b− a

∆1 = −3b2

∆2 = −3a2

s− t = 3(a− b).

We observe several facts. First, we see that ∆1 and ∆2 cannot be equal; if
they were equal, then we would have b = −a, and 3 would divide both s

and q, contradicting the ordinariness of E1. Second, we note that the same
reasoning shows that a and b are coprime to each other. Third, we see that
q is congruent to 1 modulo 3, and in particular, the characteristic of Fq is
not 3. And fourth, we see that q is odd, so the characteristic of Fq is not 2.

Suppose a and b are both odd, so that 2 divides s − t. Replace E1 and
E2 with isogenous curves whose endomorphism rings have discriminants
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∆1 and ∆2, respectively, so that in particular E1 and E2 are geometrically
non-isomorphic. Then there is an anti-isometry ψ : E1[2]→ E2[2], and since
E1 and E2 are geometrically non-isomorphic, Theorem 3.1 shows that ψ is
not reducible. Thus we may tie E1 and E2 together along their 2-torsion
to get a genus-2 curve.

We are left to consider the case in which one of a and b is even. By
symmetry, we may assume that b is even.

Suppose that a is not a multiple of 3. Replace E2 with an isogenous
curve that has complex multiplication by Z[ω]. Since a is not a multiple
of 3, we see that E2 is minimal at 3. The proof of Lemma 4.4 shows that
we can replace E1 by an isogenous curve so that there is an anti-isometry
ψ : E1[3]→ E2[3].

Let F be the cubic twist of E2 that is isogenous to E1, and let χ : F → E2

be a geometric isomorphism. Lemma 4.5 shows that if ψ is reducible, then
χ induces an isomorphism from F [3] to E2[3] as group schemes over Fq.

We know that E2 can be written in the form y2 = x3 + e for some
e ∈ Fq, and the twist F of E2 can be written y2 = cx3 + e for some c ∈ Fq
that is not a cube. Then the geometric isomorphism χ can be taken to be
(x, y) 7→ (dx, y), where d ∈ Fq satisfies d3 = c. But then it is clear that
χ will not induce a Galois-equivariant isomorphism F [3] → E2[3] if F [3]
contains an element with nonzero x-coördinate. Since F [3] clearly contains
such an element, ψ must not be reducible, so we can tie E1 and E2 together
along their 3-torsion.

Finally, suppose that a is divisible by 3. Replace E2 with an isogenous
elliptic curve whose endomorphism ring has discriminant ∆2, and replace
E1 with an isogenous elliptic curve with complex multiplication by Z[ω].
Since b is even, there is a 2-isogeny from E1 to an elliptic curve whose
endomorphism ring is Z[

√
−3]. Lemma 4.3 shows that there is an anti-

isometry ψ from either E1[3] or E′
1[3] to E2[3]. Theorem 3.1 shows that if

this isometry is reducible, there must be a geometric 2-isogeny from E1 or
E′

1 to E2. But by looking at the discriminants of the endomorphism rings
of these curves, we see that every isogeny from E1 or E′

1 to E2 must have
degree divisible by 3. Thus ψ is not reducible, so we may use it to produce
a genus-2 curve whose Jacobian is isogenous to E1 × E2.

5.4. Case 4: E1 and E2 become isogenous to one another over
a degree-4 extension, but not over a degree-2 extension

In this case the Weil numbers of E1 and E2 must live in Q(i), where
i2 = −1, and they may be chosen so that they differ multiplicatively by i.
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So let us write

π1 = a+ bi

π2 = −b+ ai

so that we have

q = a2 + b2

s = 2a

t = −2b

∆1 = −4b2

∆2 = −4a2.

If b were equal to ±a then q and s would both be even, contradicting
our assumption that E1 is ordinary. Therefore ∆1 and ∆2 are not equal to
one another, so if we pick E1 and E2 with minimal endomorphism rings,
they will be geometrically non-isomorphic. Since s − t is even, we can tie
E1 and E2 together along their 2-torsion.

5.5. Case 5: E1 and E2 become isogenous to one another over
a degree-6 extension, but not over a degree-2 or degree-3

extension

In this case the two Weil numbers must live in Q(ω), where ω2+ω+1 = 0,
and they can be chosen to differ multiplicatively by a primitive sixth root
of unity, such as −ω. So let us write

π1 = a+ bω

π2 = −ωπ1 = −b− aω

so that we have

q = π1π1 = a2 − ab+ b2

s = 2a− b
t = a− 2b

∆1 = −3b2

∆2 = −3a2

s− t = a+ b.
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As in Case 3, we see that ∆1 6= ∆2, that (a, b) = 1, and that the char-
acteristic of Fq is not 2. Since (a, b) = 1, at least one of a and b is odd;
by symmetry, we may assume that a is odd. Let ` be the smallest prime
divisor of s− t = a+ b. Note that neither a nor b can be divisible by `, so
both E1 and E2 are automatically minimal at `.

Let us replace E2 with an isogenous curve that has complex multiplica-
tion by Z[ω]. We will show that we can replace E1 with an isogenous curve
for which there is an anti-isometry E1[`]→ E2[`].

First suppose that ` 6= 3. Since E1 has complex multiplication by an order
in Q(ω) and since ` 6= 3, we know from Lemma 4.2 that there is a prime
m ≡ 2 mod 3 for which there is an elliptic curve E′

1 that is m-isogenous
to E1. Applying Lemma 4.3, we find that there is an anti-isometry from
either E1[`] or E′

1[`] to E2[`].
On the other hand, suppose that ` = 3. Since ` was chosen to be the

smallest prime divisor of s− t = a+ b, we know that a+ b is odd; since a
is odd, we know that b is even. It follows that E1 is 2-isogenous to some
other curve E′

1; applying Lemma 4.3, we find that there is an anti-isometry
from either E1[`] or E′

1[`] to E2[`].
Let F be the sextic twist of E2 that is isogenous to E1, and let χ : F → E2

be a geometric isomorphism. Lemma 4.5 shows that if ψ is reducible, then
χ induces an isomorphism from F [`] to E2[`] as group schemes over Fq.

We know that E2 can be written in the form y2 = x3 +e for some e ∈ Fq,
and the twist F of E2 can be written cy2 = dx3 + e for some c ∈ Fq that
is not a square and some d ∈ Fq that is not a cube. Then the geometric
isomorphism χ can be taken to be (x, y) 7→ (gx, fy), where f, g ∈ Fq satisfy
g3 = d and f2 = c. But then it is clear that χ will not induce a Galois-
equivariant isomorphism F [`] → E2[`]. Therefore, we can tie E1 and E2

together along their `-torsion.
This completes the proof of Theorem 2.1. �

6. Proof of Theorem 2.2

Let d = t−s, and suppose d is squarefree. Then the proof of Corollary 12
of [12, p. 1689] shows that there is no Jacobian isogenous to E1 × E2.

On the other hand, suppose there is a prime ` whose square divides d.
The Frobenius π1 on E1 is equal to an integer r with r2 = q. Let π2 be the
Frobenius on E2, and let z be the element (π2−r)/` of End(E2)⊗Q. Then
we have

z2 − (d/`)z − rd/`2 = 0,

ANNALES DE L’INSTITUT FOURIER



JACOBIANS IN ISOGENY CLASSES 259

so z is integral. If we replace E2 with an isogenous curve whose endomor-
phism ring is maximal, then z ∈ End(E2) so that π2 acts as r on E2[`].
Therefore there are Galois-equivariant anti-isometries from E1[`] to E2[`].
All of them give rise to Jacobians isogenous to E1 × E2, because E1 and
E2 are geometrically non-isogenous. �

7. Proof of Theorem 2.3

Let ∆ = t2 − 4q and let R be the quadratic order of discriminant ∆.
Using Serre’s appendix to [22] or the main results of [7], we see that if ∆
is a fundamental discriminant, then there is a bĳection between the set of
Jacobians isogenous to E × E and the set of indecomposable unimodular
hermitian lattices of rank 2 over R. Hoffmann [6] shows that if ∆ is −3,
−4, or −7, then there are no such indecomposable unimodular hermitian
lattices, so for these values of ∆ there are no Jacobians isogenous to E×E.

Suppose ∆ is neither −3 nor −4 nor −7, and suppose q is odd. Then
there is an E′ isogenous to E whose automorphism group has order 2, and
Corollary 6 of [13] explicitly constructs a genus-2 curve whose Jacobian is
isogenous to E′ × E′.

Suppose ∆ is neither −3 nor −4 nor −7, and suppose q is a power of 2.
Then ∆ ≡ 1 mod 8, so ∆ is not the discriminant of an imaginary quadratic
order of class number one (all such discriminants other than −7 are either
even or are 5 modulo 8). Therefore there is an elliptic curve E′ that is
isogenous to E but that is geometrically non-isomorphic to E. The group
schemes E[2] and E′[2] are both isomorphic to the product of µ2 with
its dual, so there is an anti-isometry E[2] → E′[2]. Since E and E′ are
geometrically non-isogenous, this anti-isometry gives rise via Theorem 3.1
to a Jacobian isogenous to E × E′. �

Remark 7.1. — It is also possible to prove the existence of a Jacobian
isogenous to E2 in the case where t2 − 4q 6∈ {−3,−4,−7} directly from
the results of Hoffmann, Serre, and the first author that we cited above,
but some care must be taken in the case where ∆ is not a fundamental
discriminant.

8. Twists of Dieudonné modules of supersingular elliptic
curves

Let q be an even power of a prime p, say q = p2a. Our goal in this section
is to prove the following result.

TOME 59 (2009), FASCICULE 1



260 Everett W. HOWE, Enric NART & Christophe RITZENTHALER

Proposition 8.1. — Suppose p > 3. If E and E′ are supersingular
elliptic curves over Fq that are not isogenous to one another over Fq, then
the group schemes E[p] and E′[p] are not isomorphic to one another over Fq.

We will prove this proposition by showing that the Dieudonné modules of
E[p] and E′[p] are not isomorphic to one another. For concise background
information on Dieudonné modules and p-divisible groups, see [37, Ch. 1]
or [28, §3]. The first step in our proof of Proposition 8.1 will be to compute
the twists of the Dieudonné module of a particular supersingular curve.

Let E be a supersingular elliptic curve over Fq whose Weil polynomial is
(x−√q)2. As noted at the end of §1, we use Qq to denote the unramified
extension of Qp with residue field Fq and Zq to denote the ring of integers
of Qq. Let σ be the automorphism of Zq over Zp that is the lift of the
Frobenius automorphism of Fq over Fp, and let A be the (non-commutative)
ring Zq[F, V ], where F and V are indeterminates that satisfy

FV = V F = p, Fλ = λσF, and V λσ = λV.

Recall that the Dieudonné module M associated to E (or more precisely,
to the p-divisible group of E) is a certain left A-module. Waterhouse [37,
p. 539] computes that M is a free rank-2 Zq-module with a basis {x, y}
such that

Fx = V x = y and Fy = V y = px.

In particular, we see that all elliptic curves in the isogeny class with Weil
polynomial (x − √q)2 have isomorphic Dieudonné modules. Waterhouse
also notes that the endomorphism ring of M is isomorphic to the ring of
integers O of the unique quaternion algebra Hp over Qp, and it follows from
Waterhouse’s analysis that M gains no further endomorphisms when the
base field is extended to Fq.

For every (p2−1)st root of unity ζ in Qp2 we define a Dieudonné module
Mζ as follows: Let ξ ∈ Qq be a (p2a − 1)st root of unity whose norm to
Qp2 is equal to ζ. Let Mζ be a free rank-2 Zq-module generated by two
elements w and z, and let F and V act on w and z via

Fw = z, Fz = ξ−1pw and V w = ξσ
−1
z, V z = pw.

One can check that this does give a well-defined A-module structure to Mζ ,
and that the isomorphism class of Mζ does not depend on the choice of ξ.

Proposition 8.2. — The Dieudonné modules Mζ over Fq are pairwise
nonisomorphic over Fq, and they are all twists of M over Fq. The module
Mζ is the twist of M by the automorphism ζ of M . If p > 3, then every
Fq-twist of M is isomorphic to one of the Mζ .
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Proof. — Let t be an arbitrary element of Mζ such that Ft 6∈ pMζ , and
write t = aw + bz for some a, b ∈ Zq. We see that a must be a unit of Zq.
We compute that

Ft = aσz + bσξ−1pw

V t = aσ
−1
ξσ

−1
z + bσ

−1
pw.

It follows that for every c ∈ Zq with Ft ≡ cV t mod pMζ , we have

c ≡ (aσ/aσ
−1

)ξ−σ
−1

mod pZq.

Taking norms to Qp2 , we find that

NQq/Qp2 (c) ≡ 1 ·NQq/Qp2 (ξ−σ
−1

) ≡ ζ−σ mod p.

Thus, we can recover ζ from Mζ , so the Mζ are pairwise nonisomorphic.
Let B be the ring of integers of the maximal unramified extension of Qq

and let B = B[F, V ], where F and V satisfy the same properties as before.
The base extensions of the Mζ to Fq are the B-modules Mζ generated as
B-modules by w and z and with

Fw = z, Fz = ξ−1pw and V w = ξσ
−1
z, V z = pw.

Let α ∈ B∗ satisfy ασ
2−1 = ξ. Then one can check that the map of B-

modules that sends x to αw and y to ασz gives an isomorphism ϕ from M

to Mζ .
The Frobenius automorphism of Fq over Fq acts on Hom(M,M ζ), and we

let ϕ(q) denote the image of ϕ under this action. We see that the automor-
phism ϕ−1ϕ(q) of M is the map that sends x to ασ

2a−1x. Since ξ = ασ
2−1,

we have
ασ

2a−1 = ξ1+σ
2+···+σ2a−2

= NormQq/Qp2 (ξ) = ζ.

Thus, Mζ is the twist of M by ζ.
The general theory of twists [33] shows that the Fq/Fq-twists of M corre-

spond to the elements of the pointed cohomology set H1(Gal(Fq/Fq),O∗).
Since the Galois group acts trivially on O∗, this cohomology set consists of
the conjugacy classes of O∗ whose elements have finite order.

Fix an embedding of Qp2 into Hp. We know (see [30, Thm. 14.5]) that
there is an element s ∈ Hp with the properties that s2 = p and Hp = Qp2(s),
and such that s−1xs = xσ for all x ∈ Qp2 . Suppose that p > 3, and suppose
that η is a root of unity in O. Then Qp(η) is at most a quadratic extension
of Qp, and since cyclotomic extension of Qp have ramification index at
least p− 1 if they are ramified at all, it follows that Qp(η) is an unramified
extension of Qp. Thus there is a root of unity ζ in Qp2 of the same order
as η, and the Skolem-Noether theorem tells us that there is an element x
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of Hp that conjugates η to ζ. Let t be the unique power of s such that
tx ∈ O∗, and let y = tx. Then y conjugates η to either ζ or ζσ. Thus, the
elements of H1(Gal(Fq/Fq),O∗) are represented by the conjugacy classes
that contain roots of unity in Qp2 . On the other hand, it is easy to see that
no element of O∗ conjugates one root of unity in Q∗

p2 to another. It follows
that when p > 3 there is a bĳection between H1(Gal(Fq/Fq),O∗) and the
roots of unity in Qp2 . Since the Mζ are the twists of M associated to these
roots of unity, we find that every twist of M is isomorphic to some Mζ . �

Remark 8.3. — It is not hard to show that when p = 2 there are seven
conjugacy classes of roots of unity in O∗: in addition to the six conjugacy
classes obtained from the roots of unity in Q4, there is also a single con-
jugacy class containing a primitive fourth root of unity. Likewise, when
p = 3 there are ten conjugacy classes of roots of unity in O∗: eight classes
obtained from the roots of unity in Q9, one class containing a primitive
cube root of unity, and one class containing a primitive sixth root of unity.

Proof of Proposition 8.1. — Let s = pa be the positive square root of
q. There are at most 5 isogeny classes of supersingular elliptic curves over
Fq. There are always isogeny classes with Weil polynomials (x − s)2 and
(x+s)2. If p ≡ 2 mod 3, then there are isogeny classes with Weil polynomial
x2 + sx + q and x2 − sx + q; each of these isogeny classes contains two
elliptic curves, and they are both twists of the elliptic curve y2 = x3 − 1
(by automorphisms of order 3 for the former isogeny class, and of order 6
for the latter). If p ≡ 3 mod 4 then there is an isogeny class with Weil
polynomial x2 + q; there are two curves in this isogeny classes, each a twist
of y2 = x3 − x by an automorphism of order 4. (These statements follow
from [32, Thm. 4.6] and its proof.)

We already noted that the Dieudonné module of every elliptic curve with
Weil polynomial (x − s)2 is isomorphic to the module M defined earlier.
It is also clear that every elliptic curve with Weil polynomial (x+ s)2 has
Dieudonné module M−1. When p ≡ 2 mod 3, the two curves with Weil
polynomial x2 + sx+ q have Dieudonné modules Mζ for two different cube
roots of unity ζ in the endomorphism ring of M , and the curves with Weil
polynomial x2− sx+ q have Dieudonné modules Mζ for two different sixth
roots of unity. When p ≡ 3 mod 4, the two curves with Weil polynomial
x2 + q have Dieudonné modules isomorphic to Mi and M−i, for a square
root i of −1 in the endomorphism ring of M .

Since our elliptic curves E and E′ lie in different isogeny classes, their
Dieudonné modules are isomorphic to Mζ and Mη for two distinct roots
of unity ζ and η in Zp2 . It follows that the Dieudonné module for E[p] is
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generated as a Zq-module by two elements w and z that satisfy

Fw = z, Fz = 0 and V w = ξ1/pz, V z = 0

for an element ξ of Fq whose norm to Fp2 is the reduction of ζ modulo p.
The same holds for the Dieudonné module for E′[p], with ξ replaced by an
element ξ′ whose norm to Fp2 is equal to the reduction of η modulo p.

We showed above that ζ could be recovered from the module Mζ . The
same proof shows that ζ modulo p can be recovered from the Dieudonné
module of E[p], and that η modulo p can be recovered from the Dieudonné
module of E′[p]. Thus the two Dieudonné modules are not isomorphic to one
another, because the reduction map from roots of unity in Zp2 to elements
of Fp2 is injective. �

Remark 8.4. — Consider one of the isogeny classes mentioned above
whose Weil polynomial is neither (x− s)2 nor (x+ s)2. It is interesting to
note that the two elliptic curves in this isogeny class have non-isomorphic
Dieudonné modules. It follows that any isogeny between these two curves
must have degree divisible by p. These isogeny classes provide the simplest
example of the phenomenon discussed in [37, Thm. 5.3]

9. Proof of Theorem 2.4

First suppose that q is not a square. Because we are assuming that the
characteristic of Fq is at least 5, there is only one isogeny class of supersin-
gular elliptic curves over Fq, and its Weil polynomial is x2 + q. From [32,
Thm 4.5] we know that there are H(−4p) curves in the isogeny class (up
to isomorphism over Fq), where H(∆) is the Kronecker class number of
the discriminant ∆. Furthermore, two curves in the isogeny class are geo-
metrically isomorphic to one another if and only if they are twists of one
another by −1, so the number of distinct j-invariants in the isogeny class
is H(−4p)/2. In terms of class number of quadratic orders, we have

H(−4p)
2

=


h(−4p)/2 if p ≡ 1 mod 4;
h(−p) if p ≡ 7 mod 8;
2h(−p) if p ≡ 3 mod 8.

From this it follows that when p 6∈ {5, 7, 13, 37} there are two curves E1, E2

in the isogeny class with distinct j-invariants. Since E1[2] and E2[2] are iso-
morphic Galois modules and E1 and E2 are geometrically non-isomorphic,
we can use Theorem 3.1 to tie E1 and E2 together along their 2-torsion.
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For the remaining cases, we note that if q is an odd power of a prime p
for which (−2/p) = −1, the curve y2 = x6−5x4−5x2 +1 over Fq has Weil
polynomial (x2 +q)2; this is because over Q its Jacobian is isogenous to the
square of the elliptic curve with j = 8000, which has complex multiplication
by Z[

√
−2]. Since the primes 5, 7, 13, and 37 all satisfy (−2/p) = −1, we

are done.
Now suppose that q is a square, and let p be the unique prime divisor of

q. Recall that there are at most five isogeny classes of supersingular curves
over Fq; the possible traces of Frobenius are

0 if p ≡ 3 mod 4;

±√q if p ≡ 2 mod 3;

±2
√
q for all q.

Suppose the traces s and t of our two elliptic curves do not satisfy s2 = t2.
Then we are to show that there is no Jacobian isogenous to E1 × E2.

We begin with a general observation related to Kani’s construction (The-
orem 3.1). If E1 and E2 are elliptic curves over Fq with traces s and t,
respectively, and if E1[n] ∼= E2[n] as group schemes over Fq, then we must
have s ≡ t mod n. We know that every Jacobian isogenous to E1 × E2 is
obtained via Kani’s construction for some value of n, and the observation
we just made shows that this value of n must divide s− t.

Suppose that |s− t| = √q. If there were a Jacobian isogenous to E1×E2,
it would be attainable through Kani’s construction for some value of n that
divides √q, so that this n must be a power of p. But we know from §8 that
E1[p] 6∼= E2[p], so there are no Jacobians isogenous to E1 ×E2 in this case.

Suppose that |s − t| = 2
√
q and that s 6= −t, so that one of s and t is

0 and the other is ±2
√
q. Say that s = 0 and t = ±2

√
q. Note that the

endomorphism ring of E1 is isomorphic to Z[i], and the Frobenius on E1 is
i
√
q; the Frobenius on E2 is the integer ±√q. The argument we just gave

shows that we cannot obtain a Jacobian by gluing together E1 and E2 along
their n-torsion when n is a multiple of p, so if there is a Jacobian isogenous
to E1 × E2 it must be obtained from an anti-isometry E1[2]→ E2[2]. But
the Frobenius of E2 acts as a constant on E2[2], while the Frobenius of E1

does not, so in particular there are no anti-isometries from E1[2] to E2[2].
Thus there are no Jacobians isogenous to E1 × E2.

Suppose that |s− t| = 3
√
q, so that one of s and t is ±√q and the other

is ∓2
√
q. Say that s = ±√q and t = ∓2

√
q. Note that the endomorphism

ring of E1 is isomorphic to Z[ω] for some cube root of unity ω, and the
Frobenius on E1 is ∓ω√q; the Frobenius on E2 is the integer ∓√q. Again
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we see that we cannot obtain a Jacobian by gluing together E1 and E2 along
their n-torsion when n is a multiple of p, so if there is a Jacobian isogenous
to E1 × E2 it must be obtained from an anti-isometry E1[3]→ E2[3]. But
the Frobenius of E2 acts as a constant on E2[3], while the Frobenius of E1

does not, so again we see there are no Jacobians isogenous to E1 × E2.
Now suppose we have s2 = t2. We must show that there is a Jacobian

isogenous to E1 × E2. There are three cases to consider.

The case s2 = t2 = q.

This case arises only when p ≡ 2 mod 3. Let a be a generator of F∗q ,
and consider the curve C defined by y2 = x6 + a. Arguing as in [13, §3],
we see that the Jacobian of C is isogenous to F1 × F2, where F1 is the
elliptic curve y2 = x3 + a and F2 is the elliptic curve y2 = x3 + a2. Let
F0 be the elliptic curve y2 = x3 + 1, let b be a sixth root of a in Fq,
let ζ be the primitive sixth root of unity bq−1, and let ω be the order-6
automorphism (x, y) 7→ (ζ2x, ζ3y) of E0. Since F0 is defined over Fp, its
Frobenius endomorphism over Fq is either √q or −√q. It is easy to see
that F1 is the twist of F0 by ω and that F2 is the twist of F0 by ω2, and
it follows that F1 and F2 have traces of opposite sign, and they both are
square roots of q.

Similar reasoning shows that the Jacobian of the curve y2 = x6 + a2 is
isogenous to either F1 × F1 or F2 × F2; furthermore, whichever product of
elliptic curves we get from y2 = x6 +a2, we get the other product from the
quadratic twist ay2 = x6 + a2.

Thus, whenever s2 = t2 = q there is a Jacobian isogenous to E1 × E2.

The case s2 = t2 = 0.

This case occurs only when p ≡ 3 mod 4. Let F0 be the elliptic curve
over Fq defined by y2 = x3 − x, so that j(F0) = 1728 and F0 has an
automorphism i of order 4. The two elliptic curves F1 and F2 over Fq
with trace 0 are the twists of F0 by i and by −i. Let us fix, once and
for all, two Fq-isomorphisms ϕ1 : F0 → F1 and ϕ2 : F0 → F2. Using these
isomorphisms, we will identify geometric points of F1 and F2 with geometric
points of F0, and we will identify the geometric automorphism groups of
F1 and F2 with AutF0. Let s be the positive square root of q, and reindex
the curves if necessary so that the q-power Frobenius on F1 is equal to si.
Then the Frobenius on F2 is equal to −si.
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We will show that there is a Jacobian isogenous to F1×F2 by gluing the
two curves together along their 4-torsion subgroups, as in Theorem 3.2.

Let P be a geometric point of F0 such that P and iP generate F0[4].
Let Q = iP . Let ψ be the isomorphism F1[4] → F2[4] that sends ϕ1(P )
to ϕ2(P + 2Q) and ϕ1(Q) to ϕ2(2P − Q). It is easy to check that ψ is a
Galois-equivariant anti-isometry with respect to the Weil pairing. We will
be finished if we can show that neither condition (a) nor condition (b) of
Theorem 3.2 holds.

We know that F1 and F2 are both elliptic curves with j-invariant 1728.
Let Φ3(j, j′) ∈ Z[j, j′] be the classical modular polynomial for 3-isogenies.
We compute that

Φ3(1728, 1728) = 236 · 36 · 78 · 114,

so when p > 11 there are no geometric 3-isogenies from F1 to F2, and
condition (a) of Theorem 3.2 does not hold. For p = 7 and p = 11, we can
explicitly write down all 3-isogenies from F0 to F0 and note that none of
them induce the given anti-isometry ψ from F1[4] to F2[4].

If condition (b) of Theorem 3.2 were to hold, there would be two order-2
subgroups G1 and G2 of F0[4] and an automorphism α of F0 such that

P + α(P + 2Q) ∈ G1 P − α(P + 2Q) ∈ G2

Q+ α(2P −Q) ∈ G1 Q− α(2P −Q) ∈ G2

Note that the only automorphisms of F0 are ±1 and ±i. We check that
P + α(P ) is a 2-torsion element only when α = ±1. But if α = 1 then
we find that G1 contains both 2P + 2Q and 2P , a contradiction, while if
α = −1 then G1 contains both 2Q and 2P + 2Q, another contradiction.
Thus, condition (b) of Theorem 3.2 does not hold. It follows that there is
a Jacobian with Weil polynomial (x2 + q)2.

The case s2 = t2 = 2q.

Note that the Galois group of Fq/Fq acts trivially on both E1[2] and
E2[2], because for each curve the Frobenius endomorphism is either √q
or −√q. There are therefore six Galois-equivariant anti-isometries E1[2]→
E2[2]. Since we are not in characteristic 2 or 3, the number of isomorphisms
E1 → E2 is at most 6, and in the case that there are 6 isomorphisms, there
are only 3 induced isomorphisms E1[2] → E2[2]. Thus, at least one of the
six anti-isometries E1[2] → E2[2] is not reducible, so there is a Jacobian
isogenous to E1 × E2. �

ANNALES DE L’INSTITUT FOURIER



JACOBIANS IN ISOGENY CLASSES 267

(a, b) Conditions on p Conditions on q

(0, 0) p 6≡ 1 mod 4 —
(0, q) p 6≡ 1 mod 3 q nonsquare

(0,−q) p 6≡ 1 mod 3 —
(0,−2q) — q nonsquare
(0, 2q) p ≡ 1 mod 4 q square

Table 10.1. Simple supersingular isogeny classes over Fq that split over
Fq2 . The characteristic p of Fq is assumed to be at least 5.

Part 2. Simple supersingular abelian surfaces as Jacobians

10. Introduction

Let k = Fq be a finite field of characteristic p > 3, and let A be an
isogeny class of simple supersingular abelian surfaces over k that split over
the quadratic extension of k. In this part of the paper we determine whether
or not there is a Jacobian in A.

In [25, Table 1] we find a list of all simple supersingular isogeny classes of
abelian surfaces defined over a finite field, with an indication of the smallest
field extension over which each class splits. We present in Table 10.1 the
isogeny classes over finite fields Fq of characteristic p > 3 that split over Fq2 .
Theorem 1.4 shows that these classes are all principally polarizable. We
will show that all of these isogeny classes contain Jacobians, except for one
special case.

Theorem 10.1. — LetA(a,b) be an isogeny class of simple supersingular
abelian surfaces over a finite field Fq of characteristic p > 3. Then A(a,b)

does not contain a Jacobian if and only if q is a square, p ≡ 11 mod 12,
and (a, b) = (0,−q).

This part of the paper is organized as follows. In §11 we review results of
Oort [29], Katsura and Oort [20], and Ibukiyama, Katsura, and Oort [16]
on supersingular abelian surfaces over the algebraic closure of a finite field,
paying special attention to the principal polarizations of these surfaces.
In §12 we look at supersingular surfaces over finite fields and determine
which of their geometric principal polarizations can be defined over the
base field. Finally, in §13 we use the results of §11 and §12, together with
some explicit constructions, to prove Theorem 10.1.
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11. Supersingular surfaces, quaternion lattices,
and polarizations

In this section we review some results of Oort [29], Katsura and Oort [20],
and Ibukiyama, Katsura, and Oort [16] on supersingular abelian surfaces,
quaternion hermitian forms, and polarizations. The results on abelian sur-
faces assume that the base field is algebraically closed; we will consider the
case of finite base fields in §12.

11.1. Supersingular abelian surfaces

Let E be an elliptic curve over Fp with trace 0, so that E is supersingular
and all of the geometric endomorphisms of E are defined over Fp2 . Let K
be the algebraic closure of Fp and let O be the K-endomorphism ring
of E; the algebra B = O ⊗Q is a definite quaternion algebra over Q with
discriminant p, and O is a maximal order in B. We will denote the canonical
anti-involutions of O and B by x 7→ x.

Let π denote the p-power Frobenius endomorphism on E, and fix a K-
isomorphism between E[π] and αp, where αp is the unique local-local group
scheme over Fp; then we can identify HomK(αp, E) with EndK(αp) = K.

The kernel of the restriction map

˜ : EndK(E)→ EndK(αp)

u 7→ ũ = u|αp

is a two-sided prime ideal P of O above p, with residual degree 2. The
restriction map thus gives a natural embedding O/P ↪→ EndK(αp) = K

with image Fp2 . Since π2 = −p, the prime ideal P is principal and generated
by π.

For every (i, j) ∈ K2, we denote by Aij the abelian surface over K given
by the following diagram:

0→ αp
(i,j)−−→E × E → Aij → 0.

It is easy to check that

Aij = Ai′j′ ⇐⇒ (i, j)(αp) = (i′, j′)(αp)

⇐⇒ ∃a ∈ K∗ such that (i′, j′) = a(i, j).

Thus, the set of all Aij (apart from A00 = E×E) is parametrized by P1(K).
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For every i ∈ K the composition αp
i−→E

u−→E corresponds to the
element i ũ of K. For every endomorphism α ∈ EndK(E × E) ∼= M2(O)
and every [i : j] ∈ P1(K), the composition

αp
(i,j)−−→E × E α−→E × E

has the same image as the element α̃[i : j] ∈ P1(K), where α̃ ∈ M2(Fp2)
is obtained by reduction modulo P of the entries of α, and the action of
M2(Fp2) on P1(K) is the usual projective action.

If A is an abelian surface over K we denote by a(A) the quantity

a(A) = dim HomK(αp, A),

sometimes called the a-number of A. When A is a supersingular abelian
surface we have a(A) ∈ {1, 2}. The value of a(A) gives us information about
the global structure of A, as the following result shows.

Proposition 11.1. — We have a(A) = 2 if and only if A ∼= E×E. We
have a(A) = 1 if and only if A ∼= Aij for some [i : j] ∈ P1(K) \ P1(Fp2).
Furthermore, if a(A) = 1 then a(A/αp) = 2.

Proof. — This follows from [Oort 75, Introduction], [Oort 75, Thm. 2],
and [Oort 75, Cor. 7]. �

11.2. Quaternion hermitian forms and lattices

Most of the material that we present without reference in this section
can be found in [34].

Let B be a definite quaternion algebra over Q with discriminant p. There
is a positive definite hermitian form on the right B-module B2, which is
unique up to base change over B; it is given explicitly by

∑
xiyi, where

x 7→ x is the standard involution on B. For every prime ` (possibly equal
to p) we set B` = B⊗Q`. Then the hermitian form on B2 extends to give a
hermitian form on B2

` . Let † denote the conjugate-transpose involution on
M2(B) and on M2(B`), where ‘conjugation’ means the standard involution.
Then the groups of similitudes of the hermitian forms on B2 and on B2

`

are given by

G = {g ∈M2(B) | g†g = n(g)I for some n(g) ∈ Q∗}

and

G` = {g ∈M2(B`) | g†g = n(g)I for some n(g) ∈ Q∗
`}.
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Let O be a maximal order of B. A Z-lattice L in B2 is called a (right)
O-lattice if L is a right O-module. Two O-lattices L1 and L2 are globally
equivalent if L1 = gL2 for some g ∈ G, and are locally equivalent at ` if
L1 ⊗ Z` = g(L2 ⊗ Z`) for some g ∈ G`. One denotes by Aut(L) = {g ∈
G | gL = L} the automorphism group of L and by Aut′(L) = Aut(L)/±1
the reduced automorphism group of L. These groups are finite because the
hermitian form on B2 is positive definite.

A genus ofO-lattices is a set ofO-lattices in B2 that are equivalent to one
another locally at every prime `. There are only two genera: the principal
genus L2(p, 1) that contains the right O-lattices in B2 that are equivalent
to O2

` for all `, and the non-principal genus L2(1, p) that contains the right
O-lattices in B2 that are equivalent to O2

` for all ` 6= p and equivalent at p
to
(11.1)

ξ

(
1 0
0 π

)
O2
p, where ξ ∈ GL2(Op) satisfies ξ†ξ =

(
0 1
1 0

)
,

with π a prime element of Op. One denotes by H2(p, 1) the (finite) number
of global equivalence classes in L2(p, 1), and by H2(1, p) the number of
global equivalence classes in L2(1, p).

On the other hand one can define two special sets of positive definite
hermitian matrices. Let P be the two sided prime ideal of O above p.

Definition 11.2. — We define Λprinc to be the set of matrices H in
GL2(O) such that

H =
(
s r

r t

)
with st− rr = 1,

where s and t are positive integers. We define Λnprinc to be the set of
matrices H in M2(O) such that

H =
(
ps r

r pt

)
with p2st− rr = p,

where s and t are positive integers and where r ∈ P.

Two matrices H1,H2 that both lie in Λprinc or in Λnprinc are said to be
equivalent if there exists an α ∈ GL2(O) such that α†H1α = H2. For H in
Λprinc or Λnprinc, we let

Aut(H) = {α ∈ GL2(O) | α†Hα = H}

be the automorphism group of H and Aut′(H) = Aut(H)/±1 the reduced
automorphism group of H. These groups are again finite.

One can relate lattices and hermitian forms in the following way.
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Proposition 11.3. — There are bĳective correspondences{global equivalence classes

of lattices in L2(p, 1)

}
←→

{
equivalence classes

of matrices in Λprinc

}
and {global equivalence classes

of lattices in L2(1, p)

}
←→

{
equivalence classes

of matrices in Λnprinc

}
that preserve automorphism groups and reduced automorphism groups, as
abstract groups.

Proof. — The bĳective correspondences are provided by Lemmas 2.3
and 2.5 of [16] in the principal case, and by Lemmas 2.6 and 2.7 of [16]
in the non-principal case. The fact that the bĳections provided by these
lemmas preserve automorphism groups is easily seen from the proofs of the
lemmas. �

The automorphisms α of the hermitian forms in Λnprinc are determined
(up to ±1) by the projective action of α̃. This fact is probably well-known,
but for lack of a suitable reference we include a short proof.

Lemma 11.4. — Let Γ ⊆ GL2(O) be a finite subgroup of order prime
to p. Then reduction modulo P determines an embedding

˜ : Γ ↪→ GL2(Fp2).

Proof. — If α ∈ Γ is the identity modulo P, then α is an element of
the multiplicative group 1 + πM2(O). This group has no torsion element
of order prime to p, so we must have α = 1.

More explicitly, every element of the group 1+πM2(O) can be written in
the form 1 + πNM , with N > 0 and M 6∈M2(P). Thus, for every positive
integer n we have

(1 + πNM)n ≡ 1 + nπNM mod P2N ,

and if n is prime to p we cannot have (1 + πNM)n = 1, since nπNM 6≡
0 mod P2N . �

Proposition 11.5. — Let H be an element of Λnprinc and let Γ ⊆
Aut(H) be a subgroup of order prime to p. Then reduction modulo P gives
embeddings

Γ ↪→ SL2(Fp2) and Γ/{±1} ↪→ PGL2(Fp2).
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Proof. — By the above lemma, we need only check that det(α̃) = 1 for
all α ∈ Aut(H). Put H = x†x for some x ∈ GL2(B) and let L = xO2 be
the lattice in the non-principal genus attached to H as in Proposition 11.3.
Since the lattice L ⊗ Zp is equivalent to the lattice given in (11.1), there

exist g ∈ Gp and β ∈ GL2(Op) such that x = gξ

(
1 0
0 π

)
β. We compute

that

H = x†x = β†
(

1 0
0 −π

)
ξ†g†gξ

(
1 0
0 π

)
β = n(g)β†

(
0 π

−π 0

)
β.

Let γ = βαβ−1. Then from H = α†Hα we find that

(11.2) γ†
(

0 π

−π 0

)
γ =

(
0 π

−π 0

)
.

Since γ and β lie in GL2(Op), we can reduce them modulo P as well; thus,
it is sufficient to check that det(γ̃) = 1. Now, γπ = πγ′ with γ̃′ = γ̃. Hence,
we can cancel π in both sides of (11.2) to get

(γ′)t
(

0 1
−1 0

)
γ =

(
0 1
−1 0

)
,

and this implies that γ̃ belongs to the symplectic group and has determinant
equal to 1. �

Katsura and Oort determined the groups that can occur as the re-
duced automorphism group of a hermitian form in Λnprinc (see [20] and
[15, Lem. 2.1]). This result will play a crucial role in our strategy.

Theorem 11.6. — If p > 7, then the reduced automorphism group of
a hermitian matrix in Λnprinc is isomorphic as an abstract group to one of
the following groups:

Z/nZ for some n ∈ {1, 2, 3}; D2n for some n ∈ {2, 3, 6}; A4; S4; A5.

If p = 3 or p = 5, then H(1, p) = 1 and the reduced automorphism group
of the single class is isomorphic to A6 when p = 3 and to PGL2(F5) when
p = 5.

Given a monic polynomial f ∈ Z[x] and a subgroup Γ of GL2(B), let Γf
denote the set of elements of Γ whose reduced characteristic polynomials
(as elements of M2(B)) are equal to f . For each possible reduced automor-
phism group Γ′ of a hermitian matrix in Λnprinc, Ibukiyama [15, Thm. 7.1]
determined the cardinality of the set of equivalence classes of hermitian
matrices H ∈ Λnprinc with Aut′(H) ∼= Γ′. An important ingredient in this
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computation is the determination of mass formulas for the number of ele-
ments in Γf for all Γ and f . Given a monic degree-4 polynomial f ∈ Z[x],
we define m(f) to be the quantity

m(f) :=
h∑
i=1

|Γi,f |
|Γi|

,

where h = H(1, p) is the number of classes in Λnprinc and where the Γi
are the automorphism groups of a set of representatives for the equivalence
classes of Λnprinc. Ibukiyama computed the masses m(f) explicitly ([15,
Thm. 2.2]).

Theorem 11.7. — Assume that p > 7. Then m(f) = 0 for all poly-
nomials f ∈ Z[x] except for those with f(x) or f(−x) belonging to the
following list:

f1 = (x− 1)4, f2 = (x2 + 1)2, f3 = (x2 + x+ 1)2,
f4 = x4 + 1, f5 = x4 + x3 + x2 + x+ 1, f6 = x4 − x2 + 1.

Moreover, m(f2) > 0 for all p > 7, and

m(f4) > 0 if and only if p ≡ 3, 5 mod 8,

m(f6) > 0 if and only if p ≡ 5 mod 12.

Remark 11.8. — There is a similar result in the principal genus case;
see [5, Part I].

11.3. Polarizations

Later in the paper we will need to understand the principal polarizations
on the supersingular abelian surfaces over the algebraic closure K of a finite
field Fq. In this section we present the relevant results.

Recall that in §11.1 we chose a trace-0 elliptic curve E over Fp. The K-
endomorphism ring O of E is a maximal order in the quaternion algebra
B over Q with discriminant p.

Let λ0 be the product principal polarization on E × E and let † be the
Rosati involution on EndK(E × E) associated to this polarization. It is
well-known that under the natural isomorphism EndK(E × E) ∼= M2(O),
the Rosati involution becomes the conjugate-transpose involution.

The polarization λ0 induces an injection from the Néron-Severi group
NS(E × E) to EndK(E × E) by λ 7→ λ−1

0 λ. The image of this map is also
well-known (see for instance [16, Prop. 2.8]).
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Proposition 11.9. — The map given above induces a bĳection be-
tween NS(E × E) and the set of hermitian matrices in M2(O). Moreover,
this map restricts to a bĳection between the set of principal polarizations
on E × E and Λprinc.

We can understand in a similar way the principal polarizations of the
supersingular surfaces that are not geometrically isomorphic to E×E. Let
A be a supersingular abelian surface with a(A) = 1, and let ψ be the
natural degree-p isogeny from E ×E to A (see §11.1). Then we can define
a map NS(A)→M2(O) by

λ 7→ λ−1
0 ψ̂λψ.

Proposition 2.14 of [16] tells us the following.

Proposition 11.10. — The map given above induces a bĳection be-
tween the set of principal polarizations on A and the set Λnprinc.

12. Supersingular surfaces over finite fields.

Let k = Fq be a finite field of characteristic p that has even degree
over Fp, and let K = Fq. In this section we answer some basic questions
concerning supersingular abelian surfaces over k, their isogeny classes, and
their principal polarizations.

Suppose A is a supersingular abelian surface over k. If a(A) = 2 then
A is a K/k-twist of the abelian surface E × E, where, as before, E is a
trace-0 elliptic curve over Fp. On the other hand, if a(A) = 1 then there
is a unique copy of αp in A, which must necessarily be defined over k, and
by Proposition 11.1 the quotient A/αp has a-number 2. Therefore, every
A is either a K/k twist of E ×E or a quotient of such a twist by a rank-p
subgroup. In particular, every isogeny class of supersingular surfaces over
k contains a K/k-twist of E × E.

Thus, to understand the supersingular abelian surfaces over k and their
principal polarizations, we need only answer the following questions:

• What are the K/k-twists of E ×E, and what are the Weil polyno-
mials of these twists?

• Which rank-p geometric subgroups of these twists can be defined
over k?

• Which geometric polarizations of these twists can be defined over k?

In this section we will answer these questions.
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Remark 12.1. — We could ask the same questions for arbitrary finite
fields instead of limiting ourselves to those that contain Fp2 , but we will
only need the answers for even-degree extensions of Fp, and the answers
for odd-degree extensions of Fp are slightly more awkward to state. The
answers are simpler for the fields that contain Fp2 because for these fields
the Galois group of K/k acts trivially on EndK(E × E).

The first of our three questions is easy to answer. We know that the twists
of E × E correspond to elements of the cohomology set H1(Gal(K/k),
AutK(E × E)), and since all of the geometric endomorphisms of E are
defined over k, this cohomology set consists of the conjugacy classes of
the elements of finite order in Aut(E × E). If A is a twist of E × E, and
if f : E × E → A is a geometric isomorphism, then α := f−1fσ is the
automorphism of E × E that corresponds to the twist A; here σ is the
Frobenius automorphism of K/k.

Let π be the q-power Frobenius on E × E and let πA be the q-power
Frobenius of a twist A of E×E. The pullback of πA via the geometric iso-
morphism f is equal to απ, so that πA and απ have the same characteristic
polynomial. Since π = ±√q is an integer in EndK(E × E), the character-
istic polynomial of πA is π4h(x/π), where h ∈ Z[x] is the characteristic
polynomial of α. The same argument is valid in a more general situation:

Proposition 12.2. — Let A and B be abelian surfaces over k with q-
power Frobenius endomorphisms πA and πB , respectively. Let f : B −→ A

be a K-isomorphism and let h ∈ Z[x] be the characteristic polynomial of
α = f−1fσ ∈ AutK(B). If πB acts as an integer onB then the characteristic
polynomial of πA is π4

Bh(x/πB).

We turn to the second question. Given (i, j) ∈ K2 with (i, j) 6= (0, 0),
we would like to know whether the subgroup f((i, j)(αp)) of A is definable
over k.

Proposition 12.3. — The subgroup f((i, j)(αp)) of A is definable over
k if and only if [i : j] and α̃[iσ : jσ] are equal in P1(K).

Proof. — The morphism f ◦ (i, j) : αp −→ A is defined over k if and only
if it is invariant under the action of the Galois group of K/k, so we have

f ◦ (i, j) = fσ ◦ (iσ, jσ) ⇐⇒ (i, j) = α ◦ (iσ, jσ) ⇐⇒ [i : j] = α̃ [iσ : jσ].

�

It will also be useful to know when we can be assured of the existence
of a rational local-local subgroup of A that gives rise to a quotient with
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a-number 1. By Proposition 11.1 we need [i : j] ∈ P1(K) \ P1(Fp2) such
that the morphism f ◦ (i, j) is defined over k.

Proposition 12.4. — Let H ∈ Λnprinc and let α ∈ Aut(H) be an
automorphism of order not divisible by p. Then there exists an element
[i : j] ∈ P1(K) \ P1(Fp2) such that [i : j] = α̃[iσ : jσ], unless q = p2 and
α = ±1.

Proof. — The equation [i : j] = α̃[iq : jq] can be rewritten as a homo-
geneous equation in i and j of degree q + 1, and it is easy to verify that
the subscheme of P1 defined by this equation is nonsingular, so there are
q+ 1 points [i : j] that satisfy the equation. If q > p2, we are guaranteed a
solution that does not lie in P1(Fp2). If q = p2 and every element of P1(Fp2)
is a root of the equation, then we see that α̃ fixes every element of P1(Fp2),
and Proposition 11.5 shows that α = ±1. �

The third of our three questions asks when a geometric polarization of
E × E gives rise to a polarization of A defined over k.

Proposition 12.5. — Let λ be a polarization of E × E and let H =
λ−1

0 λ ∈ EndK(E×E). Then the polarization f̂−1λf−1 of A is defined over
k if and only if H = α†Hα.

Proof. — The polarization will descend to A if and only if it is fixed by
the action of σ, that is, if and only if(

f̂−1λf−1
)σ

= f̂−1λf−1.

Multiplying by fσ on the right and by f̂σ on the left, we find that this
condition is equivalent to

λ = f̂−1fσλf−1fσ.

This translates into the statement that H = α†Hα. �

13. Jacobians in isogeny classes of simple supersingular
surfaces

In this section we will prove Theorem 10.1. The techniques we use depend
on whether or not the base field k = Fq has even degree over its prime field,
so we consider these cases in two separate subsections. Throughout this
section we will let K denote an algebraic closure of k, and we will always
assume that the characteristic of k is greater than 3.
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13.1. The case q a square

We first show how certain Weil polynomials can be produced by Propo-
sition 12.2. We begin with a simple observation: Suppose u is an automor-
phism of a hyperelliptic curve C, and let ι be the hyperelliptic involution
of C. Then u induces an automorphism u′ of the genus-0 curve C/〈ι〉, and
the order of u′ is equal to the order of u unless ι ∈ 〈u〉, in which case the
order of u′ is half that of u.

Proposition 13.1. — Let k = Fq be a finite field (of characteristic at
least 5) that has even degree over its prime field. Let C be a supersingular
genus-2 curve over k such that the Frobenius endomorphism π of the Jaco-
bian J of C is equal to the integer ε√q, where ε = ±1. Let u be a geometric
automorphism of C and let u′ be the induced automorphism of P1. Let n
and n′ be the orders of u and u′, respectively, and let C ′ be the twist of
C determined by u. Then the pair (n, n′) appears in the left column of
Table 13.1, and the Weil polynomial of C ′ is q2fn,n′(εx/

√
q), where fn,n′

is the polynomial appearing in the right column.

(n, n′) fn,n′

(1, 1) (x− 1)4

(2, 1) (x+ 1)4

(2, 2) (x− 1)2(x+ 1)2

(3, 3) (x2 + x+ 1)2

(4, 2) (x2 + 1)2

(5, 5) x4 + x3 + x2 + x+ 1

(6, 3) (x2 − x+ 1)2

(6, 6) (x2 − x+ 1)(x2 + x+ 1)

(8, 4) x4 + 1

(10, 5) x4 − x3 + x2 − x+ 1

Table 13.1. Characteristic polynomials of certain automorphisms of
supersingular Jacobians.

Proof. — Igusa [17, §8] computed the groups that can occur as the re-
duced automorphism groups of hyperelliptic curves. Looking at Igusa’s list,
we see that n′ must be an element of {1, 2, 3, 4, 5, 6}. Since n is equal to
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either n′ or 2n′, we see that the left column includes all possibilities except
for n = 4, n′ = 4 and n = 12, n′ = 6. These cases can be excluded by
computing the automorphism groups of Igusa’s curves with many auto-
morphisms.

Now Proposition 13.1 will follow from Proposition 12.2, provided that
we can show that the characteristic polynomial g of the automorphism u∗

of J is equal to the polynomial f associated to the pair (n, n′). Four facts
will be very helpful in our proof that g = f :

(1) The gcd of g and xn − 1 does not divide xm − 1 for any m < n.
(2) If n = 2n′, the gcd of g and xn

′
+ 1 does not divide xm + 1 for any

m < n′.
(3) If n = n′, the gcd of g and xn−1 divides no polynomial of the form

xm + 1.
(4) The constant term of g is 1.

The first three facts follow from the definitions of n and n′ and from the fact
that u∗ satisfies the relevant gcd in each case. The fourth fact holds because
u∗ is an automorphism of the polarized Jacobian, and so its product with
its Rosati involute is equal to 1.

These four facts allow us to determine g in all cases, except when n = 3
or n = 6. Consider the case when n = 3. Then g must be either

(x− 1)4, (x− 1)2(x2 + x+ 1), or (x2 + x+ 1)2.

The first possibility is eliminated by fact (1) above. If g were equal to
the second polynomial, then Proposition 12.2 would show that the Weil
polynomial of C ′ would be

(x2 − 2sx+ q)(x2 + sx+ q)

for some s with s2 = q. But Theorem 2.4 shows that there are no curves
with such a Weil polynomial. It follows that g = (x2 + x+ 1)2, as claimed
in the table. The cases with n = 6 follow in a similar way. �

Remark 13.2. — Suppose u is an order-n automorphism of a genus-g
hyperelliptic curve over an arbitrary algebraically-closed field, and let n′

be the order of the automorphism of P1 induced by u. Theorem 1 of [4]
shows that the values of g, n, and n′ completely determine the characteristic
polynomial f of u∗, unless n and (2g+ 2)/n are even and n = n′, in which
case there are two possibilities for f ; the theorem gives explicit formulas
for the possible values of f in all cases. When g = 2, it is not possible for
n and (2g + 2)/n to both be even, and Table 13.1 can be derived from the
results of [4].
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We continue to let E denote an elliptic curve over Fp with trace 0. The
following propositions will help us detect the existence of Jacobians among
the supersingular surfaces A that have respectively a(A) = 2 or a(A) = 1.

Proposition 13.3. — Let C be a supersingular genus-2 curve over k
whose Jacobian has a-number 2. If C ′ is a twist of C, then the Weil polyno-
mial of C ′ is q2f(x/

√
q) for some f = fn,n′ from Table 13.1. Furthermore,

C has a twist with Weil polynomial q2fn,n′(x/
√
q) if and only if there is a

geometric automorphism u of C of order n that induces an automorphism
of order n′ on the projective line.

Proof. — Since the principally polarized surface JacC has a-number 2, it
is geometrically isomorphic to (E×E, λ) for some principal polarization λ.
Now, (E × E, λ) is defined over Fp2 , hence over Fq, and it is k-isomorphic
to the canonically polarized Jacobian of a curve C0 defined over k. By
Torelli’s theorem, C0 is a twist of C. Replacing C0 with its quadratic twist,
if necessary, we may assume that the Frobenius on JacC0 acts as √q.

The proposition is now a direct consequence of Proposition 13.1 because
C and C0 have the same set of twists, the q-power Frobenius endomorphism
π0 of the Jacobian of C0 satisfies π0 =

√
q, and any isomorphism between

the curves C and C0 induces an isomorphism between their geometric au-
tomorphism groups that identifies the hyperelliptic involutions. �

Proposition 13.4. — Let A be the isogeny class A(0,2q) (respectively
A(0,0), respectively A(0,−q)), and let P ∈ Z[x] be the polynomial (x2 + 1)2

(respectively x4 + 1, respectively x4 − x2 + 1). Then there exists an H ∈
Λnprinc with an automorphism α ∈ Aut(H) such that P (α) = 0 if and only
if there exists a curve C over k whose Jacobian lies in the isogeny class A
and has a-number 1.

Proof. — Suppose H is an element of Λnprinc and α is an element of
Aut(H) with P (α) = 0. Let A be the K/k-twist of E×E determined by α.
Then by Proposition 12.2 we see thatA lies inA. By Propositions 11.1, 12.3,
and 12.4 there is a k-rational αp-subgroup G of A such that a(A/G) = 1.
Now we apply Proposition 11.10 to the degree-p map

ϕ : E × E ∼−→A −→ A/G.

There is a principal polarization λ of A/G whose pullback by ϕ is the
degree-p2 polarization λ0H of E × E, where λ0 is the product principal
polarization on E × E. Proposition 12.5 shows that the pullback of λ to
A is defined over k; hence, λ is defined over k. The principally polarized
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variety (A/G, λ) is not geometrically a product of elliptic curves (because
a(A/G) = 1), so it is the Jacobian of a curve.

Conversely, suppose that C is a curve over k whose Jacobian J has a-
number 1 and belongs to A. Consider the quotient J/αp of J by its unique
αp-subgroup, and let f be a geometric isomorphism E×E −→ J/αp (which
exists by Proposition 11.1). Apply Proposition 11.10 to the degree-p map

ϕ : E × E f−→ J/αp −→ J,

where the rightmost map is the dual isogeny of the canonical projection.
There is some H ∈ Λnprinc uniquely associated to the canonical polariza-
tion ϑ of J . Since ϑ is defined over k, Proposition 12.5 shows that the
automorphism α = f−1fσ lies in Aut(H). Finally, by Proposition 12.2 the
characteristic polynomial of α is determined by the class A as indicated in
the statement of the proposition. �

Now we proceed to the proof of Theorem 10.1 in the case that q is a
square. Consulting Table 10.1, we see that we must show that there are
Jacobians in A(0,0) when p 6≡ 1 mod 4, that there are Jacobians in A(0,2q)

when p ≡ 1 mod 4, and that when p 6≡ 1 mod 3 there are Jacobians in
A(0,−q) if and only if p ≡ 1 mod 4.

The isogeny class A(0,2q) when p ≡ 1 mod 4.

For p > 5 we deduce from Theorem 11.7 the existence of a hermitian
form H ∈ Λnprinc that admits an automorphism α satisfying (α2 +1)2 = 0.
By Proposition 13.4 there is a Jacobian in the class A(0,2q).

For p = 5 (or more generally for p ≡ 5 mod 8), we can use the curve C
given by the equation y2 = x5− x. By [16, Prop. 1.12], this curve is super-
singular and its Jacobian has a-number 2. Moreover, the automorphism u

given by (x, y) 7→ (−x,
√
−1 y) satisfies u2 = ι. By Proposition 13.3, the

Jacobian of some twist of C lies in A(0,2q). �

The isogeny class A(0,0) when p 6≡ 1 mod 4.

First we consider the case p ≡ 7 mod 8. Let C be the curve y2 = x5 − x.
By [16, Prop. 1.12] we know this curve is supersingular and its Jacobian
has a-number 2. Moreover, C has a geometric automorphism u satisfying
u4 = ι; for instance, (x, y) 7→ (ζ2x, ζy), where ζ is a primitive eighth root
of unity. By Proposition 13.3, the Jacobian of some twist of C lies in A(0,0).
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Next we consider the case p ≡ 3 mod 8. In this case Theorem 11.7 shows
that there is a hermitian form H in Λnprinc that has an automorphism α

whose characteristic polynomial is x4 + 1. By Proposition 13.4 there is a
Jacobian in the class A(0,0). �

The isogeny class A(0,−q) when p 6≡ 1 mod 3.

We must show that there is a Jacobian in this isogeny class if and only
if p ≡ 5 mod 12.

To begin with, we note that Proposition 13.3 shows that there is no curve
whose Jacobian lies in A(0,−q) and has a-number 2. On the other hand,
we see from Proposition 13.4 that there will be a curve C over k whose
Jacobian lies in A(0,−q) and has a-number 1 if and only if there exists an
H ∈ Λnprinc for which there is an α ∈ Aut(H) satisfying α4 − α2 + 1 = 0.
By Theorem 11.7, for p > 5 this happens if and only if p ≡ 5 mod 12.

For p = 5 we note that the matrices H in the unique equivalence class in
Λnprinc have reduced automorphism group PGL2(F5) (see Theorem 11.6).
This group contains an element of exact order 6 that lifts to an α ∈ Aut(H)
that must satisfy α6 = −1. In fact, the reduced characteristic polynomial
of α is a power of the minimal polynomial; hence α6 = 1 would imply that
α has order 1, 2 or 3 in the reduced group. �

Remark 13.5. — The proof that there is no Jacobian with a-number 1
in A(0,−q) is also valid for p = 3. There is no element of order 6 in the
reduced automorphism group of the unique equivalence class in Λnprinc; in
fact, by Theorem 11.6 this reduced group is isomorphic to A6.

13.2. The case q not a square

We see from Table 10.1 that to prove Theorem 10.1 in the case where
q is not a square, we must show that there are Jacobians in A(0,0) when
p 6≡ 1 mod 4, in A(0,q) when p 6≡ 1 mod 3, in A(0,−q) when p 6≡ 1 mod 3,
and in A(0,−2q) for all p.

We begin with a remark about twists. Suppose that V is a variety over
k = Fq all of whose automorphisms are defined over Fq2 , and let σ denote
the Frobenius automorphism of K over k. Let α be an automorphism of V .
Then there is a 1-cocycle from Gal(K/k) to AutK(V ) that sends σ to α if
and only if αασ has finite order in AutK(V ). (Note that the latter condition
is equivalent to ασα having finite order, and that the orders of ασα and
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αασ are equal to one another.) As always, the K/k-twists of V correspond
to elements of the pointed cohomology set H1(Gal(K/k),AutK(V )). If V ′

is a twist of V and f : V → V ′ is a K-isomorphism, then V ′ corresponds
to the class of the cocycle that sends σ to f−1fσ.

The following proposition, similar to Proposition 13.3, allows us to con-
struct twists in certain isogeny classes.

Proposition 13.6. — Let C be a supersingular genus-2 curve over k
such that the Frobenius endomorphism π of the Jacobian satisfies π2 = εq,
where ε = ±1. Let u be a geometric automorphism of C such that uuσ has
order n ∈ {1, 2, 3, 4, 6} and let C ′ be the twist of C determined by u. Then
the Weil polynomial x4 + ax3 + bx2 + aqx+ q2 of C ′ is determined by n as
follows:

n 1 2 3 4 6
(a, b) (0,−2εq) (0, 2εq) (0, εq) (0, 0) (0,−εq)

Proof. — Let J be the Jacobian of C. Then the Jacobian J ′ of C ′ is
the twist of J associated to the automorphism α = u∗. Note that αασ has
order n.

Let π ∈ EndK(J) and π′ ∈ EndK(J ′) be the q-power Frobenius endo-
morphisms of J and J ′, respectively and let f : J → J ′ be a geometric
isomorphism such that α = f−1fσ. The condition on π implies that J
splits over the quadratic extension of k, and the condition (αασ)n = 1 im-
plies that f is defined over the extension of k of degree 24; in particular,
the isogeny class of J ′ splits over this extension. Checking the list of su-
persingular isogeny classes over odd-degree extensions of prime finite fields
of odd characteristic that split over the extension of degree 24 (see [25,
Thm. 2.9] and [25, Table 1]), we see that the characteristic polynomial of
π′ is x4 + bqx2 + q2 for some integer b ∈ {0,±1,±2}.

The pullback of π′ by f is απ. Since π2 = εq and ασπ = πα, this implies
that

(αασ)2 + εb αασ + 1 = 0

in EndK(J). Comparing this identity with (αασ)n = 1, we see that b =
−2ε, 2ε, ε, 0 or −ε, according to n = 1, 2, 3, 4 or 6. �

The isogeny classes A(0,±q) when p 6≡ 1 mod 3.

Let C be the curve y2 = x6 + 1 over k, and let E be the supersingular
elliptic curve y2 = x3 + 1. The two obvious maps from C to E show that
the Jacobian J of C is (2, 2)-isogenous to E × E over k, so the Frobenius
π of J satisfies π2 = −q.
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Let ζ ∈ K be a primitive sixth root of unity, and let u be the K-
automorphism

(x, y) 7→ (ζ/x, y/x3)

of C. One checks easily that (uσu)(x, y) = (ζ4x, ζ3y); hence, (uσu)3 = ι,
so uσu has order 6 and the Jacobian of some twist of C lies in A(0,q) by
Proposition 13.6.

If ζ is a primitive cube root of unity, the same computation shows that
the automorphism uσu has order 3, so the Jacobian of some twist of C lies
in A(0,−q). �

The isogeny class A(0,−2q).

For this case, we found it simplest to use a direct construction involving
Kani’s result (Theorem 3.1) combined with Galois descent.

Let F be an elliptic curve over Fq2 whose q2-Frobenius is equal to q,
and let F (q) be its Galois conjugate over Fq. The q2-Frobenius acts as the
identity on the 2-torsion points of E, so all of the 2-torsion points of F are
rational over Fq2 . Label the nonzero 2-torsion points P , Q, and R, and let
P (q), Q(q), and R(q) be the corresponding points on F (q).

We can easily produce four maximal isotropic subgroups of (F ×F (q))[2]
that are stable under the action of the Galois group of Fq2 over Fq:

{(0, 0), (P, P (q)), (Q,Q(q)), (R,R(q))},

{(0, 0), (P, P (q)), (Q,R(q)), (R,Q(q))},

{(0, 0), (P,R(q)), (Q,Q(q)), (R,P (q))},

{(0, 0), (P,Q(q)), (Q,P (q)), (R,R(q))}.

These are the graphs of certain anti-isometries F [2] → F (q)[2]. But the
number of reducible geometric anti-isometries from F to F (q) is equal to
half of the number of geometric isomorphisms from F to F (q), and since we
are in characteristic greater than 3, there are at most 6 such isomorphisms.
Therefore, at least one of the subgroups G listed above comes from an ir-
reducible anti-isometry, and so there is a curve C over Fq2 whose Jacobian
is isomorphic to (F × F (q))/G. Clearly the polarized Jacobian of C is iso-
morphic to its Galois conjugate, so C can be defined over Fq. Furthermore,
the isogeny JacCFq2 → F ×F (q) descends to give an isogeny from JacC to
the restriction of scalars of E. It follows that JacC lies in the isogeny class
A(0,−2q). �
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The isogeny classes A(0,0) when p 6≡ 1 mod 4.

We require two separate arguments for this case, one when p ≡ 7 mod 8
and one when p ≡ 3 mod 8.

First suppose that p ≡ 7 mod 8. Let C be the curve y2 = x5−x. By [16,
Prop. 1.12] and [16, Rem. 1.4] we see that the Jacobian J of C is k-isogenous
to the product of two supersingular curves. Let ζ ∈ K be a primitive eighth
root of unity, and let u be the K-automorphism

(x, y) 7→ (ζ2/x, ζy/x3)

of C. One checks easily that (uσu)(x, y) = (−x, ζ2y), so that uσu has order
4 in AutK(C). Proposition 13.6 then shows that the Jacobian of some twist
of C lies in A(0,0).

Now we turn to the case p ≡ 3 mod 8. Let E be the supersingular el-
liptic curve y2 = x3 + x, let i be the geometric automorphism (x, y) 7→
(−x,

√
−1 y) of E, and let α be the automorphism[

0 1
i 0

]
of E×E. Note that ασα has order 4 in AutK(E×E), so there is a cocycle
from Gal(K/k) to AutK(E × E) that sends σ to α. Let A be the twist of
E × E corresponding to the cohomology class in

H1(Gal(K/k),AutK(E × E))

that contains this cocycle .
Let π and πA be the q-power Frobenius endomorphisms of E × E and

A, respectively. Checking the list of supersingular isogeny classes over odd-
degree extensions of finite prime fields of characteristic at least 7 (see [25,
Thm. 2.9] or the Appendix), we see that the characteristic polynomial of
πA is x4 + bx2 + q2, for some integer b. Let f : E×E −→ A be a geometric
isomorphism such that α = f−1fσ. The pullback of πA by f is απ, so απ
also has characteristic polynomial x4 + bx2 + q2. From the equalities

π2 = −q, ασπ = πα, and (αασ)2 = −1,

we see that we must have b = 0, so A lies in the isogeny class A(0,0).
Lemma 13.7 below shows that there are positive integers r and s such

that pr2 − 2s2 = 1. Let H be the K-endomorphism of E × E given by

H :=
[

pr s(1 + i)π
−sπ(1− i) pr

]
∈ Λnprinc,
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and let λ = λ0H be the corresponding degree-p2 polarization on E × E,
where λ0 is the product principal polarization on E×E. One checks easily
that

H = α†Hσα,

where x 7→ x† is the Rosati involution on EndK(E × E) corresponding to
the polarization λ0, that is, the conjugate-transpose involution. Arguing as
in the proof of Proposition 12.5, we see that λ descends to a polarization
on A defined over k.

To complete the proof, we need only find a k-rational αp-subgroup G of A
such that a(A/G) = 1, for then λ will descend to A/G by Proposition 11.10,
and the geometrically non-split principally polarized surface (A/G, λ) will
be a Jacobian.

By Propositions 11.1 and 12.3 (which is equally valid for q nonsquare) we
need only find [i : j] ∈ P1(K)\P1(Fp2) such that [i : j] = α̃[iσ : jσ]. Arguing
as in the proof of Proposition 12.4, we see that this is always possible if
q > p2. Finally, if q = p not all of the q + 1 solutions to [i : j] = α̃[iσ : jσ]
can be defined over Fp2 ; in fact, these solutions are fixed points of α̃σα, and
this transformation would be the identity on P1(Fp2). Since ασα ∈ Aut(H),
this would imply ασα = ±1 by Proposition 11.5, in contradiction with the
condition (ασα)2 = −1. �

Lemma 13.7. — Let p be a prime that is congruent to 3 modulo 8. Then
there are positive integers r and s such that pr2 − 2s2 = 1.

Proof. — Let F = Q(
√

2p), and let p be the prime ideal of F lying over p.
Genus theory shows that the class number of F is odd, and since p2 = (p) is
principal, we find that p is principal as well, say p = (t+s

√
2p) for integers

t and s that we may take to be positive. Then we have t2 − 2ps2 = ±p, so
t must be a multiple of p, say t = pr. We see that then pr2 − 2s2 = ±1.
Considering this equation modulo 8, we find that in fact we must have
pr2 − 2s2 = 1. �

14. Appendix

For the sake of completeness we outline a step-by-step procedure that
can be used to check whether a given monic quartic polynomial f ∈ Z[x]
is the Weil polynomial of a smooth projective genus-2 curve over a finite
field Fq. Our main theorem tells when the Weil polynomial for an abelian
surface is the Weil polynomial for a Jacobian, so mostly what we must do
is identify the Weil polynomials of abelian surfaces. This has been done
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in other papers ([31] and [25] for example); we are simply restating these
results in a convenient form.

Write q = pm for a prime p.

• Step 1: Check whether f has the right shape for a Weil polynomial.
The complex roots of the Weil polynomial of an abelian variety
over Fq have magnitude √q and come in complex conjugate pairs.
A monic quartic polynomial in Z[x] has this property if and only if
it has the shape

f = x4 + ax3 + bx2 + qax+ q2,

with

|a| 6 4
√
q and 2|a|√q − 2q 6 b 6

a2

4
+ 2q.

• Step 2: Check whether f is the Weil polynomial of an abelian sur-
face. Suppose f meets the condition of Step 1, and let

∆ = a2 − 4(b− 2q) and δ = (b+ 2q)2 − 4qa2.

– Ordinary case: vp(b) = 0.
In this case the polynomial f is the Weil polynomial of an
ordinary abelian surface over Fq. The surface is split or simple
according to ∆ being a square in Z or not.

– Almost-ordinary case: vp(a) = 0 and vp(b) > 0.
The polynomial f is the Weil polynomial of an almost-ordinary
abelian surface if and only if

vp(b) > m/2 and δ is either 0 or a non-square in Zp.

The surface is split or simple according to ∆ being a square in
Z or not.

– Supersingular case: vp(a) > 0 and vp(b) > 0.
The polynomial f is the Weil polynomial of a supersingular
split abelian surface if and only if

vp(a) > m/2, vp(b) > m, and ∆ is a square in Z,

and moreover, if q is a square and we write a =
√
qa′ and

b = qb′, the following two conditions hold:

p 6≡ 1 mod 4, if b′ = 2,

p 6≡ 1 mod 3, if a′ 6≡ b′ mod 2.
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The polynomial f is the Weil polynomial of a simple supersin-
gular abelian surface if and only if (a, b) belongs to the follow-
ing list :

(a, b) Conditions on p and q

(0, 0) q is a square and p 6≡ 1 mod 8, or
q is not a square and p 6= 2

(0,−q) q is a square and p 6≡ 1 mod 12, or
q is not a square and p 6= 3

(0, q) q is not a square

(0,−2q) q is not a square

(0, 2q) q is a square and p ≡ 1 mod 4

(±√q, q) q is a square and p 6≡ 1 mod 5

(±
√

2q, q) q is not a square and p = 2

(±2
√
q, 3q) q is a square and p ≡ 1 mod 3

(±
√

5q, 3q) q is not a square and p = 5

• Step 3: Apply Theorem 1.2. If f is the Weil polynomial of an abelian
surface over Fq, one applies Theorem 1.2 to determine if it is the
Weil polynomial of a genus-2 curve. Note that in the split case, ∆
is a square in Z and the polynomial x2 +ax+(b−2q) has two roots
s, t ∈ Z, which are the traces of Frobenius of the corresponding
elliptic curves.
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