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ON q-SUMMATION AND CONFLUENCE

by Lucia DI VIZIO & Changgui ZHANG (*)

Abstract. — This paper is divided in two parts. In the first part we study a
convergent q-analog of the divergent Euler series, with q ∈ (0, 1), and we show
how the Borel sum of a generic Gevrey formal solution to a differential equation
can be uniformly approximated on a convenient sector by a meromorphic solution
of a corresponding q-difference equation. In the second part, we work under the
assumption q ∈ (1, +∞). In this case, at least four different q-Borel sums of a di-
vergent power series solution of an irregular singular analytic q-difference equations
are spread in the literature: under convenient assumptions we clarify the relations
among them.

Résumé. — Cet article est divisé en deux parties. Dans la première partie, nous
étudions un q-analogue convergent de la série d’Euler, pour q ∈]0, 1[, et nous prou-
vons que la somme de Borel d’une série Gevrey générique, solution d’une équation
différentielle, peut être approchée uniformément, sur un secteur convenable, par la
solution méromorphe d’une équation aux q-différences associée. Dans la deuxième
partie, nous travaillons sous l’hypothèse q ∈]1, +∞[. Dans ce cas, au moins quatre
notions différentes de q-sommations ont été introduites dans la littérature: nous
clarifions, sous des hypothèses raisonnables, les relations entre ces notions.

Introduction

Let C[[x]] be the ring of formal power series with complex coefficients and
C{x} the ring of germs of analytic functions at zero. A divergent formal
power series f̂ =

∑
n>0 fnx

n+1 ∈ xC[[x]] r xC{x} is said to be a generic
Gevrey series if it is solution of a differential equation of the form

(0.1) an(x)
(
x2∂

)n
y(x)+an−1(x)

(
x2∂

)n−1
y(x)+ · · ·+a0(x)y(x) = g(x),

where ∂ = d
dx and a0(x), . . . , an(x), g(x) ∈ C{x}, with a0(0)an(0) 6= 0.

This implies that its formal Borel transform B(f̂) =
∑

n>0
fn

n! ξ
n ∈ C{ξ} is
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348 Lucia DI VIZIO & Changgui ZHANG

a germ of an analytic non entire function. The most important example is
the Euler series

Ê(x) =
∑
n>0

(−1)nn!xn+1,

which is solution of the differential equation x2∂y+y = x. A generic Gevrey
series has the following properties: B(f̂) can be analytically continued along
almost all direction d ∈ (−π, π] and the Laplace integral along the half line
eidR+:

Sd(f̂) =
∫ eid∞

0

B(f̂)(ξ)e−ξ/xdξ,

called sum of f̂ in the direction d, represents a convergent solution of (0.1),
analytic on a convenient sector and asymptotic to f̂ at zero: this is the first
result of the well-known theory of summation of divergent series (cf. [14,
11, 9, 10]).

In the last fifteen years analogous summation theories for q-difference
equations have been developed (cf. [20, 12, 23, 15, 5]). This last sentence
already shows one issue in the topic: there are many q-summation theories
in the literature and the relations among them are not clear.

Let us consider a q-deformation of the Euler series, namely:

Êq(x) =
∑
n>0

(−1)n[n]!qx
n+1,

where [n]q = 1 + q + · · · + qn−1 and [n]!q = [n]q[n − 1]q · · · [1]q. This series
converges coefficientwise to Ê(x) when q → 1 and is solution of the q-
difference equation

x2dqy + y = x, with q ∈ C∗ and dqy(x) =
y(qx)− y(x)

(q − 1)x
,

which is a discretization, in an obvious sense, of the so-called Euler dif-
ferential equation x2∂y + y = x. A first dichotomy immediately appears:
when |q| < 1 the series Êq is a germ of analytic function, converging for
|x| < |1 − q|, while for |q| > 1 the series Êq diverges. This is itself quite a
curious fact, that we have investigated in the present paper.

As far as the divergent case |q| > 1 is concerned, another dichotomy im-
mediately shows up: authors have been using two formal Borel transforms,
namely

Bq(f̂) =
∑
n>0

fn

[n]!q
ξn and Bq(f̂) =

∑
n>0

fn

qn(n−1)/2
ξn.

Notice that we have Bq(Êq) = 1
1+ξ andBq(Êq) = Êp(ξ), with p = q−1. Each

one of these formal Borel transforms will be seen to naturally determine
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ON q-SUMMATION AND CONFLUENCE 349

two summation procedures, so that we end up with at least four summation
procedures: understanding the relations among them is a natural question.
Notice that from an arithmetic point of view, Bq and Bq are deeply different
(cf. [2]).

The present paper is divided in two parts: in the first one we consider the
case q ∈ (0, 1) ⊂ R, while in the second one we study different summation
procedures under the assumption q ∈ (1,∞). Let us make a few comments
on these assumptions:

• We assume that the parameter q is real: this simplifies the exposition,
although it is not always completely necessary.
• Authors writing on q-difference equations say sometimes that choosing q
smaller or greater than one is only a matter of convention: as we explain
below, this is not true in the present situation, and the two cases need to
be investigated separately.

Let q ∈ (0, 1) ⊂ R. In this case Êq is the Taylor expansion at 0 of a
meromorphic function Eq on C, whose poles are a discrete subset of the
negative real axis R−. In §1 we prove the uniform convergence of Eq on the
compacts of C r R− to the analytic continuation E of the Borel sum of Ê
in the direction R+. The proof of this result is based on the development of
Eq at ∞, which is a q-deformation of the classical expansion of E at ∞(1) :

E(x) = (log x− γ)e
1
x +

∑
n>1

∑
16k6n

1
k

n!

(
1
x

)n

,

where γ = limn→∞
(∑n

k=1
1
k − ln(n)

)
is the Euler constant. In the same

spirit, using Sauloy’s canonical solutions at ∞ of a fuchsian q-difference
operators [16] and his result on their confluence when q → 1, we can prove
the main theorem of the first part. Namely, let y(q, x) =

∑
n>0 yn(q)xn+1 ∈

xC[[x]] be a family of formal power series, with q ∈ (η, 1], for some η ∈
(0, 1). We suppose that the yn(q)’s are continuous functions of q and that
the family φ(q, ξ) = Bqy(q, x) ∈ C{ξ} is solution of a family of equations
over P1

C, fuchsian and non resonant at ∞(2) . Then (cf. Theorem 2.6 below):

Theorem 0.1. — Let d ∈ [0, 2π) be such that φ(1, x) is holomorphic on
a domain containing the half line eidR+. Then for any x ∈ V := {| arg x−

(1) cf. [7, page 261], where we have set a = c = 1 and made the variable change x 7→ 1/x.
(2) For a precise definition of a family of equations over P1

C, fuchsian and non resonant
at ∞, cf. Assumption 2.7 below.
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350 Lucia DI VIZIO & Changgui ZHANG

d| < π
2 } we have

lim
q→1−

y(q, x) = Sd(y(1, x)) =
∫ eid∞

0

φ(1, ξ)e−ξ/xdξ,

the convergence being uniform on the compacts of V .

This result immediately implies two corollaries (cf. §2.3 below). First of
all, let y(x)=

∑
n>0 ynx

n+1∈xC[[x]] be a series such that φ(ξ)=
∑

n>0
yn

n! ξ
n

is solution of a fuchsian differential equation
∑µ

i=0Ai(ξ)(ξ∂)iφ = 0 on P1
C,

non resonant at ∞. One can construct a family of power series yq(x), with
q ∈ (0, 1), such that Bqyq(x) is solution of

∑µ
i=0Ai(ξ)(ξdq)iφ = 0 and

yq(x) converges coefficientwise to y(x) when q → 1−. Then:

Corollary 0.2. — The family yq(x) converges uniformly to the Borel
sum Sd(y(ξ)) of y(x), when q → 1−, on the compacts of a convenient sector
V = {| arg x− d| < π/2}.

A second corollary is about the sum of confluent hypergeometric series.
Let us consider a, b ∈ C, with a − b 6∈ Z, and the basic hypergeometric
function:

Φ(a, b; q, x) =
∑
n>0

(qa; q)n(qb; q)n

(q; q)n

(
x

1− q

)n

,

where (a; q)0 = 1 and (a; q)n = (1−a)(1−qa) · · · (1−qn−1a) for any integer
n > 1.

Corollary 0.3. — The analytic function Φ(a, b; q, x) converges uni-
formly to the Borel sum of the hypergeometric confluent series

2F0(a, b;−;x) =
∑
n>0

(a)n(b)n

n!
xn,

with (a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n) for any integer n > 1, on the
compacts of a convenient sector centered at 0, when q → 1−.

Finally, notice that the result on the confluence of Eq can be deduced
from theorem 0.1.

The second part of the paper deals with the summation of divergent
q-series when q ∈ (1,∞) ⊂ R. Following the scheme of the first part, we
start our investigation studying four summations of the series Êq(x). We
consider the q-exponential and the classical Theta function (here p = q−1):

eq(x) =
∑
n>0

xn

[n]!q
, θp(x) =

∑
n∈Z

pn(n−1)/2xn.

ANNALES DE L’INSTITUT FOURIER



ON q-SUMMATION AND CONFLUENCE 351

We replace, in the classical Laplace integral, the exponential function by
eq or θp. By using an usual integral or a discrete q-analogue(3) , denoted∫

λpZ fdpξ, we get four different q-Borel sums of Êq(x):

Ed
q (x) =

q − 1
ln q

∫ eid∞

0

1
(1 + ξ)eq(q ξ

x )
dξ,

Ed
q (x) =

q

ln q

∫ eid∞

0

Êp(ξ)
θp(q ξ

x )
dξ;

E [λ]
q (x) =

q

1− p

∫
λpZ

1
(1 + ξ

1−p )eq(q ξ
(1−p)x )

dpξ,

E[λ]
q (x) =

q

1− p

∫
λpZ

Êp(ξ)
θq(q ξ

x )
dpξ,

where d ∈ (−π, π) and λ /∈ −pZ. We prove that Ed
q (x) = Ed

q (x) on the
sector arg(x) ∈ (−2π, 2π) of the Riemann surface of the logarithm and that
E [λ]

q (x) = E
[λ]
q (x) for any x ∈ C r (p − 1)λqZ. Moreover we can explicitly

determine the functions Ed
q (x)−E [λ]

q (x) and E [λ]
q (x)−E [µ]

q (x) for x ∈ CrR−,
in terms of the Theta function. Finally, we establish the following relation
between Ed

q (x) and E [λ]
q (x) (cf. Corollary 3.10 below):

Ed
q (x) =

1
ln q

∫ q

1

E [λ]
q (x)

dλ

λ
.

In an analogous way, for a formal power series f̂ ∈ C[[x]] such that Bq f̂ is
an analytic function with a q-exponential growth of order one at ∞ we can
define its sums Sd

q f̂ , S [λ]
q f̂ , Sd

q f̂ and S
[λ]
q f̂ . Using some explicit results for

the Tschakaloff series and a q-convolution product adapted to the situation
we can prove the following (cf. Theorem 4.14):

Theorem 0.4. — Let f̂ ∈ C[[x]] be a generic q-Gevrey series. Then for
any λ ∈ C∗ r ∪n

i=1µiq
Z, for convenient µ1, . . . , µn ∈ C∗, and almost all

direction d ∈ (−π, π), we have Sd
q f̂ = Sd

q f̂ and S [λ]
q f̂ = S

[λ]
q f̂ . Moreover:

Sd
q f̂ =

1
ln q

∫ qeid

eid

S [λ]
q f̂

dλ

λ
.

The theory of irregular singular q-difference equations is nowadays rela-
tively well understood. This paper deals with two of the questions that are
still without answer, namely:

(3) It’s the so-called Jackson’s integral, which is an infinite sum that approximates the
associated usual integral. The precise definition is in Appendix A below.

TOME 59 (2009), FASCICULE 1
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1. Thanks to the work of J. Sauloy [16] we know how to “uniformly approx-
imate” the global monodromy of a fuchsian differential equation on P1

C, in
terms of the Birkhoff matrices of a family of q-difference equations deform-
ing the given differential one. Of course an analogous result is expected
be true for the Stokes phenomenon: actually the confluence of the Stokes
matrices is studied for some functional equations linked to classical special
functions (cf. for instance [23]). The main theorem of the first part of this
article goes in the direction of a discrete deformation of the Stokes phenom-
enon: differently from previous authors, we consider a discrete convergent
deformation of the divergent differential datum. This approach is not re-
ally explored and the present result surely does not exhaust its possible
applications.
2. In the second part of the paper we study the relations between the differ-
ent kind of q-Borel sums considered in the literature. We prove the relations
among them for a generic Gevrey series. This is a first step towards the
proof of a general result for a divergent solution of a q-difference equations,
having a Newton polygon with more than one slope.

Acknowledgement. We would like to thank the organizers of the Sémi-
naire sur les équations aux q-différences, at the University of Toulouse 3,
and of the Special Session in Differential Algebra, at the 2007 AMS Spring
Eastern Sectional Meeting, for giving us the possibility to expose the re-
sults contained in this paper and their interest in our work. In particular we
thank Yves André, Jean-Pierre Ramis and Jacques Sauloy for their interest
and encouragement.

The first author would like to thanks the University of Lille 1, and partic-
ularly the participants of the Séminaire de théorie de Galois différentielle,
for their hospitality.

The authors thanks the anonymous referee for his remarks and sugges-
tions.

Part 1. Convergent q-Borel and q-Laplace transform and
confluence: the case q < 1

We suppose that q ∈ (0, 1) ⊂ R and we set p = q−1.
The first part of the paper is organized as follows. First of all we study

the properties of the q-deformation Eq(x) =
∑

n>0(−1)n[n]!qx
n of the Euler

series: namely we give two integral representations for Eq(x), and use them
for proving that Eq(x) converges uniformly to the Borel sum of Ê(x) =

ANNALES DE L’INSTITUT FOURIER



ON q-SUMMATION AND CONFLUENCE 353

∑
n>0(−1)nn!xn in the direction R+, uniformly on the compacts of a con-

venient sector. Then we give an analogous result for general q-series, de-
forming coefficientwise a Gevrey series of order 1. In appendix A we recall
some general facts on the Jackson integral, while in appendix B we prove a
degenerate q-Watson formula for Heine’s series that we need in §1 for the
proof of Proposition 1.5.

1. Convergent q-Euler series

The series
Eq(x) =

∑
n>0

(−1)n[n]!qx
n+1,

where [0]q = 1, [n]q = qn−1
q−1 and [n]!q = [n]q[n − 1]q · · · [1]q, represents a

germ of analytic function at 0. If one considers the q-derivation:

dqy =
y(qx)− y(x)

(q − 1)x

and observes that dqx
n = [n]qxn−1 for any n ∈ Z, n > 1, then one easily

sees that Eq(x) verifies the functional equation :

x2dqy + y = x,

that can be rewritten in the form:

y(x) =
x

x+ 1− q
y(qx)− (q − 1)x

x+ 1− q
.

By substitution of x by qnx, we deduce that

y(qnx) =
qnx

qnx+ 1− q
y(qn+1x)− (q − 1)qnx

qnx+ 1− q
,

which implies that Eq(x) can be continued to an analytic function on C r
{(q − 1)qn : n ∈ Z, n 6 0}. The discrete spiral of poles {(q − 1)qn : n ∈
Z, n 6 0} of Eq turns out to be a spiral of simple poles, as the following
lemma shows:

Lemma 1.1. — The analytic function Eq admits the following expansion

(1.1) Eq(x) = (1− q)
∑
n>0

(qn+1; q)∞
1 + 1−q

qnx

,

where (a; q)∞ =
∏∞

i=0(1− qia).

TOME 59 (2009), FASCICULE 1



354 Lucia DI VIZIO & Changgui ZHANG

In particular for any k ∈ Z, k 6 0, the function Eq(x) has a simple pole
at (q − 1)qk. The residue of the differential form Eq(x)dx at (q − 1)qk is
equal to

Resx=(q−1)qkEq(x)dx = −(1− q)2qk(q1−k; q)∞.

We recall some standard notations for basic hypergeometric functions
2φ1 (a, b; c; q, x) =

∑
n>0

(a; q)n(b; q)n

(c; q)n(q; q)n
xn,

where (a; q)0 = 1 and (a; q)n =
∏n

k=1(1− aqk−1)) for 1 6 n 6 ∞,

and the Heine’s basic transformation (cf. [8, §1.4]):
(1.2)

2φ1 (a, b; c; q, x) =
(a; q)∞(bx; q)∞
(c; q; )∞(x; q)∞

2φ1 (c/a, x; bx; q, a) (|q| < 1, |a| < 1).

Proof. — The lemma above is a straightforward application of (1.2), in
fact:

(1.3) Eq(x) = x 2φ1

(
q, q; 0; q,− x

1− q

)
.

The calculation of the residues of Eq(x) follows at once. �

1.1. Integral representation

Using the Jackson’s integral (cf. Appendix A for the definition) we obtain
the following integral representation for Eq:

Proposition 1.2. — For any x ∈ C r {(q − 1)qn : n ∈ Z, n 6 0}, we
have:

(1.4) Eq(x) =
∫ x

1−q

0

(q(1− q) t
x ; q)∞

t+ 1
dqt =

∫
qZ x

1−q

(q(1− q) t
x ; q)∞

t+ 1
dqt.

Proof. — Let us remark that (q−k; q)∞ = 0 for any k ∈ Z, k > 0. Then
it follows from Remark A.5, that Formula (1.1) is equivalent to (1.4) �

Remark 1.3. — A straightforward verification shows that the infinite
product (q(1 − q)x; q)∞ represents a germ of analytic function at 0 and
that it verifies the equation

y(px) = (1 + (p− 1)(−qx)) y(x),

or equivalently
dpy(x) = −qy(x).
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In the present article, we will denote by ep(x) and eq(x) the functions
obtained by replacing n! by [n]!p and [n]!q, respectively, in the Tarlor ex-
pansion at zero of the exponential function ex. Since Euler, one knows that
(q(1− q)x; q)∞ coincides with the analytic function at 0:

ep(−qx) :=
∑
n>0

(−qx)n

[n]!p
,

so that Equation (1.4) takes the more familiar shape:

Eq(x) =
∫ x

1−q

0

ep(−qt/x)
t+ 1

dqt,

that so closely reminds the Euler integral:

E(x) =
∫ +∞

0

e−
t
x

t+ 1
dt.

The analytic function E(x) can be continued to CrR−, it is asymptotic at
zero to the Euler series

∑
n>0(−1)nn!xn+1 and is solution of the differential

equation x2y′ + y = x. In the following subsection we are going to study
the behavior of Eq(x) with respect to E(x) when q → 1−.

1.2. Confluence

Let us denote by E(x) the analytic continuation to C \ (−∞, 0] of the
Borel sum of Ê(x) in the direction R+:

E(x) =
∫ +∞

0

e−
t
x

t+ 1
dt, <x > 0,

and by log x the analytic continuation to C \ (−∞, 0] of log x.

Theorem 1.4. — If q → 1−, the analytic continuation of Eq(x) con-
verges to E(x) for any x ∈ C r (−∞, 0] and the convergence is uniform on
the compacts of C r (−∞, 0].

The proof of the theorem above relies on the following result (cf. §B.2
below for the proof):

Proposition 1.5. — The following identity holds, for any x ∈ C∗\q−N:

(1.5)

∑
n>0

(q; q)nx
n+1 =−

(
−qxθ

′(−qx)
θ(−qx)

+ 1 +A(q)
)( q

x
; q
)
∞

+
∑
n>1

an

(q; q)n
qn(n+1)/2

(
− 1
x

)n

,

TOME 59 (2009), FASCICULE 1



356 Lucia DI VIZIO & Changgui ZHANG

where
θ(x) = θ(q, x) =

∑
n∈Z

qn(n−1)/2xn,

A(q) =
∑
n>0

qn+1

qn+1 − 1

and

an+1 =
n∑

k=0

1
qk+1 − 1

, n > 0.

Our strategy for the proof of Theorem 1.4 is based on the fact that (1.5)
is a “deformation” of the following classical formula:

(1.6) E(x) = (log x− γ)e
1
x +

∑
n>1

∑
16k6n

1
k

n!

(
1
x

)n

,

where γ is the Euler constant:

γ = lim
n→∞

(
n∑

k=1

1
k
− ln(n)

)
.

In fact, taking the logarithmic derivative of the functional equation θ(x) =
xθ(qx), one proves that the meromorphic function (q − 1)z θ′(−z)

θ(−z) verifies
the equation y(qx)− y(x) = q − 1 or equivalently dqy(x) = 1

x , therefore it
“deforms” the logarithm. On the other hand we have:

(q − 1)A(q) =
∑
n>0

qn+1

[n+ 1]q
,

whose link to the Euler constant is intuitive. The proof of Theorem 1.4 is
a formalization of these ideas.

Proof of Theorem 1.4. — If we perform the variable change x→ x
q−1 in

(1.6) and remember that

ep (q/x) =
(
−q(1− q)

x
; q
)
∞
,

then we obtain the expression

(1.7)

Eq(x) =(1− q)
[
`q

(
qx

q − 1

)
+ 1 +A(q)

]
ep

( q
x

)
+
∑
n>1

(q − 1)an

[n]!q
qn(n−1)/2

( q
x

)n

,
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in which we have set
`q(x) := −xθ

′(−x)
θ(−x)

.

We are going to analyze (1.7) term by term.
First of all the constant A(q) can be expressed in terms of the logarithmic

derivative Ψq(x) = Γ′q(x)

Γq(x) (see (B.5), where Ω(q) = A(q)):

(1.8) A(q) = − 1
ln q

(Ψq(1) + ln(1− q)) .

The following result says how the q-logarithm `q tends to the usual log-
arithm. �

Lemma 1.6. — Let ε ∈ (0, π) and consider the sector Vε = {x ∈ C∗ :
| arg x| 6 π−ε}. Then the following uniform estimate holds for any (q, x) ∈
(0, 1)× Vε:

(1.9) | ln q `q(−
√
qx) + log x| 6 4πe

2π
ln q ε

(1− e
4π2
ln q )(1− e

2π
ln q ε)

.

Proof. — The lemma is a consequence of the following classical func-
tional relation for θ(x) (cf. [19, §21.51, p. 475], where ϑ3(z|τ) = θ(

√
qe2πiz)

with q = e2πiτ ):

(1.10) θ(
√
qx) =

√
2π

ln(1/q)
e−

log2 x
2 ln q θ∗(

√
q∗x∗),

where we have written

x∗ = e−
2πi
ln q log x, q∗ = e

4π2
ln q

and denoted by θ∗ the Theta function obtained by replacing q by q∗. In-
deed, if we take the logarithmic derivative w.r.t. the variable x in (1.10)
and observe that ln q xdx∗ = −2πix∗dx, then we obtain the following ex-
pression:

(1.11) ln q `q(−
√
qx) + log x = −2πi`q∗(−

√
q∗x∗),

so that we only need to examine `q∗(−
√
q∗x∗). The key point of the proof

is the fact that q∗ → 0+ when q → 1−.
For ε ∈ (0, π) we set:

rε = e
2π
ln q ε ∈ (

√
q∗, 1), V ∗

ε = {x ∈ C :
√
q∗

rε
6 |x| 6 rε√

q∗
}.

It’s obvious that for any x ∈ Vε, we have x∗ ∈ V ∗
ε , so that

(1.12) q∗ <
q∗

rε
6 |

√
q∗x∗| 6 rε < 1.
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On the other hand, the following identity, consequence of the Jacobi triple
product,

X
θ∗′(X)
θ∗(X)

=
∑
n>0

(
q∗nX

1 + q∗nX
− q∗n+1

X + q∗n+1

)
,

combined with the inequalities:

|1 +Xq∗n| > 1− |X|, |X + q∗n+1| > |X| − q∗, for q∗ < |X| < 1,

implies that:
(1.13)

sup
q∗
rε

6|X|6rε

|`q∗(−X)| 6 rε
1− q∗

1
1− rε

+
q∗

1− q∗
1

q∗

rε
− q∗

6
2rε

(1− rε)(1− qε)
.

We get (1.9) and hence Lemma 1.6 by combing (1.11) and (1.13). �

End of the proof of Theorem 1.4. — By replacing x by √qx/(1− q) in
Lemma 1.6, we have:

`q

(
qx

q − 1

)
= − 1

ln q

[
log x+ ln

( √
q

1− q

)
+O

(
e2πε/ ln q

)]
.

Therefore, we deduce from (1.8) that:
(1.14)

`q

(
qx

q − 1

)
+ 1 +A(q) = − 1

ln q

[
log x+ Ψq(1) +

ln q
2

+O(e2πε/ ln q)
]
,

where Ψq denotes the logarithmic derivative of Γq. As q → 1−, the function
Γq(x) converges uniformly to Γ(x) on any compact of C\ (−N) (cf. [22]), so
Ψq(x) converges to the logarithmic derivative Ψ(x) of the Γ function. From
the classical relation Ψ(1) = −γ, one deduces that Ψq(1) = −γ + o(1). In
other words, (1.14) implies the following estimate:

(1.15) (q − 1)
[
`q

(
qx

q − 1

)
+ 1 +A(q)

]
= − log x+ γ + o(1)

where o(1) denotes a quantity converging to 0 as q → 1−, uniformly on any
compact of C \ (−∞, 0].

Notice that the exponential function e
1
x is the uniform limit on any

domain {|x| > R > 0} of the p-exponential ep(q/x), since

ep

(
1
x

)
=
∑
n>0

qn(n−1)/2

[n]!q

( q
x

)n

.
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In the same time, the dominated convergence Theorem implies that∑
n>1

(q − 1)anq
n(n−1)/2

[n]!q

( q
x

)n

→
∑
n>1

∑n
k=1

1
k

n!

(
1
x

)n

,

when q → 1−, uniformly for |x| > R > 0. We conclude combining (1.7)
with (1.15). �

2. Confluence of the convergent q-analogue of
Borel-Laplace summation

Let q be a real number in the open interval (0, 1). We want to general-
ize, under convenient reasonable assumptions, the results of the previous
section.

2.1. Definition of the convergent q-Borel and q-Laplace
transform

Definition 2.1. — Let C{x} be the ring of the germs of analytic func-
tions in the neighborhood of x = 0.

(1) We call (convergent) q-Borel transform the map Bq given by:

Bq : xC {x} → C{ξ},
∑
n>0

anx
n+1 7→

∑
n>0

an

[n]!q
ξn.

(2) The (convergent) q-Laplace transform Lq is defined by

Lq = B−1
q : C{ξ} → xC {x} ,

∑
n>0

anξ
n 7→

∑
n>0

an[n]!qx
n+1.

Remark 2.2. — Notice that the q-Euler series Eq(x), considered in the
previous section, converges for |x| < 1 − q. Therefore a function f(x) is
analytic on an open disc {|x| < R}, for some R ∈ (0,∞), if and only if its
q-Borel transform Bqf(ξ) is analytic for |ξ| < R/(1− q).

Calling Bq and Lq q-Borel and q-Laplace transform is somehow an abuse
of language: they don’t transform convergent series in divergent series and
vice versa. Nevertheless they have interesting properties and we will show
that they play a role in the understanding of the confluence in the irregular
case. In fact, when q → 1, they tend coefficientwise to the usual Borel and
Laplace transforms, that we will denote B1 and L1 respectively.
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Let us denote by eq(x) the generating function associated to the sequence
( 1
[n]!q

)n>0, so that it follows: eq(x) = 1
((1−q)x;q)∞

. An important property of
Bq and Lq is that they can be expressed both as continuous and discrete
integrals:

Proposition 2.3. — Let f ∈ xC{x} and φ ∈ C{ξ} such that Bqf = φ.
Then:

φ(ξ) =
1

2πi

∫
|x|=R

f(x)
((1− q) ξ

x ; q)∞

dx

x2
=

1
2πi

∫
|x|=R

f(x)eq (ξ/x)
dx

x2
,

f(x) =
−1
2πi

∫
|ξ|=ρ

φ(ξ)Eq

(
−x
ξ

)
dξ,

where the radii R and ρ are assumed to be chosen sufficiently small, inde-
pendently of the variables ξ and x, respectively.

Proof. — The first equality is a consequence of the identity
1

(x; q)∞
=
∑
n>0

1
(q; q)n

xn

and of the residue theorem. Taking into account (1.1), the second equality
is an application of the residue theorem. �

Corollary 2.4. — Let f and φ be as in Proposition 2.3. Then:

φ(ξ) = (q; q)∞
∫ ξ

0

f((1− q)x)
( qx

ξ ; q)∞
θ′(−x

ξ )
dqx,

(2.1)

f(x) =
∫ x

1−q

0

(
(1− q)qξ

x
; q
)
∞
φ(ξ)dqξ =

∫ x
1−q

0

eq (qx/ξ)−1
φ(ξ)dqξ.

Remark 2.5. — Notice that Formula (2.1) generalizes (1.4) and can be
obtained by direct calculations. We give an alternative proof below.

Proof. — Taking the derivative with respect to x of the functional equa-
tion

θ(qnx) = x−nq−n(n−1)/2θ(x)

and setting x = −1, we obtain

θ′(−qn) = (−1)nq−n(n+1)/2θ′(−1) = (−1)nq−n(n+1)/2(q; q)3∞.

The residues formula and Equation (1.1) imply that

φ(ξ) =
(1− q)ξ
(q; q)∞

∑
n>0

(−1)n f((1− q)ξqn)
(q; q)n

qn(n+3)/2
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and that

f(x) = x
∑
n>0

qn(qn+1; q)∞φ
(
qnx

1− q

)
.

This ends the proof. �

2.2. Main result

The formulas above suggest the convergence of the q-Laplace transform
Lqφ to the classical Laplace transform Ldφ (in the direction d ∈ (0, 2π)):

(2.2) Ld(φ)(x) =
∫ ∞eid

0

φ(ξ)e−
ξ
x dξ,

where φ is supposed to be holomorphic in a neighborhood of ξ = 0 and to
be analytically continued in an open sector {| arg ξ − d| < ε} with at most
an exponential growth at infinity.

Theorem 2.6. — Let y(q, x) =
∑

n>0 yn(q)xn+1 ∈ xC[[x]] be a family
of formal power series, with q ∈ (η, 1], for some η ∈ (0, 1). We suppose
that the yn(q)’s are continuous functions of q and that the family φ(q, ξ) =
Bqy(q, x) ∈ C{ξ} is solution of a family of equations over P1

C, fuchsian and
non resonant at ∞, in the sense of Assumption 2.7 below.

Let d ∈ [0, 2π) be such that φ(1, ξ) is holomorphic on a domain containing
the half line [0, eid∞). Then for any x ∈ V := {| arg x− d| < π

2 } we have

lim
q→1−

y(q, x) = Ld
(
φ(1, ξ)

)
,

the convergence being uniform on any compact of V .

Notice that y(q, x) = Lqφ(q, ξ), so that the result above is actually a re-
sult about the confluence of q-summation. Moreover φ(q, ξ) is meromorphic
over C∗ and its poles are contained in a finite set of lines passing through
the origin. Also for φ(1, ξ) there are only a finite numbers of direction d

that are forbidden: the anti-Stokes directions.

Assumption 2.7. — We suppose that:

(1) The series φ(1, ξ) is solution of a differential equation N1φ(1, ξ) =∑µ
i=0Ai(1, ξ)δiφ(1, ξ) = 0, where δ = ξ d

dξ , Ai(1, ξ) ∈ C[ξ], and the
operator N1 is fuchsian at 0 and ∞. Moreover we suppose that the
exponents of N1φ(1, ξ) = 0 at ∞ are non resonant.
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(2) The series φ(q, ξ) = Bqy(q, x), q ∈ (0, 1), are solutions of a linear
q-difference operator Nqφ(q, ξ) =

∑µ
i=0Ai(q, ξ)δi

qφ(q, ξ) = 0, where
δq = ξdq, Ai(q, ξ) ∈ C[ξ], and Nq is fuchsian at 0 and ∞(4) .

(3) The Newton-Ramis polygons of Nq coincide for any q ∈ (η, 1], and
the coefficients Ai(q, ξ) tends uniformly to Ai(1, ξ) when q → 1, on
any compact of P1

C. This implies in particular that for q sufficiently
closed to 1, the exponents of Nq at ∞ are non resonant.

(4) For any q sufficiently closed to 1 there exists a constant gauge trans-
formation C(q) ∈ Glµ(C) such that the constant term at ∞ of the
matrix

C(q)−1


0 1 0
...

. . .
0 0 1

−A0(q,x)
Aµ(q,x) −A1(q,x)

Aµ(q,x) . . . −Aµ−1(q,x)
Aµ(q,x)

C(q)

is in the Jordan normal form. We suppose that for q ∈ (η, 1] the
entries of the matrix C(q) are continuous functions of q and that
the form of the Jordan blocks is independent of q.

2.3. Applications

Notice that the assumptions of Theorem 2.6 are verified in the following
two natural situations.

2.8 (“Constant coefficient deformation” of a differential equation). —
For a linear differential equation

∑µ
i=0Ai(x)δiy = 0, a possible trivial defor-

mation is given by
∑µ

i=0Ai(x)δi
qy = 0. One verifies that if

∑µ
i=0Ai(ξ)δiy =

0 satisfies the first point of Assumption 2.7, then
∑µ

i=0Ai(ξ)δi
qy = 0 veri-

fies automatically the next three assumptions, provided that 1− q is small
enough. Therefore we have:

Corollary 2.9. — Let y(x) =
∑

n>0 ynx
n+1 ∈ xC[[x]] be a Gevrey

series of order one such that φ(ξ) = B1y(x) is solution of a fuchsian dif-
ferential equation

∑µ
i=0Ai(x)δiφ = 0 on P1

C, non resonant at ∞. Consider

(4) This means that the only non vertical slope of the Newton-Ramis polygon, i.e. of the
convex envelope of the set

{(i, j) : Ai(q, x) 6= 0, ordx=0Ai(q, x) 6 j 6 degx Ai(q, x)},

are horizontal.
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a family of power series yq(x), with q ∈ (0, 1), such that Bq(yq)(ξ) is so-
lution of

∑µ
i=0Ai(ξ)δi

qφ = 0 and yq(x) converges coefficientwise to y(x)
when q → 1−.

Then the family yq(x) converges uniformly to the Borel sum of y(x),
when q → 1−, on the compacts of a convenient sector V = {| arg x − d| <
π/2}.

2.10 (Confluent hypergeometric case). — Take φ(q, ξ) to be the basic
hypergeometric series:

φ(q, ξ) =


2Φ1(qa, qb; q; q, x) =

∑
n>0

(qa; q)n(qb; q)n

(q; q)n(q; q)n
xn, for q ∈ (0, 1);

2F1(a, b; 1;x) =
∑
n>0

(a)n(b)n

n!n!
xn, if q = 1;

where a, b ∈ C, with a− b 6∈ Z. Then Theorem 2.6 says that:

Corollary 2.11. — The basic hypergeometric analytic function

∑
n>0

(qa; q)n(qb; q)n

(q; q)n

(
x

1− q

)n

converges uniformly to the Borel sum of the hypergeometric confluent series

2F0(a, b;−;x) =
∑
n>0

(a)n(b)n

n!
xn

on the compacts of a convenient sector centered at 0, when q → 1−.

Of course the results above can be generalized. In fact, for any ` > 2,
and any generic choice of the parameters a1, . . . , a`, b1, . . . , b`−2 ∈ C, the
analytic basic hypergeometric function

∑
n>0

(qa1 ; q)n · · · (qa` ; q)n

(qb1 ; q)n · · · (qb`−2 ; q)n(q; q)n

(
x

1− q

)n

converges uniformly to the Borel sum of the hypergeometric confluent series

`F`−2(a1, . . . , a`; b1, . . . , b`−2;x) =
∑
n>0

(a1)n · · · (a`)n

(b)1 · · · (b)`−2n!
xn

on the compacts of a convenient sector centered at 0, when q → 1−.
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2.4. Proof of Theorem 2.6

We know that our germs φ(q, ξ), q ∈ (η, 1], of analytic functions at 0
admit an analytic continuation along d. Moreover, for q < 1, the functions
φ(q, ξ) are actually meromorphic over C, which means that they are linear
combination of a basis of solutions of Nqy = 0 at ∞. The main point of the
proof is the careful choice of such a basis, which will allow us to prove that
φ(q, x) converges uniformly to φ(1, ξ) on an infinite sector containing the
direction d. Of course this ends the proof since Equations (2.1) and (2.2)
imply that for any x ∈ V we have:

(2.3)

lim
q→1

y(q, x) = lim
q→1

∫ x
1−q

0

(
(1− q)qξ

x
; q
)
∞
φ(q, ξ)dqξ

=
∫ ∞ei arg(x)

0

lim
q→1

(
eq

(
qξ

x

)−1

φ(q, ξ)

)
dξ

=
∫ ∞ei arg(x)

0

φ(1, ξ)e−
ξ
x dξ.

The theorem results of the combination of two lemmas. First of all let
us prove the uniform convergence around zero:

Lemma 2.12. — The family φ(q, ξ) converges uniformly to φ(1, x), when
q → 1, on a closed disk centered at 0.

Proof. — Let us write φ(q, ξ) =
∑

n>0 φn(q)xn for any q ∈ (η, 1]. Then
there exists N > 0 such that for any n > N the coefficients φn(q) verify
a well defined recursive relation whose coefficients do not degenerate(5) . A
direct estimates of the recursive relation allows to conclude that |φn(q)| 6
Cn for a convenient real constant C, any n > N and any q ∈ (η, 1]. This
estimate, together with the fact that φn(q) is a continuous function of q,
implies the uniform convergence on a convenient closed disk centered at 0
(cf. for instance the estimates in [17, Lemma 1.2.6]). �

The last assumption in 2.7 implies that φ(q, x) is a linear combination,
whose coefficients are entries of the matrix C(q), of the canonical solutions
at ∞, constructed in [16, §1], using a q-analog of the Frobenius method.
As noticed in [16, §3], the uniform part of the canonical solution at ∞
converges uniformly on any compact of P1

C r {0} where it is analytic, to
the uniform part of the solutions of N1y = 0 constructed with the classi-
cal Frobenius methods, once that the gauge transformation C(1) has been

(5) Notice that we have not assumed that 0 is a regular singular point with non resonant
exponents at 0.
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applied to the companion matrix. Since the entries of C(q) converge to the
entries of C(1) by assumption, to obtain the uniform convergence in a neigh-
borhood of ∞ it is enough to control the convergence of the so called log-car
matrix(6) . Let ζ = 1/ξ. The uniform convergence of (1− q)ζθ′(q, ζ)/θ(q, ζ)
over the infinite sector {| arg(ζ)| < π − ε} to log ζ is already proved in
Lemma 1.6. We need an analogous result for θ(q, ζ)/θ(q, cx) which is solu-
tion of the q-difference equation y(qζ) = cy(ζ), c ∈ C∗. We give a proof of
the needed estimate, although it is a classical result:

Lemma 2.13. — Let c(q) ∈ C∗ be a function of q ∈ (0, 1) such that
limq→1

log c
ln q = γ, ε ∈ (0, π) and consider the sector Vε := {ζ ∈ C∗ : | arg ζ| 6

π− ε}. As q → 1−, the following uniform estimate holds uniformly over Vε:

θ(q, ζ)
θ(q, cζ)

= ζγ(1 + o(1− q)).

Proof. — Let us consider again the modular equation (1.10) :

θ(q,
√
q) =

√
2π

ln(1/q)
e−

log2 x
2 ln q θ(q∗,

√
q∗x∗),

where
x∗ = e−

2πi
ln q log x, q∗ = e

4π2
ln q .

We observe that (ζ/
√
q)∗ = −ζ∗ and (cζ/

√
q)∗ = −c∗ζ∗. Therefore we

obtain:
θ(q, ζ)
θ(q, cζ)

= e
log c
ln q (log( ζ√

q
)+ log c

2 ) θ(q∗,−
√
q∗ζ∗)

θ(q∗,−
√
q∗c∗ζ∗)

.

As in the proof of Lemma 1.6, we observe that for any ζ ∈ Vε, ζ∗ ∈ V ∗
ε ;

see (1.12) for more details. Moreover, when X and Y denote two complex
numbers such that |X|, |Y | ∈ (q∗, 1), we have the estimate:∣∣∣∣θ(q∗, X)

θ(q∗, Y )

∣∣∣∣ 6 (−|X|; q∗)∞(− q∗

|X| ; q
∗)∞

(|Y |; q∗)∞( q∗

|Y | ; q
∗)∞

=
θ(q∗, |X|)
θ(q∗,−|Y |)

.

An elementary calculation using (1.12) allows to conclude, since q∗ → 0+

and c∗ → e−2πiγ . �

(6) The terminology comes from the juxtaposition of the terms “logarithm” and “charac-
ter”, meaning the solution matrix of a constant coefficient differential (resp. q-difference)
system is obtained by a combinatoric procedure from the logarithm (resp. q-logarithm)
and a family of characters (resp. q-characters). A solution in a regular singular point,
whose exponents are non resonant, is given by the product of an analytic matrix, called
uniform part, by the “log-car” matrix.

We are choosing here as a q-logarithm the logarithmic derivative of the Jacobi θ
function and as q-characters convenient quotient of the θ functions. For more details in
the q-difference setting cf. [16].
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Resuming, the function φ(q, ξ) is a linear combination, with coefficients
that are continuous functions of q, of a canonical basis of solutions at ∞:
we have proved that both the canonical solutions and the coefficients of the
linear combination admit a uniform limit in a bounded sector containing d,
centered at ∞ and of arbitrary radius R > 0. Combined with Lemma 2.12,
this means that φ(q, x) converges uniformly to φ(1, x) in a neighborhood
of the direction d, which allows to conclude the proof.

Appendix A. Jackson’s integral

Definition A.1. — We set

F (x) =
∫ x

0

f(t)dqt = (1− q)x
∑
n>0

f(qnx)qn,

whenever the right hand side converges.
Remark A.2. —

1. Notice that if F (x) is well-defined then dqF (x) = f(x).
2. If f(x) is continuous on the closed disk D(0, r+), then F (x) is well defined
for any x ∈ D(0, r+). In fact there exists M > 0 such that |f(qnx)qn| 6
M |q|n, which guarantees the convergence of the infinite sum.

Proposition A.3. —
1. If f(x) is an analytic function over the disk D(0, r−), then F (x) is also
analytic over D(0, r−).
2. If F (x) is analytic over the disk D(0, r−) and if G(x) is another analytic
function over D(0, r−) such that dqG(x) = f(x), then∫ x

0

f(t)dqt = G(x)−G(0).

Proof. —
1. It follows from the fact that F (x) is a uniformly convergent series of
analytic function over D(0, r − ε+), for any r > ε > 0.
2. It follows immediately from the remark that the subfield of constants
of the ring of analytic function over D(0, r−) with respect to the operator
f(x) 7→ f(qx) is C. In fact this implies that F (x)−G(x) ∈ C.

�

Definition A.4. — Let us fix a q-orbit qZα ⊂ C and suppose that for
any x ∈ qZα the integral F (x) =

∫ x

0
f(t)dqt is well-defined. Then we set∫

qZα

f(t)dqt = lim
|x|→∞
x∈qZα

∫ x

0

f(t)dqt.
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Remark A.5. — A straightforward calculation shows that∫
qZα

f(t)dqt = (1− q)α
∑
n∈Z

f(qnα)qn

and in particular that∫
qZα

f(t)
dqt

t
= (1− q)

+∞∑
n=−∞

f(qnα),

whenever the right side converges.

Appendix B. Expansion of Eq(x) at ∞

The purpose of this section is the proof of Proposition 1.5. We recall the
notation

(B.1) an+1 =
n∑

k=0

1
qk+1 − 1

, n > 0,

A(q) =
∑
n>0

qn+1

qn+1 − 1
,

and
θ(x) =

∑
n∈Z

qn(n−1)/2xn,

and the statement of the proposition:

Proposition B.1. — For any x ∈ C∗ \ q−N:

(B.2)

∑
n>0

(q; q)nx
n+1 =−

(
−qxθ

′(−qx)
θ(−qx)

+ 1 +A(q)
)( q

x
; q
)
∞

+
∑
n>1

an

(q; q)n
qn(n+1)/2

(
− 1
x

)n

.

The proof of the proposition above is based on a Watson’s formula for
basic hypergeometric functions, which is the analogue of a Barnes’ formula
for Gauss hypergeometric function. Barnes (cf. [19, §14.51] and [3]) proved
that if | arg(−x)| < π, c /∈ Z60 and a−b /∈ Z, then the analytic continuation
of 2F1(a, b; c;x) for |x| > 1 is given by:

2F1(a, b; c;x) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−x)−a
2F1(a, a− c+ 1, a− b+ 1;x−1)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−x)−b
2F1(b, b− c+ 1, b− a+ 1;x−1).
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G.N. Watson (cf. [8, §4.3]) proved a formula of the same kind for Heine
series, namely if:

(B.3) x /∈ q−N ∪
( cq
ab
qN
)
, c /∈ q−N,

a

b
/∈ qZ, abcx 6= 0.

then

2φ1(a, b; c; q, x) =
(b, c/a; q)∞
(c, b/a; q)∞

θ(−ax)
θ(−x) 2φ1

(
a, aq/c; aq/b; q,

cq

abx

)
+

(a, c/b; q)∞
(c, a/b; q)∞

θ(−bx)
θ(−x) 2φ1

(
b, bq/c; bq/a; q,

cq

abx

)
,

where (α1, ..., αk; q)n =
∏k

i=1(αi; q)n. We are going to consider a degener-
ation of Watson’s formula letting b→ a and c→ 0. In this way we obtain
an expression for 2φ1(a, a; 0; q, x) that we can apply to

Eq(x) = x2φ1

(
q, q; 0; q,− x

1− q

)
.

B.1. Degenerate cases of the Watson’s formula

Let us first consider the case b→ aqm, where m denotes a non-negative
integer. For this purpose, we introduce the following notation

Ωm+1(x) =
m∑

k=0

qkx

qkx− 1

and
Ω0(x) = 0, Ω(x) := Ω∞(x) = lim

m→∞
Ωm(x).

Notice that Ωm(x) may be identified to a logarithmic derivative as follows:

Ωm(x) =
x d

dx (x; q)m

(x; q)m
= x

d

dx
log(x; q)m, m ∈ N ∪ {∞}.

Since (x; q)m+n = (x; q)m(xqm; q)n for any m, n ∈ N, it follows that

(B.4) Ωm+n(x) = Ωm(x) + Ωn(qmx), Ω(x) = Ωm(x) + Ω(qmx).

Let
Γq(x) =

(q; q)∞
(qx; q)∞

(1− q)1−x, defined for any x /∈ (−N),

be the Jackson’s Gamma function (cf. [8, §10.1]). It’s useful to remark that,

if Ψq(x) =
d

dx
log Γq(x), then

(B.5) Ψq(x) = − ln q Ω(qx)−ln(1−q), Ψq(x+m) = Ψq(x)+ln q Ωm(qx),
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for any non-negative integer m.
We recall that we have set

`(x) := `q(x) = −xθ
′(−x)
θ(−x)

,

where θ′(−x) denotes the derivative of θ w.r.t. at the variable x. From the
Jacobi’s triple formula θ(x) = (q,−x,−q/x; q)∞, one deduces the following
relation:

(B.6) `(x) = −Ω(x) + Ω
( q
x

)
.

Since Ω1(x) + Ω1( 1
x ) = 1, putting m = 1 in (B.4) allows to obtain the

following relation:
`(qx)− `(x) = 1,

which means that, for any given non-zero complex number λ, the function
x 7→ `(λx) is a q-logarithm. From (B.5), one gets the following link between
`q and Ψq:

(B.7) `(qx) =
1

ln q
(Ψq(x)−Ψq(1− x)) .

Proposition B.2. — Let m be a non-negative integer and let a, c be
non-zero complex numbers. Suppose that a /∈ q−N, c /∈ q−N and c/a /∈ q−N.
Then, the following formula holds:

(B.8) 2φ1(a, aqm; c; q, x) =

(aqm, c/a; q)∞
(c, qm; q)∞

θ(−ax)
θ(−x)

Pm(a, c, x) +
(a, cq−m/a; q)∞

(c, q; q)∞(q−m; q)m

θ(−aqmx)
θ(−x)

×

{
[Cm(a, c) + `(aqmx)] Φm(a, c, x) +

∞∑
n=1

Cm,n(a, c)φm,n(a, c, x)

}
,

where

Pm(a, c, x) =
(q; q)m−1

(a; q)m

m−1∑
n=0

(a, aq/c; q)n

(q, q1−m; q)n

(
cq1−m

a2x

)n

,

Cm(a, c) = Ω(q) + Ω(q1+m)− Ω(cq−m/a)− Ω(aqm) + 1,

Φm(a, c, x) = 2φ1(aqm, aq1+m/c; q1+m; q,
cq1−m

a2x
) =

∑
n>0

φm,n(a, c, x),

φm,n(a, c, x) =
(aqm, aq1+m/c; q)n

(q, q1+m; q)n

(
cq1−m

a2x

)n

and

Cm,n(a, c) = Ωn(aqm) + Ωn(aq1+m/c)− Ωn(q1+m)− Ωn(q).
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When m = 0, Pm(a, c, x) = 0.

Remark B.3. — Equations (B.2) is a q-analog of [7, p. 109, (7)].

Proof. — Letting b = aqmε in (B) gives raise to the following formula:

(B.9) 2φ1(a, aqmε; c; q, x) =

(aqmε, c/a; q)∞
(c, qmε; q)∞

θ(−ax)
θ(−x) 2φ1

(
a, aq/c; q1−m/ε; q,

cq1−m

a2εx

)

+
(a, cq−m/(aε); q)∞

(c, q−m/ε; q)∞
θ(−aqmεx)
θ(−x) 2φ1

(
aqmε, aq1+mε/c; q1+mε; q,

cq1−m

a2εx

)
,

Suppose that m > 1. Since

(X; q)n+m =(X; q)m(Xqm; q)n, (X; q)m =(−X)m(q1−m/X; q)mq
m(m−1)/2

and
θ(qmX) = X−mq−m(m−1)/2θ(X),

we obtain

2φ1

(
a, aq/c; q1−m/ε; q,

cq1−m

a2εx

)
=

m−1∑
n=0

(a, aq/c; q)n

(q, q1−m/ε; q)n

(
cq1−m

a2εx

)n

+
(a, cq−m/a; q)m

(q, ε; q)m

( q

aεx

)m ∞∑
n=0

(aqm, aq1+m/c; q)n

(q1+m, q/ε; q)n

(
cq1−m

a2εx

)n

and
(a, cq−m/(aε); q)∞

(c, q−m/ε; q)∞
θ(−aqmεx)
θ(−x)

= −ε (a, cq−m/(aε); q)∞
(c, q/ε; q)∞(ε; q)m+1

( q

ax

)m θ(−aεx)
θ(−x)

.

Hence, we can re-write (B.9) as follows:

(B.10) 2φ1(a, aqmε; c; q, x) = A(ε) +
B1(ε)C1(ε)−B2(ε)C2(ε)

ε− 1
,

where

A(ε) =
(aqmε, c/a; q)∞

(c, qmε; q)∞
θ(−ax)
θ(−x)

m−1∑
n=0

(a, aq/c; q)n

(q, q1−m/ε; q)n

(
cq1−m

a2εx

)n

,

B1(ε) = ε
(a, cq−m/(aε); q)∞
(c, q/ε; q)∞(εq; q)m

( q

ax

)m θ(−aεx)
θ(−x)

,

C1(ε) = 2φ1

(
aqmε, aq1+mε/c; q1+mε; q,

cq1−m

a2εx

)
,

B2(ε) =
(a, cq−m/a; q)∞
(c, qε; q)∞(q; q)m

(aqmε; q)∞
(aqm; q)∞

( q

aεx

)m θ(−ax)
θ(−x)

,

ANNALES DE L’INSTITUT FOURIER



ON q-SUMMATION AND CONFLUENCE 371

C2(ε) =
∞∑

n=0

(aqm, aq1+m/c; q)n

(q1+m, q/ε; q)n

(
cq1−m

a2εx

)n

.

Since B1(1) = B2(1) and C1(1) = C2(1), letting ε→ 1 in (B.10) allows us
to get the following relation:

2φ1(a, aqm; c; q, x) = A(1) + [B′
1(1)−B′

2(1)]C +B [C ′1(1)− C ′2(1)] ,

with C = C1(1), B = B1(1). By direct computation, it yields:

B′
1(1) =

[
1− Ω(cq−m/a) + Ω(q)− Ωm(q) + `(ax)

]
B,

B′
2(1) = [Ω(aqm)− Ω(q)−m]B,

C ′1(1) =
∞∑

n=1

(aqm, aq1+m/c; q)n

(q1+m, q; q)n[
Ωn(aqm) + Ωn(aq1+m/c)− Ωn(q1+m)− n

](cq1−m

a2x

)n

and

C ′2(1) =
∞∑

n=1

(aqm, aq1+m/c; q)n

(q1+m, q; q)n
[Ωn(q)− n]

(
cq1−m

a2x

)n

.

Notice also that

B =
(a, cq−m/a; q)∞
(c, q; q)∞(q; q)m

( q

ax

)m θ(−ax)
θ(−x)

=
(a, cq−m/a; q)∞

(c, q; q)∞(q−m; q)m

θ(−aqmx)
θ(−x)

,

which ends the proof when m > 1.
If m = 0, the term A(ε) disappears, so P0(a, c, x) = 0. �

Consider now two cases for which the hypothesis of Proposition B.2 are
not all fulfilled: c/a ∈ q−N or c = 0. Let k ∈ N and c/a = q−kε, with ε→ 1.
Then the limit

lim
ε→1

(q−kε; q)∞Ω(q−m−kε) = −(q−k; q)k(q; q)∞,

implies the following:

Corollary B.4. — Let k, m ∈ N and a ∈ C∗. The following equality
holds:

(B.11) 2φ1(a, aqm; aq−k; q, x) =

(q−k−m; q)k

(aq−k; q)k

θ(−ax)
θ(−x) 2φ1

(
aqm, q1+m+k; q1+m; q,

q1−k−m

ax

)
.
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Taking now c→ 0 in (B.2) gives the following formula:

(B.12) 2φ1(a, aqm; 0; q, x) =

(aqm; q)∞
(qm; q)∞

θ(−ax)
θ(−x)

Pm(a, x) +
(a; q)∞

(q; q)∞(q−m; q)m

θ(−aqmx)
θ(−x)

×

{
[Cm(a) + `(aqmx)] Φm(a, x) +

∞∑
n=1

Cm,n(a)φm,n(a, x)

}
,

where

Pm(a, x) =
(q; q)m−1

(a; q)m

m−1∑
n=0

(a; q)nq
n(n−1)/2

(q, q1−m; q)n

(
−q

2−m

ax

)n

,

Cm(a) = Ω(q) + Ω(q1+m)− Ω(aqm) + 1,

Φm(a, x) = 1φ1(aqm; q1+m; q,
q2

ax
) =

∑
n>0

φm,n(a, x),

φm,n(a, x) =
(aqm; q)nq

n(n−1)/2

(q, q1+m; q)n

(
− q2

ax

)n

and

Cm,n(a) = Ωn(aqm) + n− Ωn(q1+m)− Ωn(q).

Once again, when m = 0 and Pm(a, x) = 0, we have:

(B.13) 2φ1(a, a; 0; q, x) =

(a; q)∞
(q; q)∞

θ(−ax)
θ(−x)

{
[C0(a) + `(ax)] Φ0(a, x) +

∞∑
n=1

C0,n(a)φ0,n(a, x)

}
,

where

C0(a) = 2Ω(q)− Ω(a) + 1, Φ0(a, x) = 1φ1(a; q; q,
q2

ax
) =

∑
n>0

φ0,n(a, x),

φ0,n(a, x) =
(a; q)nq

n(n−1)/2

(q, q; q)n

(
− q2

ax

)n

, C0,n(a) = Ωn(a) + n− 2Ωn(q).
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B.2. Proof of Proposition 1.5

The equality 1φ1(q; q; q,X) = (X; q)∞, plus (B.13), where we have set
a = q, implies the following formula:∑

n>0

(q; q)nx
n =

− 1
x

[Ω(q) + 1 + `(qx)] (q/x; q)∞ +
∑
n>1

[n− Ωn(q)]
qn(n−1)/2

(q; q)n

(
− q
x

)n

 .

Thus, one may obtain Proposition 1.5 by taking into account the following
equalities:

`(qx) = −qxθ
′(−qx)
θ(−qx)

, an = Ωn(q)− n, Aq = Ω(q).

Part 2. Summation of divergent q-series and confluence: the
case q > 1

Important. From now on, we fix q ∈ (1,+∞) ⊂ R, so that p = q−1 ∈
(0, 1).

In this second part we consider four types of q-summation (cf. Defini-
tion 4.12 below): our purpose is studying the relations among them. First
of all, we investigate the different sums of the q-Euler series∑

n>0

(−1)n[n]!qx
n+1

and their properties (cf. §3 below). Then we prove a general result for
generic q-Gevrey series (cf. Theorem 4.14), based on the study of the
Tschakaloff series

Tq(x) =
∑
n>0

qn(n−1)/2xn+1,

and of a convenient q-convolution product.

Notation. — We set:

(2.14) θp(x) := θ(p, x) =
∑
n∈Z

pn(n−1)/2xn = (p; p)∞(−x; p)∞(−p/x; p)∞

and

(2.15) eq(x) := (−(1− p)x; p)∞ =
∑
n>0

xn

[n]!q
.

Remark that eq(x) = ep(−x)−1 and that θp(x) = xθp(px).
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3. The divergent q-Euler series

Since q > 1, the q-Euler series

Êq(x) =
∑
n>0

(−1)n[n]!qx
n+1

is obviously divergent for any x ∈ C∗, as the Euler series
∑

n>0(−1)nn!xn+1.
The corresponding q-difference equation is

x2dqy + y = x.

3.1. Definition of different sums of the q-Euler series

Let us consider the q-Borel transforms of Êq(x) (for the general defini-
tion,cf. §4.1):

ψ(ξ) :=
1

1 + ξ
and φ(ξ) := Ep(ξ).

In the following, we will identify Ep(ξ) to its analytic continuation on C \
((p− 1)qN). For any d ∈ (−π, π) and λ /∈ −pZ, we set:

(3.1) Ed
q (x) =

q − 1
ln q

∫ eid∞

0

ψ(ξ)
eq(q ξ

x )
dξ, arg x ∈ (d− π, d+ π);

(3.2) E [λ]
q (x) =

q

1− p

∫
λpZ

ψ
(

ξ
1−p

)
eq

(
q ξ

(1−p)x

)dpξ, x /∈ (p− 1)λqZ;

(3.3) Ed
q (x) =

q

ln q

∫ eid∞

0

φ(ξ)
θp(q ξ

x )
dξ, arg x ∈ (d− π, d+ π);

(3.4) E[λ]
q (x) =

q

1− p

∫
λpZ

φ(ξ)
θp(q ξ

x )
dpξ, x /∈ (p− 1)λqZ;

Proposition 3.1. — (1) The functions Ed
q and Ed

q can be analytically
continued on the sector {| arg x| < 2π} of the Riemann surface of the
logarithm.
(2) The functions E [λ]

q and E[λ]
q are analytic on C∗\(−(1−p)λqZ), the point

−(1− p)λqn being a simple pole for any integer n ∈ Z.

Proof. — The functions Ed
q and Ed

q are a priori defined for | arg x−d| < π

and d varies in (−π, π). The second assertion is straightforward. �
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We will denote by Eq and Eq the analytic continuation of Ed
q and Ed

q ,
respectively, on the open sector V (−2π, 2π) := {x ∈ C̃∗ : | arg x| < 2π} on
the Riemann surface of the logarithm. We recall the following result:

Proposition 3.2 ([15, Thm. 2.1] and [23, Thm. 1.3.2]). — The func-
tion Eq(x) (resp. E [λ]

q ) admits Êq(x) as q-Gevrey asymptotic expansion at
x = 0 in the sector {arg x < 3π/2}. In particular they are solution of
x2dqy + y = x.

The following theorem is about the comparison between the four sum-
mations of Êq we have just introduced:

Theorem 3.3. — Eq(x) = Eq(x) and E [λ]
q (x) = E

[λ]
q (x).

First, we need to prove the following two lemmas.

Lemma 3.4. — For any x ∈ C such that arg x ∈ (−2π, 0) we have:

(3.5) Eq(xe2πi)− Eq(x) = Eq(xe2πi)− Eq(x) = −2πi
q − 1
ln q

1
eq(− q

x )
.

In particular: Eq(xe2πi)− Eq(xe2πi) = Eq(x)− Eq(x).

Proof. — A variable change in the integral defining Ed
q (resp. Ed

q ) shows
that Ed

q (xe2πi) = Ed−2π
q (x) (resp. Ed

q (xe2πi) = Ed−2π
q (x)). We are reduced

to calculate Ed−2π
q (x)− Ed

q (x) and hence to calculate a residue at ξ = −1.
In an analogous way, using formula (1.1), we obtain

Ed
q (xe2πi)− Ed

q (x) = −q2πi
ln q

∑
n>0

Resξ=(p−1)qn

 Ep(ξ)

θp

(
q ξ

x

)


= −q(p− 1)2πi
ln q

∑
n>0

qn(pn+1; p)∞

θp

(
q (p−1)qn

x

)
=
q(p− 1)2πi

ln q
(p; p)∞
θp

(
1−q

x

) ∑
n>0

pn(n−1)/2

(p; p)n

= −q(p− 1)2πi
ln q

(
p,− x

q−1 ; p
)
∞

θp

(
1−q

x

) .

The Jacobi triple product formula for θp immediately allows to conclude.
�

Lemma 3.5. — Let us consider the homogenous q-difference equation

(3.6) x2dqy = y.
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Let y0 be a meromorphic solution of (3.6) on the domain Ω = {0 < |x| <
R}. Suppose that one of the following hypotheses is verified:

• the function y0 is analytic on Ω;
• there exists µ ∈ C∗ such that µ /∈ (1 − p)pN and such that the

function y0 has only simple poles contained in the set µpN;
then y0 is identically zero.

Proof. — Notice that 1/ep(q/x) is a uniform solution to (3.6). Hence,
there exists a q-invariant function K(x) such that y0(x) = K(x)/ep(q/x).
Identifying K(x) to an elliptic function, one ends the proof noticing that
(1− p)pZ is the only spiral of poles of ep(q/x). �

Proof of Theorem 3.3. — Lemma 3.4 implies that hd(x) := Ed
q (x)−Ed

q (x)
is an analytic solution of (3.6) on C∗. We deduce from Lemma 3.5 that
hd ≡ 0.

The difference E[λ]
q (x) − E [λ]

q (x) has only simple poles on −λ(1 − p)qZ.
Since λ /∈ −pZ we conclude applying Lemma 3.5. �

3.2. q-integral and continuous integral

Although both Eq(x) and E [λ]
q are solutions of the q-difference equation

x2dqy + y = x, they have a deeply different nature. In fact, while Eq(x)
is meromorphic on the whole Riemann surface C̃∗ of the logarithme, the
function E [λ]

q is a uniform function: more precisely, it is analytic on C∗

minus a spiral of simple poles.
Let us consider the projection:

π : ]0,+∞[×R ∼= C̃∗ −→ C∗

(r, α) 7−→ re2iπα
.

Of course, we can identify E [λ]
q to its pull back via π on C̃∗, i.e. to a mero-

morphic function on C̃∗, and study the solution Eq(x)−E [λ]
q of x2dqy+y = 0.

We have the following result (we identify all meromorphic function on C∗

to their pull back on C̃∗):

Proposition 3.6. — Let λ ∈ C∗ \ (−qZ). For any:

x ∈ Ω̃λ := π−1 (C∗ \ [−λ(1− p); q]) ,

we have:

Eq(x)− E [λ]
q (x) = −2πi

q − 1
ln q

(
L(−λ(1−p))∗,q∗(x∗)− Cλ,q

)
eq(−q/x)−1,
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where we have used the following notation:

x∗ = e−2πi log x
ln q , q∗ = e4π2/ ln q,

La,q(x) = −x
a

θ′p(−x
a )

θp(−x
a )

= `p

(x
a

)
, Cλ,q = L(−λ(1−p))∗,q∗ ((1− p)∗) .

Since La,q( x
a′ ) = Laa′,q(x) = `p( x

aa′ ) and (xx′)∗ = x∗(x′)∗, the theorem
above can be rephrased in the following statement:

Corollary 3.7. — Let p∗ = 1/q∗ = e−4π2/ ln q. Then

Eq(x)− E [λ]
q (x) =

− 2πi
q − 1
ln q

[
`p∗

((
− x

λ(1− p)

)∗)
− `p∗

((
− 1
λ

)∗)]
eq(−q/x)−1.

The proof of Proposition 3.6 is based on the following two lemmas:

Lemma 3.8. — Let λ ∈ C∗ \(−pZ) and Ω̃λ := π−1(C∗ \ [−λ(1−p); q]) ⊂
C̃∗. For any x ∈ Ω̃λ we set:

Uλ(x) = (Eq(x)− E [λ](x))eq(−q/x).

Then

Uλ(xe2πi)− Uλ(x) = −2πi
q − 1
ln q

and
Uλ(qx) = Uλ(x).

Proof. — The proof follows from Lemma 3.4, taking into account the
functional equation of eq(−q/x):

eq(−q/x) =
(

1− q − 1
x

)
eq(−1/x)

�

Lemma 3.9. — Let a ∈ C∗ and consider the function La,q defined for
x ∈ C∗ \ [a; q] as above, i.e. :

La,q(x) = `p

(x
a

)
= −x

a

θ′p(−x
a )

θp(−x
a )
.

Then, up to an additive constant, La,q is the only solution of the q-difference
equation y(qx)−y(x) = 1, which is analytic on C∗\aqZ and has only simple
poles at aqZ.
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Proof. — The functional equation for La,q is obtained deriving the equa-
tion −x

aθp(−px
a ) = θp(−x

a ). The uniqueness (up to a constant) comes from
the remark that there are no non constant elliptic function having only a
simple pole in a fundamental domain. �

Proof of Proposition 3.6. — Let us consider the modular variable change:

q 7−→ q∗ = e4π2/ ln q, x 7−→ x∗ = e−2πi log x
ln q .

In the notation of Lemma 3.8 above let W (x∗) = Uλ(x). Then:

W (x∗q∗)−W (x∗) = −2πi
q − 1
ln q

, W (x∗e−2πi) = W (x∗).

Equivalently, x∗ 7→ W (x∗) represents a uniform solution to a first order
q∗-difference equation. By Lemma 3.9, there exists a constant C ∈ C such
that

W (x∗) = −2πi
q − 1
ln q

L(−λ(1−p))∗,q∗(x∗) + C, x ∈ Ω̃λ.

We calculate the constant C = Cλ,q setting x = 1−p and x∗ = e−2πi
ln(1−p)

ln q .
Since eq(−q/x) has a zero for x = 1 − p, we obtain the exact expression
for C. �

The main result of this section is:

Theorem 3.10. — For any x ∈ C∗\]−∞, 0[ we have:

Eq(x) =
1

ln q

∫ q

1

E [λ]
q (x)

dλ

λ
.

The theorem follows from the combination of Corollary 3.7 and the fol-
lowing lemma:

Lemma 3.11. — Let p∗ = 1/q∗ = e−
4π2
ln q. For z close enough to 1, we

have: ∫ q

1

`p∗
((

− z

λ

)∗) dλ
λ

=
∫ q

1

`p∗

((
− 1
λ

)∗) dλ

λ
.

Proof. — Let µ = −λ−1. From the identity x∗ = e−2πi log x
ln q we deduce

that:
dλ

λ
= −dµ

µ
= − ln q

2πi
dµ∗

µ∗
.

Therefore for t = µ∗ we obtain:∫ q

1

`p∗
((

− z

λ

)∗) dλ
λ

=
ln q
2πi

∫
C(−z)∗

`p∗(t)
dt

t
,

ANNALES DE L’INSTITUT FOURIER



ON q-SUMMATION AND CONFLUENCE 379

where C(−z)∗ is the positive oriented circle, centered at 0 and passing
through the point (−z)∗. Observing that, for z close enough to 1, the mero-
morphic function t 7→ `p∗(t) has no poles in the annulus between C(−z)∗

and C(−1)∗ , we conclude applying Cauchy Theorem. �

Remark 3.12. — In Theorem 3.10, we could have replaced the interval
[1, q] with a path of the form [a, qa], for any a ∈ C r (−∞, 0].

3.3. Comparing sums along different spirals

Notice that if λqZ = µqZ, i.e. if λ and µ are two complex numbers
congruent modulo q, the two discrete sums E [λ]

q and E [µ]
q coincide. On the

other side, if λqZ 6= µqZ these sums are trivially distinct, since the sets
of their poles are distinct. This simple remark underlines a fundamental
difference between the continuous and the discrete summations. In fact,
when we make the direction d vary we are actually constructing an analytic
continuation of Ed

q on C̃∗, while when we make λqZ vary, we obtain a whole
family of distinct meromorphic solution of x2dqy + y = x. This implies
that the “discrete Stokes phenomenon” for the discrete summation has
a different nature from the classical differential Stokes phenomenon. It is
described in the following theorem:

Theorem 3.13. — For λ, µ ∈ C∗ \ (1− p)qZ we have:

E [λ]
q − E [µ]

q =
K(λ, µ, x)
ep( q

x )
,

where:

K(λ, µ, x) = C
θp(−λ

µ )θp( 1−p
x )θp(

(1−p)λµ
x )

θp(
(1−p)λ

x )θp(
(1−p)µ

x )
,

where C is a constant depending only on q.

Proof. — The function E [λ]
q (x) − E [µ]

q (x) being solution of the homoge-
neous equation x2dqy = −y, has the form

E [λ]
q − E [µ]

q =
K(λ, µ, x)
ep( q

x )
,

where K(λ, µ, x) is q-invariant function in each variable (x, λ, µ).
We want a more precise description of K(λ, µ, x). Notice that E [λ]

q −E [µ]
q

has only two spirals of simple poles: −(1 − p)λpZ and −(1 − p)µpZ. Since
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any q-invariant uniform function can be written as a quotient of Theta
functions, we obtain:

K(λ, µ, x) =
C(λ, µ)θ(α

x )θ(β
x )

θ( (1−p)λ
x )θ( (1−p)µ

x )
,

where αβ = (1− p)2λµ. Moreover the factor eq(−q/x) in

K(λ, µ, x) = eq(−q/x)(E [λ]
q − E [µ]

q ),

implies that K(λ, µ, x) has a spiral of simple zeros at (1 − p)pZ, which
implies that we can chose either α or β equal to −(1 − p). We conclude
that {α, β} = {−(1− p),−(1− p)λµ}.

We have to calculate C(λ, µ). The poles of K(λ, µ, x) with respect to the
variable λ forms two spirals: − x

1−pp
Z and −pZ, hence:

C(λ, µ) =
θ(−λ

µ )

θ(λ)
C(µ).

A similar argument shows that C(µ) = C/θ(pµ). �

Remark 3.14. — One can express the constant C in terms of q-series.
For instance, setting x = 1 and letting λ → µ = 1 in K(λ, µ, x), we can
express C as a value of a derivative.

3.4. Confluence

Theorem 3.15. — Let E(x) be the sum of the classical Euler series in
the direction R+. Then Eq(x) → E(x) if q → 1+ for any x ∈ C such that
arg x ∈ (−π, π) and the convergence is uniform on the compacts of such a
domain.

Proof. — Notice that for any t ∈ R+ we have eq(t) → et and eq(t) 6 et.
The dominated convergence theorem applied to the q-Laplace transform in
a direction d ∈ (−π, π) allows to conclude. Moreover, the estimate of eq(x)
being uniform with respect to d = arg x, the uniform convergence on the
compacts of {|argx| < π} follows at once. �

Corollary 3.16. — The same statement holds for E [λ]
q (x) when

q → 1+.

Proof. — The proof results of the combination of Proposition 3.6 relating
Eq(x) to E [λ]

q (x), Lemma 1.6 on the uniform convergence of the q-logarithm,
and the theorem above. �
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4. Generic q-Gevrey series

We call generic q-Gevrey series a power series f̂ ∈ C[[x]] satisfying a
q-difference equation ∆f̂ ∈ C{x} for some analytic q-difference operator ∆
of the form:

(4.1)
∆ := a0(x)(xσq)n + a1(x)(xσq)n−1 + ...+ an(x),

with aj ∈ C{x}, a0(0)an(0) 6= 0,

and σq(f(x)) = f(qx). This means that the associated Newton polygon has
only one finite slope equal to one (cf. [13] and [20]).

An explicit calculation (cf. also [6, Lemma 1.1.10]) shows that

Lemma 4.1. — Let dq = σq−1
x(q−1) and consider a q-difference operator

∆ ∈ C{x}[σq]. Then ∆ can be written as (4.1) if and only if it can be
rewritten in the following form:
(4.2)
∆:= b0(x)(x2dq)n+b1(x)(x2dq)n−1+...+bn(x), bj ∈ C{x}, b0(0)bn(0) 6= 0.

Notice that the q-Euler series Ê(x) considered in previous section is a
generic q-Gevrey series.

4.1. Two formal q-Borel transforms

The classical Borel transform associates to each power series∑
n>0

anx
n+1

the more convergent (or less divergent) power series
∑

n>0
an

n! ξ
n. For the

solutions of a q-difference equations, the Gevrey “scaling factor” (n!)s is
replaced by the q-Gevrey one: (qsn2/2) (cf. [4],[13],[20],[21]). Indeed, in the
literature there are (at least) two q-analogs of the factorial n!, namely [n]!q
and qn(n−1)/2. The reason for this dichotomy is the identity

[n]!q =
(q; q)n

(1− q)n
=

(p; p)n

(1− p)n
qn(n−1)/2 = [n]!pq

n(n−1)/2,

which implies that

(4.3) [n]!q ∼
qn(n−1)/2

(1− p)n
, when n→ +∞.
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Let us consider the following two formal Borel transforms, associated to
those q-factorials:

Bq : xC [[x]] → C [[ξ]] ,
∑
n>0

anx
n+1 7−→

∑
n>0

an

[n]!q
ξn

and

Bq : xC [[x]] → C [[ξ]] ,
∑
n>0

anx
n+1 7−→

∑
n>0

an

qn(n−1)/2
ξn.

Following J.P. Ramis [13] we set:

Definition 4.2. — An entire function φ is said to have q-exponential
growth of order 1 at ∞ if there exist two constants K > 0 and µ > 0 such
that

|φ(x)| < K|x|µeq(|x|), |x| → ∞.

Remark that the function eq(|x|) can be replaced by eln
2 |x|/(2 ln q).

Lemma 4.3 ([13, Prop. 2.1]). — Let Eq be the set of all the entire
functions having a q-exponential growth of order 1 at ∞, and let C{x}
be the set of all power series having a positive convergence radius. Then
Eq = Bq(xC{x}) = Bq(xC{x}).

The following function space Hq has been introduced in [23] and [15]; see
also [20].

Definition 4.4. — For any λ ∈ C∗, let [λ; q] = λqZ.
(1) A germ of function φ analytic at 0 is said to belong to H[λ;q] if there

exist a domain Ω ⊂ C and a real number r > 0 such that:
• ∪m>0{x ∈ C : |x− λqm| < rqm} ⊂ Ω;
• φ can be continued to be an analytic function on Ω with a
q-exponential growth of order 1 at infinity.

(2) A germ of function φ analytic at 0 is said to belong to Hq if there
exist a finite set Λ ⊂ C∗ such that φ ∈ H[λ;q] for any λ ∈ C∗ \ Λ.

Proposition 4.5. — Let f̂ ∈ xC[[x]], λ ∈ C∗ and let ψ = Bq f̂ , φ =
Bq f̂ . Then ψ ∈ H[λ;q] if and only if φ ∈ H[(1−p)λ;q].

Moreover, the map
∑

n>0 anx
n 7→

∑
n>0 an[n]!px

n induces an automor-
phism of the vector space Hq.

Proof. — Use the integral representation for the corresponding Hadamard
product. �

Definition 4.6. — Let λ ∈ C∗ and let f̂ ∈ xC[[x]].
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(1) We set C{x}[λ;q]
q = B−1

q H[λ/(1−p);q] = B−1
q H[λ;q]. We say that f̂ ∈

C{x}[λ;q]
q is q-Borel summable along [λ; q].

(2) Each element of DSf̂ := {[λ; q] : f̂ /∈ C{x}[λ;q]
q } will be called singu-

lar direction of f̂ .
(3) If DSf̂ is finite, f̂ is called q-Borel summable and we denote C{x}q

the set of q-Borel summable series.

Theorem 4.7 ([23, Thm. 1.2.1]). — Every generic q-Gevrey series is
q-Borel summable.

4.2. Different kinds of q-exponential summation

The classical Borel-Laplace exponential summation is based on the Eu-
ler’s integral representation of the Gamma function, namely

(4.4) n! =
∫ ∞

0

e−ttn+1 dt

t
.

In the definition of a q-summation procedure one must be guided by the
q-analogs of this last integral, question investigated since Jackson, Wigeret,
Watson, etc...

We recall the following q-analogs of the integral representation of the
Euler Gamma function.

Proposition 4.8. — For d ∈ (−π, π) and λ /∈ (−qZ) we have:

(4.5) [n]!q =
q − 1
ln q

∫ ∞eid

0

tn

eq(qt)
dt =

q − 1
ln q

∫ ∞eid

0

tnep(−qt)dt,

(4.6) [n]!q = q

∫
λpZ

tn

eq(qt)
dpt = q

∫
λpZ

tnep(−qt)dpt,

(4.7) qn(n−1)/2 =
q

ln q

∫ ∞eid

0

tn

θp(qt)
dt,

(4.8) qn(n−1)/2 =
q

1− p

∫
λpZ

tn

θp(qt)
dpt.

Proof. — For the proof of the identities above cf. [1, pages 549-550]. More
precisely, letting c → n + 1, b → 1 and a → 0 (resp. letting c → n + 1,
b, a→ 0) in∫ ∞

0

xc−1 (−ax; p)∞(−pb/x; p)∞
(−x; p)∞(−p/x; p)∞

dx =
(ab; p)∞(pc; p)∞(p1−c; p)∞π

(bpc; p)∞(ap−c; p)∞(p; p)∞ sin(πc)
,
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one gets the formula∫ ∞

0

xn

(−x; p)∞
dx = (ln q)(p; p)np

−n(n+1)/2

(
resp.

∫ ∞

0

xn

(−x; p)∞(−p/x; p)∞
dx = (ln q) p−n(n+1)/2

)
,

which yields (4.5) (resp. (4.7)). Similarly, the formulae (4.6) and (4.8) can
be viewed as special cases of∫ ∞

0

xc−1 (−ax; p)∞(−bp/x; p)∞
(−x; p)∞(−p/x; p)∞

dpx =

(1− p)(p; p)∞(−pc; p)∞(−p1−c; p)∞(ab; p)∞
(−1; p)∞(−p; p)∞(ap−c; p)∞(bpc; p)∞

.

�

Remark 4.9. — In particular, (4.8) and (4.7) have been studied in [15]
and [23] as starting points for the corresponding summation procedures.
Other kinds of q-summation are considered in [20] and [12].

Let d ∈ [−π, π). We will identify d to the half line [0,∞eid) := R+eid.

Definition 4.10. — We set Hd
q = ∩λ∈(0,∞eid)H[λ;q].

Remark 4.11. — The functional space Hd
q is exactly the space Hd

q;1 in-
troduced in [20].

Let λ ∈ C∗ and d ∈ [−π, π). According to Proposition 4.8, the following
four q-Laplace transforms are well defined:

∀φ ∈ H[λ;q], L[λ]
q φ =

q

1− p

∫
λpZ

φ(ξ)
θp(q ξ

x )
dpξ;

∀φ ∈ H[λ/(1−p);q], L[λ]
q φ =

q

1− p

∫
λpZ

φ(ξ/(1− p))
eq(q ξ

(1−p)x )
dpξ;

∀φ ∈ Hd
q , Ld

qφ =
q

ln q

∫ eid∞

0

φ(ξ)
θp(q ξ

x )
dξ, Ld

qφ =
q − 1
ln q

∫ eid∞

0

φ(ξ)
eq(q ξ

x )
dξ.

Definition 4.12. — (1) If f̂ ∈ C{x}[λ;q]
q , we define its sums in the

direction [λ; q] as follows:

S [λ]
q f̂ = L[λ]

q (Bq f̂), S[λ]
q f̂ = L[λ]

q (Bq f̂).

(2) If f̂ ∈ C{x}d
q , define its sums in the direction d as follows:

Sd
q f̂ = Ld

q(Bq f̂), Sd
q f̂ = Ld

q(Bq f̂).
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Remark 4.13. —
• The summation procedures f̂ → S[λ;q]f̂ and f̂ → Sdf̂ are introduced in
[23] and [21]: they have many good asymptotic properties.
• Suppose that f̂ is q-summable and that d is not a singular direction. Then
we have the following formal equality (meaning that we exchange carelessly
the infinite sum and the integral):

(4.9) Sd
q f̂ =

1
ln q

∫ qeid

eid

S [λ]
q f̂

dλ

λ

and

(4.10) Sd
q f̂ =

1
ln q

∫ qeid

eid

S[λ]
q f̂

dλ

λ
.

To prove that this identity is not only formal, but analytic, one would like
to apply the dominated convergence theorem: unfortunately the dominated
convergence is a little bit delicate for a general f̂ , since we don’t really
control the spirals of poles of the discrete q-Borel sums. Anyway, we will
prove (4.9) and (4.10) for a generic q-Gevrey series (cf. Theorem 4.14).

At this stage a natural question arises:

Do we have S[λ;q]f̂ = S [λ;q]f̂ and Sdf̂ = Sdf̂?

The answer is clear, and trivially positive, if f̂(x) is a germ of analytic
function at zero: in this case all the sums of f̂(x) coincide with f .

The rest of the paper is devoted to the proof of the following theorem:

Theorem 4.14. — Let f̂ be a generic q-Gevrey series and let λ ∈ C∗,
d ∈ [−π, π). Assume that λ /∈ DS(f̂) and (0, eid∞) ∩ DS(f̂) = ∅. Then

(1) S
[λ]
q f̂ = S [λ]

q f̂ , on a convenient domain Ω.
(2) Sd

q f̂ = Sd
q f̂ on a convenient sector containing the direction d.

Moreover we have:

Sd
q f̂ =

1
ln q

∫ qeid

eid

S [λ]
q f̂

dλ

λ
.

Remark 4.15. — Theorems 3.3 and 3.10 are a special case of Theo-
rem 4.14.

Before giving a proof of Theorem 4.14 in §4.5, we make a digression
about two essential ingredients of the proof: first we prove the theorem in
the special case of the Tschakaloff series; then we introduce a functional
space that allows to read, in certain sense, any q-Gevrey series as a finite
linear combination of some modified Tschakaloff series.
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4.3. The Tschakaloff series

Let us consider another q-analogue of the Euler series:

Tq(x) =
∑
n>0

qn(n−1)/2xn+1,

called the Tschakaloff series or the partial Theta function. It satisfies the
q-difference equation

xTq(qx)− qTq(x) = −qx,

that can also be rewritten in the form x2(q − 1)dqy + (x− q)y = −qx.
The Borel transforms of Tq are:

ψ(ξ) = Bq(Tq) =
∑
n>0

ξn

[n]!p
= ep(ξ) = ((1− p)ξ; p)−1

and
φ(ξ) = Bq(Tq) =

1
1− ξ

.

Proposition 4.16. — Let us fix λ /∈ [−1; q]. Then S [λ]
q Tq = S

[λ]
q Tq.

Proof. — The definition of the Jackson integral (cf. §A) and the Ja-
cobi triple product formula (cf. (2.14)), plus the development of the q-
exponential eq(x) as an infinite product (cf. (2.15)), imply that:

L[λ]
q ψ =

q

1− p

∫
λpZ

ep(ξ)

eq

(
qξ

(1−p)x

)dpξ =
q

1− p

∫
λpZ

(
ξ,−qξ

x
; p
)−1

∞
dpξ

= λ(p; p)∞
∑
n∈Z

pn(−p1−nx/λ; p)∞
(pn+1λ; p)∞θp(pnλ/x)

.

Since θp(x) = pn(n−1)/2xnθp(pnx) for any n ∈ Z, we obtain:

S [λ]
q Tq = L[λ]

q ψ =
λ(p; p)∞
θp(λ/x)

∑
n∈Z

(
−p1−n x

λ ; p
)
∞

(pn+1λ; p)∞
pn(n+1)/2

(
λ

x

)n

.

On the other hand we have:

S[λ]
q Tq = L[λ]

q φ =
q

1− p

∫
pZλ

dpξ

(1− ξ)θp(qξ/x)

= λ
∑
n∈Z

pn

(1− pn+1λ)θp(pnλ/x)

=
λ

θp(λ/x)

∑
n∈Z

pn(n+1)/2

1− pn+1λ

(
λ

x

)n
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A straightforward calculation of the residues of (x, p)−1
∞ at x = p−k, for

k > 0, gives the formula:

1
(x; p)∞

=
1

(p; p)∞

∑
k>0

ak

1− xpk
, with ak =

1
(p−k; p)k

=
(−1)kpk(k+1)/2

(p; p)k
.

Therefore we obtain:

S [λ]
q Tq =

λ

θ(λ
x )

∑
`∈Z

p`(`+1)/2

1− p`λ

(
λ

x

)`

(a`; p)∞ 0φ1(−; a`; p, a`), a` = −p1−` x

λ
.

The Ramanujan formula (cf. [24, Thm. 4.4]):

(x; p)∞ 0φ1(−;x; p, x) = 1, for any x /∈ q−N,

implies that L[λ]
q ψ = L

[λ]
q φ. �

4.4. The functional space H in the Borel plane

We recall that the q-Borel transform Bq associates to a power series f̂ =∑
n>0 anx

n+1 ∈ C[[x]] the power series φ =
∑

n>0 anq
−n(n−1)/2ξn ∈ C[[ξ]].

As we have already pointed out, the q-Borel transform of a generic q-Gevrey
series admits a positif radius of convergence and can be continued to an
analytic function in the whole complex plane minus a finite number of sets
of the form λqN (cf. [20] and [23]).

In this section we want to prove that every generic q-Gevrey series can be
expressed by means of “modified Tschakaloff series”. Our strategy consists
in proving that the q-Borel transform of any generic q-Gevrey series ad-
mits an elementary decomposition, by studying the q-convolution product
of suitable entire functions by a rational functions. This leads to the con-
struction of a functional space which is somehow spanned by the q-Borel
transforms of the modified Tschakaloff series.

Definition 4.17. — We call q-convolution product the following bilin-
ear operator:

∗q : C{ξ} × C{ξ} −→ ξC{ξ}

ξn ∗q ξ
m 7−→ q−(nm+n+m+1)ξn+m+1

.

A direct calculation shows that
1. If φ =

∑
n>0 φnξ

n ∈ C{ξ} and ψ ∈ C{ξ}, then ([12, 1.4.3, where s = 1)])

φ ∗q ψ(ξ) =
∑
>0

φ0q
−n−1ξn+1ψ(q−n−1ξ).
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2. Bq(f̂ ĝ) = Bq(f̂) ∗q Bq(ĝ).

Let K be the set of rational functions bounded at zero and let Eq be
the set of all entire functions admitting at most a q-exponential growth of
order 1 at the infinity. We know that K ∩ Eq = C[ξ] and Eq = Bq(xC{x})
(cf. [Ram92]). Notice that the formula Bq(f̂ ĝ) = Bq(f̂) ∗q Bq(ĝ) identifies
(Eq, ∗q) to a commutatif sub-ring of (C{ξ}, ∗q).

Definition 4.18. — We define the functional space H := ∪n>0Hn in
the following way:

H−1 = {1}, H0 = K, H1 = Eq ∗q K := {φ ∗q r : φ ∈ Eq, r ∈ K}

and, for any integer n > 1,

H2n = KH2n−1 := {ru : r ∈ K,u ∈ H2n−1},
H2n+1 = Eq ∗q H2n := {φ ∗q u : φ ∈ Eq, u ∈ H2n}.

Proposition 4.19. — For any (r, φ, u) ∈ K×Eq×H, we have (ru, φ∗q

u) ∈ H ×H. In other words, the functional space H is a (K,Eq)-bimodule.

Proof. — It follows immediately from the definition of H. Indeed, if n 6
m, then Hn ⊂ Hm. So, we can suppose that (r, φ, u) ∈ K × Eq ×Hn and
hence, (ru, φ ∗q u) ∈ Hn+2 ×Hn+2 ⊂ H ×H. �

Theorem 4.20. — For any u ∈ H, there exist φ0, φ1, . . . , φn ∈ Eq and
r0, r1, . . . , rn ∈ K such that

u = φ0 + r0 + φ1 ∗q r1 + ...+ φn ∗q rn.

Moreover, we can suppose that r1, ..., rn are rational functions of the form
1

(ξ−λi)νi
, where ci, λi ∈ C∗ and νi ∈ N.

Proof. — Since Hm ⊂ Hm+1, for any u ∈ H there exists m ∈ N such
that u ∈ Hm. So we can prove the theorem by induction on m. The cases
m = 0 and m = 1 are trivial. Suppose that u ∈ Hm+1. Then there exists
(r, v, φ) ∈ K ×Hm × Eq such that on of the following two cases occurs:

(1) u = rv,
(2) u = φ ∗ v,

and, by inductional hypothesis, v = φ0 + r0 +
∑m

j=1 φj ∗q rj . The proof in
the case (2) is straightforward, since φ ∗q (φj ∗q rj) = (φ ∗q φj) ∗q rj . In the
case (1), we need the following elementary lemma.
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Lemma 4.21. — For any (a, b, `, n) ∈ C∗ ×C∗ ×N×N such that a 6= b,
the following decomposition holds:

1
(x− a)`

1
(x− b)n

=
`−1∑
k=0

(n+ k)!
(a− b)n+kk!

(−1)k

(x− a)`−k

+
n−1∑
k=0

(`+ k)!
(b− a)`+kk!

(−1)k

(x− b)n−k
.

Proof. — It enough to take the (` − 1)-th derivative with respect to a

and the n− 1-th derivative with respect to b in the formula
1

x− a

1
x− b

=
1

a− b

(
1

x− a
− 1
x− b

)
.

�

Let us go back to the proof of the Theorem 4.20. By linearity, it enough
to consider a product of the form r(φ ∗q r

′), with r = 1
(ξ−λ)` , r′ = 1

(ξ−µ)n)

and φ =
∑

k>0 φkξ
k ∈ Eq. Since

r′ ∗q φ(ξ) =
∑
k>0

φkq
−k−1 ξk+1

(q−k−1ξ − µ)n
,

the decomposition follows from the lemma above. �

Corollary 4.22. — For any u ∈ H, there exist λ1, . . . , λn ∈ C∗ such
that u is analytic on the domain C\ (∪m

i=1λiq
N) and the function U defined

by

U(ξ) = u(ξ)
n∏

i=1

∏
m>0

(
1− ξ

λiqm

)
can be continued to an entire function that has at most a q-exponential
growth of order n+ 1 at the infinity.

The corollary results from the combination of the theorem above and the
following lemma:

Lemma 4.23. — Let φ ∈ Eq, r = 1
(ξ−λ)n , n > 1 and λ ∈ C∗. Then φ∗q r

admits λqN as set of poles and there exist C > 0, m > 0 such that, for any
ε > 0,

|ξq−n − λ| > ε =⇒ |φ ∗q r(ξ)| <
C

εn
|ξ|m|e

(log x)2

2 ln q |.

Proof. — Let φ =
∑

k>0 φnξ
k. Since φ ∈ Eq, there exist A, B > 0 such

that
∀k ∈ N, |φk| < ABnq−n(n+1)/2.
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On the other hand,

φ ∗q r =
∑
k>0

φkq
−k−1ξk+1r(q−k−1ξ),

which implies directly the lemma. �

4.5. Proof of Theorem 4.14

We start by proving the following preparatory result:

Proposition 4.24. — If f̂ ∈ xC[[x]] is a generic q-Gevrey series, then
its q-Borel transform belongs to H.

Proof. — Let ∆ be a linear analytic q-difference operator such that ∆f̂ =
g ∈ xC{x}. We know that ∆ admits an analytic factorization (cf. [20,
Prop. 5.1.4], [18, Thm. 1.2.1]):
(4.11)
∆=(xσq−λ1)h1(xσq−λ2)h2...(xσq−λn)hn, λj ∈C, hj ∈C{x}, hj(0)=1.

We suppose that we have chosen n minimal and let us prove the statement
by induction on n. We consider first of all the case n = 1: we suppose that
(xσq − λ1)h1f̂ = g, with Bq(g) ∈ H(7) . This implies that Bq(h1f̂) ∈ H,
since Bq((xσq −λ1)h1f̂) = (qξ−λ1)Bq(h1f̂). Therefore Bq(f̂) ∈ H, in fact
Bq(f̂) = Bq(h−1) ∗ q Bq(h1f̂), with Bq(h−1

1 ) ∈ Eq and Bq(h1f) ∈ H.
For n > 1, the inductive hypothesis implies that Bq((xσq−λn)hnf̂) ∈ H,

and hence that Bq(f̂) ∈ H. �

Proof of Theorem 4.14. — Applying Theorem 4.20 to Bq(f̂), we can
write f̂ as follows:

f̂ = f0 + ê0 + f1ê1 + ...+ fnên,

where f0, . . . , fn ∈ xC{x}, Bq(ê0) ∈ K and, for i = 1,..., n, Bq(êi) =
1

(ξ−λi)νi
. So it is enough to prove Theorem 4.14 for a modified Tschakaloff

series (cf. [12, Prop. 1.4.2]), i.e. under the assumption Bq(f̂) = 1
(ξ−λ)n .

By replacing ξ by −λξ, we can suppose that λ = −1. The case n = 1
corresponds exactly to the Tschakaloff divergent series Ê , and the result is
stated in Proposition 4.16. If n > 1, by considering

f̂(x) =
(−1)n−1

(n− 1)!xn−1
∂n−1∂an−1Ê(ax)‖a=1,

(7) Notice that we are assuming that Bq(g) ∈ H and not Bq(g) ∈ Eq .
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we can easily deduce the wanted result by the help of the dominated con-
vergence theorem.

Concerning the second part of the statement of Theorem 4.14, the de-
composition above allows once again to reduce to the case of the Tschakaloff
series. The dominated convergence theorem applies with no difficulties to
this explicit case (cf. Remark 4.13). �
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