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THE SPECTRUM OF SCHRÖDINGER OPERATORS
WITH RANDOM δ MAGNETIC FIELDS

by Takuya MINE & Yuji NOMURA (*)

Abstract. — We shall consider the Schrödinger operators on R2 with the mag-
netic field given by a nonnegative constant field plus random δ magnetic fields of the
Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum
of these operators by the method of the admissible potentials by Kirsch-Martinelli.
Moreover, we shall prove the lower Landau levels are infinitely degenerated eigen-
values when the constant field is sufficiently large, by estimating the growth order
of the eigenfunctions using the entire function theory by Levin.

Résumé. — On considère les opérateurs de Schrödinger sur R2 avec champ
magnétique donné par un champ constant et positif ou nul plus des champs ma-
gnétiques aléatoires δ du type d’Anderson ou du type de Poisson-Anderson. On
étudie le spectre de ces opérateurs par la méthode des potentiels admissibles par
Kirsch-Martinelli. De plus, on démontre que les niveaux inférieurs de Landau sont
infiniment dégénérés lorsque le champ constant est suffisamment grand en évaluant
l’ordre de croissance, utilisant la théorie de la fonction entière de Levin.

1. Introduction

The δ magnetic fields are sometimes called the Aharonov-Bohm fields,
after the celebrated paper by Aharonov-Bohm [1]. There are numerous
works which study the Aharonov-Bohm fields; see e.g. Ruĳsenaars [33],
Nambu [29], Ito-Tamura [21], or references therein. Especially, Geyler-
Grishanov [19] and Geyler-Šťovíček [20] studied the infinite degeneracy
of the zero modes of the 2-dimensional Pauli operator with δ magnetic
fields; Rozenblum-Shirokov [32] also studied the same subject in the case

Keywords: Schrödinger operator, random magnetic field, singular magnetic field,
Aharonov-Bohm effect, Landau level, entire function.
Math. classification: 81Q10, 30D15, 47F05, 47N50, 82B44.
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660 Takuya MINE & Yuji NOMURA

the magnetic field is a signed Borel measure. One of the authors [27] stud-
ied the structure of the whole spectrum of the Schrödinger operators with
a constant magnetic field plus δ magnetic fields, in the case the number of δ
fields is finite, or in the case δ fields are well-separated; the authors [28] also
studied the same subject in the case δ fields vary periodically. In the present
paper, we consider the case there is some randomness in the positions of
δ magnetic fields or in their intensities, and study some fundamental spec-
tral properties of the Schrödinger operators with random δ magnetic fields.
The system of this type is studied in some physics literature [17], [18],
[10], [11], [12], but there seems no mathematical results at present. Borg-
Pulé [8] studied a similar system (Pauli operators with smoothed random
Aharonov-Bohm fields).(1)

Define a differential operator Lω on R2 by

Lω =
(1
i
∇+ aω

)2

,

where ω is an element of a probability space Ω, and aω is the magnetic
vector potential. The magnetic field corresponding to a vector potential
a = (ax, ay) is defined by

curla = ∂xay − ∂yax

in the distribution sense. We assume the magnetic field curlaω is given by

(1.1) curlaω(z) = B +
∑

γ∈Γω

2παγ(ω)δ(z − γ),

where B is a nonnegative constant, Γω is a discrete subset of R2, αγ(ω)
is a constant belonging to [0, 1), and δ is the Dirac measure concentrated
on the origin. The assumption αγ(ω) ∈ [0, 1) loses no generality, since the
integral differences of αγ(ω)’s can be gauged away; see [20, section 6].

We shall work on the following two cases in the present paper:

(i) The Anderson type random δ magnetic fields. The set Γω is a lattice Γ
of rank 2 independent of ω, that is, there exist linearly independent vectors
e1, e2 such that Γω = Γ = Ze1 ⊕ Ze2. The random variables {αγ}γ∈Γ are
independently, identically distributed (abbr. i.i.d.). We denote the common
distribution measure for {αγ}γ∈Γ by µ = P ◦ α−1

γ (independent of γ; P is
the probability measure on Ω). We assume

(1.2) suppµ 6= {0},

(1) One of the authors (Mine) heard that J.L. Borg was also studying the random δ
magnetic fields in his thesis [7].
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SCHRÖDINGER OPERATORS WITH RANDOM δ MAGNETIC FIELDS 661

since the case suppµ = {0} is the trivial case. We denote

(1.3) α = E[αγ ], p = P{αγ 6= 0},

where E[X] denotes the expectation of a random variable X. The values α
and p are independent of γ, since {αγ}γ∈Γ are i.i.d.

(ii) The Poisson-Anderson type random δ magnetic fields. The set Γω is
the Poisson configuration (the support of the Poisson point process) with in-
tensity measure ρdxdy , where ρ is a positive constant (for the definition of
the Poisson point process, see e.g. Reiss [31] or Ando-Iwatsuka-Kaminaga-
Nakano [3]). The random variables {αγ}γ∈Γω are i.i.d. with common dis-
tribution measure µ satisfying (1.2), which are independent of the Poisson
configuration Γω

(2) . We use the same notation as (1.3).
It is known that there exists a vector potential aω satisfying (1.1), and we

define the self-adjoint realization Hω of Lω on the Hilbert space L2(R2) by
means of the Friedrichs extension (see [20, section 4] and section 2 below).
By a usual ergodicity argument, we can prove that there exists a closed
set Σ in R independent of ω such that

(1.4) σ(Hω) = Σ

almost surely (see also Proposition 3.3 below). Moreover, Hω > B (see [27,
Proposition 3.3 (iii)]) implies

(1.5) Σ ⊂ [B,∞).

We denote the free operator (the operator corresponding to the magnetic
field curla = B) by H0. The spectrum of H0 is well known:

σ(H0) =

{
[0,∞) (B = 0),⋃∞

n=1{En} (B > 0),

where En = (2n − 1)B is called the n-th Landau level. When B > 0, all
the Landau levels are infinitely degenerated eigenvalues of H0.

First we exhibit our result for the Anderson type. In the sequel, we denote

mult(λ;H) = dim Ker(H − λ)

for λ ∈ R and a self-adjoint operator H.

(2) More precisely, we construct the random variables {αγ}γ∈Γω as follows. Let Ω1 be
the probability space on which the Poisson configuration Γω is defined, and number the
elements {γj}∞j=1 of Γω as 0 < |γ1| < |γ2| < · · · (the probability that there exist two
points of Γω with the same absolute value is zero). Let Ω2 be the probability space
on which i.i.d. random variables {αj}∞j=1 are defined. Put Ω = Ω1 × Ω2, and denote
αγj (ω) = αj(ω) (j = 1, 2, . . .).

TOME 59 (2009), FASCICULE 2



662 Takuya MINE & Yuji NOMURA

Theorem 1.1. — Let aω be the Anderson type. Then, we have the
following:

(i) Assume

(1.6) suppµ ∩
(
{0} ∪ {1}

)
6= ∅.

Then, we have Σ ⊃ σ(H0). In particular, if B = 0 and (1.6) holds, then
Σ = [0,∞).

(ii) Assume

(1.7) suppµ ∩
(
{0} ∪ {1}

)
= ∅

and B = 0. Then, we have inf Σ > 0.
(iii) For n ∈ N = {1, 2, . . .}, we have

mult(En;Hω) = ∞ if
B|D|
2π

+ α > np,

mult(E1;Hω) = 0 if
B|D|
2π

+ α < p

almost surely, where D is the fundamental domain of Γ given by

D =
{
se1 + te2 | − 1

2 6 s < 1
2 , −

1
2 6 t < 1

2

}
,

and |D| is the area of D.
(iv) Assume (1.7) and B > 0. Put R = min

γ∈Γ,γ 6=0
|γ|. Put

α− = inf suppµ and α+ = sup suppµ

(0 < α− 6 α+ < 1 by (1.7)). Then, for any n0 ∈ N, there exist constants
C > 0 and c > 0 dependent only on n0, α−, α+ satisfying the following:
if BR2 > C, then the first n0 Landau levels E1, . . ., En0 are the isolated,
infinitely degenerated eigenvalues of Hω almost surely, and

Σ ∩ [B,En0+1) =
n0⋃

n=1

{En} ∪ Sn,

where Sn is a closed subset of R satisfying

Sn ⊂
⋃

α∈supp µ

[
En + (2α− e−cBR2

)B,En + (2α+ e−cBR2
)B

]
.

Similar results are known in the case the magnetic field curlαω is peri-
odic; see [26, Proposition 7.7] for (ii), [28, Theorem 1.1] for (iii) and (iv).
The assertions (iii) and (iv) roughly mean the lower Landau levels tend
to be stable under the perturbation by δ magnetic fields, even if it is ran-
dom. Similar results are obtained in the case of (scalar) point interactions

ANNALES DE L’INSTITUT FOURIER
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by Gĕıler [16], Avishai-Redheffer-Band [6], Avishai-Redheffer [5], Avishai-
Azbel-Gredeskul [4] and Dorlas-Macris-Pulé [14], or in the case of δ mag-
netic fields [19], [20], [32], [27]. It may be interesting to compare the above
results with those in the case of regular potentials (see Zak [34], Dinaburg-
Sinai-Soshnikov [13]); in that case, it is widely believed that the Landau
levels are broadened and there exist some extended states corresponding
to the center of the Landau level.

Next we shall exhibit the result for the Poisson-Anderson case. In the
sequel, [x] denotes the integer part of a real number x (the maximal integer
which does not exceed x), and frac(x) denotes the fractional part of x (i.e.
frac(x) = x− [x]).

Theorem 1.2. — Let aω be the Poisson-Anderson type. Then, we
have the following:

(i) Σ ⊃ σ(H0). In particular, if B = 0, then Σ = [0,∞).
(ii) Assume B > 0. Put

(1.8) F =
{

frac(α1 + · · ·+ αm) | α1, . . . , αm ∈ suppµ, m ∈ N
}
.

Then, we have

(1.9) Σ ⊃
∞⋃

n=1

(En + 2BF ),

where En + 2BF = {En + 2Bα | α ∈ F}. In particular, if F is dense in
[0, 1), then we have

(1.10) Σ = [B,∞).

(iii) For n ∈ N, we have almost surely

mult(En;Hω) = ∞ if
B

2πρ
+ α > np,

mult(E1;Hω) = 0 if
B

2πρ
+ α < p.

The assumption ‘F is dense in [0, 1)’ is satisfied if suppµ contains an irra-
tional number or suppµ is an infinite set. So the equation (1.10) tells σ(Hω)
generically fills the whole possible energy range [B,∞); similar results are
found in the case of the Schrödinger operators with the Poisson-Anderson
type random scalar potentials [3]. We believe (1.10) holds in general (even
if suppα is a finite set of rationals), but it is not yet proved at present.
The assertion (iii) corresponds to (iii) of Theorem 1.1, since 1/ρ is the
area of ‘the fundamental domain’ of the Poisson configuration with inten-
sity ρdxdy (i.e. E[#(Γ· ∩ D)] = 1 if |D| = 1/ρ).

TOME 59 (2009), FASCICULE 2



664 Takuya MINE & Yuji NOMURA

We make some comments on the organization of the present paper and
the proofs of our results. In section 2, we give some basic definitions. In
section 3, we introduce the method of admissible potentials by Kirsch and
Martinelli [23] (see also Kirsch [22] and [3]). To apply this method, we prove
the strong resolvent continuity of our operators with respect to the position
parameters γ and the intensity parameters αγ , later in section 7. Due to
the singularities of the magnetic potentials, this continuity does not follow
from the standard references. In section 4, we give explicit eigenfunctions
corresponding to the Landau levels using the multi-valued canonical prod-
ucts, and give a Gaussian estimate for them at infinity. A similar method
is already used in [28] in the periodic case, but the elliptic function theory
used there is no longer available in our random case. We extend the en-
tire function theory by Levin [25] to the multi-valued functions, and give
a sharp Gaussian estimate for the eigenfunctions (a similar argument is
found in Chistyakov-Lyubarskii-Pastur [9]). The proof of this extension is
given later in section 8. Finally, all these results lead to our main theorems
in sections 5 and 6.

2. Preliminaries

In the sequel, we identify a vector z = (x, y) ∈ R2 with a complex
number z = x + iy ∈ C. So L2(R2) = L2(R2; dxdy) is identified with
L2(C) = L2(C; dxdy), etc. For r > 0 and z ∈ C, we denote

Br(z) =
{
w ∈ C | |w − z| 6 r

}
.

We shall define our operators according to [20, section 4]. For a nonneg-
ative constant B and a meromorphic function ψ on C having at most 1-st
order poles and real residues, put

(2.1) φ(z) =
Bz̄

2
+ ψ(z).

We denote
Lφ =

(1
i
∇+ aφ

)2

,

where
aφ(z) =

(
Imφ(z),Reφ(z)

)
.

Let Γ be the set of the (1-st order) poles of ψ. Let αγ be the (real) residue
of ψ at z = γ, and put α = (αγ)γ∈Γ. Then we have

curlaφ(z) = B +
∑
γ∈Γ

2παγδ(z − γ).

ANNALES DE L’INSTITUT FOURIER
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Define a linear operator Lφ by

Lφu = Lφu, D(Lφ) = C∞
0 (C \ Γ),

where C∞
0 (U) denotes the space of the compactly supported smooth func-

tions in U , and D(X) the operator domain of the operator X. We denote
the Friedrichs extension of Lφ by Hφ.

Although the results are independent of the choice of the gauge, we
choose the following gauge in the sequel, to clarify the argument. Put

(2.2) φω(z) =
Bz̄

2
+
α0(ω)
z

+
∑

γ∈Γω\{0}

αγ(ω)
( 1
z − γ

+
1
γ

+
z

γ2

)
,

where α0(ω) = 0 if 0 6∈ Γω. We can verify the convergence of the right hand
side of (2.2) both in the Anderson case and in the Poisson-Anderson case
(see Proposition 4.1 and (ii) of Lemma (4.4)). We denote Hω = Hφω

.
When Γ is a finite set, it is known that

D(Hφ) =
{
u ∈ L2(C) | Lφu ∈ L2(C),(2.3)

lim sup
z→γ

|u(z)| <∞ for any γ ∈ Γ
}

(see [21, Proposition 7.1]). We can prove (2.3) also holds almost surely both
in the Anderson case and in the Poisson-Anderson case. Define

D0(Hφ) =
{
u ∈ D(Hφ) | suppu is bounded

}
.

We see that D0(Hφ) is an operator core for Hφ by cut-off argument.
Define differential operators Aφ and A†

φ by

(2.4) Aφ = 2∂z + φ(z), A†
φ = −2∂z̄ + φ(z),

where ∂z = 1
2 (∂x − i∂y) and ∂z̄ = 1

2 (∂x + i∂y). These operators satisfy the
canonical commutation relation

Lφ = A†
φAφ +B = AφA†

φ −B

as an operator on D′(C \ Γ).

3. Admissible potentials

In our cases, the method of the admissible potentials [23] can be formu-
lated as follows.

TOME 59 (2009), FASCICULE 2



666 Takuya MINE & Yuji NOMURA

Definition 3.1 (admissible sequences for the Anderson type fields).
Let Γ be the period lattice in the definition of the Anderson type δ magnetic
fields. Let α = (αγ)γ∈Γ be a [0, 1)-valued sequence. We say α is periodic
if there exists a rank 2-sublattice Γ′ of Γ such that αγ+γ′ = αγ for every
γ ∈ Γ, γ′ ∈ Γ′. We say a sequence α is admissible for the Anderson type
fields if α is a suppµ-valued periodic sequence. We denote the set of all the
admissible sequences by PA.

For a periodic sequence α, take a complete system of representatives
{γ1, . . . , γK} of Γ/Γ′ (K = #(Γ/Γ′)), and define

φα(z) =
Bz̄

2
+

K∑
k=1

αγk
ζΓ′(z − γk),

where ζΓ′ is the Weierstrass ζ-function corresponding to the lattice Γ′,
that is,

ζΓ′(z) =
1
z

+
∑

γ′∈Γ′\{0}

( 1
z − γ′

+
1
γ′

+
z

γ′2

)
.

We denote Hα = Hφα
.

Definition 3.2 (admissible pairs for the Poisson-Anderson type fields).
We say a pair (Γ, α) is admissible for the Poisson-Anderson type fields if Γ
is a finite subset of C (maybe the empty set) and α = (αγ)γ∈Γ is a suppµ-
valued sequence. We denote the set of all the admissible pairs by FA. For
an admissible pair (Γ, α), we define

φΓ,α(z) =
Bz̄

2
+

∑
γ∈Γ

αγ

z − γ
·

We denote HΓ,α = HφΓ,α
.

Proposition 3.3. — (i) Let aω be the Anderson type. Then, we have
almost surely

σ(Hω) = σess(Hω) =
⋃

α∈PA

σ(Hα).

(ii) Let aω be the Poisson-Anderson type. Then, we have almost surely

σ(Hω) = σess(Hω) =
⋃

(Γ,α)∈FA

σ(HΓ,α).

Though the proof is similar to those of known results [23], [22], [3], we
shall give it here to show the singularity of aω does not violate the argu-
ment.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We prove only assertion (ii). The proof of (i) is similar.
Take a countable dense subset X of C, a countable dense subset S of

suppµ and put

F̃A =
{
(Γ, α) ∈ FA | γ ∈ X and αγ ∈ S for every γ ∈ Γ

}
.

Notice that the set F̃A is countable. We put

Σ =
⋃

(Γ,α)∈FA

σ(HΓ,α), Σ̃ =
⋃

(Γ,α)∈F̃A

σ(HΓ,α).

We shall divide the proof into four steps.

Step 1. — σ(Hω) ⊃ σess(Hω) clearly holds.

Step 2. — Σ ⊃ σ(Hω).

Proof. — Let λ ∈ σ(Hω). Then, for any ε > 0, we can take an ε-
approximating normalized eigenfunction uε of Hω for λ (i.e. ‖uε‖ = 1,
‖(Hω − λ)uε‖ 6 ε) from D0(Hω). Then, using a gauge transform in an
open neighborhood of suppuε, we can construct an ε-approximating nor-
malized eigenfunction of HΓ,α for λ for some (Γ, α) ∈ FA. This implies
dist(λ,Σ) 6 ε, so the conclusion holds. �

Step 3. — Σ̃ ⊃ Σ immediately follows from Corollary 7.5.

Step 4. — σess(Hω) ⊃ Σ̃ almost surely.

Proof. — Since F̃A is countable and σess(Hω) is closed, it suffices to show

σess(Hω) ⊃ σ(HΓ,α)

almost surely, for every (Γ, α) ∈ F̃A. Moreover, since σess(Hω) is closed,
it suffices to show that, if

(3.1) (r, s) ∩ σ(HΓ,α) 6= ∅, r, s ∈ Q, r < s, (Γ, α) ∈ F̃A,

then we have almost surely

(3.2) (r, s) ∩ σess(Hω) 6= ∅.

Take r, s, (Γ, α) satisfying (3.1) and take λ ∈ (r, s) ∩ σ(HΓ,α). Take ε > 0
so that (λ − 2ε, λ + 2ε) ⊂ (r, s). In the sequel, we use the notation in
section 7.2 below. Take a bounded open set O ⊃ Γ, and let the sub-
spaces {DΓ′,α′} and the operators {TΓ′,α′} as in Lemma 7.3. Take an ε-
approximating normalized eigenfunction u of HΓ,α for λ from DΓ,α, and
put uΓ′,α′ = TΓ′,α′u/‖TΓ′,α′u‖. Take a bounded open set O′ ⊃ O ∪ suppu.
By Lemma 7.3, there exists a constant δ > 0 such that

(3.3)
∥∥(HΓ′,α′ − λ)uΓ′,α′

∥∥ 6 ε, suppuΓ′,α′ ⊂ O′

TOME 59 (2009), FASCICULE 2



668 Takuya MINE & Yuji NOMURA

for any (Γ′, α′) ∈ F with d((Γ′, α′), (Γ, α)) 6 δ.
Take a sequence {zn}∞n=1 ⊂ C such that {O′ + zn}∞n=1 are disjoint. Put

K = #Γ, Γ = (γk)K
k=1 and α = (αk)K

k=1. For n ∈ N, consider the event An

which consists of all ω satisfying

Γω ∩Bδ/
√

2K(γk + zn) =
{
γkn(ω)

}
(1 point set),(3.4) ∣∣αγkn(ω)(ω)− αk

∣∣ 6
δ√
2K

(3.5)

for k = 1, . . . ,K, and

(3.6) Γω ∩
(
(O′ + zn) \

K⋃
k=1

Bδ/
√

2K(γk + zn)
)

= ∅.

The events {An}n∈N are independent and have the same positive proba-
bility. Thus, for almost sure ω, we can take a subsequence {n`}∞`=1 such
that (3.4), (3.5) and (3.6) hold for n = n`. By (3.3), (3.4), (3.5), (3.6)
and a gauge transform, we can construct a sequence {v`}∞`=1 ⊂ D0(Hω)
satisfying

‖(Hω − λ)v`‖ 6 ε, ‖v`‖ = 1

and supp v` ⊂ O′ + zn`
, almost surely. This implies dist(λ, σess(Hω)) 6 ε,

so (3.2) holds. �

Thus the proof of (ii) of Proposition 3.3 is completed. �

4. Eigenfunctions for Landau levels

In this section, we assume B > 0 and construct eigenfunctions for Landau
Levels. Similar solutions are found in [19], [20], [32], [28].

4.1. Multi-valued canonical product

There is a beautiful theory by B. Ja. Levin about the relation between
the growth order of the canonical product and the distribution of its ze-
ros [25]. His theory also holds for the multi-valued canonical product, with
the modification as follows.

Let Γ be a discrete subset of C and α = (αγ)γ∈Γ be a sequence of non-
negative real numbers. For r > 0 and θ1, θ2 ∈ R with 0 6 θ2 − θ1 6 2π,
put

(4.1) n(r, θ1, θ2) =
∑

0<|γ|6r
θ16arg γ<θ2

αγ

ANNALES DE L’INSTITUT FOURIER



SCHRÖDINGER OPERATORS WITH RANDOM δ MAGNETIC FIELDS 669

(we omit ‘γ ∈ Γ’ in the sum, as in the sequel). Put n(r) = n(r, 0, 2π).
We assume

(4.2) n(r) = O(r2) as r →∞.

Define a sum ζΓ,α and a product σΓ,α by

ζΓ,α(z) =
α0

z
+

∑
γ 6=0

αγ

( 1
z − γ

+
1
γ

+
z

γ2

)
,(4.3)

σΓ,α(z) = zα0
∏
γ 6=0

(
1− z

γ

)αγ

e
αγ

(
z
γ + z2

2γ2

)
(4.4)

(we put α0 = 0 when 0 6∈ Γ). When Γ is a lattice of rank 2 and αγ ≡ 1, then
ζΓ,α is the Weierstrass ζ function, and σΓ,α is the Weierstrass σ function.

Let C = {Cj}∞j=1 be a system of disks, where Cj = Brj (zj). We say C
has the upper linear density ρ̄∗(C) if

ρ̄∗(C) = lim sup
r→∞

1
r

∑
|zj |6r

rj .

We say C is a C0-set if ρ̄∗(C) = 0. We often identify C with the union set
of the disks belonging to C.

Proposition 4.1. — Assume (4.2) holds. Then the following holds.
(i) The sum (4.3) converges uniformly in a compact subset of C \ Γ. If

we take the branches of the functions {(1− z/γ)αγ}γ∈Γ\{0} appropriately,
then the right hand side of (4.4) converges uniformly in a simply connected
compact subset of C \ Γ. For k = 0, 1, 2, . . ., the function |(d/dz)kσΓ,α(z)|
is independent of the choice of the branches. Moreover, we have

(4.5)
d
dz
σΓ,α(z) = σΓ,α(z)ζΓ,α(z).

(ii) Assume additionally that
(a) there exists I0 ⊂ [0, 2π) such that [0, 2π) \ I0 is countable and

the following limit exists for any θ1, θ2 ∈ I0 + 2πZ with 0 6
θ2 − θ16 2π:

(4.6) ∆(θ1, θ2) = lim
r→∞

n(r, θ1, θ2)
r2

,

(b) the following limit exists and is finite:

(4.7) δΓ,α =
1
2

lim
r→∞

∑
0<|γ|6r

αγ

γ2
.
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Let d∆ be the Lebesgue-Stieltjes measure given by the relation∫
[θ1,θ2)

d∆(ψ) = ∆(θ1, θ2).

Then, there exists a C0-set C such that

(4.8) lim
r→∞,r eiθ 6∈C

log |σΓ,α(reiθ)|
r2

= H(θ),

where the function H(θ) is defined by the Stieltjes integral

H(θ) = −
∫ θ

θ−2π

(ψ − θ) sin 2(ψ − θ)d∆(ψ) + Re(e2iθδΓ,α).

The convergence (4.8) is uniform with respect to θ ∈ [0, 2π).

Remark. — There is a misprint in the first edition of [25]; there must be
the minus sign before the integral in [25, (2.06)].

The second assertion of the above lemma is a generalization of [25, The-
orem 2 in Chap. II, Sec. 1], and its proof is also similar. We shall outline a
proof in section 8.

Corollary 4.2. — In addition to the assumption of (ii) of Proposi-
tion 4.1, assume that

∆(θ1, θ2) = c(θ2 − θ1)

for some positive constant c. Put

σ̃Γ,α(z) = e−δΓ,αz2
σΓ,α(z).

Then, there exists some C0-set C satisfying the following: for any ε > 0,
we have

(4.9)
∣∣σ̃Γ,α(z)

∣∣ 6 e(cπ+ε)|z|2

for sufficiently large z, and

(4.10)
∣∣σ̃Γ,α(z)

∣∣ > e(cπ−ε)|z|2

for sufficiently large z outside C.

Proof. — By Proposition 4.1 and the equality

−c
∫ θ

θ−2π

(ψ − θ) sin 2(ψ − θ)dψ = cπ,

we see that there exists some C0-set C such that both (4.9) and (4.10) hold
for sufficiently large z outside C. Since C is a C0-set, the limitation z ∈ C\C
on (4.9) can be eliminated by using the maximum modulus principle (see
the argument after the proof of [25, Lemma 5 in Chap. II, Sec. 3]). �

ANNALES DE L’INSTITUT FOURIER



SCHRÖDINGER OPERATORS WITH RANDOM δ MAGNETIC FIELDS 671

For an entire function f , it is well known that f and its derivatives
dkf/dzk have the same exponential growth order (see [25, Chap 1., Sec. 2]).
For a multi-valued holomorphic function f , we have the following.

Lemma 4.3. — Let f be a multi-valued holomorphic function on C
and n0 a nonnegative integer. Let Γ be the set of the branch points of f .
Assume the following conditions hold:

(i) In a neighborhood Uγ of each γ ∈ Γ, f is written as

f(z) = (z − γ)αγgγ(z),

where αγ > n0 and gγ is a function holomorphic in Uγ .

(ii) #{γ ∈ Γ | |γ| 6 r} = O(r2) as r →∞.

(iii) There exists a constant a > 0 such that, for sufficiently large z,∣∣f(z)
∣∣ 6 ea|z|2 .

Then, for any ε > 0, we have for any k = 0, 1, . . . , n0

(4.11)
∣∣∣ dkf

dzk
(z)

∣∣∣ 6 e(a+ε)|z|2

for sufficiently large z ∈ C \ Γ.

Remark. — By (i), the function |dkf/dzk(z)| is single-valued.

Proof. — By (i), we have, for k = 0, . . . , n0,

lim
z→γ

∣∣∣ dkf

dzk
(z)

∣∣∣ = 0.

Thus the function Mk(r) = max|z|=r |dkf/dzk(z)| is monotone nondecreas-
ing, by the maximum modulus principle. By (ii), we can take A ∈ N such
that

#
{
γ ∈ Γ | |γ| 6 r

}
6 Ar2 − 1.

Take ` ∈ N. Dividing the ring {`−1 < |z| 6 `} into A`2 subrings, we find a
subring {r` − 1

2A`2 < |z| 6 r` + 1
2A`2 } which contains no point of Γ. Then,

for |z| = r`, we have by the Cauchy integral formula

dkf

dzk
(z) =

k!
2πi

∫
|w−z|= 1

3A`2

f(w)
(w − z)k+1

dw.

Thus we have
Mk(`− 1) 6 (3A`2)kk!M0(`).

Therefore (4.11) follows from the assumption (iii). �
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4.2. Explicit solution

Let us construct the eigenfunctions for Landau levels for our random
models and estimate them using the results in the previous subsection. Put

α(ω) =
(
αγ(ω)

)
γ∈Γω

, ζω = ζΓω,α(ω), σω = σΓω,α(ω).

Then, the operators Aω = Aφω , A†
ω = A†

φω
defined in (2.4) are written as

(4.12) Aω = 2∂z + 1
2Bz̄ + ζω(z), A†

ω = −2∂z̄ + 1
2Bz + ζω(z).

Put

α̃γ(ω) =

{
1 (0 < αγ(ω) < 1),

0 (αγ(ω) = 0),
and σ̃ω = σ

Γω,α̃(ω)
,

where α̃(ω) = (α̃γ(ω))γ∈Γω
. Notice that σ̃ω is an entire function.

Lemma 4.4. — Let aω be the Anderson type or the Poisson-Anderson
type, and n a positive integer.

(i) Let f be an entire function. Put

(4.13) u(z) = A†
ω

n−1(
e−

1
4 B|z|2 |σω(z)|−1 σ̃ω(z)nf(z)

)
.

If u ∈ L2(C), then u ∈ D(Hω) and Hωu = Enu. Moreover, if u ∈ D(Hω)
satisfies Hωu = Bu, then there exists an entire function f such that (4.13)
holds with n = 1.

(ii) For almost all ω, the assumptions (a) and (b) in (ii) of Proposition 4.1
are satisfied with Γ = Γω, α = β(ω) = (nα̃γ(ω)− αγ(ω))γ∈Γω and

∆(θ1, θ2) =

{
(θ2 − θ1)(np− α)/(2|D|) (Anderson type),

ρ(θ2 − θ1)(np− α)/2 (Poisson-Anderson type).

(iii) Let ω ∈ Ω satisfy the conclusion of (ii). Let δω = δΓω,β(ω) be the
constant defined by (4.7) for Γ = Γω and α = β(ω). For a polynomial g 6≡ 0,
let un,g be the function u defined by (4.13) with f(z) = e−δωz2

g(z). Then,
there exists a C0-set C such that for any ε > 0

(4.14)



∣∣un,g(z)
∣∣ 6 exp

((
− B

4
+
π(np− α)

2|D|
+ ε

)
|z|2

)
(Anderson type),

|un,g(z)| 6 exp
((

− B

4
+
πρ(np− α)

2
+ ε

)
|z|2

)
(Poisson-Anderson type)
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for sufficiently large z, and

(4.15)



∣∣u1,g(z)
∣∣ > exp

((
− B

4
+
π(p− α)

2|D|
− ε

)
|z|2

)
(Anderson type),∣∣u1,g(z)

∣∣ > exp
((

− B

4
+
πρ(p− α)

2
− ε

)
|z|2

)
(Poisson-Anderson type)

for sufficiently large z outside C.

Proof. — (i) The proof is almost the same as [28, Lemma 4.1]. The only
difference is that the function u does not necessarily vanish at the point γ
with αγ(ω) = 0. So we change the σn in [28, (4.1)] into σ̃n

ω.
(ii) We prove the statement only for the Poisson-Anderson type (the

Anderson type can be treated similarly). First we prove that assumption (a)
is satisfied. For N = m+ ni ∈ Z⊕ Zi, define a square QN by

QN =
{
s+ ti | m− 1

2 6 s < m+ 1
2 , n−

1
2 6 t < n+ 1

2

}
and put

XN (ω) =
∑

γ∈Γω∩QN

βγ(ω).

Then the random variables {XN}N∈Z⊕Zi are independent and

E[XN ] = EΩ1

[
#(Γ· ∩QN )

]
EΩ2

[
nα̃γ − αγ

]
= ρ(np− α),

where we used E[#(Γ· ∩ U)] = ρ|U | (for the probability spaces Ω1 and
Ω2, see the footnote about the definition of the Poisson-Anderson fields).
For r > 0 and θ1, θ2 ∈ R with 0 6 θ2 − θ1 6 2π, put

S(r, θ1, θ2) =
{
seiθ | 0 < s 6 r, θ1 6 θ < θ2

}
,

N(r, θ1, θ2) =
{
N ∈ Z⊕ Zi | QN ⊂ S(r, θ1, θ2)

}
,

ñ(r, θ1, θ2) =
∑

N∈N(r,θ1,θ2)

XN .

Then we have

ñ(r, θ1, θ2)
r2

=

∑
N∈N(r,θ1,θ2)

XN

#N(r, θ1, θ2)
· #N(r, θ1, θ2)

r2
−→ ρ(np− α)(θ2 − θ1)

2

almost surely, by the law of large numbers. Moreover, we readily have

lim
r→∞

ñ(r, θ1, θ2)− n(r, θ1, θ2)
r2

= 0
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almost surely. Thus we have

(4.16) lim
r→∞

n(r, θ1, θ2)
r2

=
ρ(np− α)(θ2 − θ1)

2
almost surely, for each θ1, θ2 ∈ Q with 0 6 θ2−θ1 6 2π. By the monotonic-
ity of the function n(r, θ1, θ2) with respect to θ1 or θ2, we see that (4.16)
holds for every θ1, θ2 ∈ R, almost surely.

Next we show that assumption (b) holds. Put

δ(r) =
∑

1<|γ|6r

βγ

γ2
·

We shall prove δ(r) converges as r →∞, almost surely.
For m = 1, 2, . . . and k = 0, . . . , 4m− 1, put

Um,k =
{
r eiθ

∣∣ m2 < r 6 (m+ 1)2,
kπ

2m
6 θ <

(k + 1)π
2m

}
,

cm,k = m2 eikπ/(2m), Γm,k = Γ ∩ Um,k, δm,k =
∑
Γm,k

βγ

γ2
·

In the sequel, we denote the general constants independent of m, k, ω by C.
For γ ∈ Um,k, we have

(4.17)
∣∣∣ 1
γ2
− 1
c2m,k

∣∣∣ =
∣∣∣ (γ + cm,k)(γ − cm,k)

γ2c2m,k

∣∣∣ 6
C

m5
·

Put β = E[βγ ] = np− α. Then we have

|δm,k + δm,k+m|(4.18)

6 m−4
∣∣∣ ∑
Γm,k

βγ −
∑

Γm,k+m

βγ

∣∣∣ + Cm−5
(
#Γm,k + #Γm,k+m

)
6 m−4

(∣∣∣ ∑
Γm,k

(βγ − β )
∣∣∣ +

∣∣∣ ∑
Γm,k+m

(βγ − β )
∣∣∣ +

∣∣#Γm,k −#Γm,k+m

∣∣β)
+ Cm−5 (#Γm,k + #Γm,k+m) ,

where we used (4.17) and c2m,k+m = −c2m,k in the first inequality. By the
Schwarz inequality and the independence of {βγ}, we have

E
[∣∣ ∑

Γm,k

(βγ − β )
∣∣] = EΩ1

[
EΩ2

[∣∣ ∑
Γm,k

(βγ − β )
∣∣]](4.19)

6 EΩ1

[(
VΩ2

[ ∑
Γm,k

βγ

]) 1
2
]

= EΩ1

[(
#Γm,kVΩ2

[
βγ

]) 1
2
]

6
(
EΩ1 [#Γm,k]

) 1
2
(
VΩ2

[
βγ

]) 1
2 6 Cm,
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where V [X] denotes the variance of a random variable X. The expectation
E[|

∑
Γm,k+m

(βγ − β )|] is estimated in the same way. Moreover, we have

E
[
|#Γm,k −#Γm,k+m|

]
6 2E

[
|#Γm,k − ρ|Um,k||

]
6 2V

[
#Γm,k

] 1
2 6 Cm,(4.20)

E
[
#Γm,k + #Γm,k+m

]
= 2ρ|Um,k| 6 Cm2,(4.21)

where we used V[#Γm,k] = ρ|Γm,k| 6 Cm2. By (4.18), (4.19), (4.20)
and (4.21), we have E[|δm,k + δm,k+m|] 6 Cm−3, so

∞∑
m=1

m−1∑
k=0

E
[
|δm,k + δm,k+m + δm,k+2m + δm,k+3m|

]
<∞.

Therefore we conclude the sequence {δ(m2)}∞m=1 converges almost surely.
Now it is sufficient to show that

sup
m2<r<(m+1)2

∣∣δ(r)− δ(m2)
∣∣ −→ 0 as m→∞(4.22)

almost surely. As in the proof of (a), we can prove

#{γ ∈ Γω | m2 < |γ| < (m+ 1)2}
π(m+ 1)4 − πm4

−→ ρ

almost surely. This implies

#
{
γ ∈ Γω | m2 < |γ| < (m+ 1)2

}
6 Cm3

almost surely. Thus we have∣∣δ(r)− δ(m2)
∣∣ 6 #

{
γ ∈ Γω | m2 < |γ| < (m+ 1)2

}
m−4 6 Cm−1

for m2 < r < (m+ 1)2, which implies (4.22).

(iii) By (4.5) and (4.12), we have

A†
ω = sgnσω(z)−1

(
−2∂z̄ + Bz

2

)
sgnσω(z),

where sgn(z) = z/|z| = |z|/z̄. Thus we have

un,g(z) = e−
1
4 B|z|2 sgnσω(z)−1 (−2∂z̄ +Bz)n−1

σω(z)−1σ̃ω(z)n e−δωz2g(z)

= e−
1
4 B|z|2 sgnσω(z)−1 (−2∂z̄ +Bz)n−1

σ̃Γω,β(ω)(z)g(z).

Since
#(Γω ∩Br(0))

r2
→ πρ

almost surely, we have

#
(
Γω ∩Br(0)

)
= O(r2) as r →∞
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almost surely. So the conclusion follows from (ii) of this lemma, Corol-
lary 4.2, Lemma 4.3 and the Leibniz rule. �

5. Proof of Theorem 1.1

(i) Let us identify a real value λ with the constant sequence (λ)γ∈Γ.
When suppµ contains 0 or 1, the constant sequence 0 or 1 is admissible.
Thus the assertion follows from (i) of Proposition 3.3, since H0 is the free
operator and H1 is unitarily equivalent to H0 by [20, section 6].

(ii) The same statement in the case α is periodic is already proved by
Melgaard-Ouhabaz-Rozenblum [26], and the proof of this assertion is also
similar. We use the Hardy type inequality (see Laptev-Weidl [24], [26]).
Similarly to [26, Proposition 7.7], we see that there exists a constant C > 0
dependent only on Γ such that∫

R2

∣∣(∇+ iaω)u
∣∣2dxdy > Cρ(α)2

∫
R2
W (z)

∣∣u(z)∣∣2dxdy

for every u ∈ C∞
0 (C \ Γ), where ρ(α) = min(α−, 1 − α+) and W (z) =

dist(z,Γ)−2. Since infW (z) > 0, we have the conclusion.
(iii) Suppose B|D|/(2π) + α > np holds. Then, there exists ε > 0 such

that− 1
4B+π(np−α)/(2|D|)+ε < 0. For any polynomial g, the function un,g

is an eigenfunction of Hω corresponding to the eigenvalue En, by (4.14).
Thus we have mult(En;Hω) = ∞.

Next, suppose B|D|/(2π) + α < p holds. Then, there exists ε > 0 such
that − 1

4B + π(p− α)/(2|D|)− ε > 0. By (4.15), we have

(5.1)
∣∣u1,1(z)

∣∣ > 1

for sufficiently large z outside some C0-set C. Adding some disk centered
at the origin to C, we may assume (5.1) holds for every z ∈ C \ C. Let

S0 =
{
r > 0 | {|z| = r} ∩ C = ∅

}
.

Suppose some u ∈ D(H) satisfies Hu = Eu. By (i) of Lemma 4.4, u is
written as u = u1,1f̄ for some entire function f =

∑∞
n=0 anz

n. Then we
have

(5.2)
∫

C
|u|2dxdy > 2π

∞∑
n=0

∫
S0

|an|2r2n+1dr.

Since C is a C0-set, we have∫
(0,R)∩S0

r2n+1dr >
∣∣(1, R) ∩ S0

∣∣ −→∞ as R→∞,
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where |S| denotes the Lebesgue measure of S. Thus the right hand side
of (5.2) diverges if some an is not zero. This implies u = 0, so we have
mult(E1;Hω) = 0.

(iv) By the scaling z′ =
√
B z, we can reduce the proof into the case

B = 1. Then, the assertion is an immediate corollary of [28, Theorem 1.2
(ii)] and (i) of Proposition 3.3 (notice that the constants R0 and c in [28,
Theorem 1.2 (ii)] depend only on n0, B, α−, α+). �

6. Proof of Theorem 1.2

(i) This is an immediate corollary of (ii) of Proposition 3.3, since the
empty pair (∅, ∅) is admissible and H∅,∅ = H0.

(ii) By (ii) of Proposition 3.3 and Lemma 7.6 (proved later), we have for
any n ∈ N and any admissible pair (Γ, α)

Σ ⊃
⋃
ε>0

σ(HεΓ,α) 3 En + 2B frac(α1 + · · ·+ αK),

where K = #Γ and α = (αk)K
k=1. Thus we have Σ ⊃ En + 2BF .

(iii) Similar to the proof of (iii) of Theorem 1.1. �

7. Perturbation of δ magnetic fields

In this section, we prove the strong resolvent continuity of HΓ,α with
respect to (Γ, α) (we have already used it in the proof of Proposition 3.3).
Since our magnetic potential has strong singularity, a careful analysis of
the domain is necessary.

7.1. Self-adjoint extensions of minimal operators

We review some properties about the domain of the self-adjoint extension
of D(Lφ).

We prepare some notation for the case #Γ = 1. Let B > 0, 0 6 α 6 1,
and γ ∈ C (the case α=1 is contained for convenience). Put

φγ,1
α (z) =

B(z − γ)
2

+
α

z − γ
·
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We denote

Lγ,1
α = Lφγ,1

α
, Lγ,1

α = Lφγ,1
α
, Hγ,1

α = Hφγ,1
α
.

Let R > 0. Let χ ∈ C∞
0 (C) such that 0 6 χ 6 1 and

χ(z) =

{
0

(
|z| > 1

2R
)
,

1
(
|z| 6 1

3R
)
.

For γ ∈ Γ, put χγ(z) = χ(z − γ), rγ = |z − γ|, θγ = arg(z − γ) and

fγ,1
α (z) = χγ(z)rγαγ , gγ,1

α (z) = χγ(z)e−iθγrγ
1−αγ .

Lemma 7.1. — Let φ be a function given by (2.1). Assume 0 6 αγ 6 1
for every γ ∈ Γ. Suppose that there exists a constant R satisfying

0 < R 6 inf
γ 6=γ′

|γ − γ′|.

Suppose also that there exist functions {Φγ}γ∈Γ satisfying

Φγ ∈ C∞(
B 1

2 R(γ)
)
, |Φγ(z)| = 1

and
LφΦγ = ΦγLγ,1

αγ

in B 1
2 R(γ). Put

fγ
α(z) = Φγfγ,1

αγ
, gγ

α(z) = Φγgγ,1
αγ
,

where the R in the definition of fγ,1
αγ

and gγ,1
αγ

is the present one. Put

Γ0 = {γ ∈ Γ | αγ = 0},
Γ1 = {γ ∈ Γ | αγ = 1},
Γ2 = {γ ∈ Γ | 0 < αγ < 1}.

Then, when Γ is a finite set, we have

D(Hφ) = D(Lφ)⊕ L.h.
( ⋃

γ∈Γ0

{fγ
α} ∪

⋃
γ∈Γ1

{gγ
α} ∪

⋃
γ∈Γ2

{fγ
α , g

γ
α}

)
,(7.1)

where L.h.X denotes the finite linear combinations of the vectors in X.
When Γ is an infinite set, the right hand side of (7.1) is dense in the left
hand side with respect to the graph norm.

Proof. — Define an operator

T : D(Hφ)/D(Lφ) −→
⊕
γ∈Γ

D(Hγ,1
αγ

)/D
(
Lγ,1

αγ

)
,
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by
T

(
[u]

)
=

⊕
γ∈Γ

[
χγ(Φγ)−1u

]
,

where [ . ] denotes the equivalence class. We can check that T is well-defined,
bĳective and bicontinuous, in a similar way to [27, Lemma 5.6]. Moreover,
it is known that

D(Hγ,1
αγ

)/D(Lγ,1
αγ ) =


L.h. {[fγ,1

αγ
]} (αγ = 0),

L.h. {[gγ,1
αγ

]} (αγ = 1),

L.h. {[fγ,1
αγ

], [gγ,1
αγ

]} (0 < αγ < 1).

The case αγ = 0 is (essentially) given in [2, Chapter I.5], and the case α = 1
is reduced to the case α = 0 by the unitary transform Uu = e−iθγu. The
case 0 < αγ < 1 is given in [15] or [27, Lemma 5.15]. �

7.2. Strong resolvent continuity for the perturbation
of δ magnetic fields

We shall prove the strong resolvent continuity via the following elemen-
tary lemma.

Lemma 7.2. — Let H be a Hilbert space. Let An (n = 1, 2, . . .),
A be self-adjoint operators on H. Then, the following two conditions are
equivalent:

(i) An → A in the strong resolvent sense.
(ii) There exist linear operators Tn and an operator core D for A such

that TnD ⊂ D(An) and for every u ∈ D

Tnu→ u, AnTnu→ Au in H.

The proof is quite elementary, so we shall omit it. The assertion (ii) ⇒ (i)
in the case Tn = Id is well known (see Reed-Simon [30, Theorem VIII.25]).

Let K be a positive integer. Let F be the space of all the pairs (Γ, α),
where Γ = (γk)K

k=1 is a sequence of K distinct complex numbers, and
α = (αk)K

k=1 is a [0, 1]-valued sequence. Define a metric d on F by

d
(
(Γ, α), (Γ′, α′)

)
=

( K∑
k=1

(
|γk − γ′k|2 + |αk − α′k|2

)) 1
2

for (Γ, α), (Γ′, α′) ∈ F , where Γ′ = (γ′k)K
k=1, α′ = (α′k)K

k=1. We often regard
a sequence Γ as a K-point subset of C. We denote

LΓ,α = LφΓ,α , LΓ,α = LφΓ,α , HΓ,α = HφΓ,α
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for (Γ, α) ∈ F , where

φΓ,α(z) =
Bz̄

2
+

K∑
k=1

αk

z − γk
·

Lemma 7.3. — Let O be an open set and (Γ, α) ∈ F with Γ ⊂ O.
Then, there exist an open neighborhood F ′ of (Γ, α), subspaces

{DΓ′,α′}(Γ′,α′)∈F ′

of L2(C) and linear operators {TΓ′,α′}(Γ′,α′)∈F ′ satisfying the following con-
ditions:

(i) DΓ′,α′ is an operator core of HΓ′,α′ and DΓ′,α′ ⊂ D0(HΓ′,α′), for any
(Γ′, α′) ∈ F ′.

(ii) TΓ′,α′ is a linear operator from DΓ,α to DΓ′,α′ for any (Γ′, α′) ∈ F ′.
Moreover, suppTΓ′,α′u ⊂ O ∪ suppu.

(iii) When (Γ′, α′) → (Γ, α) in F ′, we have

(7.2) TΓ′,α′u→ u, HΓ′,α′TΓ′,α′u→ HΓ,αu

in L2(C), for any u ∈ DΓ,α.

Proof. — Take (Γ, α) ∈ F . Put

K0 = {k = 1, . . . ,K | αk = 0},
K1 = {k = 1, . . . ,K | αk = 1},
K2 = {k = 1, . . . ,K | 0 < αk < 1}.

If K2 6= ∅, put A = min
k∈Γ2

min(αk, 1− αk) and if K2 = ∅, put A = 1.

Take R′ > 0 so that B3R′(γk) ⊂ O for k = 1, . . . ,K and {B3R′(γk)}K
k=1

are disjoint. Take a small positive number R < min(A,R′) (determined
later) and put F ′ = {(Γ′, α′) ∈ F | d((Γ′, α′), (Γ, α)) < R}.

We shall construct diffeomorphisms {FΓ′,α′}(Γ′,α′)∈F ′ on C satisfying

FΓ′,α′(z) = z for z ∈ C \
K⋃

k=1

B3R′(γk),(7.3)

FΓ′,α′(z) = z − γk + γ′k for z ∈ BR′(γk),(7.4) ∥∥∂`
x∂

m
y (FΓ′,α′(z)− z)

∥∥
∞ 6 C`md

(
(Γ, α), (Γ′, α′)

)
(7.5)

for any (Γ′, α′) ∈ F ′ and `,m = 0, 1, 2, . . ., where C`m is a positive constant
independent of (Γ′, α′). For this purpose, take a smooth function η on R1
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such that 0 6 η(r) 6 1 and

η(r) =

{
1 (r 6 R′),

0 (r > 2R′).

Define FΓ′,α′ by (7.3) and

FΓ′,α′(z) = z + η
(
|z − γk|

)
(γ′k − γk)

for z ∈ B3R′(γk), k = 1, . . . ,K. Then, FΓ′,α′ clearly satisfies (7.4) and (7.5).
If we take R sufficiently small, we see that FΓ′,α′ is a diffeomorphism by
the Hadamard inverse function theorem.

For (Γ′, α′) ∈ F ′ and k = 1, . . . ,K, define

Φk
Γ′,α′(z) = exp i Im

∫ z

γ′
k

(
− Bγ̄ ′k

2
−

∑
` 6=k

α′`
w − γ′`

)
dw.

The function Φk
Γ′,α′ is single-valued, smooth and satisfies in B3R′(γ′k)

(7.6) LΓ′,α′Φk
Γ′,α′ = Φk

Γ′,α′L
γ′k,1

α′
k
.

Let us apply Lemma 7.1 with the above R and {Φk
Γ′,α′}K

k=1. Define a core
DΓ′,α′ for HΓ′,α′ by

DΓ′,α′ = L.h.
( ⋃

k∈K0

{fγ′k
α′

k
} ∪

⋃
k∈K1

{gγ′k
α′

k
} ∪

⋃
k∈K2

{fγ′k
α′

k
} ∪ {gγ′k

α′
k
}
)
⊕C∞

0 (C \ Γ′).

For (Γ′, α′) ∈ F ′, define a linear operator TΓ′,α′ from DΓ,α to DΓ′,α′ by

TΓ′,α′

( ∑
k∈Γ0

ckf
γk
αk

+
∑
k∈Γ1

dkg
γk
αk

+
∑
k∈Γ2

(ckfγk
αk

+ dkg
γk
αk

) + ξ
)

=
∑
k∈Γ0

ckf
γ′k
α′

k
+

∑
k∈Γ1

dkg
γ′k
α′

k
+

∑
k∈Γ2

(ckf
γ′k
α′

k
+ dkg

γ′k
α′

k
) + ξ ◦ F−1

Γ′,α′ ,

where ck and dk are constants and ξ ∈ C∞
0 (C \ Γ).

We shall check that TΓ′,α′ satisfies the desired properties. The inclu-
sion suppTΓ′,α′u ⊂ O ∪ suppu holds by definition. Since the functions
f

γ′k
α′

k
, gγ′k

α′
k

and FΓ′,α′ are smooth with respect to (Γ′, α′) except γ′k 6= z, the
convergence (7.2) clearly holds pointwise almost everywhere. By the dom-
inated convergence theorem, it suffices to show that the functions TΓ′,α′u

and HΓ′,α′TΓ′,α′u are bounded uniformly with respect to (Γ′, α′). By (7.6),
it suffices to show f

γ′k,1

α′
k

, gγ′k,1

α′
k

, Hγ′k,1

α′
k
f

γ′k,1

α′
k

and H
γ′k,1

α′
k
g

γ′k,1

α′
k

are uniformly
bounded. This can be done by a straightforward calculation using the po-
lar coordinate. Put

r = |z − γ′k|, θ = arg(z − γ′k), a = αγ′
k
, χ = χγ′

k
.
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According to [15, section II], we have

(7.7) H
γ′k,1

α′
k

= −1
r
∂rr∂r +

1
r2

(1
i
∂θ + a+

Br2

2

)2

.

Thus we have

|fγ′k,1

α′
k
| = χra 6 M,∣∣Hγ′k,1

α′
k
f

γ′k,1

α′
k

∣∣ 6 (2a+ 1)|∂rχ| ra−1 +
(
|∂2

rχ|+Ba
)
ra + 1

4B
2χra+2

6 3m−1C1 + (C2 +B)M + 1
4B

2M3,

where M = max
(

1
2R, 1

)
, m = min

(
1
3R, 1

)
, C1 = sup |∂rχ|, C2 = sup |∂2

rχ|.
The estimates for gγ′k,1

α′
k

and H
γ′k,1

α′
k
g

γ′k,1

α′
k

can be done similarly. �

Corollary 7.4. — HΓ′,α′ → HΓ,α in the strong resolvent sense as
(Γ′, α′) → (Γ, α) in F .

Corollary 7.5. — For any λ ∈ σ(HΓ,α),

lim
(Γ′,α′)→(Γ,α)

dist
(
σ(HΓ′,α′), λ

)
= 0.

Proof. — This can be easily proved by constructing approximating eigen-
functions using the operator TΓ′,α′ . �

7.3. Gathering to a point

Next we consider the case some points are gathering to a point. For a
sequence Γ = (γk)K

k=1 and ε > 0, we denote

εΓ = (εγk)K
k=1.

Lemma 7.6. — Let (Γ, α) ∈ F . Then, for any n = 1, 2, . . ., we have

(7.8) lim
ε↓0

dist
(
σ(HεΓ,α),

{
En + 2B frac(α1 + · · ·+ αK)

})
= 0.

Proof. — Let R = maxk=1,...,K |γk| and β = frac(α1+· · ·+αK). If β = 0,
then the assertion is trivial since σ(HεΓ,α) contains all the Landau levels
by [27, Theorem 1.1 (i)].

Assume 0 < β < 1. For ε > 0 and |z| > εR, put

Φε(z) = exp i Im
∫ z

ε(R+1)

( β
w
−

K∑
k=1

αk

w − εγk

)
dw,

ANNALES DE L’INSTITUT FOURIER



SCHRÖDINGER OPERATORS WITH RANDOM δ MAGNETIC FIELDS 683

where the integral is done along a smooth curve from ε(R+1) to z contained
in the region {|z| > εR}. The function Φε is single-valued, smooth and
satisfies in {|z| > εR}

(7.9) LεΓ,αΦε = ΦεL0,1
β .

Put
un(z) = |z|βzn−1 e−

1
4 B|z|2 .

The function un is an eigenfunction of H0,1
β for the eigenvalue En + 2βB.

Take a smooth function χ = χ(r) on R satisfying 0 6 χ(z) 6 1 and

χ(r) =

{
0 (0 6 r 6 R),

1 (2R 6 r).

Put χε(z) = χ(|z|/ε) and uε = Φεχεun/‖Φεχεun‖. Using (7.9) and the
polar coordinate expression (7.7), we can show

(7.10)
∥∥(HεΓ,α −

(
En + 2βB)

)
uε

∥∥2
6 Cε2β+2n−4,

where C is a positive constant independent of ε. When n > 2, inequal-
ity (7.10) implies (7.8).

To treat the case n = 1, we introduce an auxiliary operator H−
εΓ,α as

in [27, Proposition 3.3] (notice that the Friedrichs extension is denoted
by HAB

N in [27]). The operator H−
εΓ,α is a self-adjoint extension of LεΓ,α

satisfying
HεΓ,α + 2B ' H−

εΓ,α |Ker(H−
εΓ,α

−B)⊥

(see [27, (8)]). Thus we have

(7.11) dist
(
σ(HεΓ,α), E1 + 2βB

)
= dist

(
σ(H−

εΓ,α), E2 + 2βB
)
.

Since suppuε ⊂ {|z| > εR}, we have uε ∈ D(H−
εΓ,α). Thus (7.10) for n = 2

holds even if we replace HεΓ,α by H−
εΓ,α. Combining this fact with (7.11),

we conclude (7.8) also holds for n = 1. �

8. Proof of Proposition 4.1

(i) Since |1/(z − γ) + 1/γ + z/γ2| = O(|γ|−3) locally uniformly with
respect to z in C \ Γ, we have∑

γ 6=0

αγ

∣∣∣ 1
z − γ

+
1
γ

+
z

γ2

∣∣∣ 6 C

∫ ∞

0

r−3dn(r)

= C
([
r−3n(r)

]∞
0

+ 3
∫ ∞

0

r−4n(r)dr
)
<∞,
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where we used (4.2). Thus the sum (4.3) converges. Then we can define σΓ,α

via the formula

(8.1) σΓ,α(z) = zα0 exp
( ∫ z

0

(
ζΓ,α(w)− α0

w

)
dw

)
.

The right hand side of (8.1) can be rewritten in the form (4.4), and then the
product converges. The formula (4.5) follows from (8.1). If we change the
path of integration from 0 to z, then σΓ,α is multiplied by some e2πiαγ ’s.
Thus |(d/dz)kσΓ,α| is independent of the choice of the branches.

(ii) (Outline) This assertion can be proved in a similar way to the proof
of [25, Theorem 2 in Chap. II, Sec. 1]. Only we have to do is to replace the
definition of the function n(r, θ1, θ2) by (4.1). Below we shall exhibit the
outline of the proof, and show how the lemmas in [25] should be modified
by this change. Without loss of generality, we assume 0 /∈ Γ, so α0 = 0.

Lemma 8.1. — For any positive number H, any finite set Γ ⊂ C and
any sequence α = (αγ)γ∈Γ of positive numbers, there is a system of disks
in C, with the sum of the radii equal to 2H, such that for each point z
outside these disks we have∏

γ∈Γ

|z − γ|αγ >
(H

e

)n

,

where n =
∑

γ∈Γ αγ .

Outline of proof. — This is a generalization of the Cartan estimate [25,
Theorem 10 in Chap. 1, Sec. 7]. For X ⊂ C, put

n(X) =
∑

γ∈Γ∩X

αγ .

Put Γ0 = Γ, C0 = ∅. For j = 1, 2, . . ., define disks Cj = Brj (zj) by
the following inductive procedure: Put Γj = Γj−1 \ Cj−1. If Γj = ∅, the
procedure finishes. If Γj 6= ∅, let Cj be a disk having the largest radius
among the closed disks Br(z) satisfying

r =
H

n
n
(
Br(z) ∩ Γj

)
.

Since Γ is a finite set, this procedure must finish within finite steps, and
we obtain disks {Cj}J

j=1. Put Dj = B2rj (zj). Then the disks {Dj}J
j=1

have the desired properties. The equality
∑J

j=1 2rj = 2H holds by the

construction of {Cj}. For z ∈
(⋃J

j=1Dj

)c

, number the elements of Γ and α
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as |z−γ1| 6 · · · 6 |z−γK | and αk = αγk
. By a similar argument as in [25],(3)

we have

|z − γk| >
H

n

k∑
j=1

αj .

Thus we have
K∑

k=1

αk log |z − γk| >
K∑

k=1

αk

(
logH − log n+ log

k∑
j=1

αj

)
> n(logH − log n) +

∫ n

0

log xdx = n log
H

e
,

where we used the concavity of log x in the second inequality. �
We introduce the Weierstrass primary factors

G(u; 1) = (1− u)eu, G(u; 2) = (1− u)eu+ 1
2 u2

.

When we consider the function logG(u; p) (p = 1, 2) in the sequel, we make
a cut [1,∞) in the complex u-plane, and take the branch logG(0; p) = 0.
So when we consider the function log σΓ,α(z) =

∑
γ∈Γ αγ logG( z

γ , 2), the
variable z belongs to the star region

C \
⋃
γ∈Γ

{tγ | t > 1}.

We denote r = |z|.

Lemma 8.2. — Assume (4.2) holds. For 0 < s < 1, put

fs(z) =
∏

|γ|<sr

G
( z
γ

; 1
)αγ

.

Then, there exist C1 > 0 and r1 = r1(s) > 0 such that∣∣ log fs(z)
∣∣ 6 C1sr

2

for r > r1, where C1 is independent of s, r.

The proof is similar to that of [25, Lemma 7 in Chap. 1, Sec. 17], in the
case ρ(r) = ρ = 2 and p = 1.

Lemma 8.3. — Assume that (4.2) holds. For t > 2, put

tf(z) =
∏

|γ|>tr

G
( z
γ

; 2
)αγ

.

(3) We show that every disk C = Br(z) with r > rj satisfies r > H
n

n(C ∩Γj), and apply
this fact to the disk B|z−γk|(z).
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Then, there exist C2 > 0 and r2 = r2(t) > 0 such that∣∣ log tf(z)
∣∣ 6 C2t

−1r2

for r > r2, where C2 is independent of t, r.

The proof is similar to that of [25, Lemma 8 in Chap. 1, Sec. 17], in the
case ρ(r) = ρ = 2 and p = 2.

Lemma 8.4. — Assume that Γ ⊂ (0,∞) and the limit ∆ = ∆(0, 2π)
(defined by (4.6)) exists. Put

(8.2) Vr(z) =
∏
|γ|6r

G
( z
γ

; 1
)αγ ∏

|γ|>r

G
( z
γ

; 2
)αγ

.

Then, for 0 < θ < 2π, we have

lim
r→∞

log Vr(r eiθ)
r2

= −∆
(

1
2 − i(θ − π)

)
e2iθ.

The limit is uniform with respect to θ ∈ [η, 2π − η], for any 0 < η < π.

The proof is similar to that of [25, Lemma 9 in Chap. 1, Sec. 17], in the
case ρ(r) = ρ = 2.

Lemma 8.5. — Suppose a discrete set Γ = {γk}∞k=1 and a sequence
α = (αγk

)∞k=1 satisfy (4.2). Assume Γ̃ = {γ̃k}∞k=1 satisfies

|γk| = |γ̃k|, | arg γk − arg γ̃k| < δ

for some δ > 0 independent of k. Let Vr(z) as in (8.2), and Ṽr(z) is (8.2)
with Γ replaced by Γ̃ and α

γ̃k
= αγk

. Then, for any η > 0 and ε > 0, there
exists δ0 > 0 dependent only on η, ε such that if δ < δ0 we have∣∣ log |Vr(z)| − log |Ṽr(z)|

∣∣ < εr2

for all z not in the union of some disks with upper linear density less than η.

The proof is similar to that of [25, Lemma 4 in Chap. 2, Sec. 3], in the
case ρ(r) = ρ = 2. In the proof, we use Lemmas 8.1, 8.2 and 8.3.

Lemma 8.6. — Let Γ, α satisfying the assumption (a) in (ii) of Propo-
sition 4.1. Let Vr as in (8.2). Then, there exists a C0-set C such that

(8.3) lim
r→∞,r eiθ 6∈C

log |Vr(r eiθ)|
r2

= −
∫ θ

θ−2π

(ψ − θ) sin 2(ψ − θ)d∆(ψ).

The convergence in (8.3) is uniform with respect to θ ∈ [0, 2π).
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The proof is similar to that of [25, Lemma 5 in Chap. 2, Sec. 3] and the
subsequent argument, with ρ(r) = ρ = 2. Roughly speaking, we approxi-
mate Γ by another set Γ̃ contained in a finite number of semi-infinite lines.
The asymptotics of the function Ṽr (the function Vr corresponding to Γ̃) is
obtained by Lemma 8.4, which leads to the conclusion combined with the
approximating argument using Lemma 8.5.

Using the above lemmas, we shall prove (ii) of Proposition 4.1. Notice
that

(8.4)
log |σΓ,α|

r2
= Re

( ∑
|γ|6r

αγ

2γ2
e2iθ

)
+

log |Vr(z)|
r2

·

The first term in the right hand side of (8.4) converges to Re(δΓ,α e2iθ) by
assumption (b). So the conclusion follows from Lemma 8.6. �
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