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TRANSGRESSION AND CLIFFORD ALGEBRAS

by Rudolf Philippe ROHR

Abstract. — Let W be a differential (not necessarily commutative) algebra
which carries a free action of a polynomial algebra SP with homogeneous generators
p1, . . . , pr. We show that for W acyclic, the cohomology of the quotient H(W/
< p1, . . . , pr >) is isomorphic to a Clifford algebra Cl(P, B), where the (possibly
degenerate) bilinear form B depends on W . This observation is an analogue of
an old result of Borel in a non-commutative context. As an application, we study
the case of W given by the quantized Weil algebra W(g) = Ug ⊗ Clg for g a
reductive Lie algebra. The resulting cohomology of the canonical Weil differential
gives a Clifford algebra, but the bilinear form vanishes on the space of primitive
invariants of the semi-simple part. As an application, we consider the deformed
Weil differential (following Freed, Hopkins and Teleman ).

Résumé. — Soit W une algèbre différentielle (pas forcément commutative) mu-
nie d’une action libre d’une algèbre de polynôme SP engendrée par des générateurs
homogènes p1, . . . , pr. Nous démontrons, que si W est acyclique, alors la cohomo-
logie du quotient H(W/ < p1, . . . , pr >) est isomorphe à une algèbre de Clifford
Cl(P, B), où la forme bilinéaire B (qui peut être dégénérée) dépend de W . Cette
observation est analogue à un ancien résultat de Borel, dans le contexte non commu-
tatif. Comme application nous étudions le cas où W est l’algèbre de Weil quantifiée,
W(g) = Ug ⊗ Clg avec g une algèbre de Lie réductive. La cohomologie résultante
de la différentielle de Weil canonique est une algèbre de Clifford, mais la forme
bilinéaire est nulle sur l’espace des invariants primitifs de la partie semi-simple.
Comme application nous considérons également la différentielle de Weil déformée
(introduite par par Freed, Hopkins and Teleman).

1. Introduction

Let G be a topological group, EG the total space of the universal bundle
and BG = EG/G the classifying space,

G ↪→ EG → BG.

Keywords: Lie algebras, Weil algebras, quantized Weil algebras, Clifford algebras,
Transgression.
Math. classification: 17B55, 15A75.



1338 Rudolf Philippe ROHR

In 1953 Borel [4] showed how to compute the cohomology of BG using
the fact that the cohomology of EG is trivial and the knowledge of the
cohomology of G. More precisely, if G has a homotopy type of a finite
CW-complex, and with appropriate assumptions on the field k, we have

H(G;k) ∼=
∧

< x1, ..., xr >k,

as algebras. Then, using Borel’s result, we have

H(BG;k) ∼= k[y1, ..., yr],

where the yi’s are the images of the xi’s under the transgression map (for
more details see [13], Theorem 3.27, Proposition 6.37 and Theorem 6.38).

In this article we are interested in the algebraic counterpart of Borel’s
argument. Let

SP ↪→ W −→ F := W/ < S+P >,

where

• (W,d) is a Z2-graded differential algebra;
• SP is a symmetric subalgebra of W generated by even central

coboundaries {p1, ..., pr} such that SP = k[p1, ..., pr] ⊂ Zeven(W )
⊂ W ;

• F := W/ < S+P > is the quotient of W by the ideal generated by
p1, . . . , pr.

Our main theorem (see §2) states that if W is a free SP -module and the
cohomology of W is trivial, we have an algebra isomorphism

H(F ) ∼= Cl(P,B).

Explicitly, this isomorphism is given by pi → [Cpi ]d ∈ H(F ), where Cpi ∈
W is a cochain of transgression, dCpi

= pi. Even though the Cpi
’s are de-

fined up to coboundary, the cohomology class [Cpi
]d is uniquely determined

by pi. The bilinear form B is given by

B(pi, pj) =
1
2
[Cpi · Cpj + Cpj · Cpi ] ∈ H(W ) ∼= k.

In §3 we apply this theorem to the classical and quantized Weil algebras.
Let g be a complex reductive Lie algebra, and Bg be a non degenerate
invariant bilinear form on g. The classical Weil algebra is given by W (g) =
Sg∗⊗

∧
g∗ and the quantized Weil algebra byW(g) = Ug⊗Cg. Using results

of Chevalley and Kostant, we have the following: W (g) is a free (Sg)g-
module and (Sg)g = C[p̃1, ..., p̃r] is generated by r = rank(g) homogeneous
polynomials, W(g) is a free Z(g)-module and Z(g) = C[p̂1, ..., p̂r], where

ANNALES DE L’INSTITUT FOURIER



TRANSGRESSION AND CLIFFORD ALGEBRAS 1339

p̂i is the image of p̃i under the Duflo isomorphism. We obtain the following
result (Theorem 3.3):

H(W (g)/ < ((Sg)g)+ >) ∼=
∧

< p̃1, ..., p̃r >k,

H(W(g)/ < (Z(g))+ >) ∼= Cl(< p̂1, . . . , p̂l >k, Bg)⊗
∧

< p̂l+1, . . . , p̂r >k,

where {p̂1, . . . , p̂l} is a basis of the center of g, and {p̂l+1, . . . , p̂r} are prim-
itive invariants of the semi-simple part of g.

We remark that on the semi-simple part, the cohomology is super-com-
mutative.

In §4, we follow Freed, Hopkins and Teleman [8] to introduce a deformed
Weil differential d′ = d+ ι(ξ), where d is the standard Weil differential and
ι(ξ) is the contraction by an element ξ of a Cartan subalgebra h of g. On
the h-invariant parts of W (g) and W(g), d′ is again a differential, and the
cohomology in the classical and quantized cases is trivial. We obtain the
following results (Theorem 4.2 and 4.3 ):

H(W (g)h/ < ((Sg)g)+) >∼=
∧

P,

H(W(g)h/ < (Z(g))+) >∼= Cl(P,B),

where the bilinear form B is given, in terms of a basis {ea}a of g, by

B(pi, pj) =
∑
a,b

∂pi

∂ea
(ξ)

∂pj

∂eb
(ξ)Bg(ea, eb).

Acknowledgments. I would like to thank Anton Alekseev, my thesis ad-
visor, to have suggested me this problem and for very helpful discussions.
I also tank Thierry Vust for very helpful discussions. This work was sup-
ported in part by the Swiss National Science Foundation.

2. Cohomology of W/ < S+P >

Throughout this section, (W,d) denotes a Z2-graded differential algebra
over a field k of characteristic zero. We assume that its cohomology is
trivial, i.e., H(W,d) ∼= k.

Consider the super-center Z(W ) ⊂ W , and its even part Zeven(W ) ⊂
Z(W ) ⊂ W . We choose r linearly independent elements {p1, . . . , pr} ⊂
Zeven(W ) such that

(1) the pi’s are coboundaries, i.e., ∀i there exist Cpi
∈ W such that

dCpi
= pi;

TOME 59 (2009), FASCICULE 4



1340 Rudolf Philippe ROHR

(2) the subalgebra of W generated by the pi’s and the unit is a sym-
metric algebra SP of the vector space P =< p1, . . . , pr >k, i.e.,
SP = k[p1, . . . , pr].

Let S+P be the augmented ideal of SP , i.e., S+P = ker(π), where
π : SP → k is the augmentation map sending all generators {pi}i=1...r to
zero. Note that the differential vanishes on SP and S+P .

Let < S+P > be the ideal in W generated by S+P . As the differential
vanishes on S+P , it descends to the quotient algebra W/ < S+P >, and we
obtain a new Z2-graded differential algebra (W/ < S+P >, d). The main
result of this section is the computation of its cohomology.

Remark 2.1. — The elements Cp are defined up to coboundaries, but
the classes [Cp]d ∈ H(W/ < S+P >, d) are uniquely determined by p. We
call Cp a cochain of transgression. This name comes from the classical Weil
algebra, see [11], Section 6.5.

Remark 2.2. — We can begin with a Z-graded algebra, by considering
the induced Z2-grading.

Example 2.3. — Consider a finite dimensional vector space V , and its
Koszul algebra K(V ) = SV ⊗

∧
V with its differential dK(V ) (given on

generators by dK(V )(1 ⊗ x) = x ⊗ 1 and dK(V )(x ⊗ 1) = 0, see Chapter
3 of [9]). It is well known that the Koszul complex is acyclic. We have
SV ⊂ Zeven(K(V )), and SV = k[v1, . . . , vn] where {v1, . . . , vn} is a basis of
V . Here we consider P = V . Then the quotient algebra K(V )/ < S+V >=∧

V is isomorphic to the exterior algebra and dK(V )/<S+V > = 0. This
implies that H(K(V )/ < S+V >) =

∧
V .

Remark 2.4. — As SP is contained in the even part of the super-center
of W , W has the structure of a Z2-graded SP -module. The action of SP

on W is given by the multiplication on W .

We remark that in the previous example the cohomology is given by the
exterior algebra of the vector space V . In general, we have the following
theorem:

Theorem 2.5. — Let W and SP be as above. If W is a free SP -module,
we have an algebra isomorphism

H(W/ < S+P >, d) ∼= Cl (P,B) .

Moreover, this isomorphism is given by P 3 p → [Cp]d ∈ H(W/ < S+P >),
where Cp is a cochain of transgression for p. The symmetric bilinear form

ANNALES DE L’INSTITUT FOURIER



TRANSGRESSION AND CLIFFORD ALGEBRAS 1341

B is given by

(2.1)
B : P × P → k,

(p, q) 7→ B(p, q) := 1
2

[
Cp · Cq + Cq · Cp

]
d
.

Remark 2.6. — The bilinear form is well defined;

(1) for p, q ∈ P , we have d[Cp, Cq] = 0. This implies that
[
[Cp, Cq]

]
d
∈

H(W,d) ∼= k;
(2) this definition does not depend on the choice of Cp and Cq. Indeed,

let C ′
p = Cp + da and C ′

q = Cq + db, then [C ′
p, C

′
q] = [Cp, Cq] +

[Cp, db]+[da, Cq]+[da, db] = [Cp, Cq]+d[Cp, b]+d[a,Cq]+d([a, db]).

Remark 2.7. — The bilinear form vanishes if the algebra is Z+-graded(1) .
Indeed, the elements Cp are of degree at least 1, hence [Cp, Cq] is of degree
at least 2.

Example 2.8. — As in the previous example, we consider the Koszul
algebra K(V ). But now, let G be a finite reflection group acting on V . Fol-
lowing Chevalley (see [5]), the invariant part (SV )G is generated by n =
dim(V ) algebraically independent homogeneous polynomials, i.e., (SV )G =
k[p1, ..., pn]. Moreover SV is a free (SV )G-module (see [14], Chapter 5,
Section 5.2). By applying Theorem 2.5 with P =< p1, ..., pn >k, we get
H(K(V )/ < ((SV )G)+ >∼=

∧
P (the bilinear form vanishes because the

Koszul algebra is Z+-graded), and a possible choice of cochains of trans-
gression is given by

(2.2) p → 1
deg(p) + 1

∂p

∂ea
⊗ ea, (2)

where {ea} is a basis of V .

Example 2.9. — As in the previous example, let V be a vector space, and
{p1, ..., pn} the generators of (SV )G . Here we consider a deformed version
of the Koszul algebra, K(V,BV ) = SV ⊗Cl(V,BV ), with BV some bilinear
form on V (not necessarily non degenerate). The differential is given on
generators by d(1 ⊗ x) = x ⊗ 1, whence d(x ⊗ 1) = 0. The cohomology of
K(V,BV ) is trivial. As in the previous example K(V,B) is a free (SV )G-
module, and then with P =< p1, ..., pn >k, we get H(K(V,BV )/ < S+P >)
∼= Cl(P,BV ). Moreover we have the same choice for cochains of transgres-
sion as in the previous example. This allows us to calculate the bilinear

(1) by Z+-graded we mean Z-graded with all components of degree less than 0 vanishing
(2) here we use the convention that we sum over a repeated index, i.e., in this case
∂p

∂ea
⊗ ea =

∑
a

∂p
∂ea

⊗ ea

TOME 59 (2009), FASCICULE 4



1342 Rudolf Philippe ROHR

form B:

(2.3) B(pi, pj) =
[ ∂pi

∂ea

∂pj

∂eb
BV (ea, eb)

]
d
.

Note that the bilinear form B vanishes, if each polynomial is of degree at
least 2.

All the statements of these two examples will be proved in the next
section.

The proof of Theorem 2.5 will proceed by induction and will use the
universal-coefficient theorem for the cohomology of a Z2-graded modules
(see Appendix A for the proof).

Theorem 2.10 (Universal-coefficient theorem for the cohomology of
Z2-graded modules). — Let W be a Z2-graded free R-differential module,
where R is a principal commutative unitary ring, and let M be a R-module.
Then we have the following exact sequences:

0 → Hi(W )⊗R M → Hi(W ⊗R M) → TorR(Hi+1(W ),M) → 0

where i = 0, 1, and these exact sequences split.
Moreover we have

Hi(W ⊗R M) = Hi(W )⊗R M ⊕ (hi)∗(TorR(Hi+1(W ),M)),

where (hi)∗ is the R-module homomorphism induced by the right inverse
of the restriction of the differential to W i.

To apply this theorem, we need the following SP -module.

Definition 2.11. — Let M = k and define a SP -module structure by

p · v = π(p)α,

where π : SP → k is the augmentation map.

With this definition we have

(W/ < S+P >, d) ∼= (W ⊗SP M,d⊗ 1).

To prove Theorem 2.5, we proceed by induction on the dimension of P ,
i.e., the number r of generators {pi}i=1,...,r of SP . For this we introduce
the following sequence {(Wi, di)}i=0,...,r of differential algebras :

(W0, d0) = (W,d) and (Wi, di) = (Wi−1 ⊗SPi M,di−1 ⊗ 1) r > i > 1,

where Pi =< pi >k. It is obvious that W ⊗SP M ∼= Wr, and if W is a free
SP -module, then Wi is a free SPj-module for all j > i.

We now take the first step, the calculation of the cohomology of (W1, d1).

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.12. — If W1 is a free SP1-module, we have H(W1, d1) ∼=
Cl (P1, B). Moreover the isomorphism is given by p1 → [Cp1 ]d1 ∈ H(W1, d1),
where dCp1 = p1.

Proof.
(1) We apply the universal-coefficient theorem 2.10 with W = W1,

R = SP1 and M as above. For i = 0 we have the exact sequence

0 // H0(W1)⊗SP1 M // H0(W1 ⊗SP1 M) // 0,

and for i = 1 we have

0 // H1(W1 ⊗SP1 M) // TorSP1(H
0(W1),M) // 0.

These two exact sequences imply that

H(W1) ∼= k⊕ TorSP1(H
0(W1),M).

We have to calculate the torsion product TorSP1(H
0(W1),M). For

this consider the following free resolution of SP1-module over H0

(W1) = k,

0 // SP1 · p1
� � ι // SP1 · 1 // k // 0,

where ι is the canonical injection. Now we make the tensor product
with M . We then obtain the exact sequence of SP1-modules

0 −→ TorSP1(k,M) −→ SP1 · p1 ⊗SP1 M

ι⊗1−→ SP1 · 1⊗SP1 M −→ k⊗SP1 M −→ 0

We have TorSP1(H
0(W1),M) ∼= Ker(ι ⊗ 1) = k · (p1 ⊗ 1). This

implies that
H(W1) ∼= k⊕ k · p1,

as k-vector spaces.
(2) To give the isomorphism we need to calculate (h1 ⊗ 1)(p1 ⊗ 1)),

where h1 is a right inverse of d1. Since dCp1 = p1, we can choose
(h1 ⊗ 1)(p1 ⊗ 1)) = (Cp1 ⊗ 1), and then

(h1)∗(TorSP1(H
0(W1),M)) = [Cp1 ⊗ 1]d1

∼= [Cp1 ]d1 ∈ H(W1, d1).

(3) The last step is to compute the algebra structure. since d1 is a
derivation on W1, the algebra structure descends to the cohomology,
i.e., [Cp1 ]d1 · [Cp1 ]d1 = [Cp1 · Cp1 ]d1 . Using the definition of the
bilinear form (2.1), we have [Cp1 · Cp1 ]d1 = B(p1, p1).

�

We now begin the proof of the main theorem.

TOME 59 (2009), FASCICULE 4



1344 Rudolf Philippe ROHR

Proof of Theorem 2.5. — We proceed by induction on the dimension r

of P . For r = 1 it is given by the above proposition.
(1) We use Theorem 2.10 with R = SPn+1 and W = Wn. We obtain

the following exact split sequences (i = 0, 1):

0 → Hi(Wn)⊗SPn+1 M → Hi(Wn+1) → TorSPn+1(H
i+1(Wn),M) → 0.

Then we have

Hi(Wn+1) = Cli(< [Cp1 ], ..., [Cpn ] >k, B)⊕ (hi)∗ TorSPn+1(H
i+1(Wn),M)

as SPn+1-modules. The next step consists in calculating the last
term of this equality.

(2) Let {[CpI
]} be a k-basis of Hi+1(Wn) (I = (i1, ...ik) with 1 6 i1 <

... < ik 6 n and CpI
= Cpi1

· ... ·Cpik
). We obtain the following free

exact sequence of SPn+1-modules over Hi+1(Wn) :

0 →
⊕

I

SPn+1 · pn+1CpI

ι→
⊕

I

SPn+1 · CpI
→ Hi+1(Wn) → 0,

and consequently TorSP1(H
i+1(W1),M) =

⊕
I k · (pn+1CpI

⊗ 1).
We have di

n+1(Cpn+1CpI
) = pn+1CpI

. This implies that

(hi)∗ TorSPn+1(H
i+1(Wn),M) =

⊕
I

k · ([Cpn+1 ][CpI
]),

and then finally

Hi(Wn+1) = Cli(< [Cp1 ], ..., [Cpn
] >k, B)⊕

⊕
I

k · ([Cpn+1 ] · [CpI
])

as SPn+1-modules.
(3) The last step is the algebra structure. We have for all k 6 n that[

[Cpn+1 , Cpk
]
]

= B(pn+1, pk).

This implies that H(Wn+1) injects in Cl(< [Cp1 ], ..., [Cpn+1 ] >k, B).
Since they have the same dimension, they are equal.

�

Remark 2.13. — This proof of Theorem 2.5 still applies if we assume
only that W is a free SPi-module for all i.

We now give an isomorphism theorem. Let WI and WII be two Z2-
graded differentials. Denote by SPI and SPII the choice of the subalgebra
of coboundaries elements in the even part of their center.

Theorem 2.14. — Let Φ : WI → WII be a graded differential vector
space homomorphism, such that:

ANNALES DE L’INSTITUT FOURIER
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(1) its restriction to SPI is an algebra isomorphism between SPI and
SPII , i.e., Φ : SPI

∼=−→ SPII ;
(2) it commutes with the SP -module structure, i.e., we have Φ(pz) =

Φ(p)Φ(z), ∀p ∈ SPI and ∀z ∈ WI .
Then it induces a vector space isomorphism in cohomology,

Φ̄ : H(WI/ < S+PI >)
∼=−→ H(WII/ < S+PII >).

If in addition Φ is an algebra homomorphism, then this is an algebra
isomorphism in cohomology.

Proof. — Firstly we remark that Φ induces a SP -module homomorphism

Φ̄ : H(WI/ < S+PI >) → H(WII/ < S+PII >)

in cohomology. Secondly let pII be a generator of SPII . Then there exists
pI ∈ PI such that Φ(pI) = pII . Let CpI

be a cochain of transgression for
pI , then Φ(CpI

) is a cochain of transgression for pII , i.e., Φ̄ is surjective
and hence bĳective.

For the last statement, we remark that if Φ is an algebra homomorphism,
then B(Φ(p),Φ(q)) = Φ(B(p, q)) for all p, q ∈ SPI . �

Remark 2.15. — In order for the homomorphism Φ to induce an al-
gebra isomorphism in cohomology, it suffices that the bilinear forms be
isomorphic.

3. Classical and quantized Weil algebras

In this section, g denotes a complex reductive Lie algebra. The classical
Weil algebra W (g) of g is a Z+-graded g-differential algebra (see [1]). We
recall its definition and some elementary facts. The classical Weil algebra
is defined by

W (g) = Sg∗ ⊗
∧

g∗.

The grading is given by degree 2 on generators of Sg∗ and degree 1 on
generators of

∧
g∗. Using an invariant non degenerate bilinear form we

identify g with its dual g ∼= g∗.
The g-differential algebra structure is given by the following three deriva-

tions:
the contraction g 3 x → ι(x) ∈ Der−1(W (g)), where ι(x)(a ⊗ b) =

a⊗ ι(x)b is the usual contraction on the exterior algebra,
the adjoint action g 3 x → L(x) ∈ Der0(W (g)), where L(x)(a ⊗ b) =

LSg(x)a ⊗ b + a ⊗ L∧
g(x)b is given by the usual adjoint action on the

TOME 59 (2009), FASCICULE 4



1346 Rudolf Philippe ROHR

symmetric and on the exterior algebra, i.e., the extension by derivation of
the Lie bracket,

the differential d ∈ Der1(W (g)) is defined on generators by

d(1⊗ x) = x⊗ 1 + 1⊗ λ(x),

where λ : g∗ →
∧2

g∗ is the dual of the Lie bracket.
These three derivations satisfy the following relations:

[L(x), L(y)] = L([x, y]), [L(x), ι(y)] = ι([x, y]),

the Cartan formula [ι(x), d] = L(x),

and all other brackets vanish.
The cohomology of the Weil algebra is trivial, i.e., H(W,d) ∼= C.
The quantized Weil algebra W(g) is an interesting deformation of W (g).

It is also a g-differential algebra, but is only Z2-graded. It is defined by

W(g) = Ug⊗ Cl(g, Bg),

with Bg some nondegenerate invariant bilinear form on g (see [1] or [2]).
Let {ei} and {ei} be a pair of dual bases of g, and fabc be the structure
constants, i.e., [ea, eb] = fabce

c.
In the quantized case the three derivations are given by commutators.

Let

gi = −1
2
fiabe

aeb,

D = ea ⊗ ea −
1
6
fabc1⊗ eaebec,

then

ι(ei) = ad(1⊗ ei), L(ei) = ad(ei ⊗ 1 + 1⊗ gi) and d = ad(D).

There is an isomorphism of g-differential algebras between the classical
and quantized Weil algebras, namely the quantization map Q : W (g) →
W(g). It is a Z2-graded vector space isomorphism which commutes with
the contraction, the adjoint action and the differential (see Section 6 of [1]
or Section 4.3 of [2]).

Remark 3.1. — It is well known that there exists an algebra isomor-
phism between (Sg)g and the center Z(g) of Ug, the Duflo isomorphism
(see [7]). The quantization map restricts to the Duflo isomorphism, on
(Sg)g ⊗ 1.

Remark 3.2. — The restriction of the quantization map to the exterior
algebra 1⊗

∧
g gives the usual Chevalley symmetrization map.

ANNALES DE L’INSTITUT FOURIER
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Let h be a Cartan subalgebra of g; we can consider Weil algebras W (h)
and W(h). In these two cases, the adjoint action vanishes and the dif-
ferential is less complicated. We have as differential algebra that they
are the Koszul algebras of h. More precisely we have W (h) = K(h) and
W(h) = K(h, Bh), where Bh is the restriction to h of Bg. Moreover for the
classical Weil algebra there exists a differential algebra homomorphism.
This is the Chevalley projection

ΦCh : W (g) → W (h) = K(h),

which is the restriction homomorphism. For the quantized case there is a
differential space homomorphism, the Harish-Chandra projection

ΦHC : W(g) →W(h) = K(h, Bh).

These two homomorphisms and the Duflo isomorphism give the following
commutative diagram of graded algebra isomorphisms:

(3.1) Z(g)

ΦHC ##FFFFFFFF
(Sg)gDufoo

ΦCh

��
ShW

where W is the Weyl group of g. Using the same generators of (Sh)W as
in Example 2.9, we obtain

(Sg)g = C[p̃1, ...p̃r],

Z(g) = C[p̂1, ...p̂r],

with the following relations:

ΦHC(p̂i) = p̃i, Duf(p̃i) = (p̂i), ΦCh(p̃i) = pi.

See Appendix B for more details about the Harish-Chandra and Cheval-
ley projections.

We give a description of these invariant polynomials. Let g = z ⊕ g′ be
the decomposition of g into its center z and its semi-simple part g′. On the
center we have S(z)z = C[z]. Then we can choose {p̃1, . . . , p̃l} to be a basis
of z, where l = dim(z). This gives

(Sg)g = C[p̃1, . . . , p̃l, p̃l+1, . . . p̃r],

where {p̃l+1, . . . p̃r} are the generators on the semi-simple part. Moreover
we can choose the polynomial p̃l+1 to be the Casimir polynomial, and
deg(pi) = mi + 1 where 1 = ml+1 6 ml+2 6 ... 6 mr. These integers are
the exponents of the Lie algebra g′.
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In the three cases elements of ShW , (Sg)g and Z(g) are coboundaries.
So a natural choice for the vector space P for the Weil algebras is:

for Weil algebras, PW (g) =< p̃1, ..., p̃r >C,
and for quantized Weil algebras, PW(g) =< p̂1, ...p̂r >C.
In [10], Kostant proved that Sg is a free module over (Sg)g and that

Ug is a free module over its center Z(g). This implies that W (g) is a free
module over (Sg)g and that W(g) is a free module over Z(g).

With this choice it is obvious that the hypotheses of Theorem 2.5 are
satisfied, and consequently the main results of this section are,

Theorem 3.3. — We have, as algebras, that
(1) H(W (g)/ < S+PW (g) >) ∼=

∧
PW (g),

(2) H(W(g)/ < S+PW(g) >) ∼= Cl(< p̂1, . . . , p̂l >C, Bg)⊗
∧

< p̂l+1, . . . ,

p̂r >C .

Remark 3.4. — A choice of cochain of transgression for the elements of
the semi-simple part of PW (g) is given in [11] Theorem 62. The quantiza-
tions of the cochains of transgression of W (g) are cochains of transgression
for W(g), i.e., Q(C

p̃
) = CQ(p̃)

.

Remark 3.5. — The algebra structure of the classical case is obvious.
Indeed the classical Weil algebra is Z+-graded.

Remark 3.6. — Using Theorem 2.14, we conclude that the Chevalley
projection ΦChW (g) → W (h) = K(h) induces an isomorphism in cohomol-
ogy, i.e.,

ΦCh : H(W (g)/ < S+PW (g) >)
∼=−→ H(K(h)/ < S+P >).

To conclude the proof of the theorem we have to establish the algebra
structure in the quantized case. For this we will prove that the Harish-
Chandra projection

ΦHC : W(g) →W(h) = K(h, Bh)

induces an algebra isomorphism in cohomology. Then with the statements
of Example 2.9, with G = W the Weil group of g and V = h, this finishes
the proof. But first we will prove all statements of Example 2.9. For this
we will construct an explicit homotopy operator. The Koszul differential is
given on generators by

d(1⊗ x) = x⊗ 1 and then d(x⊗ 1) = 0.

Define a derivation s on generators by

s(1⊗ x) = 0 and then s(x⊗ 1) = x.
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We have [d, s] = Id on generators . We want to show that the inclusion
of scalars i : C → K(V,BV ) and the augmentation map π : K(V,BV ) → C
(defined by sending generators to zero) are homotopy inverse. Since [d, s]
is a derivation, [d, s] + i · π is invertible on K(V,BV ), and we can define

(3.2) h = s · ([d, s] + i · π)−1.

This operator is the desired homotopy operator, i.e., we have [d, h] = id−
i · π.

Using the above homotopy operator on p ∈ P we obtain (d · h)p = p.
This implies that a choice for cochains of transgression is given by

p → h(p) =
1

deg(p) + 1
∂p

∂ei
⊗ ei ∈ SV ⊗ Cl(V,B).

This establishes (2.2). It is obvious that the bilinear form is given by (2.3).
With V = g the bilinear form vanishes on the semi-simple part. Indeed

all polynomials of {pl+1, . . . , pr} are of degree at least two. On the center
we have B(pi, pj) = Bg(pi, pj) (1 6 i, j 6 l).

The last step in the proof of Theorem 3.3 is to prove that the Harish-
Chandra projection induces an algebra isomorphism in cohomology.

Proposition 3.7. — The Harish-Chandra projection

Φ:
HCW(g) →W(h) = K(h, V )

satisfies the hypotheses of Theorem 2.14. Moreover it induces an algebra
isomorphism in cohomology.

Proof. — It satisfies hypothesis (a) because its restriction to Z(g) and
ShW is an algebra isomorphism. Using (B.2) we conclude that it satisfies
hypothesis (b). For the bilinear form, we have that cochains of transgression
are in the g-invariant part of W(g). But on the h-invariant part the Harish-
Chandra projection is an algebra homomorphism. Then we can conclude
that B(p, q) = B(ΦHC(p),ΦHC(q)) for all p, q ∈ W(g). This implies the
algebra isomorphism in cohomology. �

4. Deformation of the Weil differential

In [8], Freed, Hopkins and Teleman introduce a deformation of the Weil
differential in the quantized case. For this, fix an element ξ ∈ h. The defor-
mation of D is then given by

D′ = D − 1⊗ ξ.
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This provides a new even derivation d′ given by d′ = d− ι(ξ). Its square
is given by d′2 = −[d, ι(ξ)] = −L(ξ) (using Cartan’s formula). Hence it is
a differential on the kernel of L(ξ).

The main result of this section is to give results analogous to Theorem 3.3
and Example 2.9 for the deformed differential.

4.1. The case of the Koszul algebra, K(V,B)

Let {ea} be a basis of V . Decompose ξ in this basis, say ξ = ξaea. The
deformed differential is given on generators by

d′(1⊗ ea) = −ξa(1⊗ 1) + ea ⊗ 1 and d′(ea ⊗ 1) = 0.

Using the same derivation s as in the non deformed case, we get

[d′, s](1⊗ ea) = (1⊗ ea) [d′, s]((ea − ξa)⊗ 1) = (ea − ξa)⊗ 1.

Then in the new variables 1⊗ ea and ξa − ea ⊗ 1 we arrive at the usual
Koszul differential. We have, for the same homotopy operator h as in (3.2),

[d′, h] = I − i · π.

But the augmentation map π is now defined as sending (ea− ξa)⊗1 and
1⊗ ea to zero.

With this homotopy operator we conclude that the cohomology is trivial,
i.e., H(K(V,BV ), d′) ∼= k.

Let {p1, . . . pr} be the generators of S(V )W in Example 2.9. With the
deformed differential they are no longer coboundaries, since (d′ · h)pi =
pi − pi(ξ). But pi − pi(ξ) are coboundaries.

Then a good choice for the vector space P is P =< p1 − p1(ξ), ..., pr −
pr(ξ) >k. The new ring SP is isomorphic to the old one, thus K(V,BV ) is
now SP -free. But note that the new ideal S+P is not isomorphic the old
one. In the new case when we quotient we send pi − pi(ξ) to zero instead
of sending pi to zero.

We will now calculate the bilinear form (2.1). But first, with the ho-
motopy operators, we calculate cochains of transgression . The invariant
polynomials pi are given in the variables ea. But to use the homotopy op-
erator we make a change of variables by setting ua = ea− ξa. Using Taylor
series we have

p = p(ξ) + ua
∂p

∂ea
(ξ) +

1
2
uaub

∂2p

∂ea∂eb
(ξ) + . . . ,
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whence for cochains of transgression,

Cp = ea ⊗
∂p

∂ea
(ξ) + ea ⊗ ub

∂2p

∂ea∂eb
(ξ) + . . . .

This gives for the bilinear form

(4.1) B(p− p(ξ), q − q(ξ)) =
∂p

∂ea
(ξ)

∂q

∂eb
(ξ)BV (ea, eb).

Then using Theorem 2.5 we obtain the following result.

Proposition 4.1. — The cohomology of (K(V,BV ), d′) is given by

H((K(V,BV ), d′)/ < S+P >) ∼= Cl(P,B).

4.2. The classical case

In the classical case, the deformation of the Weil differential is again a
differential if we restrict to the h-invariant part. For this reason we will
restrict to W (g)h. Using the same notations as in the previous section we
have on a basis of g

d′(1⊗ ea) = ea ⊗−ξa − 1⊗ λ(ea).

This is more complicated than for the Koszul algebra. But there exists
a change of variables which brings us back to a Koszul algebra. For more
details see Chapters 3.1 and 3.2 of [9].

In the new variables za := ea ⊗ 1− 1⊗ λ(ea) we have

d′za = −L(ξ)(1⊗ ea) and d′(1⊗ ea) = za − ξa.

We will now give a homotopy operator to prove that the cohomology of
W (g)h is trivial.

Define a derivation s on generators by s(1⊗ ea) = za. We obtain

[d′, s](za − ξa) = za − ξa and [d′, s](1⊗ ea) = 1⊗ ea.

Now as before, h = s · ([d′, s] + i · π)−1 is a homotopy operator, i.e.,
[d′, h] = I− i ·π. But here the augmentation map π sends 1⊗ea and za−ξa

to zero. This implies that H(W (g)h, d′) ∼= C.
Note that this augmentation map can also be defined by sending ea ⊗

1− ξa and 1⊗ ea to zero.
Now as for the Koszul algebra, the p̃i are not coboundaries, but the

p̃i − p̃i(ξ) are. Indeed, we have [d′, h](p̃i − p̃i(ξ)) = (d′ · h)(p̃i − p̃i(ξ)) =
p̃i − p̃i(ξ). Then we choose PW (g) =< p̃1 − p̃1(ξ), ..., p̃r − p̃r(ξ) >k. It is
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obvious that W (g)h is SPW (g)-free. Indeed we have Sg = SPW (g) ⊗ A,
which implies that W (g)h = SPW (g) ⊗ (A⊗

∧
g)h.

Using Theorem 2.5 we obtain

Theorem 4.2. — The cohomology of (W (g)h/ < S+
W (g)P >, d′) is given

by

H(W (g)h/ < S+
W (g)P >) ∼=

∧
PW (g).

The bilinear form vanishes. Indeed, this can be seen either by using the
Z+-grading for which the degree of 1⊗ea is one and the degree of ea⊗1−ξa

is two, or the Chevalley projection which induces an algebra isomorphism
in cohomology, i.e., Φ̄Ch : H(W (g)h/ < S+

W (g)P >)
∼=−→ H(K(h)) ∼=

∧
P .

4.3. The quantized case

In the quantized case the deformation of the Weil differential is again
a derivation on the h-invariant part. The quantization map induces a Z2-
graded vector space isomorphism in cohomology:

Q : H(W (g), d′)
∼=−→ H(W(g), ad(D′)).

Using the results of the preceding subsection we have

H(W(g)h, ad(D′)) ∼= C,

p̂i − p̃i(ξ) are coboundaries.

Consequently we define the SPW(g)-module structure by PW(g) =< p̂1−
p̃1(ξ), ...p̂r − p̃r(ξ) >k. It is obvious that W(g)h is SPW(g)-free. We remark
that on the h-invariant part the Harish-Chandra projection is an algebra
homomorphism. Hence it induces an algebra isomorphism in cohomology.
Using Proposition 4.1 and Theorem 2.5 we have

Theorem 4.3. — We have, as algebras,

H(W(g)h/ < S+PW(g) >, ad(D′)) ∼= Cl(PW(g), B),

where B is the same bilinear form as for the Koszul algebra, cf. (4.1), with
pi = ΦHC(p̂i).
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Appendix A. Universal-coefficient theorem for
cohomology of Z2-graded modules

In this appendix we prove Theorem 2.10. It is a Z2-graded version of the
universal theorem for homology of Z-graded modules which can be found
in [16] Chapter 5, Section 2 (3) . We call it the Universal-coefficient theorem
for cohomology of Z2-graded modules, because in the Z2-graded cases there
is no distinction between cohomology and homology.

Throughout this section R denotes a commutative unitary ring, W a
differential Z2-graded R-module and d its differential. We suppose that the
grading of elements in the ring R is even. Then we have W = W 0 ⊕W 1,
where W 0 is the R-module of the even elements of W and W 1 is the R-
module of its odd elements, and the following diagram for the differential:

W 1

d ++
W 0

d

kk .

The proof of this theorem is in three parts. In the first and second parts
we prove two exact sequences from which we deduce the exact sequence of
the theorem. And in the last part we give a right inverse to Hi(W⊗RM) →
TorR(Hi(W ),M) and then prove that the exact sequence splits. Before we
beginning the proof we will fix some notation and give some elementary
facts.

Consider (i = 0, 1) the coboundaries spaces

B = Im(d) and W i ⊃ Bi := B ∩W i = {da|a ∈ W i−1},

and

Z = Ker(d) and W i ⊃ Zi := Z ∩W i = {a ∈ W i|da = 0}.

Since the differential module W is Z2-graded its cohomology inherits the
grading. We have

H(W ) = H0(W )⊕H1(W ), where Hi(W ) = Zi/Bi.

Considering B and Z as differential R-modules with vanishing differential
we have the exact sequences of differential R-modules (i = 0, 1)

(A.1) 0 // Zi � � αi

// W i
di

// Bi+1 // 0 ,

where αi is the canonical injection and di the restriction of d to W i.

(3) in [16] the torsion product is denoted by A ∗R B = TorR(A, B)
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Let M be a R-module. We can regard W⊗RM as a differential Z2-graded
R-module with differential d⊗ 1. Now we will consider the tensor product
of the above exact sequence with M . If in the exact sequence (A.1) the
R-module Bi is free then the differential R-modules sequence

0 // Zi ⊗R M
� � α

i⊗1 // W i ⊗R M
di⊗1 // Bi+1 ⊗R M // 0

is exact (see Lemma 3.3 in Ch. XVI of [12]). From this we obtain the exact
"ring" of R-modules
(A.2)

Z0 ⊗R M
(α0⊗1)∗// H0(W ⊗R M)

(d0⊗1)∗

''OOOOOOOOOOO

B0 ⊗R M

* 


q0⊗1
77oooooooooooo

B1 ⊗R M
jJ

q1⊗1wwoooooooooooo

H1(W ⊗R M)
(d1⊗1)∗

ggOOOOOOOOOOO

Z1 ⊗R M
(α1⊗1)∗
oo

It is a Z2-graded version of the usually long exact sequence which we
meet in the Z-graded case (see Section 1, Chapter 5 of [16]).

We conclude these preliminaries by giving the torsion product between
H(W ) and M . For this, we consider the exact sequence of R-modules

0 // Bi
qi

// Zi // // Hi(W ) // 0 .

If W is a free differential R-module, i.e., W 0 and W 1 are free R-modules,
and R is a principal ring, then the previous exact sequence is a free pre-
sentation of Hi(W ). Indeed Zi and Bi are free R-modules (Corollary 3,
Ch. VII.14 of [15]). Then by the characteristic property of the torsion prod-
uct we have the exact sequence of R-modules
(A.3)

0 → TorR(Hi(W ),M) → Bi ⊗A M
qi⊗1−→ Zi ⊗R M → Hi(W )⊗R M → 0.

Moreover we have TorR(Hi(W ),M) = Ker(qi ⊗ 1).

Proof of Theorem 2.10.

(1) From (A.2) we get the following exact sequence (4) :

0 // coker(qi ⊗ 1) // Hi(W ⊗R M) // ker(qi+1 ⊗ 1) // 0.

(4) coker(qi ⊗ 1) = (Zi ⊗R M)/ Im(qi ⊗ 1)
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(2) From the exact sequence (A.3), we have coker(qi⊗ 1) = Hi(W )⊗R

M and ker(qi ⊗ 1) = TorR(Hi(W ),M). Thus we obtain

0 → Hi(W )⊗R M → Hi(W ⊗R M) → · · · → TorR(Hi+1(W ),M) → 0,

where Hi(W ) ⊗R M → Hi(W ⊗R M) is the map induced by the
bilinear map Hi(W )×M → Hi(W⊗RM), which assigns to ([w],m)
the class [w ⊗m], where w is a cocycle of W i and m ∈ M .

(3) Thirdly we will give a right inverse to Hi(W⊗RM) → TorR(Hi(W ),
M). Since Bi+1 is a free R-module and Im(di) = Bi+1, there exists
a R-module homomorphism hi : Bi+1 → W i such that di ◦hi = Id,
i.e., which is a right inverse of di. Then the map

hi ⊗ 1 : Bi+1 ⊗R M → W i ⊗R M

sends ker(qi+1 ⊗ 1) into a cocycle of W i ⊗R M , and induces the
desired map

(A.4) (hi)∗ : TorR(Hi+1(W ),M) → Hi(W ⊗R M).

Remark that the map hi is not unique but h∗i is unique.
�

Remark A.1. — The theorem still applies if we assume only that R is
a commutative unitary ring and Zi and Bi are projective R-modules.

Appendix B. The projections of Harish-Chandra
and of Chevalley

In this appendix we recall the definition and some properties of the
Harish-Chandra and Chevalley projections. First some notation: g denotes
a reductive Lie algebra, h its Cartan subalgebra, Bg some invariant non
degenerate bilinear form. Let g = n− ⊕ g⊕ n+ be its triangular decompo-
sition.

We begin with the Chevalley projection which we encountered in the
classical case, and then we treat the Harish-Chandra projection which we
met in the quantized case.

B.1. Chevalley projections

For the symmetric algebra of g we have the decomposition Sg = Sh ⊕
(n−Sg + Shn+). This allow us to define an algebra homomorphism by the
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projection on the first term, i.e., ΦSg
Ch : Sg → Sh. This is the original

Chevalley projection. This projection can be viewed as the restriction ho-
momorphism.

We recall Theorem 7.3.7 of [6], which says that it restricts to a graded
algebra isomorphism ΦSg

Ch : (Sg)g
∼=−→ ShW .

After the symmetric algebra we have the exterior algebra. We have the
decomposition

∧
g =

∧
h⊕(n−

∧
g+

∧
gn+). Then we define the Chevalley

projection as the projection on the first term, i.e., Φ
∧

g

Ch :
∧

g →
∧

h. It is
an algebra homomorphism and can be viewed as the restriction homomor-
phism. But in this case the non trivial invariants are mapped to zeros (see
[3], Corollary 5.4.6).

For the Weil algebra we define ñ+ = 1⊗n+ +n+⊗1 and similarly for ñ−.
We have the decomposition W (g) = W (h) ⊕ (ñ−W (g) + ñ+W (g))). This
allows us to define the Chevalley projection ΦCh : W (g) → W (h). It is
clearly an algebra homomorphism and can be viewed as the restriction ho-
momorphism. It is given by the tensor product of the Chevalley projections

in the symmetric and exterior algebras, i.e., ΦCh = ΦSg
Ch ⊗ Φ

∧
g

Ch . Moreover
it is a graded differential algebra homomorphism.

B.2. Harish-Chandra projections

Let Ug be the enveloping algebra of g. Following Chapter 7.4 of [6], we
have the decomposition Ugh = Sh ⊕ L where L = Ugn+ ∩ Ugh is a two
sided ideal. This can by generalized by Ug = Sh⊕(n−Ug+Ugn+). Then we
have a projection κ : Ug → Sh. Let γ the automorphism of the Sh algebra
which transforms the polynomial function p into λ → p(λ− ρ), where ρ is
the half-sum of positive roots. The composition ΦUg

HC = γ ◦κ is the Harish-
Chandra projection for the enveloping algebra. Note that in general it is
not an algebra homomorphism. But on the subspace h-invariant subspace
it is.

We recall Theorem 7.4.5 of [6], which says that the Harish-Chandra pro-
jection restricts to an algebra isomorphism ΦUg

HC : Z(g)
∼=→ ShW . With the

Chevalley projection and the Duflo isomorphism we obtain the following
commutative diagram of graded algebra isomorphisms:

(B.1) Z(g)

ΦUg
HC $$HH

HH
HH

HH
H

(Sg)gDufoo

ΦSg
Ch

��
W (h)W
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Moreover we have ∀p ∈ Z(g) and ∀q ∈ Ug the identity

(B.2) ΦUg
HC(p · q) = ΦUg

HC(p) · ΦUg
HC(q).

Indeed, let p = p̃ + p̄ be the decomposition of p, where p̃ = ΦUg
HC(p) and

p̄ ∈ n−Ug + Ugn+. And let q = n−hn+ be the decomposition of q in the
PBW basis of Ug, where n−, h and n+ are products of respectively negative
nilpotent elements, Cartan’s subalgebra elements and positive nilpotent
elements. In this notation we have p ·q = n−hp̃n+ +n−hp̄n+. In order that
the Harish-Chandra projection not vanish, we must have n− = n+ = 1. In
this case we obtain ΦUg

HC(p ·q) = h · p̃ = ΦUg
HC(p) ·ΦUg

HC(q). In the other case,
both sides vanish.

After the enveloping algebra we have the Clifford algebra. We have the
decomposition Clg = Clh ⊕ (n−Clg + Clgn+). This defines the Harish-
Chandra projection ΦClg

HC : Clg → Clh. The restriction to the h-invariant
part gives an algebra homomorphism (see [3], Chapter 5).

For the quantized Weil algebra, we have the decomposition W(g) =
W(h)⊕ (n−W(g) +W(g)n+). This defines the Harish-Chandra projection
ΦHC : W(g) →W(h). Note that in general this is not an algebra homomor-
phism, but on the h invariant part is it. As in the classical case, we have
that ΦHC = ΦUg

HC ⊗ ΦClg
HC (see Section 7 of [2]). Moreover it is a graded

differential space homomorphism.
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