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GEOMETRIC INVARIANT THEORY AND
GENERALIZED EIGENVALUE PROBLEM II

by Nicolas RESSAYRE (*)

Abstract. — Let G be a connected reductive subgroup of a complex connected
reductive group Ĝ. Fix maximal tori and Borel subgroups of G and Ĝ. Consider
the cone LR◦(G, Ĝ) generated by the pairs (ν, ν̂) of strictly dominant characters
such that V ∗

ν is a submodule of Vν̂ . We obtain a bijective parametrization of the
faces of LR◦(G, Ĝ) as a consequence of general results on GIT-cones. We show
how to read the inclusion of faces off this parametrization.
Résumé. — Soit G un sous-groupe fermé réductif et connexe d’un groupe ré-

ductif complexe et connexe Ĝ. On fixe des tores maximaux et des sous-groupes de
Borel de G et Ĝ. De cette manière les représentations irréductibles de G et Ĝ sont
paramétrées par des poids dominants. On s’intéresse au cône LR◦(G, Ĝ) engendré
par les paires (ν, ν̂) de poids dominants réguliers tels que V ∗

ν est un sous-G-module
de Vν̂ . Nous obtenons ici une paramétrisation bijective des faces de LR◦(G, Ĝ), en
étudiant plus généralement les GIT-cônes des G-variétés projectives. Nous mon-
trons aussi comment les relations d’inclusions entre les faces de LR◦(G, Ĝ) se lisent
sur notre paramétrisation.

1. Introduction

The ground field K is assumed to be algebraically closed of characteristic
zero. Consider a connected reductive group G acting on a projective variety
X. To any ample G-linearized line bundle L onX we associate the following
open subset Xss(L) of X:

Xss(L) =
{
x ∈ X : ∃n > 0 and σ ∈ H0(X,L⊗n)G such that σ(x) 6= 0

}
.

The points of Xss(L) are said to be semistable with respect to L. There
exists a good quotient π : Xss(L) −→ Xss(L)//G. A natural question is:

Keywords: Branching rule, generalized Horn problem, Littlewood-Richardson cone, GIT-
cone.
Math. classification: 20G05, 14L24.
(*) The author was partially supported by the French National Research Agency (ANR-
09-JCJC-0102-01).
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What are the L’s with nonempty set Xss(L) ?

Let us fix a free finitely generated subgroup Λ of the group PicG(X) of
G-linearized line bundles on X. Set ΛQ = Λ⊗Z Q. Note that the classes of
ample G-linearized line bundles in Λ generate an open convex cone Λ++

Q
in ΛQ. Define the G-ample cone ACGΛ (X) as the locally closed subcone
generated by the ample L ∈ Λ such that Xss(L) is not empty. By [5] (see
also [14]), ACGΛ (X) is characterized as a subset of Λ++

Q by finitely many
rational linear inequalities: we will say that ACGΛ (X) is a closed convex
rational polyhedral cone in Λ++

Q . We are interested in the faces of ACGΛ (X);
that is, the subcones obtained by intersecting ACGΛ (X) with a supporting
hyperplane.
The following statement associates a G-variety to any nonempty face of

ACGΛ (X). It will be useful to prove the injectivity of our parametrization
of the faces of LR◦(G, Ĝ).

Proposition 1.1. — Let F be a face of ACGΛ (X). Let L and L′ be two
points in the relative interior of F . Let π and π′ denote the corresponding
quotient maps.
Then, for general ξ ∈ Xss(L)//G and general ξ′ ∈ Xss(L′)//G), the G-

varieties π−1(ξ′) and π−1(ξ) are isomorphic.

Let L0 be any point in the relative interior of a face F of ACG(X). The
local geometry of ACGΛ (X) along F is described by the convex cone CF
generated by the vectors p− L0 for p ∈ ACGΛ (X). This cone only depends
on F and not on L0.
To describe CF , we introduce some notation useful to describe. Consider

the quotient π : Xss(L0) −→ Xss(L0)//G. Let x be any point in Xss(L0)
with closed orbit in Xss(L0); then the isotropy subgroup Gx is reductive.
Consider the set V of points y ∈ X such that the closure of the orbit
Gx.y contains x. Then V is an affine closed Gx-stable subvariety of Xss(L0)
containing {x} as its unique closed Gx-orbit. Moreover, the fiber π−1(π(x))
is isomorphic to the fiber product G×Gx V . Let X(Gx) denote the group of
characters of Gx. Consider the convex cone Cx in X(Gx)⊗Q generated by
the weights of Gx acting on the algebra of regular functions on L. Finally,
we consider the linear map µ : ΛQ −→ X(Gx) ⊗ Q, that associates with
any L the weight of the action of Gx on Lx.

Proposition 1.2. — With above notation, we have:

CF = µ−1(Cx).

ANNALES DE L’INSTITUT FOURIER
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Proposition 1.2 is closely related to R. Sjamaar’s description of the local
structure of the moment polytope in the symplectic setting (see [16]). In
Sjamaar’s situation, G◦x is a torus which simplifies the description of Cx.

Now, assume that G is embedded in another connected reductive group
Ĝ. We fix maximal tori T ⊂ T̂ and Borel subgroups B ⊃ T and B̂ ⊃ T̂

of G and Ĝ. Consider the complete flag variety B = G/B × Ĝ/B̂ endowed
with the diagonal G-action. We set Λ = PicG(B) and denote ACGΛ (B) by
ACG(B). To any (ν, ν̂) ∈ X(T ) × X(T̂ ) we associate the usual G × Ĝ-
linearized line bundle L(ν,ν̂) over B: this defines an isomorphism X(T ) ×
X(T̂ ) ∼−→ PicG×Ĝ(B). We also consider the map rG : PicG×Ĝ(B) −→
PicG(B) obtained by restricting the action to G× Ĝ to G. Note that L(ν,ν̂)
is ample if and only if ν and ν̂ are strictly dominant. Let us denote by
LR◦(G, Ĝ) the set of pairs (ν, ν̂) of rational strictly dominant weights such
that V ∗nν is a G-submodule of Vnν̂ for some positive n. A direct application
of the Borel-Weil theorem shows that (ν, ν̂) ∈ LR◦(G, Ĝ) if and only if
rG(L(ν,ν̂)) ∈ ACG(B).
The interior of ACG(B) is nonempty if and only if no nontrivial con-

nected normal subgroup of G is normal in Ĝ: we assume, from now on
that ACG(B) has nonempty interior. In Theorem 7.2 below, we obtain a
bijective parametrization of the faces of ACG(B) and a description of their
inclusion relations. To avoid too many notation, in this introduction, we
will only state our results in the case when G is semisimple and diagonally
embedded in Ĝ = G×G.

For any standard parabolic subgroup P of G, we consider the cohomol-
ogy group H∗(G/P,Z) and its basis consisting of classes of Schubert va-
rieties. We consider on this group the Belkale-Kumar product �0 defined
in [2]. The structure-coefficient of this product in this basis are either 0
or the structure-coefficient of the usual cup product. These coefficients are
parametrized by the triples of Schubert classes.

Theorem 1.3. — The faces of ACG((G/B)3) correspond bijectively to
the triples of Schubert classes in G/P with structure-coefficients of the
ring (H∗(G/P,Z),�0) equal to one, for the various standard parabolic sub-
groups P of G.

We will now explain how to read the inclusions of faces off this parametri-
zation. Let P and P ′ be two standard parabolic subgroups. Let X1, X2 and
X3 (resp. X ′1, X ′2 and X ′3) be three Schubert varieties in G/P (resp. G/P ′)
such that the corresponding structure-coefficients for �0 are equal to one.
Let F and F ′ denote the corresponding faces of ACGΛ ((G/B)3).

TOME 61 (2011), FASCICULE 4



1470 Nicolas RESSAYRE

Theorem 1.4. — The following are equivalent:
(1) F ⊂ F ′;
(2) P ⊂ P ′ and p(Xi) = X ′i for i = 1, 2 and 3, where p : G/P −→ G/P ′

is the projection.

In [15], we already obtained a partial description of the faces of LR◦(G,Ĝ).
Here we make three improvements. First, we prove that each face of the
closure of LR◦(G, Ĝ) coming from a well-covering pair (see Section 5.2) is
a face of LR◦(G, Ĝ); that is, contains strictly dominant weights. Moreover,
defining the notion of an admissible pair (S, ŵ) (see Section 7), we ob-
tain an injective parametrization of the faces. The proof of this injectivity
uses Propositions 1.1 and 1.2. Finally, we describe the inclusion relations
between the faces.
Let us explain some of the motivations to understand these faces. The

first motivation comes a posteriori. Theorem 1.3 and 1.4 show that this
set has a rich structure. A strategy to understand examples is to study
the smallest faces (whose codimension is the rank of G) and to understand
the local geometry around theses faces: this should be interesting since the
Belkale-Kumar product onG/B is particularly simple. The results obtained
here would allow to apply such a strategy.
Let V be a complex finite-dimensional vector space. The closure of the

cone ACGL(V )(Fl(V )3) is the object of the famous Horn conjecture [6]. We
will call ACGL(V )(Fl(V )3) the Horn cone. In [7], Knutson-Tao-Woodward
proved that the codimension one faces of the Horn cone correspond bijec-
tively to the Littlewood-Richardson coefficients (LR-coefficients for short)
cνλµ equal to one, for partitions λ, µ and ν of a given size (Theorem 1.3
generalizes this result). The Fulton conjecture (see [7, 1, 13]) asserts that
if cνλµ = 1 then for any positive integer k, ckνkλ kµ = 1. This implies easily
that the set of LR-coefficients equal to one is parametrized by the integral
points on a union of faces of the Horn cone.
The relations between the geometry of LR◦(G,G2) and the Belkale-

Kumar cohomology rings will be also applied elsewhere to obtain results
about this product.
Let now Y be a normal projective G-variety endowed with an ample

G-linearized line bundle L. We now want to explain how to recover the
moment polytope of Y from some G-ample cone. Consider the dominant
chamber X(T )+

Q in X(T )Q = X(T )⊗Q corresponding to B. The interior of
X(T )+

Q is denoted by X(T )++
Q . We are interested in the moment polytope

P (Y,L) as defined in [4]: it is a convex polytope contained in X(T )+
Q . Set

P ◦(Y,L) := P (Y,L) ∩X(T )++
Q .

ANNALES DE L’INSTITUT FOURIER
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Set X = G/B × Y . Let Λ be the subgroup of PicG(X) generated by the
pullback of L and the pullbacks of G-linearized line bundles on G/B. Now,
we have:

P ◦(Y,L) = ACGΛ (X) ∩ (L+X(T )Q).
In particular, the faces of ACGΛ (X) correspond bijectively to the faces of
P ◦(Y,L).
We assume that P ◦(Y,L) is nonempty. Actually, in [4] it is proved that

any moment polytope P (Y,L) can be described in terms of one which
intersects the interior of the dominant chamber. M. Brion associated in [4,
Theorem 1 and 2] a subtorus S of T and an irreducible component C of
the T -fixed points to any face of P ◦(Y,L). He proved that the face can be
recovered from the pair (C, S) and obtained some geometrical properties of
(C, S). In Proposition 8.4 below, we improve these results by showing that
(C, S) is well-B-covering (see Definition 8.2).

Convention. — The notation introduced in the environments “Nota-
tion” are fixed for all the sequence of the paper.

2. An example of GIT-cone

Let us fix a connected reductive group G acting on an irreducible pro-
jective algebraic variety X.

2.1. The G-ample cone

As in the introduction, for an ample G-linearized line bundle L on X,
we consider the set of semistable points:

Xss(L) =
{
x ∈ X : ∃n > 0 and σ ∈ H0(X,L⊗n)G such that σ(x) 6= 0

}
.

To specify the acting group, we sometimes denote Xss(L) by Xss(L, G).
There exists a good quotient:

π : Xss(L) −→ Xss(L)//G,

such that Xss(L)//G is a projective variety. A point x ∈ Xss(L) is said to
be stable if Gx is finite and G.x is closed in Xss(L). Then, for any stable
point x we have π−1(π(x)) = G.x and the set Xs(L) of stable points is
open in X.

Let Λ be a free finitely generated subgroup of PicG(X) and set ΛQ =
Λ⊗Q. Let Λ++

Q denote the convex cone generated by the ample elements

TOME 61 (2011), FASCICULE 4
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of Λ. Since Xss(L) = Xss(L⊗n), for any ample L and any positive integer
n, we can define Xss(L) for any L ∈ Λ++

Q . We consider the G-ample cone:

ACGΛ (X) = {L ∈ Λ++
Q : Xss(L) is not empty}.

Since the tensor product of two nonzeroG-invariant sections is a nonzeroG-
invariant section, ACGΛ (X) is a convex cone. By [5] (see also [14]), ACGΛ (X)
is a closed convex rational polyhedral cone when viewed as a subcone of
Λ++
Q . This cone is the central object of this paper.
Two points L and L′ inACGΛ (X) are said to beGIT-equivalent ifXss(L)=

Xss(L′). An equivalence class is simply called a GIT-class.
For x ∈ X, the stability set of x is the set of L ∈ Λ++

Q such that Xss(L)
contains x; it is denoted by ACGΛ (x). In [14] following [5], we have studied
the geometry of the GIT-classes and the stability sets. Note that [14] only
considers the case where Λ = PicG(X); but all the results and proofs of [14]
remain valid here. In particular, there are only finitely many GIT-classes
and each GIT-class is the relative interior of a closed convex polyhedral
cone of Λ++

Q . Finally, the closures of GIT-classes form a fan in Λ++
Q .

2.2. The G-ample cone of an affine variety

Notation 2.1. — If Γ is an affine algebraic group, [Γ,Γ] will denote its
derived subgroup and X(Γ) will denote its character group.

For later use, we consider here a G-ample cone for the action of G on
an affine variety. More precisely, let V be an affine G-variety containing a
fixed point O as its unique closed orbit. The action of G over the fiber at
O gives a morphism µ•(O,G) : PicG(V ) −→ X(G) satisfying:

∀L ∈ PicG(V ) ∀g ∈ G, x ∈ LO g.x = µL(O,G)(g−1)x,

where LO is the fiber over O in L. By [14, Lemma 7], µ•(O,G) is an iso-
morphism. The pullback Lχ of a character χ is the trivial bundle endowed
with the following action:

∀g ∈ G ∀(v, t) ∈ V ×K g.(v, t) = (v, χ(g−1)t).

For any χ ∈ X(G), we have:

H0(V,Lχ)G = {f ∈ K[V ] : ∀x ∈ V (g.f)(x) = χ(g)f(x)} = K[V ]χ.

Note that H0(V,Lχ)G is contained in the algebra K[V ][G,G] of the regular
[G,G]-invariant functions on V . Set

S = {χ ∈ X(G) : H0(V,Lχ)G is non trivial}.

ANNALES DE L’INSTITUT FOURIER
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This is the set of weights of the torus G/[G,G] in K[V ][G,G].
As in the projective case, we set

V ss(χ) = {v ∈ V : ∃n > 0 and f ∈ K[V ]nχ s.t. f(v) 6= 0}.

We consider the G-cone ACG(V ) in X(G)⊗Q generated by the characters
χ such that V ss(χ) 6= ∅. Note that any Lχ is ample.

Lemma 2.2. — We assume that V is irreducible. Then the set S is a
finitely generated semigroup in X(G). Moreover, ACG(V ) is the convex
cone generated by S; it is strictly convex.

Proof. — Since K[V ][G,G] is a finitely generated algebra without zero di-
visors, S is a finitely generated semigroup. The fact that ACG(V ) is gener-
ated by S is obvious. Finally, ACG(V ) is strictly convex since H0(V,L0)G =
K, where L0 denotes the trivial line bundle linearized with the trivial ac-
tion. �

3. Etale Slice Theorem

In this section, we recall some very useful results of D. Luna. We fix an
ample G-linearized line bundle L on the irreducible projective G-variety X.

3.1. Closed orbits in general position

Notation 3.1. — If H is a subgroup of G then NG(H) denotes the nor-
malizer of H in G. Consider the quotient π : Xss(L) −→ Xss(L)//G. For all
ξ ∈ Xss(L)//G, we denote by T (ξ) the unique closed G-orbit in π−1(ξ). We
denote by (Xss(L)//G)pr the set of those ξ such that there exists an open
neighborhood Ω of ξ in Xss(L)//G such that the orbit T (ξ′) is isomorphic
to T (ξ), for all ξ′ ∈ Ω. We will denote by XH the H-fixed point set. If Y
is a locally closed subvariety of X, L|Y denotes the restriction of L to Y .

Since π is a gluing of affine quotients, many results on the actions of G on
affine variety remain true for Xss(L). For example, the following theorem
is a result of Luna and Richardson (see [10, Section 3] and [9, Corollary 4]
or [12, Section 7]):

Theorem 3.2. — Keep the above notation and assume that X is nor-
mal. Then, the set (Xss(L)//G)pr is nonempty and open in Xss(L)//G. Let
H be the isotropy group of a point in T (ξ0) with ξ0 ∈ (Xss(L)//G)pr. We
have:

TOME 61 (2011), FASCICULE 4



1474 Nicolas RESSAYRE

(1) The group H has fixed points in T (ξ) for any ξ ∈ Xss(L)//G.
(2) Let Y be the closure of π−1 ((Xss(L)//G)pr)H in X. Then Y is the

union of some components of XH . Moreover, H acts trivially on
some positive power L⊗n|Y of L|Y and the natural map

Y ss(L⊗n|Y )//(NG(H)/H) −→ Xss(L)//G

is an isomorphism. Finally, Y contains stable points for the action
of NG(H)/H and for the line bundle L⊗n|Y .

A subgroup H as in Theorem 3.2 will be called a principal isotropy group
of Xss(L). The conjugacy class of H is called the principal isotropy group
of Xss(L).

3.2. The principal Luna stratum

Let H be a reductive subgroup of G and let Y be an affine H-variety. We
endow G × Y with the G × H-action given by the formula (with obvious
notation):

(g, h).(g1, y) = (gg1h
−1, hy).

Then the GIT-quotient of G× Y by {e} ×H is denoted by G×H Y . Since
this action is free, G×H Y is an affine variety (smooth if Y is) whose closed
points parametrize the H-orbits in G × Y . The class of (g, y) ∈ G × Y

will be denoted by [g : y]. The action of G × {e} on G × Y induces a
G-action on G ×H Y and the first projection, a G-equivariant morphism
G×H Y −→ G/H.
When X is smooth, the open subset (Xss(L)//G)pr is called the principal

Luna stratum and has very useful properties (see [8] or [12]):

Theorem 3.3 (Luna). — We assume that X is smooth. Let H be a
principal isotropy group of Xss(L).
Then, there exists a H-module L such that for any ξ ∈ (Xss(L)//G)pr

and points x in T (ξ) satisfying:
(1) Gx = H;
(2) the H-module TxX/Tx(G.x) is isomorphic to the direct sum of its

fixed points and of L; in particular, its isomorphism class is inde-
pendent of ξ and x;

(3) for any v ∈ L, 0 belongs to the closure of H.v;
(4) the fiber π−1(ξ) is isomorphic to G×H L.

ANNALES DE L’INSTITUT FOURIER



GIT AND EIGENVALUE PROBLEM II 1475

3.3. The fibers of quotient morphisms

Theorem 3.3 describes the general fiber of a GIT-quotient of a smooth
variety. We also have the following general (but less precise) description of
any fiber of a GIT-quotient (see [8] or [12]):

Proposition 3.4. — Let x be a semistable point with respect to L
whose orbit is closed in Xss(L). Set V = {y ∈ X : x ∈ Gx.y}. Then, V is
an affine Gx-variety, containing x as the unique closed Gx-orbit. Moreover,
π−1(π(x)) is isomorphic to G×Gx V .

4. On the faces of the G-ample cone

4.1. Isotropy subgroups associated to faces of ACGΛ (X)

Let ϕ be a linear form on ΛQ which is nonnegative on ACGΛ (X). If the
set F of L ∈ ACGΛ (X) such that ϕ(L) = 0 is nonempty then F is called a
face of ACGΛ (X). Now, we associate two invariants to a face of ACGΛ (X).

Theorem 4.1. — Let F be a face of ACGΛ (X). Then, we have:
(1) The principal isotropy group of Xss(L) does not depend on the

point L in the relative interior of F , but only on F . We call this
isotropy group the principal isotropy group of F .
Let us fix a principal isotropy group H of F .

(2) For anyM∈ F , H fixes points in any closed orbit of G in Xss(M).

(3) The closure Y of
(
π−1
L ((Xss(L)//G)pr)

)H
in X does not depend

on a choice of L in the relative interior of F . Let YF denote this
subvariety of XH ; then YF is the union of some components of XH .

(4) The group H acts trivially on some positive power L⊗n|YF of L|YF .
Moreover, the natural map

Y ss
F (L⊗n|YF )//(NG(H)/H) −→ Xss(L)//G

is an isomorphism and YF contains stable points for the action of
NG(H)/H and the line bundle L⊗n|YF .

Proof. — Let L1, L2 ∈ ACGΛ (X). By an easy argument of convexity, to
prove Assertion 1 it is sufficient to prove that the principal isotropy group
of Xss(L) does not depend on L in the open segment ]L1,L2[. Let us fix
L, L′ ∈]L1,L2[. Let x ∈ X lie in the preimage of (Xss(M)//G)pr, for
M = L1, L2, L and L′ under the quotient maps.

TOME 61 (2011), FASCICULE 4
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Recall that ΩΛ(x) is a closed polyhedral convex cone in Λ++
Q . Since L1

and L2 belong to ΩΛ(x), L and L′ belong to the relative interior of the same
face of ΩΛ(x). By [14, Proposition 6, Assertion (iii)], there exists x′ ∈ G.x
such that this face is ΩΛ(x′). But, [14, Proposition 6, Assertion (i)] shows
that the closed orbits in Xss(L)∩G.x′ and Xss(L′)∩G.x′ are equal. Now,
our choice of the point x implies that the principal isotropy groups of
Xss(L) and Xss(L′) are equal.

Let H be a principal isotropy group of Xss(L). Let Y be the closure of
XH ∩ π−1

L ((Xss(L)//G)pr). By Theorem 3.2, NG(H) acts transitively on
the set of irreducible components of Y . Let Y1 be such a component of
XH . Again by Theorem 3.2, πL(Y1 ∩ Xss(L)) = Xss(L)//G; that is, any
closed G-orbit in Xss(L) intersects Y1. Finally, Y is the union of irreducible
components of XH which intersect a general closed G-orbit in Xss(L).
But, the above proof of Assertion 1 shows that a general closed orbit in
Xss(L) is also a closed orbit in Xss(L′). In particular, Y is the closure of
XH ∩ π−1

L′ ((Xss(L′)//G)pr). Assertion 3 follows.
Let us now fix a principal isotropy group H of F . Let M1 ∈ F . By

assertion 1 of Theorem 3.2, to prove the second assertion, it is sufficient
to prove that the principal isotropy group of Xss(M1) contains H. By [14,
Theorem 4], there exists a point M2 in the relative interior of F such
that Xss(M1) contains Xss(M2). The inclusion Xss(M2) ⊂ Xss(M1)
induces a surjective morphism η : Xss(M2)//G −→ Xss(M1)//G. Let
ξ′ ∈ (Xss(M2)//G)pr such that ξ = η(ξ′) ∈ (Xss(M1)//G)pr. Let x be a
point in the closed G-orbit in Xss(M1) over ξ. The fiber in Xss(M1) over
ξ is fibered over G.x; hence, for any y in this fiber, Gy is conjugated to a
subgroup of Gx. Since this fiber contains the fiber in Xss(M2) over ξ′, then
H is conjugated to a subgroup of Gx. The second assertion is proved. �

4.2. Local structure of the G-ample cone around a face

Notation 4.2. — Let E be a prime Cartier divisor on a variety X en-
dowed with a line bundle L and let σ be a rational section of L. We will
denote by νE(σ) ∈ Z the order of vanishing of σ along E.

Let P be a polyhedron in a rational vector space V and F be a face of
P. The cone of V generated by the vectors y−x for y ∈ P does not depend
on the choice of x in the relative interior of F . This cone will be called the
cone of P viewed from F . It encodes the geometry of P in a neighborhood
of x.
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Let F be a face of ACGΛ (X). Let L belong to the relative interior of F .
Let x be a semistable point whose G-orbit is closed in Xss(L). Let V be the
affine Gx-variety defined in Proposition 3.4. Consider the cone ACGx(V ) as
in Section 2.2. Notice that V is not necessarily irreducible, and so ACGx(V )
is not necessarily convex.
As in Section 2.2, the Gx-action on the fiber over x defines a morphism

µ•(x,Gx) : Λ −→ X(Gx) and a linear map from ΛQ on X(Gx)Q also
denoted by µ•(x,Gx).

Theorem 4.3. — The cone of ACGΛ (X) viewed from F is the preim-
age by µ•(x,Gx) of ACGx(V ). In particular, if µ•(x,Gx) is surjective then
ACGx(V ) is convex.

Proof. — Let L0 and L be two ample G-linearized line bundles in Λ. We
assume that L0 is the only point in the segment [L;L0] which belongs to
ACGΛ (X). For convenience, we set U = Xss(L0). By assumption, there is
no G-invariant rational section of L which is regular on X; we claim that
there is no such section which is regular on U .

Let us prove the claim. Fix a nonzero regular G-invariant section σ0 of
L⊗m0 for some positive integer m. Let σ be a G-invariant rational section of
L which is regular on U . For any positive integer k, σ⊗σ⊗k0 is a rational G-
invariant section of L⊗L⊗mk0 which is regular on U . Let E be an irreducible
component of codimension one of X−U . By definition of U , σ0 is zero along
E and νE(σ0) > 0. Then, νE(σ ⊗ σ⊗k0 ) = νE(σ) + k.νE(σ0) is positive for
k big enough. We deduce that σ ⊗ σ⊗k0 is regular on X for k big enough.
Since by assumption L ⊗ L⊗mk0 does not belong to ACGΛ (X), this implies
that σ ⊗ σ⊗k0 and finally σ are zero. The claim is proved.
We now fix a point L0 in the relative interior of F . By an elementary

argument of convexity, there exists an open neighborhood Ω of L0 in Λ++
Q

such that for any L ∈ Ω, if L does not belong to ACGΛ (X) then L0 is the
only point in [L,L0] ∩ ACGΛ (X).
By [14, Proposition 2.3], we may also assume that for all L ∈ Ω,Xss(L) is

contained in Xss(L0). It remains to prove that for any L ∈ Ω, L ∈ ACGΛ (X)
if and only if µL(x,Gx) ∈ ACGx(V ).
Let L ∈ Ω which does not belong to ACGΛ (X). Set ξ = πL0(x). By the

beginning of the proof, for any positive n, H0(U,L⊗n)G = {0}. Since π−1
L0

(ξ)
is closed in U , this implies that H0(π−1

L0
(ξ),L⊗n)G = {0} for all positive

n. So, for all positive n, H0(V,L⊗n|V )Gx = {0}. Then µL(x,Gx) does not
belong to ACGx(V ).
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Let now L ∈ Ω∩ACGΛ (X). Since the map φ : Xss(L)//G −→ Xss(L0)//G
induced by the inclusion Xss(L) ⊂ Xss(L0) is surjective, there exists y ∈
Xss(L) such that φ ◦ πL(y) = ξ. Up to changing y by g.y for some g ∈ G,
one may assume that y ∈ V . Let σ be a G-invariant section of L which
is nonzero at y. Obviously, the restriction of σ is a Gx-invariant section of
L|V which is nonzero. It follows that µL(x,Gx) belongs to ACGx(V ).
The last assertion follows from an obvious argument of convexity. �

5. Well-covering pairs

5.1. The functions µ•(x, λ)

Let L ∈ PicG(X). Let x be a point in X and λ be a one-parameter
subgroup of G. Since X is complete, limt→0 λ(t)x exists; let z denote this
limit. The image of λ fixes z and so acts on the fiber Lz: there exists
µL(x, λ) ∈ Z such that:

∀z̃ ∈ Lz ∀t ∈ K∗ λ(t)z̃ = t−µ
L(x,λ)z̃.

The numbers µL(x, λ) are used in [11] to give a numerical criterion for
stability with respect to an ample G−linearized line bundle L:

x ∈ Xss(L) ⇐⇒ µL(x, λ) 6 0 for all one-parameter subgroup λ,

x ∈ Xs(L) ⇐⇒ µL(x, λ) < 0 for all nontrivial λ.

5.2. Definition

Notation 5.1. — The set of fixed points of the image of λ will be denoted
by Xλ; the centralizer of this image will be denoted by Gλ. We consider
the parabolic subgroup of G:

P (λ) =
{
g ∈ G : lim

t→0
λ(t).g.λ(t)−1 exists in G

}
.

Let C be an irreducible component of Xλ. Since Gλ is connected, C is a
Gλ-stable closed subvariety of X. We set:

C+ := {x ∈ X : lim
t→0

λ(t)x ∈ C}.

Then, C+ is a locally closed subvariety of X stable by P (λ). Consider over
G×C+ the action of G×P (λ) given by the formula (with obvious notation):

(g, p).(g′, y) = (gg′p−1, py).
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Since the quotient map G −→ G/P (λ) is a Zariski-locally trivial principal
P (λ)-bundle, one can easily construct a quotient G ×P (λ) C

+ of G × C+

by the action of {e} × P (λ). The action of G× {e} induces an action of G
on G×P (λ) C

+. We recall the following definition from [15]:

Definition 5.2. — Consider the G-equivariant map
η : G×P (λ) C

+ −→ X

[g : x] 7−→ g.x.

The pair (C, λ) is said to be covering (resp. dominant) if η is birational
(resp. dominant). It is said to be well-covering if η induces an isomorphism
from G×P (λ) Ω onto an open subset of X, where Ω is a P (λ)-stable open
subset of C+ intersecting C.

Let us denote by µ•(C, λ), the common value of the µ•(x, λ), for x ∈ C+.
We assume that (C, λ) is a dominant pair. By [15, Lemma 3], the set of
L ∈ ACGΛ (X) such that µL(C, λ) = 0 is either empty or a face F ofACGΛ (X).
Moreover, F is the set of L ∈ ACGΛ (X) such that Xss(L) intersects C.
>From now on, F which only depends on C is denoted by F(C).

6. The case where X = Y ×G/B

Assumption. — We assume in this section that X has diagonalizable
reductive isotropy groups and that Λ is abundant in the sense of the defini-
tions of [15, Section 3.3] (this means, that for any x ∈ X with a reductive
isotropy group Gx, the morphism Λ −→ X(Gx) given by the action of Gx
on fibers over x has image of finite index).

The main example satisfying these assumptions is X = G/B×Y , where
Y is a projective G-variety Y , and Λ contains the pullback of PicG(G/B).

6.1. Principal isotropy group and well-covering pairs

Let S be a subtorus of G. Let C be an irreducible component of XS .

Definition 6.1. — The pair (C, S) is said to be admissible if there
exists x ∈ C such that G◦x = S. The pair is said to be well-covering if
there exists a one-parameter subgroup λ of S, such that C is an irreducible
component of Xλ and (C, λ) is well-covering.

A rephrasing of [15, Corollary 3] is
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Proposition 6.2. — Let F be a face of ACGΛ (X) of codimension r.
Then, there exists an admissible well-covering pair (C, S) with S of dimen-
sion r such that F = F(C).

We are now interested in the principal isotropy group of the faces of
ACGΛ (X):

Proposition 6.3. — Let F be a face of codimension r. Let (C, S) be a
well-covering pair with a r-dimensional torus S such that F(C) = F .

Then, (C, S) is admissible and there exists a principal isotropy group H
of F such that H◦ = S.

Proof. — By [15, Lemma 3], F is an union of GIT-classes. By [14], there
are only finitely many such classes and they are convex; so, there exists
a GIT-class F which has nonempty interior in F . Let L ∈ F . Let ξ ∈
(Xss(L)//G)pr and T (ξ) be the corresponding closed G-orbit in Xss(L).

By [15, Proposition 9], T (ξ) intersects C. Let us fix x ∈ T (ξ) ∩ C. Now,
consider the morphism µ•(x,Gx) : ΛQ −→ X(Gx) ⊗ Q induced by re-
striction and the isomorphism X(Gx) ' PicG(T (ξ)). By Theorem 4.3,
Kerµ•(x,Gx) is contained in Span(F). On the other hand, the GIT-class
of L is contained in Kerµ•(x,Gx). Finally, Kerµ•(x,Gx) = Span(F). Since
Λ is abundant, this implies that the rank of X(Gx) equals r.
Since G.x is affine, Gx is reductive. Since X has diagonalizable reductive

isotropy groups, Gx is diagonalizable. But the rank of X(Gx) equals r and
G◦x is a r-dimensional torus. Since x ∈ C, S is contained in Gx; it follows
that G◦x = S. In particular, (C, S) is admissible. �

6.2. Unicity

Notation 6.4. — Let S be a torus. We will denote by Y (S) the group
of one-parameter subgroups of S. There is a natural perfect paring Y (S)×
X(S) −→ Z denoted by 〈·, ·〉.

The following lemma is a first statement of unicity.

Lemma 6.5. — We assume in addition that X is smooth. Let F be a
face of codimension r. Let (C1, S1) and (C2, S2) be two well-covering pairs,
where S1 and S2 are two r-dimensional tori such that F(C1) = F(C2) = F .
Then, there exists g ∈ G such that g.C2 = C1 and g.S2.g

−1 = S1.

Proof. — Arguing as in the proof of Proposition 6.3, we obtain that T (ξ)
intersects C1 and C2. Up to conjugacy, we may assume that x belongs to
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T (ξ)∩C1∩C2. So, we obtain that G◦x = S1 = S2. Then, C1 equals C2 since
they are the irreducible component of XS1 = XS2 containing x. �

In contrast with the unicity of Lemma 6.5, for a given well-covering pair
(C, S), the set of pairs (C+, P ) such that G×P C+ −→ X is well-covering
is not unique. We are now interested in the set of λ ∈ Y (S) such that the
associated morphism η is dominant.
Let us fix a face F of codimension r. The set of linear forms ϕ ∈

Hom(ΛQ,Q) such that ϕ is nonnegative on ACGΛ (X) and zero on F is
denoted by F∨.
Let us fix a well-covering pair (C, S) where S has dimension r and such

that F = F(C). Let C denote the set of λ ∈ Y (S) ⊗ Q such that for
some positive n, the pair (Cnλ, nλ) is dominant, where Cnλ denotes the
irreducible component ofXnλ containing C. Note that, since S acts trivially
on C, the map Y (S)⊗Q −→ Hom(ΛQ,Q), λ 7−→ µ•(C, λ) is linear.

Lemma 6.6. — We assume that X is smooth.
Then, λ ∈ C if and only if µ•(C, λ) ∈ F∨.

Proof. — Let λ be a rational one-parameter subgroup of S, and let n
be a positive integer such that nλ ∈ Y (S). First assume that λ ∈ C. Since
(Cnλ, nλ) is dominant, [15, Lemma 3] implies that µ•(C, λ) is nonnegative
on ACGΛ (X). Moreover, for any L ∈ F , Xss(L) intersects C. This implies
that µL(C, λ) = 0. Finally, µ•(C, λ) ∈ F∨.
Conversely, assume that µ•(C, λ) ∈ F∨. Set

C+ = {x ∈ X : lim
t→0

nλ(t)x ∈ Cnλ}

and η : G×P (nλ) C
+ −→ X. Let us fix a general point x ∈ C. Then, Gx is

the principal isotropy group of F , its neutral component is S and the Gx-
module TxX/TxC is the type of F . Theorem 4.3 implies that µ•(C, λ) ∈ F∨
if and only if 〈nλ, ·〉 is nonnegative on all weights of S in TxX/TxG.x. We
deduce that the differential Tηx is surjective. SinceX is smooth, this implies
that η is dominant. �

6.3. Inclusion of faces

We now assume that X = G/B×Y for a smooth projective G-variety Y
and that Λ is abundant.

Proposition 6.7. — Let (C1, S1) and (C2, S2) be two admissible well-
covering pairs with two subtori S1 and S2 of T of dimensions r1 and r2
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such that B/B ∈ pG/B(Ci) for i = 1, 2. We assume that F(C1) and F(C2)
have respectively codimension r1 and r2.
Then, the following are equivalent:
(1) F(C1) ⊂ F(C2);
(2) C1 ⊂ C2 and S2 ⊂ S1.

Proof. — The second assertion implies the first one by [15, Lemma 3].
Conversely, we assume that F(C1) ⊂ F(C2).
By Proposition 6.3, there exists L ∈ F(C1) and x ∈ C1 such thatG◦x = S1

and G.x is closed in Xss(L). Since C2 intersects G.x, there exists g ∈ G
such that g.x ∈ C2. Since S2 fixes g.x, S2 ⊂ gS1g

−1. In particular, S2 is
contained in T and gTg−1; so, T and gTg−1 are maximal tori in GS2 . There
exists l ∈ GS2 such that lT l−1 = gTg−1. The element n = l−1g normalizes
T . Since C2 is stable by GS2 (which is connected), x belongs to n−1C2.
Applying pG/B we obtain that pG/B(x) belongs to n−1GS2B/B∩GS1B/B.
In particular, GS2B/B ∩ nGS1B/B 6= ∅.
We claim that nB/B ∈ GS2B/B. Since n−1S2n = g−1S2g ⊂ S1, we have

Gn
−1S2n ⊃ GS1 . In particular, GS2n ⊃ nGS1 and GS2nB/B ⊃ nGS1B/B.

It follows that GS2B/B intersects GS2nB/B; since they are GS2-orbits
GS2B/B = GS2nB/B.
Since n normalizes T , this implies that n ∈ GS2 . So, n−1S2n = S2 ⊂ S1.
Since n ∈ GS2 and nx ∈ C2, x ∈ C2. But x ∈ C1. It follows that C1

(resp. C2) is the irreducible component of XS1 (resp. XS2) containing x.
Now, S2 ⊂ S1 implies C1 ⊂ C2. �

Remark 6.8. — Proposition 6.7 shows that F(C1) = F(C2) if and only
if C1 = C2 and S2 = S1. With the assumption of the proposition this is an
improvement of Lemma 6.5.

7. Application to the branching rule cones

7.1. The branching rule cone in terms of GIT-cone

From now on, we assume that G is a connected reductive subgroup of a
connected reductive group Ĝ. Let us fix maximal tori T (resp. T̂ ) and Borel
subgroups B (resp. B̂) of G (resp. Ĝ) such that T ⊂ B ⊂ B̂ ⊃ T̂ ⊃ T .
Let g and ĝ denote the Lie algebras of G and Ĝ respectively.
We denote by LR(G, Ĝ) (resp. LR◦(G, Ĝ)) the cone of pairs (ν, ν̂) ∈

X(T )Q × X(T̂ )Q such that for some positive integer n, nν̂ and nν are
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dominant (resp. strictly dominant) weights such that Vnν ⊗ Vnν̂ contains
nonzero G-invariant vectors.
In this section, X denotes the variety G/B × Ĝ/B̂ endowed with the

diagonal action of G. We will apply the results of Section 4 to X with
Λ = PicG(X). The cone ACGΛ (X) will be denoted by ACG(X). It is well
known (see [15, Proposition 10] for a proof) that LR◦(G, Ĝ) is the set of
pairs (ν, ν̂) of rational weights such that L(ν,ν̂) ∈ ACG(X). Moreover, if
no ideal of g is an ideal of ĝ, by [15, Proposition 12] LR◦(G, Ĝ) has a
nonempty interior.

7.2. A first parametrization of the faces

7.2.1. Admissible subtori

Consider theG-module ĝ/g. LetWtT (ĝ/g) be the set of nontrivial weights
for the T -action on ĝ/g. For I ⊂WtT (ĝ/g), we will denote by TI the neu-
tral component of the intersection of kernels of characters in I. A subtorus
of the form TI is said to be admissible.
Let λ ∈ Y (T ) or Y (T )Q. We denote by I(λ) the set of characters χ ∈

WtT (ĝ/g) such that 〈λ, χ〉 = 0. Let S be an admissible torus. We consider
the set of λ ∈ Y (S)Q such that

∀χ ∈WtT (ĝ/g) 〈λ, χ〉 = 0 ⇒ χ|S is trivial;

or equivalently, TI(λ) = S. The set of such rational one-parameter sub-
groups is the complementary of the union of hyperplanes 〈 · , χ〉 = 0 for
χ ∈ WtT (ĝ/g) nontrivial on S. A connected component of this set will be
called a chamber of Y (S)Q.
A one-parameter subgroup λ ∈ Y (S)Q is said to be S-regular if

∀χ ∈WtT (ĝ) 〈λ, χ〉 = 0 ⇒ χ|S is trivial.

Note that in the definition of S-regularity we consider WtT (ĝ) and not
WtT (ĝ/g). In fact, λ is S-regular if and only if Ĝλ = ĜS (and so Gλ = GS).

Let Y (T )+ denote the set of dominant one-parameter subgroups of T .
A subtorus S of T is said to be dominant if Y (S)Q is spanned by its
intersection with Y (T )+. A chamber Y (S)Q is said to be dominant if it
spans the same subspace than its its intersection with Y (T )+.
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7.2.2. Admissible pairs

Consider the parabolic subgroups P and P̂ of G and Ĝ associated to
λ. Let WP be the Weyl group of P . The cohomology group H∗(G/P,Z)
is freely generated by the Schubert classes [BwP/P ] parametrized by the
elements w ∈W/WP . Since P̂ ∩G = P , we have a canonical G-equivariant
immersion ι : G/P (λ) −→ Ĝ/P̂ (λ); and the corresponding morphism ι∗

in cohomology.
Let ρ (resp. ρS) denote the half-sum of positive roots of G (resp. GS).

Let Φ+ and Φ(Pu) denote the set of roots of the groups B and Pu for
the torus T . In the same way, we define Φ̂+ and Φ(P̂u). For w ∈ W and
ŵ ∈ Ŵ , we consider the following characters of T and T̂ :

θPw :=
∑

α∈wΦ+∩Φ(Pu)

α and θP̂ŵ :=
∑

α∈ŵΦ̂+∩Φ(P̂u)

α.

Let S be an admissible subtorus of T and ŵ ∈ Ŵ/ŴĜS . The pair (S, ŵ)
is said to be admissible if there exists a S-regular one-parameter subgroup
λ of S such that:

(1) ι∗([B̂ŵP̂ (λ)/P̂ (λ)]).[BP (λ)/P (λ)] = [pt] ∈ H∗(G/P (λ),Z);
(2) (θP̂ (λ)

ŵ )|S = (θP (λ) − 2(ρ− ρS))|S .
The following lemma explains these two conditions geometrically:

Lemma 7.1. — Let S be an admissible subtorus and ŵ ∈ Ŵ/ŴĜS .
Let λ be a S–regular one-parameter subgroup. Set C(ŵ) = GSB/B ×
ĜSŵ−1B/B. Then the two above conditions are fulfilled if and only if
(C(ŵ), λ) is a well-covering pair.

Proof. — The proof is very similar to [15, Proposition 11]: we leave the
details to the reader. One can prove (using mainly Kleiman’s transversality
Theorem) that ι∗([B̂ŵP̂ /P̂ ]).[BP/P ] = [pt] ∈ H∗(G/P,Z) if and only if the
morphism η as in Definition 5.2 is birational. Now, the condition (θP̂ŵ)|S =
(θP − 2(ρ− ρS))|S means that S acts trivially on the restriction over C of
the determinant bundle of η. �

We may now give a first parametrization of the faces of LR◦(G, Ĝ):

Theorem 7.2. — We assume that no ideal of g is an ideal of ĝ.
The map which associates to (S, ŵ) the set

F(S, ŵ) = {(ν, ν̂) ∈ LR◦(G, Ĝ) : ŵν̂|S + ν|S is trivial}

is a bijection from the set of admissible pairs onto the set of faces of
LR◦(G, Ĝ). Moreover, the codimension of F(S, ŵ) equals the dimension
of S; and the following are equivalent:
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(1) F(S, ŵ) ⊂ F(S′, ŵ′);
(2) S′ ⊂ S and ŵWGS′ = ŵ′WGS′ .

Proof. — Let (S, ŵ) be an admissible pair. Set F(S, ŵ) = {(ν, ν̂) ∈
LR(G, Ĝ) : ŵν̂|S = −ν|S}. By [15, Theorem 11], F(S, ŵ) is a face of
LR(G, Ĝ) of codimension dim(S). In particular, F̃(S, ŵ) spans the sub-
space of the (ν, ν̂) ∈ X(T ) ×X(T̂ ) such that ŵν̂|S = −ν|S . To prove that
the map in the theorem is well defined, it is enough to prove that F(S, ŵ)
intersects LR◦(G, Ĝ). Assume that F(S, ŵ) is contained in the boundary
of the dominant chamber. Then, its projection on X(T̂ )Q or X(T )Q is con-
tained in an hyperplane; this is a contradiction.
Let us prove the surjectivity. Let F be a face of LR◦(G, Ĝ). Let (C, λ) be

a pair satisfying Proposition 6.2 for F . Up to translate C and conjugacy S
accordingly, we may assume that S ⊂ T and C intersects B/B×Ĝ/B̂. Then
C = C(ŵ) for some ŵ ∈ Ŵ . We know that there exists a one-parameter
subgroup λ of S such that (C, λ) is well covering and we need to find such
a λ which is S-regular. But Lemma 6.6 shows that there exists a S-regular
λ such that (C, λ) is dominant. By [15, Theorem 12] (C, λ) is well-covering.
The injectivity and the assertion about inclusion of the faces are direct

applications of Proposition 6.7. �

7.3. A second parametrization

From now on we assume that WtT (ĝ/g) = WtT (ĝ). The following obser-
vation explains the role of this assumption:

Lemma 7.3. — Let S be an admissible subtorus of T and C be a chamber
of Y (S)Q. If WtT (ĝ/g) = WtT (ĝ) then the parabolic subgroups P̂ (λ) and
so P (λ) do not depend on λ ∈ C.

Proof. — The parabolic subgroup P̂ (λ) only depends on the signs of the
〈λ, α̂〉’s for the roots α̂ of Ĝ. The lemma follows. �

The parabolic subgroups of Lemma 7.3 will be denoted by P̂ (C) and
P (C).

Remark 7.4. — In [3], Berenstein-Sjamaar also consider a chamber de-
composition of Y (T )Q. Our decomposition is the same if WtT (ĝ/g) =
WtT (ĝ) but not in general. An easy example to see a difference is G =
GL2 ⊂ SL3 = Ĝ.

We consider the set Θ of quadruples (S, C, w, ŵ) such that
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(1) S is a dominant admissible subtorus of T ,
(2) C is a dominant chamber of Y (S)Q,
(3) w ∈W/WGS and ŵ ∈ Ŵ/ŴĜS ,
(4) ι∗([B̂ŵP̂ (C)/P̂ (C)]).[BwP (C)/P (C)] = [pt] ∈ H∗(G/P (C),Z);
(5) (θP̂ (C)

ŵ )|S = (θP (C)
w − 2(ρ− ρS))|S .

We may now give a second parametrization of the faces of LR◦(G, Ĝ).

Theorem 7.5. — We assume that no ideal of g is an ideal of ĝ and that
WtT (ĝ/g) = WtT (ĝ).

The map which associates to (S, C, w, ŵ) ∈ Θ the set

F(S, C, w, ŵ) = {(ν, ν̂) ∈ LR◦(G, Ĝ) : ŵν̂|S + wν|S}

is a bijection from Θ onto the set of faces of LR◦(G, Ĝ). Moreover, the
codimension of F(S, C, w, ŵ) equals the dimension of S and the following
are equivalent:

(1) F(S, C, w, ŵ) ⊂ F(S′, C′, w′, ŵ′);
(2) w′S′w′−1 ⊂ wSw−1 and ŵw−1w′WGS′ = ŵ′WGS′ .

We now have to understand better the admissible pairs (S, ŵ).

Lemma 7.6. — Let (S, ŵ) be an admissible pair. Then, the set of ratio-
nal one-parameter subgroups λ of S such that (C(ŵ), λ) is well-covering,
is a chamber C(S, ŵ) of Y (S).

Proof. — Let F denote the face of LR◦(G, Ĝ) associated to (S, ŵ) in
Theorem 7.2. Then, S is the neutral component of a principal isotropy
group of F . Let L be the S-module such that (S,L) is the type of F . By
Theorem 4.3 and Lemma 2.2, the set of S-regular one-parameter subgroups
λ such that (C(ŵ), λ) is well-covering is contained in the interior C′ of the
dual of the cone generated by the weights WtS(L) of S in L. But, there
exists x ∈ C such that WtS(L) = WtS(TxX/TxG.x) and G◦x = S.

Let U and Û denote the unipotent radical of B and B̂. Let b, b̂, u, û, s
denote the Lie algebras of B, B̂, U, Û , S. We have:

WtS(L) = WtS(TxX/TxG.x)
= WtS((g/b⊕ ĝ/ŵb̂)/(g/s))
= WtS((ĝ/ŵb̂)/u)
= WtS(ŵû/u).

In particular, for any χ ∈WtS(ĝ/g), ±χ|S belongs toWtS(L). This implies
that for any χ ∈ WtS(ĝ/g), the sign of 〈λ, χ〉 does not depend on λ ∈ C′.
It follows that C′ is a chamber of Y (S)Q. �
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We can now prove Theorem 7.5.
Proof. — We are going to construct a bijection ϕ between the admissible

pairs (S, ŵ) and the elements (S′, C′, w′, ŵ′) ∈ Θ. This bijection will satisfy
C(ŵ) = w′C(w′, ŵ′) and so F(S, ŵ) = F(S′, C′, w′, ŵ′).
Let (S, ŵ) be an admissible pair. Consider the chamber C(ŵ, S) defined

by Lemma 7.6. Let λ ∈ C. Then there exists a unique w ∈ W/WGS such
that wλ is dominant. Since WtT (ĝ/g) = WtT (ĝ), then λ is S-regular,
Wλ = WGS and wSw−1 is dominant. Moreover, C is contained in a Weyl
chamber and so, w ∈W/WGS does not depend on the choice of λ. We set

ϕ(S, ŵ) = (wSw−1, wC, w−1, ŵw−1).

One easily checks that ϕ is bijective and that its inverse is (S, C, w, ŵ) 7→
(wSw−1, ŵw−1). �

Remark 7.7. — If WtT (ĝ/g) = WtT (ĝ), the set of pairs (S, C) of dom-
inant admissible tori and dominant chamber corresponds bijectively with
the set of conjugacy classes of inclusions of the form G/P (λ) ⊂ Ĝ/P̂ (λ).

7.4. Application to the tensor product cone

In this section, G is assumed to be semisimple. As above, T ⊂ B are
fixed maximal torus and Borel subgroup of G. We also fix an integer s > 2
and set Ĝ = Gs, T̂ = T s and B̂ = Bs. We embed G diagonally in Ĝ. Then
LR(G, Ĝ) is the set of (s + 1)-uples (ν0, · · · , νs) ∈ X(T )s+1

Q such that for
some positive n the nνi’s are strictly dominant weights and Vnν0⊗· · ·⊗Vnνs

contains nonzero G-invariant vectors.
Theorem 7.5 can be simplified in this case for at least two reasons. First,

WtT (ĝ/g) is just the root system of G. Moreover, the Belkale-Kumar prod-
uct allows to express the two conditions of the definition of admissible pairs
(see Section 7.2.2) in an unified and beautiful way.
We will denote by SP the neutral component of the center of the Levi

subgroup of P containing T .
In [2], Belkale-Kumar defined a new product �0 on the cohomology

groups H∗(G/P,Z) for any parabolic subgroup P of G. We consider the
set Θ of (P,Xw0 , · · · , Xws

) where P is a standard parabolic subgroup of G
and the Xwi ’s are s+ 1 Schubert varieties of G/P such that

[Xw0 ]�0 · · · �0 [Xws ] = [pt].

By applying Theorem 7.5 to Ĝ = Gs as in [15], we obtain the following
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Theorem 7.8. — The map which associates to (P,Xw0 , · · · , Xws
) ∈

Θ the set F(P,Xw0 , · · · , Xws
) of (ν0, · · · , νs) ∈ ACG(X) such that the

restriction of
∑
i w
−1
i νi to SP is trivial is a bijection from Θ onto the set

of faces of LR(G,Gs)◦. Moreover, the codimension of F(P,Xw0 , · · · , Xws
)

equals the dimension of SP and the following are equivalent:
(1) F(P,Xw0 , · · · , Xws

) ⊂ F(P ′, Xw′0
, · · · , Xw′s

);
(2) P ⊂ P ′ and π(Xwi) = Xw′

i
for all i = 0, · · · , s (here, π : G/P −→

G/P ′ is the natural map).

Remark 7.9. — Note that wi ∈ W/WP . Also, even if w−1
i νi is not well

defined, its restriction to SP is.

8. GIT-cone and moment polytope

We denote by T CGΛ (X), and call the total G-cone, the cone generated in
ΛQ by the line bundles (non-necessarily ample) L ∈ Λ which have nonzero
G-invariant sections. Since the tensor product of two nonzero G-invariant
sections is a nonzero G-invariant section, T CGΛ (X) is convex.

Let Y be a projective G-variety. Let us now explain the relation men-
tioned in the introduction between the moment polytopes of Y and some
total G-cones of X = G/B × Y .

Let L be an ample G-linearized line bundle on Y . We consider the set
PG(Y,L) of points p ∈ X(T )Q such that for some positive integer n, np
is a dominant character of T and the dual V ∗np of Vnp is a submodule of
H0(Y,L⊗n). In fact, PG(Y,L) is a polytope, called the moment polytope.
Notice that “the dual” is not usual in the definition; but it will be practical
for us.
Consider the two projections:

X
pY

����
��

��
�� pG/B

!!DD
DD

DD
DD

Y G/B

In this section, Λ will always denote the subgroup of PicG(X) gener-
ated by p∗G/B(PicG(G/B)) and p∗Y (L). Consider the affine subspace Λaff

Q of
ΛQ generated by p∗Y (L) ⊗ pG/B(PicG(G/B)). Note that, Λaff

Q is an affine
hyperplane of ΛQ which does not contain 0.

Proposition 8.1. — With the above notation, PG(Y,L) is the intersec-
tion of T CGΛ (X) with the hyperplane Λaff

Q . More explicitly, for all positive
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rational number m and for all ν ∈ X(T ), we have:

mp∗Y (L)⊗ p∗G/B(Lν) ∈ T CGΛ (X) ⇐⇒ ν

m
∈ PG(Y,L).

Proof. — The proof which is a direct application of the Borel-Weil the-
orem is left to the reader. �

It is possible that PG(Y,L) does not intersect the interior of the Weyl
chamber. In this case, ACGΛ (X) is empty and our results cannot be ap-
plied directly. But, the argument of [4, Section 5] shows that there exists
a subgroup H (namely, the centralizer of the derived subgroup of a Levi
subgroup of G) and a subvariety Y ′ of Y such that PG(Y,L) = PH(Y ′,LY ′)
and PH(Y ′,LY ′) intersects the interior of the Weyl chamber of H. >From
now on, we assume that PG(Y,L) contains regular points.
Let λ be a one-parameter subgroup of T . Set B(λ) = B ∩ P (λ). Let C

be an irreducible component of Y λ and

C+ := {x ∈ X : lim
t→0

λ(t)x ∈ C}

the associated Białynicki-Birula cell.

Definition 8.2. — The pair (C, λ) is said to be B-covering if the natu-
ral map ηB : B×B(λ)C

+ −→ Y is birational. It is said to be well-B-covering
if η induces an isomorphism over an open subset of Y intersecting C.

The following lemma is obvious.

Lemma 8.3. — With the above notation, the pair (C, λ) is B-covering
(resp. well-B-covering) if and only if (GλB/B × C, λ) is covering (resp.
well-covering).

Let us recall that the subtori of T correspond bijectively to the linear
subspaces of X(T )Q. If V is a linear subspace of X(T )Q, the associated
torus is the neutral component of the intersection of kernels of elements in
X(T ) ∩ V . If F is a convex subset of X(T )Q, the direction dir(F ) of F is
the subspace spanned by the differences of two elements of F .

We will denote by C+ the convex cone in X(T )Q generated by the dom-
inant weights. The next proposition is an improvement of [4, Theorem 1]:

Proposition 8.4. — We keep the above notation and assume that Y
is smooth and PG(Y,L) intersects the interior of the dominant chamber.
Let F be a face of PG(Y,L) which intersects the interior of the dominant
chamber. Let S the subtorus of T associated to dir(F).

There exist a unique irreducible component C of Y S and a one-parameter
subgroup λ of S such that Gλ = GS , (C, λ) is a well-B-covering pair, and
F = PGS (C,L|C) ∩ C+.
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Proof. — Let F̃ be the face of ACGΛ (X) corresponding to F and r denote
its codimension. By Proposition 6.2, there exists an admissible well-covering
pair (CX , S′) such that F̃ = F(CX) and S′ is a r-dimensional torus. Up to
conjugacy, we may assume that CX intersects Y ×B/B, and S′ is contained
in T . Let λ be a one-parameter subgroup of S′ such that (CX , λ) is well-
covering. Then, CX = GλB/B × C for some irreducible component C of
Y S
′ .
The fact that F̃ = F(CX) readily implies that F = PGS′ (C,L|C) ∩ C+.

Since the direction of PGS′ (C,L|C) is contained in X(T )S′ , this implies
that X(T )S is contained in X(T )S′ . But S and S′ have the same rank, it
follows that S = S′.

The unicity part is a direct consequence of Proposition 6.7. �

Remark 8.5. — The improvement over [4] is the assertion that (C, λ) is
a well-covering pair.
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