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LOCAL RIGIDITY OF ASPHERICAL
THREE-MANIFOLDS

by Pierre DERBEZ (*)

Abstract. — In this paper we construct, for each aspherical oriented 3-mani-
fold M , a 2-dimensional class in the l1-homology of M whose norm combined with
the Gromov simplicial volume ofM gives a characterization of those nonzero degree
maps from M to N which are homotopic to a covering map. As an application we
characterize those degree one maps which are homotopic to a homeomorphism in
term of isometries between the bounded cohomology groups of M and N .
Résumé. — Dans ce papier nous construisons, pour chaque variété de dimen-

sion trois close orientable et asphérique M , une classe d’homologie l1 de dimension
deux dans M dont la norme permet avec le volume simplicial de M de caractériser
les applications de degré non-nul de M dans N qui sont homotopes à un revête-
ment. Comme conséquence, nous donnons un critère d’homéomorphisme pour les
applications de degré un en terme d’isométries entre les groupes de cohomologie
bornée de M et N .

1. Introduction

Throughout this paper all manifolds are orientable. Given a topological
space X we denote by (C∗(X), ∂) its real singular chain complex endowed
with the l1-norm defined by ‖σ‖1 =

∑
i |ai| if σ =

∑
i aiσi, where σi are

singular simplices.
Any finite covering map f : M → N between closed orientable

3-manifolds induces an isometry f] : H3(M ; R) → H3(N ; R) with respect
to the l1 (semi) norm induced by the l1-norms on the real singular chains
of M and N .
For hyperbolic manifolds this condition is sufficient to characterize cov-

ering maps by Gromov and Thurston’s works. However, since the Gromov

Keywords: Aspherical 3-manifolds, bounded cohomology, l1-homology, non-zero degree
maps, topological rigidity.
Math. classification: 57M50, 51H20.
(*) I would like to thank Professor M. Boileau for introducing me to this field.



394 Pierre DERBEZ

simplicial volume of a 3-manifoldM , which is the l1-norm ‖[M ]‖1 of a gen-
erator [M ] of H3(M ; Z) ⊂ H3(M ; R), does not detect the "non-hyperbolic
part" of 3-manifolds one can construct, using pinching maps, many pairwise
non-homeomorphic 3-manifolds with the same Gromov simplicial volume
related by a degree one map.
When M is a surface bundle over the circle with a fiber of negative

Euler characteristic, M. Boileau and S. Wang gave in [3, Theorem 2.1,
Corollary 2.3] a characterization of nonzero degree maps f : M → N into
an irreducible 3-manifold which are homotopic to a covering map in terms
of isometry with respect to the Thurston’s norm in the second homology
group of the manifolds. The purpose of this paper is to extend [3, Theorem
2.1] to aspherical 3-manifolds.

According to the Geometrization Theorem of Perelman, any closed as-
pherical 3-manifold M admits a JSJ-splitting along a family of character-
istic tori TM such that each component of M \ TM either admits a Seifert
fibration or has a complete finite volume hyperbolic interior.
We say thatM is orientable* ifM is orientable and if each Seifert compo-

nent ofM \TM admits a fibration over an orientable surface. This condition
is satisfied for example whenM contains no embedded Klein bottle or when
M is obtained from a holomorphic function f : (C3, 0) → (C, 0) with an
isolated singularity at 0 by taking the boundary of the singularity of f at
0 defined by f−1(0) ∩ S(ε), where S(ε) is a Milnor sphere centered at 0
in C3 with radius ε (see [18]). Notice that this orientation* condition is
also satisfied when M is a surface bundle with a fiber of negative Euler
characteristic ([3]).
In [3, Theorem 2.1], a key point, is that whenM is a surface bundle, there

there exists a class αM ∈ H2(M)\{0}, namely the class of the fiber, "passing
non-trivially through the whole manifold". Of course, such a fiber class, does
not exist in the homology of a general 3-manifold because if we try to define
local classes in M there are often homological obstructions which do not
allow to glue them together in order to define a global class. However these
obstructions disappear considering the l1-completion H l1

2 (M) of H2(M)
and a fiber class αM can be defined in H l1

2 (M) as follows. Let M be a
closed orientable aspherical 3-manifold :

When M is a geometric 3-manifold, set αM = 0 excepted when M is
a S̃L2(R)-manifold. In this case, M admits a finite covering p : M̃ → M

which is a (true) circle bundle ξ : M̃ → F̃ over a smooth surface. Then we
set

αM = p] ◦ ξ−1
]

([
F̃
]

1

)
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LOCAL RIGIDITY OF ASPHERICAL THREE-MANIFOLDS 395

where
[
F̃
]

1
denotes the l1-class of the l1-cycle F̃ . This makes sense since by

[9, Mapping Theorem] ξ induces an isometric isomorphism ξ] : H l1
2 (M̃)→

H l1
2 (F̃ ).
WhenM is not a geometric 3-manifold, each Seifert component ofM\TM

admits either a Euclidean geometry or a H2×R-geometry. For each H2×R-
component Pi, i = 1, ..., l, of M \ TM we choose a horizontal properly
embedded incompressible surface Fi in Pi and we set

αM =
l∑
i=1

1
ki
αM (Fi)

where ki denotes the intersection number between Fi and the generic fiber
of Pi and where αM (Fi) denote the l1-class of Fi in M which makes sense
since the relative cycle Fi of Pi can be "filled" in a natural way giving a
l1-cycle inM (see paragraph 2). IfM \TM contains no H2×R-components
we just set αM = 0.

Remark 1.1. — Obviously, it follows from our construction that our
fiber class does not need to be unique, as well as the fiber class of a surface
bundle when the rank of the homology is distinct from 1, by a result of
[17]. On the other hand, it follows from our proof of Theorem 1.2 that our
results hold for any choices of a fiber class.

The main result of this paper states as follows

Theorem 1.2. — Let f : M → N be a nonzero degree map from a
closed orientable* aspherical 3-manifold into a closed orientable irreducible
3-manifold such that ‖f]([M ])‖1 = ‖[M ]‖1 and ‖f](αM )‖1 = ‖αM‖1 for
some fiber class αM . Then f is homotopic to a deg(f)-fold covering map.

To make the hypothesis ‖f](αM )‖1 = ‖αM‖1 more concrete one can
compare it with a condition given in [6] where we indroduce an invariant
denoted by vol(M) and defined as the sum of the absolute value of the
orbifolds Euler characteristic of the Seifert pieces of M . This volume is
used to state rigidity results, see [6, Theorems 1.3 and 1.6]. Using sections
2 and 3 of this paper and results in [6] one can easily check that ‖αM‖1 =
vol(M) and if ‖f]([M ])‖1 = ‖[M ]‖1, meaning that ‖M‖ = |deg(f)|‖N‖,
then ‖αM‖1 = vol(M) > ‖f]αM‖1 > ‖αN‖1 = vol(N).

As far as we know, there are no general results to characterize local
isometries for aspherical 3-manifolds excepted when the sectional curva-
ture is negative. In the situation we deal with, the best metric we can
hope, in many cases, is a metric with non-positive curvature by [14] and
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396 Pierre DERBEZ

our manifolds contain many totally geodesic surfaces where the curvature
vanishes. From the point of view of maps f : M → N there are more flexi-
bility when the sectional curvature ofM vanishes and so it is more difficult
to control the behavior of f . On the other hand, we hope that our results
offer an application of the theory of bounded cohomology and l1-homology.
Notice that if M and N are both orientable* then the isometry condi-

tion is also necessary (see Lemma 2.2 and Proposition 2.4). If N is not
orientable* the condition is not necessary. Indeed, consider for N the triv-
ial orientable S1-bundle over the genus −3 surface RP (2)]RP (2)]RP (2)
and for M the trivial bundle Σ2 × S1 which is a 2-fold covering p : M →
N , where Σ2 is the genus 2-surface. Let αM denote the class of Σ2 in
H l1

2 (M ; R). Then it follows from the arguments of section 2 that ‖αM‖1 > 0
and p](αM ) = 0.

By the Hahn-Banach Theorem, for each fiber class αM with ‖αM‖1 > 0,
there exists a class βM in the second bounded cohomology group of M ,
denoted by H2

b (M ; R) and endowed with the semi-norm ‖.‖∞, such that
〈βM , αM 〉 = 1 and ‖βM‖∞ = 1

‖αM‖1
. When ‖αM‖1 = 0, just set βM = 0.

Thus we deduce the following

Corollary 1.3. — Let f : M → N be a nonzero degree map from a
closed orientable* aspherical 3-manifold into a closed orientable irreducible
3-manifold such that ‖f]([M ])‖1 = ‖[M ]‖1. If there exists a class β ∈
H2
b (N ; R) such that f ](β) = βM and ‖βM‖∞ = ‖β‖∞ then f is homotopic

to a covering map.

We give the following corollary answering positively to a question of
Professor M. Boileau.

Corollary 1.4. — A degree one map f : M → N from a closed ori-
entable* aspherical 3-manifold into a closed orientable irreducible
3-manifold is homotopic to a homeomorphism iff

(i) f] : H3(M ; R) → H3(N ; R) is an isometry with respect to the l1-
norms and
(ii) f induces an isometric isomorphism f ] : H2

b (N ; R)) → H2
b (M ; R),

resp. an isometry f] : H l1
2 (M ; R)→ H l1

2 (N ; R).

Theorem 1.5. — A nonzero degree map f : M → N from a closed ori-
entable aspherical 3-manifold into a closed orientable irreducible 3-manifold
is homotopic to a covering map iff it induces a homomorphism f∗ : π1M →
π1N with amenable kernel.

ANNALES DE L’INSTITUT FOURIER



LOCAL RIGIDITY OF ASPHERICAL THREE-MANIFOLDS 397

We end this section by mentioning a related result for self maps which is
a direct consequence of [24] and [13, Theorem 0.7] using a standard covering
space argument suggested by Professor W. Lück:

Theorem 1.6. — Any nonzero degree map f : M → M from a closed
orientable aspherical 3-manifold to itself is homotopic to a deg(f)-fold cov-
ering.

Organization of the paper. This paper is organized as follows. In
Section 2 we collect some technical results which will be used in the proof
of the theorem. More precisely we compute the l1-norm of certain classes in
H l1

2 (M) which come from classical integral homology classes and we study
some isometric properties of finite coverings with respect to the l1-norms.
Section 3 is devoted to the proof of Theorems 1.2 and 1.5.

2. Norm of surfaces in aspherical 3-manifolds

To fix the notations we recall the basic definitions of l1-homology and
bounded cohomology according to the main papers of [16] and [9]. For a
topological spaceX, denote by Cl1∗ (X) the l1-completion of the real singular
chains C∗(X). Then

Cl1n (X) =
{
c =

∞∑
i=1

aiσi s.t. ‖c‖1 =
∞∑
i=1
|ai| <∞

}
where ai ∈ R and σi : ∆n → X is a singular n-simplex. We will denote
by Sn(X) the set of singular n-simplices. The topological dual of Cl1∗ (X)
is given by the set

Cnb (X) =
{
w ∈ Cn(X) s.t. ‖w‖∞ = sup

σ∈Sn(X)
|〈w, σ〉| <∞

}
Note that the ∂ and δ operators are bounded so that (Cl1∗ (X), ∂) and
(C∗b (X), δ) are chain, resp. cochain, complexes. We denote by H l1

∗ (X), resp.
by H∗b (X), the homology, resp. cohomology, of this chain, resp. cochain,
complex. The vector spaces H l1

∗ (X) and H∗b (X) are endowed with the quo-
tient semi-norm that we still denote by ‖.‖1 and ‖.‖∞ respectively. In the
same way it is a standard fact that one can define the l1-homology and
bounded cohomology of a pair of topological spaces (X,A). Denote by
i : A → X the natural inclusion and by j : Cl1∗ (X) → Cl1∗ (X,A) the pro-
jection. Then we get the classic long exact sequence

...→ H l1
n (A) i]→ H l1

n (X) j]→ H l1
n (X,A) ∂]→ H l1

n−1(A)→ ...

TOME 62 (2012), FASCICULE 1



398 Pierre DERBEZ

If moreover each component of A has an amenable fundamantal group
then by [16, Corollary 2.5] we know that H l1

n (A) = {0} for any n > 1 and
thus j] admits an inverse j−1

] : H l1
n (X,A) → H l1

n (X) for n > 2 defined by
j−1
] ([z]) = [z+u] where z is a relative cycle in (X,A) and u is any l1-chain
in A such that ∂u = −∂z. It follows from the definition that any contin-
uous map of pairs f : (X,A) → (Y,B) induces a bounded homomorphism
f] : Hn(X,A) → Hn(Y,B) such that ‖f]‖ 6 1. On the other hand, when
M is compact orientable n-manifold with (possibly empty) boundary we
will denote by [M ] its fundamental class in Hn(M,∂M), by [M ]1 the image
of [M ] under the homomorphism Hn(M,∂M) → H l1

n (M,∂M) induced by
the completion and by ‖M‖ its Gromov simplicial volume. For technical
reasons we need the following

Lemma 2.1. — Let p : X̃ → X be a regular covering map with finite
Galois group Γ. For any Γ-invariant class α ∈ H l1

n (X̃) then ‖p](α)‖1 =
‖α‖1.

Proof. — We use the averaging retraction A : Cnb (X̃)→ Cnb (X) defined
in [9] by

〈A(γ), σ〉 =
∑
g∈Γ〈g]γ, σ̃〉
Card(Γ)

where σ̃ : ∆n → X̃ denotes a lifting of σ : ∆n → X. This definition does
not depend one the choice of the lifting σ̃ since the covering is regular.
By construction, A commutes with the differentials so that it induces a
homomorphism Â : Hn

b (X̃)→ Hn
b (X) such that ‖Â‖ 6 1. Let α ∈ H l1

n (X̃)
such that g](α) = α for any g ∈ Γ. If ‖α‖1 6= 0 then by the Hahn-Banach
Theorem, there exists β ∈ Hn

b (X̃) such that 〈β, α〉 = 1 and ‖β‖∞ =
1
‖α‖1

. Since α is Γ-invariant then by the definition of the averaging we

have
〈
Â(β), p](α)

〉
= 1 and thus using the Hölder inequality and the fact

that ‖Â‖ 6 1 we deduce ‖p](α)‖1 > ‖α‖1. This proves the lemma. �

2.1. S̃L2(R)-manifolds

Let M be an orientable* 3-manifold admitting a S̃L2(R)-geometry. If
moreoverM is a (true) circle bundle, with projection ξ and base F then by
[9, Mapping Theorem] ξ induces an isometric isomorphism ξ] : H l1

2 (M)→
H l1

2 (F ). Denote by αM (F ) the class ξ−1
] ([F ]1).

ANNALES DE L’INSTITUT FOURIER



LOCAL RIGIDITY OF ASPHERICAL THREE-MANIFOLDS 399

Lemma 2.2. — Let M be an orientable* S̃L2(R)-manifold.
(i) If M is a (true) circle bundle with base F then

‖αM (F )‖1 = ‖F‖

(ii) Otherwise, for any finite covering p : M̃ →M such that M̃ is a (true)
circle bundle over a surface F and projection ξ : M̃ → F then ‖p]αM̃ (F )‖ =
‖F‖.

(iii) Moreover when M̃ is a circle bundle, the vector space generated by
p]αM̃ (F ) does not depend on the choice of the finite covering p : M̃ →M .

Proof. — We first check point (i). The inequality ‖αM (F )‖1 6 ‖F‖ fol-
lows from the definition. To check the converse inequality we use exactly the
same construction as in [2]. Fix a complete hyperbolic metric on F . Since
F is orientable we can define a bounded 2-cocyle ΩF in F in the follow-
ing way: for each 2-simplex σ : ∆2 → F , where ∆2 denotes the standard
2-simplex, we set 〈ΩF , σ〉 = A(st(σ)), where st(σ) denotes the geodesic
simplex obtained from σ after straightening and A denotes the algebraic
area with respect to the fixed hyperbolic metric. In particular we get, if z
denotes a 2-cycle representing the fundamental class of F〈

ξ]([ΩF ]), ξ−1
] ([F ]1)

〉
= 〈[ΩF ], [F ]l1〉 = 〈ΩF , z〉 = Area(F )

where [ΩF ] ∈ H2
b (F ) and [F ]l1 ∈ H l1

2 (F ). Since by the construction
‖ξ]([ΩF ])‖∞ = ‖[ΩF ]‖∞ 6 π then by the Hölder inequality we get
‖αM (F )‖1 > ‖F‖. This proves point (i). We now prove point (ii). We
consider two casis depending on whether the covering is regular or not.
Case 1. Assume that p is regular. Denote by Γ the Galois group of the

covering. Note that since M is a Seifert bundle with orientable base 2-
orbifold then any g ∈ Γ induces an orientation preserving homeomorphism
g : F → F such that ξ ◦ g = g ◦ ξ and thus α

M̃
(F ) is Γ-invariant and point

(ii) of the lemma follows from Lemma 2.1 and point (i). This completes the
proof of point (ii) in Case 1.
Case 2. If p is not regular then consider a finite covering q : M̂ → M̃

such that p ◦ q is regular. Since q]
(〈
α
M̂

(
F̂
)〉)

=
〈
α
M̃

(F )
〉
, where 〈v〉

denotes the vector space generated by the vector v and where F̂ is the base
of the bundle M̂ , then point (ii) in Case 2 follows from Case 1.

To check point (iii) it suffices to consider a common covering M̃ to M̃1
and M̃2 (which corresponds for example to (p1)∗(π1M̃1) ∩ (p2)∗(π1M̃2)).
This completes the proof of the lemma. �

TOME 62 (2012), FASCICULE 1



400 Pierre DERBEZ

2.2. Aspherical 3-manifolds

Let M be a closed orientable* aspherical 3-manifold. We fix an orienta-
tion on M . In the following we will assume that H2 and R are oriented
with the usual convention. Let P denote a component of M \ TM whose
interior admits a H2 ×R-geometry. Since M is orientable* then P admits
a Seifert fibration over an orientable basis and we denote by hP the fiber
of P . We orient the fiber hP in such a way that the universal covering
p : H2 × R → P induces an orientation preserving map R → hP . Let F
be an oriented surface and let f : (F , ∂F)→ (P, ∂P ) be a proper map. For
any x ∈ R we denote by αM (xF , f) the class defined by k]j−1

] f](x[F ]1)
following the composition of homomorphisms:

H l1
2 (F , ∂F) f]→ H l1

2 (P, ∂P )
j−1
]→ H l1

2 (P ) k]→ H l1
2 (M)

where k : P →M denotes the inclusion.

Lemma 2.3. — We have ‖αM (xF , f)‖1 6 |x|‖F‖ for any x ∈ R.

Proof. — The proof follows from [9, Equivalence Theorem] combined
with [16, Theorem 2.3]. �

Consider now a proper map f : (F , ∂F) → (P, ∂P ) transverse to the
fibers of P . We choose always the orientation of each component of F of F
so that so that f is orientation preserving which means that the orientation
of f(F) followed by the orientation of hP matches the orientation induced
by M . The main purpose of this section is to check the following

Proposition 2.4. — Let M be a closed aspherical orientable*
3-manifold and denote by P1, ..., Pl a collection of pairwise distinct Seifert
components of M \ TM whose interior admits a H2 × R-geometry. For
each i = 1, ..., l assume that we are given an orientation preserving proper
embedding fi : (Fi, ∂Fi)→ (Pi, ∂Pi) . Then

(i) Isometry: for any i = 1, ..., l we have the equality

‖αM (Fi, fi)‖1 = ‖Fi‖

(ii) Additivity under JSJ-splitting:

‖αM (x1F1, f1) + ...+ αM (xlFl, fl)‖1
= ‖αM (x1F1, f1)‖1 + ...+ ‖αM (xlFl, fl)‖1

where x1, ..., xl are positive real numbers.
(iii) Let f : M → N be a covering map with N orientable*. If α =

αM (x1F1, f1) + ...+ αM (xlFl, fl) then ‖f](α)‖1 = ‖α‖1.

ANNALES DE L’INSTITUT FOURIER



LOCAL RIGIDITY OF ASPHERICAL THREE-MANIFOLDS 401

To prove this proposition we need two intermediate results. Hypothesis
are the same as in Proposition 2.4.

Lemma 2.5. — Suppose that {Pi}i∈I is a family of circle bundles com-
ponents ofM \TM admitting a H2×R-geometry. For any i ∈ I there exists
a bounded 2-cocyle ΩPi in M satisfying the following properties:

(i) k∗i (ΩPi) is a relative 2-cocycle in (Pi, ∂Pi) where ki : Pi ↪→M denotes
the natural inclusion and k∗i (ΩPj ) = 0 if i 6= j,

(ii) |〈[ΩPi ], αM (Fi, fi)〉| = Area(Fi) where Area(Fi) denotes the area of
int(Fi) endowed with a complete hyperbolic metric.

(iii)
∥∥∑

i∈I [ΩPi ]
∥∥
∞ = π, where [ΩPi ] denotes the class of ΩPi in

H2
b (M ; R).

Remark 2.6. — The above result is stated for Seifert pieces which are
circle bundles only for convenience. This lemma remains true if we consider
a family of Seifert pieces admitting a geometry H2 ×R with an orientable
base 2-orbifold. Notice that the bounded class ΩPi cannot be defined for
Seifert pieces with non-orientable basis.

To prove this lemma we need the reduction of singular chains with respect
to the JSJ-splitting of aspherical 3-manifolds. This chain map is stated for
example in [8]. Since this construction is crucial for our purpose we recall
it and fix notation.
Let M be a closed aspherical orientable 3-manifold. Denote by P1, ..., Pl

the components ofM \TM . As in [8], we consider a chain map ρ : Cn(M)→
Cn(M) defined as follows:

0-simplices. If n = 0 then ρ is the identity.
1-simplices. If n = 1 let τ : [v0, v1] → M be a 1-simplex. Since TM

is incompressible, the map τ is homotopic, rel. {v0, v1}, to a reduced 1-
simplex i.e. a map τ1 : [v0, v1] → M such that either τ1([v0, v1]) ⊂ TM or
τ1|(v0, v1) is transverse to TM and for each component J of τ−1

1 (Pi) then
τ1|J is not homotopic rel. ∂J into ∂Pi. Then we set ρ(τ) = τ1 and we
extend ρ by linearity.

2-simplices. If n = 2 let σ : ∆2 = [v0, v1, v2]→M be a 2-simplex. Then σ
is homotopic rel. V (∆2) = {v0, v1, v2} to a reduced 2-simplex σ1 such that
either σ1(∆2) ⊂ TM or σ1|int(∆2) is transverse to TM , the 1-simplex σ1|e is
reduced for each edge e of ∆2 and σ−1

1 (TM ) contains no loop components.
Thus if J is a component of σ−1

1 (TM ) such that J ∩ int(∆2) 6= ∅ then J is
a proper arc in ∆2 connecting two distinct edges (see figure 2.1). Then we
set ρ(σ) = σ1 and we extend ρ by linearity.

TOME 62 (2012), FASCICULE 1
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w0 = w1

v1 = w1(I) (II) (III)

(IV ) (V )

Core(σ)Core(σ)
Core(σ) = ∅

D

D

Figure 2.1

Remark 2.7. — Suppose that σ : ∆2 → M is a reduced 2-simplex. If
σ(e) is not contained in TM for any edge e of ∆2 then there exists a unique
component, denoted by Core(σ), of ∆2 \ σ−1(TM ) which meets the three
edges of ∆2 (see [8]).

3-simplices. If n = 3 let σ : ∆3 = [v0, v1, v2, v3] → M be a 3-simplex.
Then σ is homotopic rel. V (∆3) = {v0, v1, v2, v3} to a reduced 3-simplex
σ1 such that either σ1(∆3) ⊂ TM or σ1|int(∆3) is transverse to TM , the
2-simplex σ1|∆2

i is reduced for each face ∆2
i of ∆3 and if D is a component

of σ−1
1 (TM ) such that D∩ int(∆3) 6= ∅ then D is either a normal triangle or

a normal rectangle (see figure 2.2). Then we set ρ(σ) = σ1 and we extend
ρ by linearity. Notice that the reduction is stable under the ∂-operator.
Proof of Lemma 2.5. — We use here the technique developed in [1].
Step 1: Crushing M into Pi. Denote by pi : M̃i → M the covering map

corresponding to the subgroup (ki)∗(π1Pi) of π1M , fix a lifting k̃i : Pi → M̃i

of ki : Pi →M and denote by P̃i the image of k̃i. There exists a retraction
ri : M̃i → Pi crushing each component of M̃i \ P̃i to the corresponding
component of ∂P̃i such that ri|P̃i = k̃−1

i . Denote by Fi the base surface
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vi

vj

vk

vl

wi

wj
wk

wl
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Figure 2.2. Normal triangles and rectangles

of the circle bundle Pi and by ξi : Pi → Fi the projection. Fix a complete
hyperbolic metric on int(Fi), crush each component of ∂Fi to a point,
denote by F̂i the new surface and by qi : Fi → F̂i the natural crushing
map. This construction is equivalent to adding a limit parabolic point to
each component C of ∂Fi. This parabolic point corresponds to the fixed
point of the parabolic isometry generating π1C.

M̃i

p

��

ri

��?
??

??
??

?

Pi
ki //

k̃i
??��������
M Pi

ξi // Fi
qi // F̂i

Step 2: Straightening simplices on surfaces with boundary. Let
σ : ∆2 = [v0, v1, v2] → F̂i be a (singular) 2-simplex. Consider an edge
τ = σ|[vi, vj ] : [vi, vj ] → F̂i and denote by τ̃ : [vi, vj ] → H2 a lifting of
τ in the hyperbolic space union its boundary. Then τ̃ is homotopic by a
homotopy fixing the end points to the unique geodesic arc (which may be
constant) connecting the end points of τ̃ . Denote by st(τ̃) the new straight
1-simplex and by st(τ) the projection of st(τ̃) into F̂i. We straighten each
edge of σ and finally we homotop σ to a straight 2-simplex st(σ). As in
the proof of Lemma 2.2 we define a bounded 2-cocyle ω̂i on F̂i by setting
〈ω̂i, σ〉 = A(st(σ)), the algebraic area of st(σ). Thus q]i (ω̂i) defines a rela-
tive 2-cocyle on (Fi, ∂Fi) such that 〈q]i (ω̂i), zi〉 = Area(Fi), where zi is a
relative 2-cycle representing the fundamental class of Fi.
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Step 3: Lifting the singular chains. Let µ =
∑
l alµl be a n-chain for

n = 2, 3 where al ∈ R and µl : ∆n → M is a singular n-simplex. We
choose a decomposition of each component of ∆n \ ρ(µl)−1(TM ) into n-
simplices ∇jl , j = 1, ..., nl (recall that ρ denotes the reduction operator).
Next we replace µ by the n-chain σ =

∑
l,j alρ(µl)|∇jl . Denote by σ̃ the

preimage of σ in M̃i. Then σ̃ is a locally finite n-chain in M̃i. Since P̃i
is compact then we define a finite n-chain σ̃i in M̃i by taking only the
simplices of σ̃ which meet P̃i.
Step 4: Definition of a bounded cocyle satisfying the conclusion of the

lemma. Keeping the same notation as in Step 3 we define a 2-cochain ΩPi
in M by setting

〈ΩPi , µ〉 =
〈
g]i ŵi, σ̃i

〉
where µ is a singular 2-simplex and where gi = qi ◦ ξi ◦ ri. By construction
‖ΩPi‖∞ 6 π. Indeed let σ : ∆2 →M be a singular 2-simplex. By construc-
tion of ΩPi we may assume that σ is reduced. First note that it follows from
the construction that for each triangle ∆ of ∆2 \ σ−1(TM ) (given in the
decomposition of Step 3) whose an edge is a component of σ−1(TM ) then
〈ΩPi , σ|∆〉 = 0 (the simplices of σ̃|∆ are sent into a point or a geodesic
arc after straightening in F̂i). On the other hand there exist at most one
triangle ∆σ of ∆2 \ σ−1(TM ) whose no edge is a component of σ−1(TM ).
This triangle necessarily lives in Core(σ). Since there exists at most one
component of σ̃|∆σ which meets P̃i then the inequality ‖ΩPi‖∞ 6 π fol-
lows.
We check the cocyle condition 〈δΩPi , σ〉 = 0 for each 3-simplex σ : ∆3 →

M . Since 〈δΩPi , σ〉 = 〈ΩPi , ∂σ〉 then we may assume that σ is reduced. Con-
sider the 3-chain

∑
j σ|∇j , where ∇j is the decomposition (given in Step

3) of ∆3 \σ−1(TM ) into 3-simplices. The 2-faces of ∇j are made of interior
triangles which consist of the triangles whose interiors are in the interior
of ∆3 and of triangles which define the 2-simplices of a decomposition of
∂∆3 \ (σ−1(TM )∩∂∆3). Since each interior triangle is the face of two adja-
cent tetrahedra then one can replace σ by

∑
j σ|∇j . Denote still

∑
j σ|∇j

by σ. The 2-chain of M̃i defined by

∂σ̃i −
(
∂̃σ
)
i

(∗)

consists of an alternate sum of 2-simplices of ∂σ̃ which does not meet P̃i.
Since the retraction ri crush each component of M̃i \ P̃i to ∂P̃i then by
construction 〈

g]i ŵi, ∂σ̃i −
(
∂̃σ
)
i

〉
= 0 (∗∗)
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On the other hand by the definition

〈δΩPi , σ〉 =
〈
g]i ŵi,

(
∂̃σ
)
i

〉
Thus using (*) and (**) we get, since g]i ŵi is a cocyle by construction,

〈δΩPi , σ〉 =
〈
g]i ŵi, ∂σ̃i

〉
= 0

On the other hand it is easily checked from the construction that k∗i ΩPi
is a relative cocycle of (Pi, ∂Pi) and k∗i (ΩPj ) = 0 for any i 6= j.

We check point (ii). First note that αM (Fi, fi) = [(ki)]((fi)](µi) + u)]
where µi is a relative 2-cycle representing the fundamental class of Fi and u
is a l1-chain in ∂Pi such that ∂u = −∂f](µi). Thus the construction yields

〈[ΩPi ] , αM (Fi, fi)〉 =
〈
g]i ŵi, (k̃i)](fi)](µi)

〉
=
〈
q]i ŵi, (ξi ◦ fi)](µi)

〉
But since ξi ◦fi is a finite covering, with positive degree denoted by di then
(ξi ◦ fi)]([Fi]) = di[Fi] and thus we get (see Step 2)

〈[ΩPi ] , αM (Fi, fi)〉 = di

〈
q]i ω̂i, zi

〉
= diArea(Fi) = Area(Fi)

To complete the proof of the lemma it remains to compute the norm of
the classes defined by ΩPi . Denote by Ω the sum

∑
i Ωi. We first check

that ‖
∑
i ΩPi‖∞ 6 π. Let σ : ∆2 → M be a singular 2-simplex. If there

exists an edge e of ∆2 such that ρσ(e) ⊂ TM then
〈∑

i∈I ΩPi , σ
〉

= 0.
If for any edge e of ∆2 we have ρσ(e) 6⊂ TM then there exists a unique
component Core(σ) of (ρσ)−1(M \TM ) which meets the three edges of ∆2.
Denote by Pν the component of M \ TM such that ρσ(Core(σ)) ⊂ int(Pν).
If ν ∈ I then we have

∣∣〈∑
i∈I ΩPi , σ

〉∣∣ = |〈ΩPν , σ〉| 6 π and if ν 6∈ I then∣∣〈∑
i∈I ΩPi , σ

〉∣∣ = 0. This proves that ‖
∑
i∈I ΩPi‖∞ 6 π. Using lemma 2.3

and points (i) and (ii) of the Lemma, we get the following equalities

|〈[Ω], αM (Fi, fi)〉| = Area(Fi) 6 ‖[Ω]‖∞ ‖αM (Fi, fi)‖1 6 ‖[Ω]‖∞ ‖Fi‖

this completes the proof of Lemma 2.5 since Area(Fi) = π‖Fi‖. �

Lemma 2.8. — LetM be a closed aspherical orientable* 3-manifold and
let p : M̃ →M denote a finite regular covering whose each Seifert piece is a
circle bundle with H2×R-geometry. Assume that we are given orientation
preserving proper embeddings fi : (F̃i, ∂F̃i) → (P̃i, ∂P̃i) where {P̃i}i∈I is
a collection of Seifert pieces of M̃ . Then we have the equality∥∥∥∥∥p]

(∑
i

α
M̃

(
xiF̃i, fi

))∥∥∥∥∥
1

=

∥∥∥∥∥∑
i

α
M̃

(
xiF̃i, fi

)∥∥∥∥∥
1

where the xi are positive real numbers.
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Proof. — Denote by Γ the automorphism group of p : M̃ → M . Let α̃
be the element

∑
α
M̃

(
xiF̃i, fi

)
and denote by Av(α̃) the class obtained

by averaging α̃ defined by Av(α̃) =
∑
g∈Γ g](α̃). For a Seifert piece P̃ of M̃

denote by Ω
P̃

the bounded 2-cocycle of M̃ constructed in Lemma 2.5 and
denote by Ω the sum

∑
P̃

Ω
P̃
. Notice that each g ∈ Γ acts one M̃ as an

orientation preserving homeomorphism which preserves the JSJ-splitting.
In particular for each Seifert piece P̃ of M̃ then there exists a unique
Seifert piece P̃ ′ such that g(P̃ ) = P̃ ′ and g|P̃ : (P̃ , ∂P̃ ) → (P̃ ′, ∂P̃ ′) is a
homeomorphism. Moreover since each Seifert piece of M has an orientable
basis then g|P̃ : (P̃ , ∂P̃ ) → (P̃ ′, ∂P̃ ′) induces an orientation preserving
homeomorphism between the bases of P̃ and P̃ ′. Then we get

〈[Ω],Av(α̃)〉 = Card(Γ)
∑
i∈I

xiArea(F̃i) 6 π‖Av(α̃)‖1

which proves that

‖Av(α̃)‖1 > Card(Γ)
∑
i∈I

xi

∥∥∥F̃i∥∥∥
Since Av(α̃) is Γ-invariant then by Lemma 2.1 ‖p](Av(α̃))‖1 = ‖Av(α̃)‖1.
Moreover using the definitions and Lemma 2.3

‖p](Av(α̃))‖1 6
∑
g∈Γ
‖p]g](α̃)‖1 6

∑
g∈Γ
‖g](α̃)‖1 6 Card(Γ)

∑
i∈I

xi

∥∥∥F̃i∥∥∥
We deduce that

∑
g∈Γ ‖p]g](α̃)‖1 =

∑
g∈Γ ‖g](α̃)‖1. On the other hand,

since we know that ‖p]g](α̃)‖1 6 ‖g](α̃)‖1 for any g ∈ Γ then we get in
particular ‖p](α̃)‖1 = ‖α̃‖1. �

Proof of Proposition 2.4. — To complete the proof of Proposition 2.4 it
remains to check the following points
(i) ‖αM (Fi, fi)‖1 > ‖Fi‖ for i = 1, ..., l,
(ii) ‖

∑
αM (xiFi, fi)‖ >

∑
‖αM (xiFi, fi)‖, and

(iii) the covering property.
We first check points (i) and (ii). To this purpose we consider two casis.
Case 1. Assume that each Pi, i = 1, ..., l is homeomorphic to a circle

bundle. By Lemma 2.5 we know that there exists a bounded 2-cocyle ΩPi
such that ‖[ΩPi ]‖∞ = π and |〈[ΩPi ], αM (Fi, fi)〉| = Area(Fi). Then point
(i) follows from Hölder inequality.
We check point (ii). Again, applying Lemma 2.5 we know that for each

i ∈ {1, ..., l} there exists a bounded 2-cocycle Ωi in M such that

〈[Ωi], αM (xjFj , fj)〉 = δijxjArea(Fj)
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for any i, j in {1, ..., l}. Thus we get〈∑
i

[Ωi],
∑
j

αM (xjFj , fj)
〉

=
∑
i

xiArea(Fi) 6 π

∥∥∥∥∥∥
∑
j

αM (xjFj , fj)

∥∥∥∥∥∥
1

Hence ∥∥∥∥∥∑
i

αM (xiFi, fi)

∥∥∥∥∥
1

>
∑
i

xi‖Fi‖ >
∑
i

‖αM (xiFi, fi)‖1

This proves point (ii) in Case 1.
Case 2. We consider now the general case. Let p : M̃ →M be a finite reg-

ular covering of M whose each Seifert piece (in particular each component
P̃i over Pi for i = 1, ..., l) is a circle bundle (such a covering exists by [15,
Proposition 4.4]). For each i = 1, ..., l consider a covering f̃i : (F̃i, ∂F̃i) →
(P̃i, ∂P̃i) of fi : (Fi, ∂Fi) → (Pi, ∂Pi) (obtained by considering the group
(fi)−1

∗ (p∗(π1P̃i)). By construction f̃i is an orientation preserving embed-
ding. Denote by di > 0 the degree of the covering pi : F̃i → Fi. By Case
1 we know that ‖α

M̃
(F̃i, f̃i)‖1 = ‖F̃i‖ for i = 1, ..., l. On the other hand

by Lemma 2.8 we know that ‖p](αM̃ (F̃i, f̃i))‖1 = ‖α
M̃

(F̃i, f̃i)‖1. Since any
continuous map induces a chain map then

p](αM̃ (F̃i, f̃i)) = diαM (Fi, fi)

which implies that
‖diαM (Fi, fi)‖1 = ‖F̃i‖

and thus ‖αM (Fi, fi)‖1 = ‖Fi‖ for i = 1, ..., l. To check point (ii) we know
from Case 1 that∥∥∥∥∑α

M̃

(
xi
di
F̃i, f̃i

)∥∥∥∥ =
∑∥∥∥∥αM̃ (xidi F̃i, f̃i

)∥∥∥∥
Then using Lemma 2.8 in the right and left hand side, we get∥∥∥∑αM (xiFi, fi)

∥∥∥ =
∑
‖αM (xiFi, fi)‖ .

We check point (iii). Let f : M → N denote a finite covering map and
let α =

∑
αM (xiFi, fi). Using the construction of Case 2 with the same

notations then α = p](α̃) where α̃ =
∑
α
M̃

(
xi
di
F̃i, f̃i

)
. Possibly passing to

some finite covering there are no loss of generality assuming f ◦p is regular.
Hence we get using Lemma 2.8

‖f](α)‖ = ‖f]p](α̃)‖ = ‖α̃‖ > ‖α‖

This completes the proof of Proposition 2.4. �
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3. Characterizations of covering maps

Given a closed irreducible orientable 3-manifold M we denote by H(M)
(resp. S(M)) the disjoint union of the hyperbolic (resp. Seifert) components
of M \ TM (see [11], [12] and [21]). In order to prove Theorem 1.2 we first
check the following technical result.

Proposition 3.1. — Let M be a closed aspherical orientable
3-manifold. Any π1-surjective nonzero degree map f : M → N into a closed
irreducible orientable 3-manifold satisfying the following conditions
(i) Each Seifert component of M \TM , resp. of N \TN , is homeomorphic

to a product, resp. to a S1-bundle over an orientable surface, each Seifert
component of M \ TM has at least two boundary components (if TM 6= ∅)
and each component of TM is shared by two distinct components ofM \TM ,
(ii) ‖f][M ]‖1 = ‖[M ]‖1, where [M ] ∈ H3(M ; R) is the fundamental class
(iii) ‖f]αM (F , g)‖1 = ‖αM (F , g)‖1 for each orientation preserving proper

embedding g : F → P when P runs over the Seifert pieces of M
is homotopic to a homeomorphism.

3.1. Proof of Proposition 3.1

Throughout this section we always assume that the map f : M → N

and the manifolds M,N satisfy the hypothesis of Proposition 3.1. Notice
that we may assume in addition that M is not a virtual torus bundle by
[23]. Thus since each Seifert piece P of M is homeomorphic to a product
we may assume that P is a H2 × R-manifold. Hence this implies, using
hypothesis (ii) and (iii), that either ‖N‖ 6= 0 or H l1

2 (N ; R)/ ker ‖.‖1 6=
{0}. Hence either N is non-geometric or admits a geometry H3,H2 × R
or S̃L(2,R). The proof of Proposition 3.1 will come from the following
sequence of claims.

Claim 3.2. — The map f |T : T → N is π1-injective for any charac-
teristic torus T in M . Moreover, f∗(π1P ) is a non-abelian group for each
Seifert piece P of M .

Proof. — Let T be a characteristic torus of M . From the Rigidity The-
orem of Soma [20] and from hypothesis (ii) it is sufficient to consider the
case when T is shared by two distinct Seifert components P and P ′ of M .
Denote by h and h′ the S1-fiber of P and of P ′ respectively. If f |T : T → N

is not π1-injective then we may assume, since h and h′ generate a rank 2
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subgroup of π1T (by minimality of the JSJ-decomposition), that P (for
example) contains a simple closed curve c distinct from the fiber h such
that [c] ∈ ker(f |T )∗.
Moreover since ∂P is not connected then there exists an orientation

preserving proper embedding j : (F, ∂F )→ (P, ∂P ) where F is a connected
surface such that c is a boundary component of j(F ).

Indeed, denote by T1 = T the component of ∂P which contains c and by
T2, ..., Tr the other components of ∂P with r > 2. For each i = 1, ..., r fix
a basis 〈si, h〉, where si is a section of Ti with respect to the S1-fibration
of P such that s1 + ... + sr is nul-homologous in P and where h denotes
the fiber of P . Denote by (α, β) the coprime integers with α 6= 0 such that
c = α[s1] + β[h]. Then

[c] + α[s2] + ...+ α[sr]− β[h] = 0 in H1(P ; Z)

Thus there exists a nontrivial class η in H2(P, ∂P ; Z) such that

∂η = ((α, β), (α, 0), ..., (α, 0), (α,−β))

in H1(∂P ) = H1(T1)⊕H1(T2)⊕ ...⊕H1(Tr−1)⊕H1(Tr). Since P is aspher-
ical, it follows from [22] that each class in H2(P, ∂P ; Z) can be represented
by a properly embedded incompressible surface. This can be argued as fol-
lows. By the Poincaré Duality, H2(P, ∂P ; Z) ' H1(P ; Z), there exists a
homomorphism ρ : π1P → Z = π1S

1 corresponding to η. Since the spaces
are aspherical the homomorphism is induced by a map fη : P → S1. Taking
the pre-image of a regular value θ ∈ S1 and using the construction given
in [10, Chapter 6] we may arrange fη by a homotopy so that the compo-
nents of f−1

η (θ) are properly embedded incompressibe surfaces. Denote by
F such a surface. Then F is a horizontal surface and c is parallel to some
components of ∂F .
Denote by T × [−1, 1] a regular neighborhood of T such that T = T ×{0}

and parametrize T = S1 × S1 such that c = S1 × {∗}. As in [19], consider
the relation ∼ on M defined by z ∼ z′ iff z = z′ or z = (x, y, t) ∈ T × I,
z′ = (x′, y′, t′) ∈ T × I and y = y′, t = t′. Denote by X = M/ ∼ the
quotient space and by π : M → X the quotient map. Then the map f

factors through X. Denote by g : X → N the map such that f = g ◦ π.
Denote by P̂ the image of P under π. Topologically P̂ is obtained from P

after Dehn filling along T , identifying the meridian of a solid torus V to c
so that the Seifert fibration of P extends to a Seifert fibration of P̂ and the
image F̂ of F is a surface in P̂ obtained from F after gluing a 2-disk along
each component of ∂F parallel to c. Consider the following commutative
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diagram

F
j //

π|F
��

P
k //

π|P
��

M
f //

π

��

N

F̂
ĵ // P̂

k̂ // X

g

>>~~~~~~~~

where ĵ is induced by j and where k : P →M is the inclusion and k̂ : P̂ →
X denotes the induced inclusion. Note that it follows from our construction,
using standard homological arguments, that

π](αM (F, j)) = αX(F̂ , ĵ) ∈ H l1
2 (X; R) (∗)

where αX(F̂ , ĵ) is defined by k̂]αP̂ (F̂ , ĵ). We deduce, using hypothesis (iii)
of Proposition 3.1, the following equalities:

‖αM (F, j)‖1 > ‖π]αM (F, j)‖1 > ‖f]αM (F, j)‖1 = ‖αM (F, j)‖1

Thus using Lemma 2.3, equality (*) and Proposition 2.4(i) we get :

‖F̂‖ > ‖αX(F̂ , ĵ)‖1 = ‖F‖

A contradiction. This proves the π1-injectivity of the map f |T . It remains to
check that f∗(π1P ) is a non-abelian group for each Seifert piece P . Assume
that f∗(π1P ) is an abelian subgroup of π1N . Then the map f |P : P → N

factors through a space X with abelian fundamental group. Since H l1
2 (X)

is trivial then we get a contradiction with hypothesis (iii) of Proposition
3.1 using point (i) of Proposition 2.4. �

Claim 3.3. — There is a map g homotopic to f such that for each
Seifert piece Σ of N then each component of g−1(Σ) is a Seifert piece of
M .

Proof. — By hypothesis (ii) one can apply [20, Rigidity Theorem]. Thus
one may assume that f induces a deg(f)-covering map from H(M) to
H(N). Next, by Claim 3.2 one can apply [11, Mapping Theorem] which
implies that one can arrange f by a homotopy so that for each canoni-
cal torus U of N then f−1(U) is a disjoint union of canonical tori of M .
Hence for each Seifert piece Σ of N the space f−1(Σ) is a canonical graph
submanifold of M (i.e. a submanifold which is the union of some Seifert
pieces of M). If a component G of f−1(Σ) is not a Seifert manifold then
there exists a canonical torus T in the interior of G which is shared by
two distinct Seifert pieces Σ1 and Σ2 of G. Since by Claim 3.2 the group
f∗(π1Σi) is non-abelian, for i = 1, 2, then using [11, Addendum to Theorem
VI.I.6] we know that f |Σi : Σi → Σ is homotopic to a fiber preserving map.
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Since f |T is π1-injective we get a contradiction by the minimality of the
JSJ-decomposiiton. This proves the claim. �

Since f is π1-surjective then to complete the proof of Proposition 3.1 it
remains to check the following

Claim 3.4. — There is a map g homotopic to f , rel. to H(M), such
that for each Seifert piece Σ of N and for each component G of g−1(Σ)
then g|G : G→ Σ is a covering map.

Proof. — First of all we know that for each component G of f−1(Σ) then
f |G : G→ Σ is fiber preserving and non-degenerate in the sense of [11]. On
the other hand, notice that Σ is necessarily homeomorphic to a product.
Indeed if ∂Σ 6= ∅ this is obvious and if ∂Σ = ∅ this comes from the following
argument: first note that in this case Σ = N and G = M , thus if Σ is not
homeomorphic to a product then the bundle has a non-zero Euler number
and using the Seifert volume in [5, Theorem 3 and Lemma 3] and in [4,
Theorem 4] we get a contradiction (since G has a zero Euler number and
deg(f) 6= 0). Thus after choosing appropriate sections we identify G with
K × S1, resp. Σ with F × S1, where K, resp. F , is a hyperbolic surface.

Let F denote a component of (f |G)−1(F ). Arrange f so that F is in-
compressible in G. Since f is non-degenerate and fiber preserving then the
inclusion i : F → G is necessarily an orientation preserving proper em-
bedding and f |F : F → F descends to a map π : K → F . Therefore we
get

f](αM (F , i)) = deg(f |F : F → F )αN (F, j)
where j : F → Σ is the inclusion. This implies that

‖F‖ = |deg(f |F : F → F )| × ‖F‖

Thus we get the equality

‖K‖ = deg(π)× ‖F‖

Hence π is homotopic to a covering map which implies that f |G is also
homotopic to a covering map. This proves the claim and completes the
proof of Proposition 3.1. �

3.2. Proof of Theorem 1.2

We first check that the condition is necessary.
When ‖αM‖1 = 0 there is nothing to prove. So let’s assume ‖αM‖1 > 0
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Then eitherM is a S̃L2(R)-manifold and Lemma 2.2 applies orM is not
a S̃L2(R)-manifold and Proposition 2.4 applies.
We verify now that the condition is sufficient. First of all note that ac-

cording to [23] we may assume that M is not a vitual torus bundle. In the
sequel it will be convenient to consider the following commutative diagram

M2
f2 //

q

��

N2

p

��
M1

f1 //

s

��

N1

r

��
M

f // N

obtained as follows. The map s : M1 → M is a finite covering such that
each Seifert piece ofM1 is a circle bundle over an orientable surface with at
least two boundary components if TM1 6= ∅, and each canonical torus ofM1
is shared by two distinct components of M1 \TM1 (for the existence of such
a covering see [7, Lemmas 3.2 and 3.5]), the map r : N1 → N is a finite
covering corresponding to the subgroup f∗s∗(π1M1) in π1N , which is of
finite index since deg(f) 6= 0, the map f1 : M1 → N1 is a lifting of f◦s which
exists by our construction, the map p : N2 → N1 is a finite covering such
that each Seifert piece of N2 is a S1-bundle over an orientable surface and
f2 : M2 → N2 is the finite covering of f1 corresponding to p, and q : M2 →
M1 is the covering corresponding to the subgroup (f1)−1

∗ (p∗π1N2). Notice
that it follows from the construction that f1 and f2 are π1-surjective.

Claim 3.5. — The map f2 is homotopic to a homeomorphism.

Proof. — Assume that M is a S̃L(2,R)-manifold. Since f has nonzero
degree then f is homotopic to a non degenerate fiber preserving map and
N is also a S̃L(2,R)-manifold. Thus f2 is a π1-surjective nonzero degree
map between circle bundle with nonzero Euler numbers. Denote by F2,
resp. G2, the base of M2, resp. N2. It follows from the hypothesis of the
theorem combined with Lemma 2.2 that ‖(f2)](αM2)‖1 = ‖αM2‖1. Thus
f2 induces a map g : F2 → G2 such that ξ ◦ f2 = g ◦ π where π : M2 → F2
and ξ : N2 → G2 denote the bundle projections. Since by definition αM2 =
π−1
] ([F2]l1) then condition ‖(f2)](αM2)‖1 = ‖αM2‖1 implies

‖[F2]l1‖1 = ‖g]([F2]l1)‖1 = deg(g)‖[G2]l1‖1
and thus ‖F2‖ = deg(g)‖G2‖. This proves that g and hence f2 is homotopic
to a homeomorphism (recall that f2 is π1-surjective).
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Assume now that M is not a S̃L(2,R)-manifold. Then using point (ii) of
Proposition 2.4 (additivity property) and the isometry hypothesis we have
‖f]αM (Fi, fi)‖1 = ‖αM (Fi, fi)‖1 for any i = 1, ..., l.
Indeed, by hypothesis we know that ‖f]αM‖1 = ‖αM‖1 then by point

(ii) of Proposition 2.4 (additivity property) and using the definition of αM
we have

‖f]αM‖1 = ‖αM‖1 =
∑
i

∥∥∥∥αM ( 1
ki
Fi, fi

)∥∥∥∥
1

Since, by paragraph 2, any continuous map induces a contraction with
respect to the l1-norm we get

‖f]αM‖1 = ‖αM‖1 >
∑
i

∥∥∥∥f]αM ( 1
ki
Fi, fi

)∥∥∥∥
1

>

∥∥∥∥∥∑
i

f]αM

(
1
ki
Fi, fi

)∥∥∥∥∥
1

= ‖f]αM‖1

Hence we get∑
i

(∥∥∥∥αM ( 1
ki
Fi, fi

)∥∥∥∥
1
−
∥∥∥∥f]αM ( 1

ki
Fi, fi

)∥∥∥∥
1

)
= 0

Again, since f] is a contraction, then each term of the sum is non-negative
and thus ‖f]αM (Fi, fi)‖1 = ‖αM (Fi, fi)‖1 for any i = 1, ..., l.
Note that if gi : Gi → Pi is any orientation preserving proper map of a

surface Gi then
‖f]αM (Gi, gi)‖1 = ‖αM (Gi, gi)‖1

This comes from the following observation: by [25, Lemma 6] there are
rational numbers ri, si and a vertical surfaceWi in Pi (i.e. an incompressible
properly embedded surface in Pi which is fibered by the S1-fibers of Pi)
such that

(gi)][Gi] = ri(fi)][Fi] + si[Wi] ∈ H2(Pi, ∂Pi)
and since Wi has zero simplicial volume the equality follows. In order to
apply Proposition 3.1 to the map f2 it remains to check hypothesis (iii).
Let g : F2 → P2 be an orientation preserving embedding of a surface into a
Seifert piece P2 of M2. Denote by P the Seifert piece of M such that P2 is
over P . Then by the above equality, applied to s ◦ q ◦ g : F2 → P we have

‖f]αM (F2, s ◦ q ◦ g)‖1 = ‖αM (F2, s ◦ q ◦ g)‖1
On the other hand, using point (iii) of Proposition 2.4 we know that

‖αM (F2, s ◦ q ◦ g)‖1 = ‖αM2(F2, f2)‖1
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By the commutativity of the diagram we have

f](αM (F2, s ◦ q ◦ g)) = r]p](f2)](αM2(F2, f2))

Therefore, this yields
‖αM2(F2, f2)‖1 = ‖r]p](f2)](αM2(F2, f2))‖1 6 ‖(f2)](αM2(F2, f2)‖1

6 ‖αM2(F2, f2)‖1
Accordingly we deduce that f2 satisfies hypothesis of Proposition 3.1 which
implies that f2 is homotopic to a homeomorphism. �

SinceM is an aspherical 3-manifolds then it has a torsion free fundamen-
tal group ([10]). Since p, q, r, s are finite covering maps then they induce in-
jective homomorphisms at the π1-level and since f2 induces an isomorphism
f must be π1-injective. Consider the finite covering Ñ → N corresponding
to f∗(π1M). Then f lifts to a map f̃ : M → Ñ inducing an isomorphism
at the π1-level. We deduce from this point using [13, Theorem 0.7] that f̃
is a homeomorphism. This implies that f is a covering map and completes
the proof of Theorem 1.2.

3.3. Proof of Theorem 1.5

By the Mapping Theorem of [9] the map f induces an isometry
f] : H l1

3 (M)→ H l1
3 (N). On the other hand, using the same construction as

in the proof of Lemma 2.5 in dimension three (instead of dimension 2) one
deduces that the natural map H3(M) → H l1

3 (M) is an isometry. Indeed,
if ‖M‖ = 0 there is nothing to prove and if ‖M‖ > 0 this means that M
contains some hyperbolic pieces H1, ...,Hl in its geometric decomposition.
Thus by the straightening technique used in the proof of Lemma 2.5 one
can in the same way construct an element Ω ∈ H3

b (M) such that 〈Ω, [M ]〉 =
vol(H1) + ... + vol(Hl) with ‖Ω‖∞ 6 V3, where V3 denotes the supremum
of the volume of geodesic 3-simplices in the hyperbolic 3-space. Hence the
l1-norm of [M ] is ‖M‖ in H l1

3 (M), proving that H3(M) → H l1
3 (M) is an

isometry. This implies that f] : H3(M ; R)→ H3(N ; R) is an isometry.
Using the same covering argument as above one can assume, without

loss of generality, that f is π1-surjective. IfM is orientable* then Corollary
1.5 follows from Theorem 1.2 by the Mapping Theorem of [9]. If M is not
orientable* then there exists a 2-fold finite covering p : M2 →M such that
M2 is orientable*. Note that the composition g = f ◦p2 is not π1-surjective.
Indeed if g is π1-surjective then f ◦ p2 is homotopic to a homeomorphism
because since f∗ has an amenable kernel then so is ker(g∗) and thus g
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induces an isometric isomorphism g] : H l1
2 (M2)→ H l1

2 (N). Since moreover
‖M2‖ = 2‖N‖ one can apply Theorem 1.2. A contradiction. Since g is not
π1-surjective then there exists a 2-fold covering f ′ : M2 → N2 of the map
f . Again, since f∗ has an amenable kernel then so is ker(f ′∗). Moreover f ′ is
π1-surjective by construction and thus it induces an isometric isomorphism
f ′] : H l1

2 (M2) → H l1
2 (N2) and ‖M2‖ = deg(f ′)‖N2‖. Hence by Theorem

1.2 the f ′ is homotopic to a homeomorphism. Hence f is homotopic to a
homeomorphism. This completes the proof of the corollary.
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