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FINITENESS OF ODD PERFECT POWERS WITH
FOUR NONZERO BINARY DIGITS

by Pietro CORVAJA & Umberto ZANNIER (*)

Abstract. — We prove that there are only finitely many odd perfect powers in
N having precisely four nonzero digits in their binary expansion. The proofs in fact
lead to more general results, but we have preferred to limit ourselves to the present
statement for the sake of simplicity and clarity of illustration of the methods.
These methods combine various ingredients: results (derived from the Subspace
Theorem) on integer values of analytic series at S-unit points (in a suitable ν-adic
convergence), Roth’s general theorem, 2-adic Padé approximations (by integers)
to numbers in varying number fields and lower bounds for linear forms in two
logarithms (both in the usual and in the 2-adic context).
Résumé. — Nous démontrons la finitude de l’ensemble des puissances pures

impaires ayant quatre chiffres non nuls dans leur écriture binaire. La preuve de ce
théorème amène naturellement à des énoncés plus généraux, mais, pour simplifier,
nous avons préféré nous borner à ce résultat. Notre méthode combine plusieurs
ingrédients : des résultats (dérivés du théorème du sous-espace) sur les valeurs en-
tières de séries analytiques aux points S-unités, le théorème de Roth généralisé, les
approximations de Padé 2-adiques de nombres algébriques dans un corps variable,
des minorations de formes linéaires en deux logarithmes (par rapport aux valeurs
absolues archimédiennes et 2-adique).

1. Introduction

In the paper [3] it was shown among other things how to “classify” the
perfect squares (or higher powers) having at most three nonzero digits in
a given scale (see the Corollary and the final remarks in the Introduction
therein). For instance, from those considerations one may easily derive that:
For d > 2, the perfect d-th powers in N having at most three nonzero
digits in the binary scale form the union of finitely many sets of the shape
{q2md : m ∈ N} and, if d = 2, also the set {(2a + 2b)2 : a, b ∈ N}.

Keywords: Diophantine equations, diophantine approximations, perfect powers.
Math. classification: 11J25, 11J86, 11J68.
(*) First author research partially supported by ERC program “Diophantine Problems”.
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One may get a similar conclusion on replacing the binary scale with the
scale of any integer g > 1, and also interpreting “perfect power” in any
given number field in place of Q; however those methods would not apply
in full generality if “three” would be replaced with “four”. The purpose
of the present note is to combine the said methods with a further one, to
prove the following theorem:

Theorem 1.1. — There are only finitely many odd perfect powers in N
having precisely four nonzero digits in their representation in the binary
scale.

Note that this asserts the finiteness of the set of solutions of the dio-
phantine equation

(1.1) yd = 1 + 2m1 + 2m2 + 2m3 , d > 2, 0 < m1 < m2 < m3, y ∈ Z.

Of course removing the restriction “odd” leads to the diophantine equation
yd = 2m0 + 2m1 + 2m2 + 2m3 , for natural numbers y and m0 < m1 < m2 <

m3, and this may be reduced to the previous one, since m0 has then to be
a multiple of d. Thus Theorem 1.1 may be rephrased by saying that:
The set of perfect powers having precisely four nonzero binary digits is a
finite union of sets of the shape {q2md : m ∈ N}.

We shall split the theorem into two parts, according whether d is fixed or
is larger than a certain computable number. More precisely, we shall prove
the following two propositions, which imply Theorem 1.1 at once.

Proposition 1.2. — For each integer d > 2, equation (1.1) has only
finitely many integer solutions.

The proof of this result shall itself fall under various cases, depending on
the relative magnitude of m1,m2,m3. When either the ratio m2/m3 stays
away from 1 or the ratio m1/m3 stays away from 0, we shall rely on results
from [4] (which in turn depend on the Schmidt Subspace Theorem). An
intermediate case of bounded m1 shall be derived as an easy consequence
of Roth’s general theorem, whereas the remaining cases of Proposition 1.2
shall be dealt with by Padé approximation.

Proposition 1.3. — There exists a computable number d0 such that
equation (1.1) has no integer solutions for d > d0.

For this we shall use lower bounds for linear forms in two logarithms,
both with respect to the usual absolute value and with respect to a 2-adic
one; this last tool shall be combined again with the Padé approximation
used for the previous proposition.

ANNALES DE L’INSTITUT FOURIER
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in very recent joint work with Mike Bennett and Maurice Mignotte [1] they
have independently proved related effective results, and in particular that
one may take d0 = 5 in Proposition 1.3. Especially in view of this, we shall
be brief in our proof of such proposition, also omitting any explicit value
for d0, since our argument would lead to admissible values rather larger
than 5. The method of these authors is in part similar to our method
for Proposition 1.3, but Padé approximations do not explicitly appear,
whereas they use more refined versions of lower bounds for linear forms
in logarithms. We thank Bugeaud for informing us of their work and for
valuable comments and references, and the mentioned authors for sending
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We pause for a few other remarks:

Remark 1.4.
(i) Our conclusions are certainly of a very special type; however the

present methods could be easily extended to cover other diophantine equa-
tions (with suitable modification of the statement), as for instance yd =
1+c1gm1 +c2gm2 +c3gm3 , where d, g are any given integers > 2 and c1, c2, c3
are any fixed rationals, and even more general ones in S-units. (1) We have
chosen the present instance for simplicity and because it seems to us amus-
ing. Also, the proof below shows how sometimes different principles can be
combined in dealing with equations in S-units. The interested reader, on
looking carefully at the arguments, shall be easily able to see what kind of
generality can be extracted from the method.
(ii) A natural question is whether, given d > 2, the same finiteness of

Proposition 1.2 may be proved allowing y to be an integer in any given
number field. (By Kummer theory, this would amount to any equation
like (1.1) but with ρyd in place of yd, where ρ is a given rational number.)
For the above alluded result for “three digits” (in place of “four digits”)
this greater generality is immaterial for the methods. The same holds for
the first three cases of the proof of Proposition 1.2; however this seemingly
does not extend to the last step, involving Padé approximants.
(1)However changing the “1” into an arbitrary rational c0 leads to problems, as pointed
out in (ii), (iii) below.

TOME 63 (2013), FASCICULE 2



718 Pietro CORVAJA & Umberto ZANNIER

(iii) Replacing “four” with “five” again leads to more difficult issues,
which we do not know how to deal with. The same holds on changing
“binary scale” with “scale of three”, say. (2) To solve these kind of problems
may be interesting, because it is likely it would lead to overcome important
obstacles for other, more significant, diophantine equations.
(iv) Our method for Proposition 1.2 is ineffective at various stages and

does not allow, not even for some d, to find the actual solutions to (1.1).
We also note that there are some solutions; e.g.,

d = 2 : 132 = 1 + 23 + 25 + 27, 152 = 1 + 25 + 26 + 27,

472 = 1 + 25 + 27 + 211, 1112 = 1 + 25 + 212 + 213;

d = 3 : 33 = 1 + 2 + 23 + 24.

As remarked above, the paper [1] proves that there are no solutions with
d > 5.

2. Proof of Proposition 1.2

We have to prove that, for given d > 2, equation (1.1) has only finitely
many integer solutions y,m1,m2,m3 (also called “points”) restricted as
therein.
Note that we may assume that d is a prime number (which we shall

use merely to restrict to d being either 2 or an odd integer). Also, in the
sequel, for notational convenience we shall drop any index referring to a
sequence, and shall work with a given solution, assuming tacitly that it
runs through an infinite sequence (or possibly into infinite subsequences
with further properties specified along the way); so in particular the integer
m3 shall tend to ∞. The notion of convergence shall be referred to such
(sub)sequences. Our aim shall be to derive a contradiction.
We shall denote by h(·) the (logarithmic) Weil absolute height in Q. The

absolute values of a number field k shall be normalized according to the
standard normalization of the places they induce on Q.
As anticipated, the proof shall fall into four cases; the first two of them

are very close to each other, and implicitly involve methods similar to those

(2)Similarly to (ii) above, the reason now is that we can have 2 as the first digit, and
this is not a perfect d-th power; this affects the arguments using Padé approximation.
Of course for a scale larger than 2 finiteness does not hold: one would have also to take
into account identities like (1 + T )3 = 1 + 3T + 3T 2 + T 3 to locate all the solutions into
finitely many families; these would appear through Lemma 2.1 below. In this respect see
also Remark 2.2.

ANNALES DE L’INSTITUT FOURIER
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of the already quoted paper [3], which we shall exploit by invoking results
from [4]. (3) The third case shall be derived as an easy consequence of the
general Roth’s theorem (as described e.g. in [2]) or [10]). The fourth case
shall be dealt with via Padé approximation, widely used in diophantine
problems (however often in applications of somewhat different kind).

First case. — There exists an infinite subsequence of solutions such that
m2 6 15

16m3. (4)

In the present case we divide out equation (1.1) by 2m3 , and we put put
n1 = m3 −m2, n2 = m3 −m1, n3 = m3, xi := 2−ni for i = 1, 2, 3; we get
yd2−m3 = 1 + x1 + x2 + x3.
Let us now introduce the series F (X1, X2, X3) ∈ Q[[X1, X2, X3]] defined

by

(2.1) F (X1, X2, X3) = (1 +X1 +X2 +X3) 1
d

= 1 + 1
d

(X1 +X2 +X3) + (1− d)
2d2 (X1 +X2 +X3)2 + · · · ,

obtained on expanding with the binomial theorem in the obvious way. This
certainly converges absolutely for complex X1, X2, X3 with |Xi| 6 1

4 , to
the function which is continuous therein, takes the value 1 at the origin
and is a d-th root of 1 +X1 +X2 +X3.
In view of the property m2 6 15m3/16, we also have n3 > n2 > n1 >

m3/16. Therefore, for large m3 the series converges at (x1, x2, x3), so that
we may consider the value z := F (x1, x2, x3) ∈ C, to obtain

(2.2) zd = 1 + x1 + x2 + x3 = 1 + 2−n1 + 2−n2 + 2−n3 .

Letting K be the splitting field of Xd−2 over Q, we note that z = y2−
m3

d

for some determination of the d-th root, so our sequence of solutions to (2.2)
is defined over K. Also, letting S be the finite set of places of K consisting
of the infinite ones and the ones lying above 2, we see that z is an S-integer,
whereas x1, x2, x3 are S-units. Further, the complex absolute value induces
an absolute value on Q(z), and we extend this to an infinite place ν of K;
so we may embed K in C by means of ν and still z = F (x1, x2, x3) with
respect to ν-adic convergence.
We also have

∑3
i=1 h(xi) 6 3m3, whence, noting that maxi |xi|ν 6 2−

m3
16 ,

(2.3)
3∑
i=1

h(xi) = O(− log(max
i
|xi|ν)).

(3)These results rely on the Schmidt’s Subspace Theorem.
(4)The precise values 15

16 , and
1

16 below in the Second case, are immaterial.

TOME 63 (2013), FASCICULE 2



720 Pietro CORVAJA & Umberto ZANNIER

Further, h(F (x1, x2, x3)) = h(z) 6 2m3. These verifications show that we
are in position to apply Theorem 1 of [4](5) to the series F and our se-
quence of S-unit points (x1, x2, x3). The corresponding conclusion delivers
the following:
There exist a finite number of cosets u1H1, . . . , urHr of G3

m, with ui ∈
G3

m(K) and with Hi connected algebraic subgroups of G3
m, such that:

(i) (x1, x2, x3) ∈
⋃r
i=1 uiHi for all our relevant points;

(ii) for i = 1, . . . , r, the restriction of F (X1, X2, X3) to uiHi coincides
with a polynomial.

Going to an infinite subsequence of solutions, we can in fact suppose that
there is a single one among the said cosets which contains all of our points.
Moreover, since our sequence consists of S-units, by a well-known theorem
of Lang (see e.g. [2], Thm. 7.4.7) its Zariski closure in G3

m is anyway a finite
union of cosets of algebraic subgroups, so by taking intersections with the
previous coset (and then going to a further infinite subsequence) in fact we
may also suppose that the sequence is Zariski-dense in our coset.
We denote by uH such coset, where u = (ξ1, ξ2, ξ3) ∈ G3

m may be sup-
posed to be any one of our points, so the ξi become powers of 2 (with nega-
tive integral exponent). This coset is not a single point, so dimH =: s > 0.
Further, since our points converge ν-adically to the origin, by the equiva-

lence between (iii) and (v) of Proposition 1 of [4], there exists a parametriza-
tion of uH given by monomials Xi = ξiT

ai1
1 · · ·T ais

s , i = 1, 2, 3, such that
aij > 0 for all i, j.
By property (ii) above we have that F (X1, X2, X3) becomes a certain

polynomial in T1, . . . , Ts if the Xi are replaced by the above monomials.
We have F d(x1, x2, x3) = 1+x1 +x2 +x3, so, since our sequence is Zariski-
dense in the coset, we have an identity F d(X1, X2, X3) = 1+X1 +X2 +X3
for Xi equal to the above monomials in T1, . . . , Ts.
Note now that each xi converges ν-adically to 0. Hence if i 6= j we cannot

have identically Xi = 1 on the algebraic subgroup H. It follows that the
three vectors (ai1, . . . , ais) ∈ Ns, i = 1, 2, 3, are nonzero, so there exist
positive integers b1, . . . , bs such that the scalar products li :=

∑s
j=1 bjaij ,

are all positive and such that, for i, j ∈ {1, 2, 3}, li = lj if and only if
(ai1, . . . , ais) = (aj1, . . . , ajs). In view of the above, by substituting T bj

for Tj we conclude that there is a nonconstant polynomial P (T ) such that

(5) In [4] the absolute values were normalized differently, but the validity of (2.3) is not
affected by any change of normalizations.

ANNALES DE L’INSTITUT FOURIER
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P d(T ) = 1 + ξ1T
l1 + ξ2T

l2 + ξ3T
l3 , and on renumbering we may assume

0 < l1 6 l2 6 l3. (6)

Now, we have the following general

Lemma 2.1. — For d > 2, for nonzero ξ1, ξ2, ξ3 ∈ C and for positive
integers l1 6 l2 6 l3, the polynomial 1 + ξ1T

l1 + ξ2T
l2 + ξ3T

l3 is a perfect
d-th power of a nonconstant complex polynomial precisely in the following
cases:
A : d = 2, l1 = l2 < l3 and 4ξ3 = (ξ1 + ξ2)2.
B : d = 2, l1 < l2 = l3 and 4(ξ2 + ξ3) = ξ2

1 .
C : d = 2, l2 = 3l1, l3 = 4l1 and 8ξ2 = −ξ3

1 , 64ξ3 = ξ4
1 .

D : d = 3, l2 = 2l1, l3 = 3l1 and 3ξ2 = ξ2
1 , 27ξ3 = ξ3

1 .

Proof. — Let P (T )d = 1 + ξ1T
l1 + ξ2T

l2 + ξ3T
l3 , for a nonconstant

polynomial P ∈ C[T ].
Note that for c ∈ C, 1 + cT l cannot have multiple roots if l > 0. This

proves that not all the li may be equal.
If d > 4 the opening equation is impossible by virtue of a well-known

easy result by Hajos (see Lemma 1 in [7]). For a direct argument, just
observe that the polynomial 1 + ξ1T

l1 + ξ2T
l2 + ξ3T

l3 has no complex
root of multiplicity 4 or more, as follows by differentiation and using a
Vandermonde determinant. The same argument shows that d = 3 implies
that the li are pairwise distinct. In particular, we must have d = 2 or d = 3.
We could now use known results which bound the number of terms of P (T ),
but it is simple enough to argue directly.
Let us then assume d = 2 first.
If l1 = l2 = l, say, then l < l3 and 1 + ξ1T

l1 + ξ2T
l2 + ξ3T

l3 = 1 + σT l +
ξ3T

l3 , where σ := ξ1 + ξ2 6= 0, as already observed. We have ±P (T ) =
1 + ηT l + ...γT p + δT q, where l < p < q and where possibly γ and/or δ
vanish. Now on squaring we see that 2η = σ and that if γδ 6= 0 necessarily
terms of degree 0, l, p+q, 2q appear in P 2(T ), which is impossible. Similarly
if γ = 0, δ 6= 0. Therefore ±P (T ) = 1 + ηT l, hence l3 = 2l and η2 = ξ3.
Now we fall in case A above.
If l1 < l2 = l3 = l things are completely similar and we fall in case B.
From now on let us assume that l1 < l2 < l3. For a suitable choice

of the sign, we have P (T ) = ±
√

1 + ξ1T l1 + O(T l2) (in the power series
sense). Differentiating we find P ′(T ) = ± l12

ξ1T
l1−1

1+ξ1T l1

√
1 + ξ1T l1 +O(T l2−1).

Using these two equations to eliminate the square-root term, we find that

(6)This might destroy the inequalities among n1, n2, n3, but this shall be immaterial for
what follows.
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722 Pietro CORVAJA & Umberto ZANNIER

2(1 + ξ1T
l1)P ′(T )− l1ξ1T l1−1P (T ) = O(T l2−1). The left side is a nonzero

(7) polynomial of degree 6 l1 + l3
2 −1, hence l2 6 l1 + l3

2 and l3−l2 > l3
2 −l1.

It easily follows that max(l1, l3 − l2) > l3
4 . By replacing P (T ) if necessary

with ξ−
1
2

3 T
l3
2 P (T−1), and ξ1, ξ2, ξ3 resp. by ξ2/ξ3, ξ1/ξ3, 1/ξ3, we may thus

assume that l1 > l3
4 and that l3− l2 6 l1. (Note that this substitution does

not affect the statement of the lemma.)
We write 1 + ξ1T

l1 + ξ2T
l2 + ξ3T

l3 = 1 + T l1ρ(T ), with ρ(T ) = ξ1 +
ξ2T

l2−l1 + ξ3T
l3−l1 . Then, expanding

√
1 + z with z := T l1ρ(T ), we find

±P (T ) = 1 + 1
2T

l1ρ(T )− ξ2
1
8 T

2l1 +O(T 2l1+1). On the other hand degP =
l3
2 6 2l1. Hence ±P (T ) is a sub-sum of 1 + ξ1

2 T
l1 + ξ2

2 T
l2 − ξ2

1
8 T

2l1 .
Assume first l1 > l3

4 . Then a term of degree 2l1 cannot appear in P (T ),
and certainly P (T ) cannot contain only two terms; hence l2 6= 2l1 and
±P (T ) = 1 + ξ1

2 T
l1 + ξ2

2 T
l2 . But then P (T )2 contains at least terms of

degree 0, l1, l2, 2l1, 2l2, l1 + l2, which are pairwise distinct, so we have a
contradiction.
Assume now l1 = l3

4 . Then from l3 − l2 6 l1 we have l2 > 3l3
4 > 2l1.

Hence a term of degree l2 cannot appear in P (T ) and we have ±P (T ) =
1 + ξ1

2 T
l1 − ξ2

1
8 T

2l1 . Now P (T )2 = 1 + ξ1T
l1 − ξ2

1
4 T

2l1 − ξ3
1
8 T

3l1 + ξ2
1
4 T

2l1 +
ξ4

1
64T

4l1 = 1 + ξ1T
l1 − ξ3

1
8 T

3l1 + ξ4
1

64T
4l1 . We now fall in case C.

Let us now deal with the case d = 3. Similarly to the above we find
that 3(1 + ξ1T

l1)P ′(T )− l1ξ1T l1−1P (T ) = O(T l2−1), and now the left side
(which is again nonzero) has degree at most l1 + l3

3 − 1. Now this leads
to max(l1, l3 − l2) > l3

3 . And thus, on replacing P (T ) if necessary with
ξ
− 1

3
3 T

l3
3 P (T−1) and ξ1, ξ2, ξ3 as above (this again fits with the statement)

we may assume that l1 > l3
3 . In turn, expansion of 3

√
1 + T l1ρ(T ) leads

as above to P (T ) = 1 + ξ1
3 T

l1 , up to a cube-root-of-1-factor, and it is
now immediate to check that we fall into the other case predicted by the
statement. This concludes the proof. �

This result implies a contradiction with our previous conclusions concern-
ing the polynomial P (T ) arising from our infinite subsequence: it suffices
to take into account that our ξ1, ξ2, ξ3 are in 2Z and that if li = lj then
ξi 6= ξj , because xi 6= xj for i 6= j (as follows from the fact that the ni are
positive and pairwise distinct). For instance, if we fall in case A, we have
that ξ1 +ξ2 ∈ 2Z, which is impossible. Similarly for the case B. Further, we
cannot fall neither in case C (since ξ1, ξ2 are positive) nor in case D (since
ξ1, ξ2 are both 3-adic units).

(7)Otherwise P (T )2 = c(1 + ξ1T l1 ).

ANNALES DE L’INSTITUT FOURIER
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Remark 2.2. — Note that the special shapes appearing in the lemma
lead in fact to polynomial squares or cubes with exactly four terms. Actu-
ally, case C “almost” yields an infinite family of solutions to (1.1). In fact, on
taking e.g. ξ1 = 2 and T a power of 2, it obviously provides infinitely many
integer solutions to the similar-looking equation y2 = 1 + 2m1 − 2m2 + 2m3 .
The method of this paper would prove that in fact all but finitely many
solution to this last equation are obtained in this way, namely may be
parametrized by putting T = 2l in the formula (1 + 2T − 2T 2)2 = 1 + 4T −
8T 3 + 4T 4.

Second case. — There exists an infinite subsequence of solutions such
that m1 > 1

16m3

We argue as before, keeping essentially that notation, except that now we
set xi := 2mi and use a 2-adic valuation. Since max |xi|2 = |x1|2 6 2−

m3
16 ,

for large enough m3 (in terms of d) the series (2.1) converges in Q2, at
the point (x1, x2, x3), to a value z := F (x1, x2, x3) ∈ Q2; also, we have
zd = 1 + x1 + x2 + x3, hence z = yθ for some d-th root of unity θ. (8) The
2-adic place of Q induces a place on Q(z) ⊂ Q2, which we may extend to
a place ν of K, lying above 2. As before, we apply Theorem 1 of [4], this
time with the present 2-adic place ν. By completely similar arguments, and
applying Lemma 2.1 again, we obtain a contradiction.
We are now in position to assume that there is no infinite sequence of

solutions verifying either the condition of the First case or of the Second
case; and hence from now on we shall suppose that each element in our
infinite sequence of solutions satisfies

(2.4) 0 < m1 <
m3

16 ,
15m3

16 < m2 < m3.

Third case. — There exists an infinite subsequence of solutions such
that m1 is bounded

In this case we may assume that m1 is a constant b on an infinite subse-
quence; we set ∆ := 1 + 2b. We might use the results of [3], but it is easy
to argue directly.
From the equation yd − ∆ = 2m2(1 + 2m3−m2) we deduce, using the

triangle’s inequality, that there exists a fixed d-th root θ ∈ Q2 of ∆ such
that for infinitely many y ∈ Z, |y−θ|2 � 2−m2 . Then settingX−∞ := 1/X,
our equation yields

|y −∞| · |y − θ|2 � |y|−12−m2 � H(y)− 5
2 ,

(8)We must in fact have z = ±y, since for odd d there are no d-th roots of unity in Q2
except 1. However this is not needed here.

TOME 63 (2013), FASCICULE 2



724 Pietro CORVAJA & Umberto ZANNIER

for large enough m2, where H(·) = exph(·) denotes the exponential Weil
height and the constants implied in � depend only on ∆, d. Also, note
that the exponent −5/2 attributed to H(y) is indeed admissible, in view
of |y|d 6 ∆ + 2 16

15m2+1, so |y| = H(y)� 2 16
30m2 .

Now, the last displayed inequality eventually violates the general form of
Roth’s theorem, as presented for instance in [2], Ch. VI, or [10], Theorem 2.

Therefore we have a contradiction, proving that this case cannot in fact
occur.

Then from now on we shall assume, as we may, to fall into the following

Fourth case. — Our solutions run through an infinite sequence satisfy-
ing (2.4) and moreover such that m1 →∞.

In particular, we shall tacitly assume that m1 is larger than any pre-
scribed number.
For this case we shall argue by means of suitable Padé approximations

to (1 − z) 1
d , with the aim to approximate (1 + 2m1) 1

d with respect to a
2-adic place. We shall use certain identities derived from a well-known list
by Kummer, of 24 solutions to a hypergeometric differential equation, as in
Chapter II of [5]. We shall also need certain simple arithmetical properties
of the involved coefficients. We thank Y. Bugeaud for informing us of the
paper [6], where formulas similar to the ones below appear, together with
other deductions as in the present Lemma 2.4. (In turn, the author refers
to Siegel for proofs of the relevant identities.) Since our proofs are any-
way short, we have decided to retain the present lemma, for the reader’s
convenience.

These identities shall be also crucial for the proof of Proposition 1.3, so
we shall drop the above assumption that d is a prime number here.

Remark 2.3. — Naturally, Padé approximations have been widely used
in Diophantine Equations, since Thue, Siegel and several others, until recent
times. (See for instance the already mentioned paper by Le [6] and [2],
Ch. V.) The present application follows similar lines; however two of the
features important here seemingly appeared less frequently in the literature:
(i) We shall approximate (by integers) algebraic numbers (of the shape

(1+2m) 1
d ) in a number field which is varying, whereas in many applications

the targets are fixed or vary in a fixed number field; our approximations
shall be with respect to a suitable 2-adic place, to targets lying in Q ∩Q2.
(ii) We shall consider approximations by integers rather than arbitrary

rationals; this leads to work with “asymmetric” Padé approximations, in
the sense that the bounds for the relevant polynomial degrees are not taken
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to be equal. We remark that this integrality restriction on y corresponds to
consider a “good” simultaneous approximation to ∞ (with respect to the
usual absolute value) and to the relevant algebraic number (with respect
to a 2-adic place).

Features similar to (i) and (ii) appear e.g. in the above quoted paper [6].
Finally, we stress that this fourth step of the proof, contrary to the

previous three ones, is rather “rigid”, and for instance requires a very special
shape for the said target numbers; for instance, if these were replaced by
e.g. (c+ 2m) 1

d (a general positive integer c) the method would not work as
it stands. This represents of course a severe limitation of this technique.

As usual, Γ(z) shall denote Euler’s Gamma-function, while (1+z) 1
d shall

mean the binomial series
∑∞
n=0

( 1
d
n

)
zn ∈ Q[[z]], interpreted for the moment

in the formal sense; also, we shall adopt the following standard notation
for a hypergeometric function:

(2.5) F (a, b, c, z) = 1 + a · b
1 · cz + a(a+ 1) · b(b+ 1)

1 · 2 · c(c+ 1) z2 + · · · .

Lemma 2.4. — Let r, s be positive integers and set t := r+ s. Also, put

G(z) :=
Γ( 1

d + 1)Γ(1 + t)
Γ( 1

d + r + 1)Γ(s+ 1)
F (−1

d
− r,−s,−t, z),

H(z) := F (1
d
− s,−r, 1

d
+ 1, 1− z),

E(z) := (−1)s+1 Γ( 1
d + 1)r!

Γ( 1
d − s)t!

F (−1
d

+ s+ 1, s+ 1, t+ 2, z).

Then G(z) and H(z) are polynomials with rational coefficients, of degree
resp. s, r and

(2.6) G(z)− (1− z) 1
dH(z) = zt+1E(z).

Finally, there is a positive integer A such that AG(z) and AH(z) have in-
teger coefficients bounded in absolute value by B := (2d)4t. More precisely,
we may take A = d4t( 1

d +r
r

)
.

Proof. — Equation (2.6) appears as formula (43), Section 2.9 of [5], in-
terpreted on using the notations (1), (17) and (21) therein, with the pa-
rameters a, b, c given by a := − 1

d − r, b := −s, c := −t = −r − s.
That G(z), H(z) are polynomials of the said degrees follows immediately

from the defining formula (2.5) above, taking into account that d > 2 and
that r, s are integers > 0.
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Also, the coefficients in (2.5) are clearly rational if a, b, c ∈ Q, as happens
in our case. Moreover the term Γ( 1

d +1)Γ(1+t)
Γ( 1

d +r+1)Γ(s+1) is also rational; in fact,
it follows from the functional equation Γ(z + 1) = zΓ(z) that it equals(
t
s

)
/
( 1

d +r
r

)
.

For the remaining assertions, let us first deal with the coefficients of
F (− 1

d − r,−s,−t, z); the one of zm vanishes for m > s and is otherwise
(− 1

d−r)···(−
1
d−r+m−1)·(−s)(−s+1)···(−s+m−1)

m!·(−t)(−t+1)···(−t+m−1) .

Multiplying by
(
t
s

)
= t(t−1)···(t−s+1)

s! this becomes ±
( 1

d +r
m

)(
t−m
s−m

)
. Also,( 1

d +r
m

)
is p-integral at all primes p not dividing d (e.g. by p-adic continuity

of binomial polynomials
(
x
m

)
). It is further easily seen that, for m 6 t,

d2t( 1
d +r
m

)
is p-integral also at primes p dividing d, whence it is an integer.

Now, G(z) is obtained on multiplying the polynomial F (− 1
d−r,−s,−t, z)

by Γ( 1
d +1)Γ(1+t)

Γ( 1
d +r+1)Γ(s+1) =

(
t
s

)
/
( 1

d +r
r

)
. Putting together these informations, and

since
( 1

d +r
m

)
,
(
t−m
s−m

)
6 2t (for m 6 t), we obtain the sought assertion.

As to H(z) = F ( 1
d−s,−r,

1
d+1, 1−z), things are similar. We may replace

1−z by z, which may increase the maximal absolute value of the coefficients
at most by a factor 2t. Now, the coefficient of zm in F ( 1

d − s,−r,
1
d + 1, z)

vanishes for m > r and is ( 1
d−s)···(

1
d−s+m−1)·(−r)(−r+1)···(−r+m−1)

m!·( 1
d +1)···( 1

d +m) other-

wise, which in turn equals ±
(− 1

d +s
m

) r(r−1)···(r−m+1)
( 1

d +1)···( 1
d +m) . If we multiply this by( 1

d +r
r

)
, we obtain (recalling m 6 r) ±

(− 1
d +s
m

)( 1
d +r
r−m

)
. Then, the same argu-

ment as above shows that again the value A = d4t( 1
d +r
r

)
is admissible for

the claim. �

Lemma 2.5. — Keeping the notation of the previous lemma, let us de-
fine G∗(z), H∗(z) resp. as the polynomials obtained in the same way as
G(z), H(z), but replacing (r, s) with (r + 1, s + 1). Then G∗(z)H(z) −
H∗(z)G(z) = c · zt+1 for some constant c 6= 0.

Proof. — Both G(z) − (1− z) 1
dH(z) and G∗(z) − (1− z) 1

dH∗(z) are
power series vanishing at the origin up to order at least t + 1; hence, on
eliminating (1− z) 1

d , we obtain that G∗(z)H(z)−H∗(z)G(z) has order at
least t+ 1 at the origin. On the other hand, this is a polynomial of degree
at most r+s+1 = t+1, hence it is of the shape czt+1. From equation (2.6)
and the similar one for G∗, H∗ (where now the right side has order > t+ 3
at the origin), we find that the coefficient c of zt+1 is in fact up to sign the
constant coefficient of E(z), i.e. Γ( 1

d +1)r!
Γ( 1

d−s)t!
up to sign; this is plainly nonzero,

so the lemma is proved. �
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Let us now go ahead with the proof, in this fourth case. If d is odd we
have necessarily y ≡ 1 (mod 2m1), and if d = 2 we may choose the sign of y
so that y ≡ 1 (mod 2m1−1); thus we may assume that this last congruence
holds anyway.
For m1 > 3 the binomial series for (1 + 2m1) 1

d converges in Q2 (recall
that d is a prime) to an element denoted ξ ∈ Q2, and we have ξ ≡ 1
(mod 2m1−2). Since ξd = 1 + 2m1 ≡ yd (mod 2m2), we have, taking into
account the previous congruence for y,

(2.7) y ≡ ξ (mod 2m2−1).

(In fact, d-th roots of unity are pairwise incongruent modulo a 2-adic place
if d is odd, and incongruent mod 4 if d = 2.)
We now choose the positive integers r, s as the largest integers such that

r < 1
2m1

(m2 − m3
d ) (9) and s < 1

2m1
(m2 + m3

d ).
In view of Lemma 2.5 we may assume that either G(−2m1) 6= yH(−2m1)

or G∗(−2m1) 6= yH∗(−2m1). Therefore, by replacing if necessary r, s resp.
with r + 1, s+ 1, we may directly assume that

(2.8) G(−2m1) 6= yH(−2m1)

and that

(2.9)
∣∣∣∣r − 1

2m1

(
m2 −

m3

d

)∣∣∣∣ 6 1,
∣∣∣∣s− 1

2m1

(
m2 + m3

d

)∣∣∣∣ 6 1.

Let now A be a positive integer as in Lemma 2.4 such that the polyno-
mials AG(z), AH(z) have integer coefficients bounded in absolute value by
B := (2d)4t. Since (1− 4z) 1

d has 2-adic integral coefficients, for all primes
d, it follows from (2.6) that 4t+1AE(4z) has 2-adic integer coefficients.
Putting z = −2m1 in equation (2.6) and recalling our notation ξ for the
2-adic value of the binomial series for (1+2m1) 1

d , we obtain (using m1 > 2)∣∣AG(−2m1)− ξAH(−2m1)
∣∣
2 6 2−(m1−2)(t+1).

where | · |2 denotes the standard 2-adic absolute value in Q2. Now, in view
of (2.9), we have t+ 1 = r + s+ 1 > m2

m1
− 1, so∣∣AG(−2m1)− ξAH(−2m1)
∣∣
2 6 2(m1−m2) (m1−2)

m1 .

Using also (2.7) to eliminate ξ (note that (m2−m1)(m1−2)
m1

6 m2 − 1) and
recalling (2.8) we have

(2.10) 0 < |AG(−2m1)− yAH(−2m1)|2 6 2(m1−m2) (m1−2)
m1 .

(9)Recall that m2 > 15m3/16 and that m1 < m3/16, so (m2 − (m3/d))/2m1 > 3.
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Now we estimate the ordinary absolute value. By the said bound on the
coefficients of AG(z), AH(z) we have

|AG(−2m1)| 6 2B2m1s,

|AH(−2m1)| 6 2B2m1r.

Also, |y| 6 2
m3+1

d . Hence

(2.11) |AG(−2m1)− yAH(−2m1)| 6 2B(2m1s + 2m1r+ m3+1
d ).

On the other hand, inequalities (2.9) above yield

t 6
m2

m1
+ 2, m1s 6

m2

2 + m3

2d +m1, m1r + m3

d
6
m2

2 + m3

2d +m1.

Inserting these bounds in (2.11) we obtain

(2.12)
∣∣AG(−2m1)− yAH(−2m1)

∣∣ 6 2(2d)8(2d)
4m2
m1 2

m2
2 + m3

2d +m1+1.

Finally, comparing with (2.10) we deduce

(2.13) (2d)8(2d)
4m2
m1 2

2m2
m1 2−

m2
2 + m3

2d +2m1 > 1.

However, in view of the present assumptions we have

(2.14) − m2

2 + m3

2d + 2m1 6 −
15m3

32 + m3

4 + m3

8 = −3m3

32
Taking into account that d is fixed and thatm1 →∞ along our sequence,

this last inequality shows that (2.13) is eventually inconsistent. This final
contradiction proves Proposition 1.2.

3. Proof of Proposition 1.3

The arguments here are in part similar to the previous section, but rely
mainly on lower bounds for linear forms in logarithms. Here we do not
assume that d is a prime (otherwise we would have to take into account
the previous proposition and we would lose effectivity).
In the sequel we then let d be an integer, tacitly assumed to be larger

than some computable fixed number d0, suitably large to justify the coming
inequalities; however d0 shall remain unspecified. Also, we let y,m1,m2,m3
be an integer solution to (1.1); note that this entails that m3 > d > d0, so
m3 is “large” as well. Our aim shall be to obtain a contradiction.

We define the integer a > 0 as the exponent of the largest power of
2 dividing d. We start by noting that if d is odd we must have y ≡ 1
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(mod 2m1), whereas if d is even we may choose the sign of y so that y ≡ 1
(mod 4), and then necessarily

(3.1) m1 > a+ 2, y ≡ 1 (mod 2m1−a).

Hence we may assume that this last congruence holds, so 2d(m1−a−1) 6
|y|d 6 2m3+1, and hence

(3.2) m1 6
m3 + 1
d

+ a+ 1 6 m3 + 1
d

+ log 2d
log 2 6

m3 + 1
d

+ log 2m3

log 2 .

Now, as in the First case of the previous section, we go ahead by proving
that m2 has to be “nearly” m3; for instance we have the following

Lemma 3.1. — For large enough d0, and for any solution of (1.1) with
d > d0, we have m2 > 15

16m3.

Proof. — Assume thatm2<
15
16m3. Then, from

∣∣|y|d2−m3−1
∣∣ 6 2m2−m3+1

it is readily seen that

(3.3) |d log |y| −m3 log 2| 6 2 · 2−
m3
16 .

We shall use a suitable version of Alan Baker’s lower bounds for linear
forms in logarithms. Specifically, since clearly log |y|, log 2 are linearly in-
dependent over Q, we can apply Theorem 5.1, p. 317 of [8]. (10) We choose
the following data to be inserted in that general statement:

n = 2, α1 = 2, α2 = |y|, b1 = m3, b2 = d, E∗ = E = exp(1),
D = 1, V1 = 3 log 2, V2 = 3 log |y|, W = log(2d).

It is immediate to check that for large d0 (recall d > d0), the inequalities
prescribed in that statement are indeed satisfied. (Especially, it is required
that Vj > max(1, Eh(αj)) and that eW > |b1|

V2
+ |b2|

V1
. For this, one has

merely to take into account that m3 log 2 < d log |y| < (m3 + 1) log 2.)
The conclusion of that theorem (applied with the present data) delivers

a computable absolute constant C > 0 such that

|d log |y| −m3 log 2| > exp(−C log(2d) log |y|).

Taking into account that log |y| 6 2m3/d and comparing with (3.3) we
obtain, after taking logarithms,

−2C log(2d)
d

m3 6 log 2− log 2
16 m3.

Finally, using that m3 > d > d0, this is clearly untenable for large enough
d0, proving that the conclusion of the lemma indeed must then hold. �

(10)See [1] and the related references for refined results by Bugeaud and Laurent, also
in the 2-adic case, which are fundamental for the explicit results obtained therein.
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The next step is to apply Padé approximation, similarly to what we
have done for Proposition 1.2. We know from (3.2) that m1 has to be small
compared to m3 (recall also m3 > d > d0), and this is one of the needed
pieces of information. However, since here d is varying we also need that
it is not too large with respect to m1; specifically, we need that log d is
negligible with respect to m1, for otherwise the analogue of (2.13) will not
yield the required contradiction.
To achieve the sought comparison between d and m1 we shall use 2-

adic linear forms in logarithms, exploiting that yd ≡ ∆ (mod 2m2), where
∆ := 1 + 2m1 .

More precisely, we apply the “consequence of Theorem 1” of Kunrui Yu’s
paper [9], stated at l. −6 of p. 1 of [9] (where the relevant “Theorem 1”
may be also found).
The presently chosen data are p = 2, d = 1, n = 2, α1 = y, α2 = 1+2m1 ,

b1 = d, b2 = 1. Here we work over Q so the ramification index and residual
degree appearing therein are trivial. Also, max(d, 3) = d, h1 = log |y|,
h2 = log ∆ 6 2m1. The cited conclusion delivers the bound

ord2(yd −∆) < 19(20
√

3)6 2
log2 2

log(2e5)(log |y|)(log ∆)(log d).

Since d log |y| 6 (m3+1) log 2, the right side is6 C ′m3
d m1 log d, for a suit-

able computable absolute constant C ′ > 0. In view of (1.1) and Lemma 3.1,
the left side is > m2 >

15m3
16 . Comparing the last two estimates we get, for

a positive computable absolute constant c > 0,

(3.4) m1 > c
d

log d .

We can now readily conclude the proof. We use the method in the Fourth
case of the previous section, retaining that notation. We briefly indicate the
few small modifications needed in the present case, with respect to those
arguments.

First, in view of (3.4), for large d0 we have m1 > 2a + 4 and then (3.1)
leads to an analogue of (2.7) above,i.e. y ≡ ξ (mod 2m2−a). Then, exactly
the same arguments lead to (2.13), however replacing therein the expo-
nent 2m2

m1
with 2am2

m1
. Also, inequality (3.2) and Lemma 3.1 lead to (2.14).

Combining this with the said analogue of (2.13) yields,

(2d)8(2d)
4m2
m1 2

2am2
m1 2− 3

32m3 > 1,

whose logarithm gives(
4m2

m1
+ 8
)

log(2d) + 2am2

m1
log 2 > 3 log 2

32 m3.
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However since a log 2 6 log d, since m2 < m3, and since m3 > d > d0,
this is inconsistent with (3.4) for large enough d0, concluding the proof.
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