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THE TAUTOLOGICAL RING OF M ct
1,n

by Mehdi TAVAKOL

Abstract. — We describe the tautological ring of the moduli space of stable
n-pointed curves of genus one of compact type. It is proven that it is a Gorenstein
algebra.
Résumé. — Nous décrivons l’anneau tautologique de l’espace des modules des

courbes stables de genre un de type compact avec n points marqués. On prouve
que c’est une algèbre de Gorenstein.

Introduction

Let M ct
g,n be the moduli space of stable n-pointed genus g curves of com-

pact type and denote by R∗(M ct
g,n) its tautological ring. Here, we study this

ring in genus one. It is known that the tautological ring R∗(M ct
1,n) is addi-

tively generated by boundary cycles, and it is the subalgebra of the Chow
ring A∗(M ct

1,n) (taken with Q-coefficients throughout) ofM ct
1,n generated by

divisor classes DI , for I ⊂ {1, . . . , n} with |I| > 1. For example, see the
appendix of [11]. Recall that a boundary cycle of M ct

1,n parameterizes sta-
ble curves whose dual graphs are trees, and DI is associated to those with
one edge, for which I is the marking set on the genus zero component. We
study this ring to understand the space of relations among the generators.
In particular, we prove that the tautological ring is Gorenstein.
We begin this note by recalling the definitions and known facts about

the tautological algebras as well as the conjectural structure of them.
In the second section we consider a fixed pointed elliptic curve (C;O),

and we describe the reduced fiber of the projection M ct
1,n → M ct

1,1 over

Keywords: Moduli of curves, tautological rings.
Math. classification: 14H10, 14C17, 14C25, 14H52.



2752 Mehdi TAVAKOL

[(C;O)] ∈ M ct
1,1, which is denoted by Un−1, as a sequence of blow-ups of

Cn−1. As a result, we get a map

F : Un−1 →M ct
1,n.

There is a description of the Chow ring A∗(Un−1) of Un−1 in the third
section.
Then we define the tautological ring R∗(Cn) of Cn as a subring of its

Chow ring A∗(Cn). We give a description of the pairing

Rd(Cn)×Rn−d(Cn)→ Q

for 0 6 d 6 n. In particular, we will see that this pairing is perfect.
The fifth section starts with the definition of the tautological ring

R∗(Un−1) of Un−1. It is defined to be the subalgebra of its Chow ring
generated by the tautological classes in R∗(Cn−1) and the classes of proper
transforms of the exceptional divisors introduced in the construction of
Un−1. The study of the pairing

Rd(Un−1)×Rn−1−d(Un−1)→ Q,

for 0 6 d 6 n− 1, shows that it is perfect as well.
In the last section we study the fibers of the map F : Un−1 →M ct

1,n, and
we will see that the images of the tautological classes in M ct

1,n under the
induced pull-back

F ∗ : A∗(M ct
1,n)→ A∗(Un−1)

are elements of the tautological ring R∗(Un−1) of Un−1 and hence, it in-
duces a map

R∗(M ct
1,n)→ R∗(Un−1),

which is denoted by the same letter F ∗, by abuse of notation. Then, we
will see that F ∗ induces an isomorphism between the tautological rings
involved. This gives a description of the ring R∗(M ct

1,n) in terms of the
generators DI ’s and the space of relations. This leads us to a proof of the
following result:

Theorem 0.1. — The ring homomorphism F ∗ : R∗(M ct
1,n)→ R∗(Un−1)

is an isomorphism. In particular, for any 0 6 d 6 n− 1, the pairing

Rd(M ct
1,n)×Rn−1−d(M ct

1,n)→ Q

is perfect. In other words, R∗(M ct
1,n) is a Gorenstein ring.

Acknowledgments. — The author wishes to thank Carel Faber for in-
troducing this project and useful discussions. The comments of Eduard
Looijenga and Rahul Pandharipande are appreciated as well. This research
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was done during my graduate studies at KTH, the Royal Institute of Tech-
nology.

1. Review of known facts and conjectures about the
tautological ring R∗(M ct

g,n)

Let Mg,n be the moduli space of stable curves of genus g with n marked
points. In [8] the system of tautological rings is defined to be the set of
smallest Q-subalgebras of the Chow rings,

R∗(Mg,n) ⊂ A∗(Mg,n),

satisfying the following two properties:
• The system is closed under push-forward via all maps forgetting
markings:

π∗ : R∗(Mg,n)→ R∗(Mg,n−1).
• The system is closed under push-forward via all gluing maps:

ι∗ : R∗(Mg1,n1∪{∗})⊗R
∗(Mg2,n2∪{•})→ R∗(Mg1+g2,n1+n2),

ι∗ : R∗(Mg,n∪{∗,•})→ R∗(Mg+1,n),
with attachments along the markings ∗ and •.

The quotient R∗(Mg,n) of the tautological ring is defined as the restric-
tion to the open subsetMg,n. In [3] it was conjectured that the tautological
ring R∗(Mg) is a Gorenstein algebra with socle in degree g−2. It was raised
as a question in [14] whether the tautological ring of Mg,n satisfy Poincaré
duality and has the Lefschetz property with respect to κ1, which was known
to be ample [2]. In [4] the following conjecture about the tautological ring
R∗(Mg,n) is stated:

Conjecture 1.1. — R∗(Mg,n) is Gorenstein with socle in degree
3g − 3 + n.

We now define the moduli space M ct
g,n and its tautological ring. To every

stable n-pointed curve (C;x1, . . . , xn) there is an associated dual graph.
Its vertices correspond to the irreducible components of C and edges corre-
spond to intersection of components. Note that self intersection is allowed.
The curve C is of compact type if its dual graph is a tree, or equivalently, the
Jacobian of C is an abelian variety. The moduli space M ct

g,n parametrizes
stable n-pointed curves of genus g of compact type. One can also define
M ct
g,n as the complement of the boundary divisor ∆irr of irreducible singular

curves and their degenerations.

TOME 61 (2011), FASCICULE 7



2754 Mehdi TAVAKOL

The tautological ring, R∗(M ct
g,n) ⊂ A∗(M ct

g,n), for the moduli spaceM ct
g,n,

is defined to be the image of R∗(Mg,n) via the natural map,

R∗(Mg,n) ⊂ A∗(Mg,n)→ A∗(M ct
g,n).

The quotient ring R∗(M ct
g,n) admits a canonical non-trivial linear evalu-

ation ε to Q obtained by integration involving the λg class, the Euler class
of the Hodge bundle.
Recall that the Hodge bundle E onMg for g > 1 (resp.M1,1 for g = 1), is

the locally freeQ-sheaf of rank g defined by E = π∗ω, where π : Mg,1 →Mg

(resp. π : M1,2 → M1,1) is the universal curve of genus g and ω denotes
its relative dualizing sheaf. The Hodge bundle on Mg,n is defined as the
pull-back of E via the natural projection π : Mg,n → Mg for g > 1 (resp.
π : M1,n → M1,1 for g = 1) and is denoted by the same letter. The fiber
of E over a moduli point [(C;x1, . . . , xn)] is the g-dimensional vector space
H0(C,ωC). The class λi on Mg,n is defined to be the ith Chern class ci(E)
of the Hodge bundle.
The class ψi is the pull back σ∗i (K) of K along σi : Mg,n → Mg,n+1,

where σ1, . . . , σn are the natural sections of the map π : Mg,n+1 → Mg,n,
which forgets the last marking on the curve and stabilizes, and K is the
class of the relative dualizing sheaf of the projection π. It is the first Chern
class of the cotangent line bundle Li on the moduli space whose fiber at
the moduli point [(C;x1, . . . , xn)] is the cotangent space to C at the ith
marking. The class κi onMg,n is defined to be the push-forward π∗(ψi+1

n+1),
where the projection π : Mg,n+1 →Mg,n is defined as above. The ψ, κ and
λ classes in A∗(Mg,n) all lie in the tautological ring.

The class λg vanishes when restricted to the complement ∆irr. This gives
rise to an evaluation ε on A∗(M ct

g,n) :

ξ 7→ ε(ξ) =
∫
Mg,n

ξ · λg.

The non-triviality of the ε evaluation is proven by explicit integral com-
putations. The following formula for λg integrals is proven in [7]:∫

Mg,n

ψα1
1 · · ·ψαn

n λg =
(

2g − 3 + n

α1, . . . , αn

)∫
Mg,1

ψ2g−2
1 λg.

The integrals on the right side are evaluated in terms of the Bernoulli
numbers: ∫

Mg,1

ψ2g−2
1 λg = 22g−1 − 1

22g−1
|B2g|
(2g)! .

This proves the non-triviality of the evaluation since B2g doesn’t vanish.

ANNALES DE L’INSTITUT FOURIER
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It is proven in [12] that R∗(M ct
g,n) vanishes in degrees > 2g−3 +n and is

1-dimensional in degree 2g − 3 + n. It was speculated in [6] that R∗(M ct
g )

is a Gorenstein algebra with socle in codimension 2g − 3. The following
conjecture is stated in [4]:

Conjecture 1.2. — R∗(M ct
g,n) is Gorenstein with socle in degree

2g − 3 + n.

A compactly supported version of the tautological algebra is defined
in [14]. The algebra R∗c(Mg,n) is defined to be the set of elements in
R∗(Mg,n) that restrict trivially to the Deligne-Mumford boundary. This
is a graded ideal in R∗(Mg,n) and the intersection product defines a map

R∗(Mg,n)×R∗c(Mg,n)→ R∗c(Mg,n)

that makes R∗c(Mg,n) a R∗(Mg,n)-module. In [14] they formulated the fol-
lowing conjecture for the case n = 0:

Conjecture 1.3.
(A) The intersection pairings

Rk(Mg)×R3g−3−k
c (Mg)→ R3g−3

c (Mg) ∼= Q

are perfect for k > 0.
(B) In addition to (A), R∗c(Mg) is a free R∗(Mg)-module of rank one.

In a similar fashion one defines R∗c(M ct
g,n) as the set of elements in

R∗(Mg,n) that pull back to zero via the standard map Mg−1,n+2 →Mg,n

onto ∆irr. The analogue of the conjectures above for the spaces M ct
g,n in-

stead ofMg and its relation with the conjecture 1.2 is discussed in [5]. First
consider the analogue of the conjectures 1.3 as follows:

Conjecture 1.4.
(C) The intersection pairings

Rk(M ct
g,n)×R3g−3+n−k

c (M ct
g,n)→ R3g−3+n

c (M ct
g,n) ∼= Q

are perfect for k > 0.
(D) In addition to (C), R∗c(M ct

g,n) is a free R∗(M ct
g,n)-module of rank

one.

In [5] it is proven that for a given (g, n), the statement (D) in 1.4 follows
if the statements 1.1 and 1.2 hold. On the other hand, for such (g, n) the
statements 1.2 and (C) in 1.4 follow from (D) in 1.4. It is also proven that
a counterexample to the conjecture 1.1 leads to a disproof of the conjecture
(C) in 1.4.

TOME 61 (2011), FASCICULE 7
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In this note we consider the case g = 1 and prove that the conjecture 1.2
is true in this case.

2. The space Un−1

Let C be a fixed elliptic curve and choose a point O ∈ C as its origin.
For a given natural number n ∈ N, the space Un−1 is defined to be the
open subset{

(x1, . . . , xn−1) ∈ Cn−1 : xi 6= O and xi 6= xj for i 6= j
}

of Cn−1. The projection π : Un−1 × C → Un−1 admits n disjoint sections
with smooth fibers and defines a map

F : Un−1 →M1,n,

where M1,n denotes the moduli space of smooth n-pointed curves of genus
one. The map F sends the point P = (x1, . . . , xn−1) of Un−1 to the class
of the pointed curve (C;x1, . . . , xn−1, O).
For a proper subset I of {1, . . . , n}, let XI ⊂ Cn−1 be the |I|-dimensional

subvariety defined by{
xi = xj for i, j ∈ {1, . . . , n} − I if n ∈ I
xi = O for i ∈ {1, . . . , n− 1} − I if n /∈ I.

The space Un−1 is constructed from Cn−1 by the following sequence of
blow-ups: At step zero blow-up Cn−1 at the point X0, and at the kth step,
for 1 6 k 6 n − 3, blow-up the space obtained in the previous step along
the regularly embedded union of the proper transforms of the subvarieties
XI , where |I| = k.

The space Un−1 contains Un−1 as an open dense subset. There exists
a family of stable curves of genus one of compact type over Un−1, whose
total space is isomorphic to Un. The resulting family is denoted by π :
Un → Un−1 by abuse of notation. Since π−1(Un−1) is isomorphic to the
product Un−1 × C, on which π is projection onto the first factor, and this
coincides with the former definition of π given above, there is no danger of
confusion. The map π admits n disjoint sections in the smooth locus of the
fibers, and defines a morphism

F : Un−1 →M ct
1,n.

The morphism F sends a geometric point P ∈ Un−1 to the moduli point
of the pointed curve (π−1(P );x1, . . . , xn), where the xi’s are the n distinct

ANNALES DE L’INSTITUT FOURIER
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points on the fiber π−1(P ) obtained by intersecting the fiber π−1(P ) with
the n disjoint sections of π.

3. The Chow ring A∗(Un−1)

In this section we recall some facts about the intersection ring of the
blow-up Ỹ of a smooth variety Y along a smooth irreducible subvariety
Z from [9]. When the restriction map from A∗(Y ) to A∗(Z) is surjective,
S. Keel has shown in [16] that the computations become simpler. Assuming
the surjectivity of the restriction map, we denote the kernel of the restric-
tion map by JZ/Y so that

A∗(Z) = A∗(Y )
JZ/Y

.

Define a Chern polynomial for Z ⊂ Y , denoted by PZ/Y (t), to be a poly-
nomial

PZ/Y (t) = td + a1t
d−1 + · · ·+ ad−1t+ ad ∈ A∗(Y )[t],

where d is the codimension of Z in Y and ai ∈ Ai(Y ) is a class whose
restriction in Ai(Z) is ci(NZ/Y ), where NZ/Y is the normal bundle of Z
in Y . We also require that ad = [Z], while the other classes ai, for 0 < i < d,
are determined only modulo JZ/Y .
Let us verify the surjectivity of the restriction map from A∗(Y ) to A∗(Z)

in our case, when Y = Cn−1 and Z = XI , for a subset I of the set
{1, . . . , n}. First assume that n doesn’t belong to the set I. Denote by
iI : XI → Cn−1 the inclusion map and by π : Cn−1 → XI the canonical
projection. From the equality π ◦ iI = idXI

we conclude that the restric-
tion map i∗I is surjective. It also follows that the push-forward map (iI)∗
is injective. This will be used in 5.1. The case n ∈ I is treated in a similar
manner. In this case there is not a canonical projection π : Cn−1 → XI ,
and one has to make a choice.
The following lemma can be used to compute PZ/Y when the subvari-

ety Z is a transversal intersection of divisor classes:
Lemma 3.1.
(a) If Z = D is a divisor, then PD/Y (t) = t+D.
(b) If V ⊂ Y and W ⊂ Y are subvarieties meeting transversally in

a variety Z, and V and W have Chern polynomials PV/Y (t) and
PW/Y (t), then Z has a Chern polynomial

PZ/Y (t) = PV/Y (t) · PW/Y (t).

TOME 61 (2011), FASCICULE 7



2758 Mehdi TAVAKOL

In addition the restriction from A∗(Y )[t] to A∗(V )[t] maps PW/Y (t) to a
Chern polynomial PZ/V (t) for Z ⊂ V .

Proof. — This is Lemma 5.1 in [9]. �

We identify A∗(Y ) as a subring of A∗(Ỹ ) by means of the map π∗ :
A∗(Y )→ A∗(Ỹ ), where π : Ỹ → Y is the birational morphism. Let E ⊂ Ỹ
be the exceptional divisor. The formula of Keel is as follows:

Lemma 3.2. — With the above assumptions and notations, the Chow
ring A∗(Ỹ ) is given by

A∗(Ỹ ) = A∗(Y )[E]
(JZ/Y · E,PZ/Y (−E)) .

Proof. — This is Lemma 5.3 in [9]. �

The next lemma relates a Chern polynomial P
Ṽ /Ỹ

(t) of the proper trans-
form Ṽ of a subvariety V ⊂ Y to PV/Y (t) :

Lemma 3.3. — Let V be a subvariety of Y not contained in Z and let
Ṽ ⊂ Ỹ be its proper transform. Suppose that PV/Y (t) is a Chern polyno-
mial for V .

(1) If V meets Z transversally, then PV/Y (t) is a Chern polynomial for
Ṽ in Ỹ .

(2) If V contains Z, then PV/Y (t−E) is a Chern polynomial for Ṽ ⊂ Ỹ .

Proof. — This is Lemma 5.2 in [9]. �

In the second section we saw that the space Un−1 is obtained as a result
of a sequence of blow-ups of the variety Cn−1. As we have observed before
in this section, the restriction map from the intersection ring of Cn−1 to
A∗(Z) is surjective when Z = XI for a subset I of {1, . . . , n}. The following
lemmas show that the same surjectivity holds for all of the blow-up centers
at every step during the process of the construction of Un−1. They also
relate the ideal J

Ṽ /Ỹ
to the ideal JV/Y for a subvariety V of Y when we

blow-up the variety Y along a subvariety Z assuming the surjectivity of
the restriction map A∗(Y )→ A∗(Z):

Lemma 3.4. — Suppose that V is a nonsingular subvariety of Y that
intersects Z transversally in an irreducible variety V ∩ Z, and that the
restriction A∗(V ) → A∗(V ∩ Z) is also surjective. Let Ṽ = BlZV . Then
A∗(Ỹ )→ A∗(Ṽ ) is surjective, with kernel JV/Y if V ∩Z is not empty, and
kernel (JV/Y , E) if V ∩ Z is empty.

Proof. — This is Lemma 5.4 in [9]. �

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.5. — Suppose that Z is the transversal intersection of nonsin-
gular subvarieties V andW of Y , and that the restrictions A∗(Y )→ A∗(V )
and A∗(Y )→ A∗(W ) are also surjective, let Ṽ = BlZV . Then

(1) A∗(Ỹ )→ A∗(Ṽ ) is surjective, with kernel (JV/Y , PW/Y (−E));
(2) A∗(Ỹ )→ A∗(E ∩ Ṽ ) is surjective, with kernel (JZ/Y , PW/Y (−E)).

Proof. — This is Lemma 5.5 in [9]. �

From now on we will always assume that all of the restriction maps to the
blow-up centers are surjective. Using the general results mentioned above
we are able to express certain monomials that belong to the Chow ring
A∗(Ỹ ) in terms of elements in A∗(Y ):

Lemma 3.6. — Suppose that Z is the transversal intersection D1∩· · ·∩
Dr of divisor classes D1, . . . , Dr on Y and let f ∈ A∗(Y ) be an element of
degree d = dim(Z). The following relation holds in A∗(BlZY ) :

f · Er = (−1)r−1f · Z.

Proof. — Multiply both sides of the equality

(D1 − E) · · · (Dr − E) = 0

by f . For any element g ∈ A∗(Y ) of positive degree, the pull back i∗Z(fg)
of fg along the inclusion iZ : Z → Y is zero, which means that the product
fg · E is zero as well. This proves the claim. �

We also state the non-vanishing criteria of the product EI ·EJ for a pair
of exceptional divisors EI and EJ :

Proposition 3.7. — Let I, J ⊂ {1, . . . , n} be subsets satisfying
|I|, |J | 6 n − 3. The product EI · EJ ∈ A2(Un−1) is zero unless I ⊆ J

or J ⊆ I or I ∪ J = {1, . . . , n}.

Proof. — If I ∪ J 6= {1, . . . , n}, then XI∩J is equal to the intersection
XI ∩XJ , and it is a proper subset of XI and XJ both if I * J and J * I.
Under the assumption I * J, J * I and I ∪ J 6= {1, . . . , n}, the proper
transforms of the subvarieties XI and XJ become disjoint after blowing up
along that of XI∩J . This means that the product EI · EJ ∈ A2(Un−1) is
zero. �

4. The tautological ring R∗(Cn)

Definition 4.1. — Suppose (C;O) is a fixed pointed elliptic curve, and
let n ∈ N be a natural number. The tautological ring, R∗(Cn) ⊂ A∗(Cn),

TOME 61 (2011), FASCICULE 7
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is defined to be the Q-subalgebra generated by the following classes:

ai =
{

(x1, . . . , xn) ∈ Cn : xi = O
}
,

dj,k =
{

(x1, . . . , xn) ∈ Cn : xj = xk
}
,

where 1 6 i 6 n and 1 6 j < k 6 n. If we define bj,k := dj,k−aj −ak, then
another set of generators for R∗(Cn) is {ai, bj,k : 1 6 i 6 n and 1 6 j <

k 6 n}.
Proposition 4.2.
(A) Over the polynomial ring with generators ai, bj,k the ideal of rela-

tions is generated by the following ones:

a2
i = 0, aibi,j = 0, b2

i,j = −2aiaj , bi,jbi,k = aibj,k,

bi,jbk,l + bi,kbj,l + bi,lbj,k = 0,

where in each relation the indices are distinct.
(B) For any 0 6 d 6 n, the pairing Rd(Cn)×Rn−d(Cn)→ Q is perfect.

Proof. — We first verify that the relations above hold in R2(Cn). The
relations a2

i = aibi,j = 0 and b2
i,j = −2aiaj obviously hold. E. Getzler

proved in [10] that the following relation holds in A2(M1,4):

(1) 12δ2,2 − 4δ2,3 − 2δ2,4 + 6δ3,4 + δ0,3 + δ0,4 − 2δβ = 0,

where the classes above are defined in [10].
In [17], R. Pandharipande gives a direct construction of Getzler’s relation

via a rational equivalence in the Chow group A2(M1,4). If we restrict the
relation (1) to the space M ct

1,4, pull it back along the morphism F : U3 →
M ct

1,4, and push it down to C3 via the blow-down map, we get the relation

(2) 12(a1b2,3 − b1,2b1,3) = 0.

The pull back of the relation above to R2(U4) via the morphism π : U4 →
U3 which forgets the last coordinate gives the relation

(3) 12(b1,2b3,4 + b1,3b2,4 + b1,4b2,3) = 0.

For more details about the derivation of (2) and (3), please see the appen-
dix.
Now, we study the pairing

Rd(Cn)×Rn−d(Cn)→ Q

for 0 6 d 6 n. From the relations above, we see that the tautological group
Rd(Cn) is spanned by monomials of the form v = a(v)b(v), where a(v) is
a product

∏
ai of ai’s for i ∈ Av, and b(v) is a product

∏
bj,k of bj,k’s, for

j, k ∈ Bv, such that Av and Bv are disjoint subsets of the set {1, . . . , n}

ANNALES DE L’INSTITUT FOURIER
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satisfying d = |Av| + 1
2 |Bv|. Under this circumstance, the monomial v is

said to be standard. To any standard monomial v we associate a dual
element v∗ ∈ Rn−d(Cn), which is defined to be the product of all ai’s, for
i ∈ {1, . . . , n} − Av ∪ Bv, with b(v). The following lemma enables us to
study the pairing:

Lemma 4.3. — Let v ∈ Rd(Cn) and w ∈ Rn−d(Cn) be standard mono-
mials. If the product v ·w is nonzero, then Bv = Bw, and the disjoint union
of the sets Av, Aw and Bv = Bw is equal to the set {1, . . . , n}.

Proof. — By assumption, we obtain the following inequalities:

n =
(
|Av|+

1
2 |Bv|

)
+
(
|Aw|+

1
2 |Bw|

)
6 |Av|+ |Aw|+ |Bv ∪Bw| 6 n.

This forces the inequalities to be equalities. The equality(
|Bv ∪Bw| − |Bv|

)
+
(
|Bv ∪Bw| − |Bw|

)
= 0

implies that |Bv ∪ Bw| = |Bv| = |Bw|, which shows that Bv = Bw. The
equality |Av|+ |Aw|+ |Bv| = n proves the second part of the claim. �

So, after a suitable enumeration of generators for Rd(Cn), the resulting
intersection matrix of the pairing between standard monomials and their
dual consists of square blocks along the main diagonal and the off-diagonal
blocks are all zero. To prove that the pairing is perfect we need to study the
square blocks on the main diagonal. These matrices and their eigenvalues
are studied in [15]. In particular, from their result it follows that the kernel
of any such matrix is generated by relations of the form (3):

Lemma 4.4. — Let m > 2 be a natural number and S be the set of all
standard monomials v of the form bi1,j1 · · · bim,jm

in Rm(C2m). The kernel
of the intersection matrix (v · w) for v, w in S is the ideal generated by
expressions of the form

R{i,j,k,l} := bi,jbk,l + bi,kbj,l + bi,lbj,k,

where the indices are distinct elements varying over the set {1, . . . , 2m}.

Proof. — The intersection matrix (v · w) for v, w ∈ S in [15] is denoted
by Tr(x) for r = m and x = −2. The S2m-module generated by elements of
S decomposes into the sum ⊕λVλ, where λ varies over all partitions of 2m
into even parts. For each such λ the space Vλ is an eigenspace of Tr(x). The
corresponding eigenvalue is zero when λ 6= 2m and it is (−1)m(m+1)! when
λ = 2m. We identify the space Vλ with a subspace of Rm(C2m), defined
below, which is generated by expressions of the form R{i,j,k,l}, for λ 6= 2m.
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Recall that a tabloid is an equivalence class of numberings of a Young
diagram, two being equivalent if corresponding rows contain the same en-
tries. The tabloid determined by a numbering T is denoted {T}. The space
Vλ is generated by elements of the form

vT =
∑

q∈C(T )

sgn(q){q · T},

where C(T ) is the subgroup of S2m consisting of permutations preserving
the columns of T .
Note that the sum R{1,...,2m} :=

∑
v∈S v is a symmetric expression, which

is clearly a linear combination of terms of the form RT , where |T | = 4. This
proves the claim when λ = 2m gives the trivial representation. For other
partitions λ we use the proven result for the symmetric relations. Let λ =
(λ1 > · · · > λr > 0) be a partition of 2m. For each numbering of a Young
diagram T let Ti denote the subset of {1, . . . , 2m} containing elements of
the ith row of T , for i = 1, . . . , r. Consider the product PT :=

∏r
i=1 RTi

,
where R{i,j} is defined to be bi,j , while the other RTi ’s are defined above
when |Ti| > 4. Note that PT doesn’t change as T varies in an equivalence
class {T} since RTi

’s are symmetric. This means that the assignment

vT →
∑

q∈C(T )

sgn(q)Pq·T ,

is a well-defined S2m-module morphism. This map is non-zero, hence an
isomorphism onto its image. The result follows. �

Since the relations of the form (3) hold in the tautological ring R∗(Cn),
we conclude that the pairing is perfect. This also shows that the relations
stated in the proposition generate all relations in the tautological ring. �

Remark 4.5. — The tautological ring R∗(Cn), for a smooth curve C of
genus g, was defined by C. Faber and R. Pandharipande (unpublished) as
the Q-subalgebra of A∗(Cn) generated by the standard classes Ki and Di,j .
They show that the image RH∗(Cn) in cohomology is Gorenstein. In [13]
M. Green and P. Griffiths have shown that R∗(C2) is not Gorenstein, for
C a generic complex curve of genus g > 4.

5. The tautological ring R∗(Un−1)

Definition 5.1. — The tautological ring, R∗(Un−1) of Un−1, is de-
fined to be the subalgebra of the Chow ring A∗(Un−1) generated by the
tautological classes in R∗(Cn−1) and the classes EI for |I| 6 n− 3.
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5.1. Relations in R∗(Un−1)

• The first class of relations in R∗(Un−1) are those between the gen-
erators of R∗(Cn−1) described in Section 4.

• For subsets I, J ⊂ {1, . . . , n}, where |I|, |J | 6 n − 3, the product
EI · EJ ∈ R2(Un−1) is zero unless

(∗) I ⊆ J, or J ⊆ I, or I ∪ J = {1, . . . , n}.

• For any subset I ⊂ {1, . . . , n}, where |I| 6 n − 3, consider the
inclusion

iI : XI → Cn−1.

The relations

{x · EI = 0 : x ∈ ker(i∗I : R∗(Cn−1)→ R∗(XI))}

hold. Note that the kernel of i∗I coincides with the kernel of the map

R∗(Cn−1)→ R∗(Cn−1)

defined by x→ x ·XI . This follows since (iI)∗(iI)∗(x) = x ·XI for
x ∈ R∗(Cn−1), and (iI)∗ is injective in our case.

• As we saw in the third section, in blowing-up the variety Y along
a subvariety Z ⊂ Y , if the center Z can be written as the transver-
sal intersection of the subvarieties V and W of Y , then the class
PW/Y (−EZ) is in the ideal J

Ṽ /Ỹ
. This means that the product

PW/Y (−EZ) · E
Ṽ

is zero, where E
Ṽ

is the class of the exceptional
divisor of the blow-up along the subvariety Ṽ . We get a class of
relations of this type by writing the centers of blow-ups intro-
duced in the construction of the space Un−1 as transversal in-
tersections in different ways. If the subvariety V can be written
as a transversal intersection V1 ∩ · · · ∩ Vk, we obtain the relation
PW/Y (−EZ) · EV1 · · ·EVk

= 0.
• For each subvariety Z ⊂ Y with a Chern polynomial PZ/Y (t), there

is a relation
PZ/Y (−EZ) = 0,

where EZ is the class of the exceptional divisor of the blow-up of
Y along Z. These give another class of relations in R∗(Un−1). Note
that for each subset I of {1, . . . , n}, a Chern polynomial PXI/Cn−1

of the subvariety XI is in R∗(Cn−1)[t]. This means that a Chern
polynomial of its proper transform under later blow-ups belongs to
R∗(Un−1). It follows from Lemma 3.3, which relates a Chern poly-
nomial PV/Y (t) of a subvariety V to that of its proper transform Ṽ .
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Example 5.2. — Suppose Y = C5.
• Let X0 be the point O5 ∈ C5. Then ker(i∗ : R∗(C5) → R∗(X0))
consists of all elements of positive degree. It follows that ai · E0 =
bi,j · E0 = 0 for all i and j.

• Let X1 = a2a3a4a5. From a1 ∩X1 = X0 we get the relation (a1 −
E0) · E1 = 0. If X1,2,3 = a4a5 and X4,5,6 = d1,2d1,3, then the
relation (a1 − E0) · E1,2,3 · E4,5,6 = 0 follows from the equality
a1 ∩X1,2,3 ∩X4,5,6 = X0.

• A Chern polynomial of the subvariety X0 is
∏5
i=1(ai + t), from

which we get the following relation:
5∏
i=1

(ai − E0) = a1a2a3a4a5 − E5
0 = 0.

There are several special cases of the relations above which will be useful
in the definition of standard monomials and in defining the dual elements:

Lemma 5.3. — Let I be a subset of the set {1, . . . , n} with at most
n − 3 elements, containing n. For any i ∈ I and j, k ∈ {1, . . . , n} − I, the
following relations hold in A2(Un−1) :

aj · EI = ak · EI , bj,k · EI = −2aj · EI ,

bi,k · EI =
( ∑
J⊆I−{i}

EJ − ai − aj
)
· EI .

Proof. — Recall that EI is the exceptional divisor of the blow-up along
the proper transform of the subvariety

XI = ∩j 6=r∈{1,...,n}−Idj,r = ∩k 6=r∈{1,...,n}−Idk,r.

The equality aj · EI = ak · EI follows since

aj − ak ∈ ker
(
i∗I : R∗(Cn−1)→ R∗(XI)

)
,

where iI : XI → Cn−1 denotes the inclusion. We give another proof as
well: From the following equality

XI ∩ aj = XI ∩ ak = XI−{n},

we obtain the relation(
aj −

∑
J⊆I−{n}

EJ

)
· EI =

(
ak −

∑
J⊆I−{n}

EJ

)
· EI = 0.

This gives the first relation after canceling out
(∑

J⊆I−{n}EJ
)
·EI on both

sides.
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The second equality results from the definition bj,k = dj,k − aj − ak, the
relation dj,k · EI = 0, and from the previous case.
To prove the last statement, first note that bi,k = di,k − ai − ak, by

definition. From the equality XI ∩ di,k = XI−{i}, we get the relation(
di,k −

∑
J⊆I−{i}

EJ

)
· EI = 0.

We conclude that

bi,k · EI =
( ∑
J⊆I−{i}

EJ − ai − ak
)
· EI ,

which proves the last statement, using that aj · EI = ak · EI . �

5.2. Standard monomials

The existence of the relations stated above makes it possible to obtain a
smaller set of generators for the tautological ring R∗(Un−1). Any monomial
v ∈ Rd(Un−1) can be written as a product a(v)b(v) · E(v), where a(v)
is a product of ai’s, b(v) is a product of bj,k’s, and E(v) is a product
of exceptional divisors. To simplify the enumeration of the generators for
R∗(Un−1), we introduce the directed graph associated to a monomial. We
first define an ordering on the polynomial ring

R := Q
[
ai, bj,k, EI : 1 6 i 6 n− 1, 1 6 j < k 6 n− 1,

I ⊂ {1, . . . , n}, where |I| 6 n− 3
]
.

Definition 5.4. — Let I, J ⊂ {1, . . . , n}, we say that I < J if
• |I| < |J |
• or if |I| = |J | and the smallest element in I − I ∩ J is less than the

smallest element of J − I ∩ J .
Put an arbitrary total order on monomials in

Q[ai, bj,k : 1 6 i 6 n− 1, 1 6 j < k 6 n− 1].

Suppose v1, v2 ∈ R are monomials. We say that v1 < v2 if we can write
them as

v1 = a(v1)b(v1) ·
r0∏
r=1

EirIr
· E, and v2 = a(v2)b(v2) ·

r0∏
r=1

Ejr

Ir
· E,
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where E =
∏m
r=r0+1 E

ir
Ir
, for I1 < · · · < Im, and ir0 < jr0 ; or if r0 = 0 and

a(v1)b(v1) < a(v2)b(v2).
Furthermore, we say that v1 � v2, if for any factor EI of v2 we have

that v1 < EI .

Definition 5.5. — Let v = a(v)b(v) · Ei1I1
· · ·EimIm

, where ir 6= 0 for
r = 1, . . . ,m and I1 < · · · < Im, be a monomial. The directed graph
G = (VG , EG) associated to v is defined by the following data:

• A set VG and a one-to-one correspondence between members of VG
and members of the set {1, . . . ,m}. Elements of VG are called the
vertices of G.

• A set EG ⊂ VG × VG consisting of all pairs (r, s), where Is is a
minimal element of the set

{Ii : Ir ⊂ Ii}

with respect to inclusion. Elements of EG are called the edges of G.
For a vertex i ∈ VG , the closure i ⊂ VG is defined to be the subset

{r ∈ VG : Ii ⊆ Ir}

of VG . The degree deg(i) of i is defined to be the number of the elements
of the set

{j ∈ VG : (i, j) ∈ EG}.

A vertex i ∈ VG is called a root of G if Ii is minimal with respect to
inclusion of sets. Maximal vertices of G are called external and all the
other vertices will be called internal.
In the following, we use the letters I1, . . . , Im to denote the vertices of G.

Remark 5.6. — We can define a directed graph associated to any col-
lection of subsets of the set {1, . . . , n} in a similar way. In general there
may be a loop in the resulting graph after forgetting the directions. Loops
don’t occur in the graph associated to a non-zero monomial v. Hence, we
refer to G as the associated forest of the monomial v, or of the collection
{I1, . . . , Im}.

The next lemma turns out to be useful in defining the dual element:

Lemma 5.7. — Suppose that I1, . . . , Im are proper subsets of the set
{1, . . . , n}, containing at most n− 3 elements, with the property that each
pair Ir and Is satisfy (∗). Let G be the associated forest. If n /∈ ∩mr=1Ir,
then there is a unique root of G not containing n.
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Proof. — By assumption, there is a root Ir such that n /∈ Ir. Uniqueness
follows since for any two roots Ir, Is of G the equality Ir ∪ Is = {1, . . . , n}
holds. This means that their complements Icr , Ics are disjoint. Hence, n
belongs to the complement of at most one root. �

Definition 5.8. — Let v be as in Definition 5.5, G be the associated
forest, and J1, . . . , Js, for some s 6 m, be roots of G. For each 1 6 r 6 s

such that n ∈ Jr, let αr ∈ {1, . . . , n} − Jr be the smallest element. The
subset S of the set {1, . . . , n− 1} is defined as follows:

• If n ∈ ∩mr=1Ir, put

S := {α1, . . . , αs} ∪ (∩mr=1Ir − {n}),

• if n /∈ ∩mr=1Ir, let J1 be the unique root of G not containing n. In
this case

S := {α2, . . . , αs} ∪ (∩mr=1Ir).
The monomial v is said to be standard if
• The monomial a(v)b(v) ∈ R∗(CS) is in standard form according to
the definition given in the fourth section.

• For each r we have that

ir 6 min(n− 2− |Ir|, | ∩Ir⊂Is
Is| − |Ir|+ deg(Ir)− 2).

We now prove that standard monomials form a basis of the tautological
ring:

Proposition 5.9. — The tautological ring R∗(Un−1) of Un−1 is span-
ned by standard monomials.

Proof. — Let v be a monomial given as in Definition 5.5. We have seen
that any monomial in Rd(Cn−1) can be written in standard form for
0 6 d 6 n − 1. By Lemma 5.3, we may assume that a(v)b(v) is an ele-
ment of the tautological ring R∗(CS) of CS , where S is defined according
to Definition 5.8. The statement is proven using induction and from the
following observations:

• From the last class of relations in 5.1, for any subset Ir of the set
{1, . . . , n}, where |Ir| 6 n− 3, we can write En−1−|Ir|

Ir
as a sum of

elements which are strictly less than it.
• Let {J1, . . . , Js} be the set of minimal elements of the set{

Ii : Ir ⊂ Ii, where 1 6 i 6 m
}
.

From the third class of relations in 5.1, the monomial EjIr
·
∏s
i=1 EJi

can be written as a sum of terms which are strictly less than it,
where j = | ∩si=1 Ji| − |Ir|+ s− 1.
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�

5.3. Definition of the dual element

Now suppose v ∈ Rd(Un−1) is an element of degree d written in standard
form. Below, we define the element v∗, which is an element ofRn−1−d(Un−1).
As we will see, the property v∗∗ = v holds. This shows that there is a
one-to-one correspondence between standard monomials in degree d and
n− 1− d.

Definition 5.10. — Suppose v = a(v)b(v) · E(v) is a standard mono-
mial, where a(v)b(v) is in the tautological ring R∗(Cn−1) of Cn−1, and

E(v) =
m∏
r=1

EirIr
,

where ir 6= 0 for r = 1, . . . ,m, and I1 < · · · < Im. Let G be the associated
forest, and J1, . . . , Js, the set S and αr ∈ Jr for 1 6 r 6 s be as in
Definition 5.8. The subset T of the set S is defined as follows:

• If n ∈ ∩mr=1Ir put

T := S − (Av ∪Bv ∪ {n}),

• if n /∈ ∩mr=1Ir, let J1 be the unique root of G not containing n. In
this case

T := S − (Av ∪Bv).
For each 1 6 r 6 m, define jr to be
| ∩Ir⊂Is

Is| − |Ir|+ deg(Ir)− 1− ir if Ir is an internal vertex of G

n− 1− |Ir| − ir if Ir is an external vertex of G.

We define v∗ = a(v∗)b(v∗) · E(v∗), where

a(v∗) =
∏
i∈T

ai, b(v∗) = b(v), E(v∗) =
m∏
r=1

Ejr

Ir
.

Remark 5.11. — We verify that the dual element v∗ is well-defined.
We need to show that the integers jr are non-negative. These integers are
indeed positive numbers for r = 1, . . . ,m. In the definition of standard
monomials we have seen that

ir 6 | ∩Ir⊂Is
Is| − |Ir|+ deg(Ir)− 2.
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This shows that jr > 1 when ir > 0 and Ir is an internal vertex. The case
of external vertices is treated using the inequality ir 6 n− 2− |Ir|.

The following corollary follows from Definition 5.10.

Corollary 5.12. — Suppose v ∈ Rd(Un−1) is a standard monomial
and let v∗ ∈ Rn−1−d(Un−1) be its dual. Then v∗ is a standard monomial,
and furthermore v∗∗ = v.

The next lemma will be useful in the proof of Proposition 5.16 and iden-
tity (5):

Lemma 5.13. — Let v = a(v)b(v) ·E(v) be as in Definition 5.10, and G
be the associated forest. For a vertex i ∈ VG corresponding to the subset Ii
of the set {1, . . . , n}, the equality∑

i

(ir + jr) = n− 1− |Ii|

holds. Here i is the closure of i in G defined in Definition 5.5.

Proof. — It is immediate from the definition of the jr’s above. �

5.4. The pairing Rd(Un−1)×Rn−1−d(Un−1)

In the previous part, we defined dual elements for standard monomials.
Below, we will see that with respect to the ordering of the generators of
the Chow groups given in 5.4 the resulting intersection matrix between
the standard monomials and their duals consists of square blocks on the
main diagonal, whose entries are, up to a sign, intersection numbers in
R|S|(CS), for certain sets S, and all blocks below the diagonal are zero.
To prove the stated properties of the intersection matrix, we introduce a
natural filtration (1) on the tautological ring.

Definition 5.14. — Let v be a standard monomial as given in Defini-
tion 5.8, and let J1, . . . , Js be roots of the associated forest. Define p(v) to
be the degree of the element

a(v)b(v) ∩sr=1 XJr ∈ A∗(Cn−1),

which is the same as the integer

deg a(v)b(v) + n− | ∩sr=1 Jr| − s.

(1)The definition of this filtration on the tautological ring was formulated after a question
of E. Looijenga.
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The subspace F pR∗(Un−1) of the tautological ring is defined to be the
Q-vector space spanned by standard monomials v satisfying p(v) > p.

Proposition 5.15.
(a) For any integer p, we have that F p+1R∗(Un−1) ⊆ F pR∗(Un−1).
(b) Let v ∈ F pR∗(Un−1) and w ∈ Rd(Un−1) be such that w � v. If

p+ d > n, then v · w is zero. In particular, FnR∗(Un−1) is zero.

Proof. — The first statement is immediate from Definition 5.14. Let us
prove (b). Let v be given as in Definition 5.8. Denote by Y the blow-up of
Cn−1 corresponding to the collection

{J ⊂ {1, . . . , n} : J < Jr for 1 6 r 6 s}

Note that the dimension dim∩sr=1XJr
of the transversal intersection

∩sr=1XJr
is equal to | ∩sr=1 Jr|+ s− 1. The product

a(v)b(v) ·
s∏
r=1

X̃Jr
· w ∈ A∗(Y )

is zero since its degree, which is

deg(a(v)b(v)) + n− | ∩sr=1 Jr| − s+ d,

is at least n, by assumption. This means that the product

a(v)b(v) ·
s∏
r=1

EJr
· w ∈ R∗(Un−1),

which is a factor of v · w, is zero as well. �

Using the proven lemma we are able to prove the following vanishing
result:

Proposition 5.16. — Suppose v1, v2 ∈ Rd(Un−1) are standard mono-
mials satisfying E(v1) < E(v2). Then v1 · v∗2 = 0.

Proof. — It is enough to write v1 · v∗2 as a product v · w, for v, w ∈
R∗(Un−1) satisfying the properties given in Proposition 5.15. To find v

and w, let v1, v2 be given as in Definition 5.4, and denote by {J1, . . . , Js}
the set of roots of the graph associated to the monomial E =

∏m
r=r0+1 E

ir
Ir
.

By relabeling the roots we may assume that there is an s0 > 0 such that
Ir0 ⊂ Jr for 1 6 r 6 s0, and the equality Ir0 ∪ Jr = {1, . . . , n} holds for
s0 < r 6 s. Let w be the product of all monomials in v1 · v∗2 which are
strictly less than EIr0

and v be the product of the other factors, so that
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v1 · v∗2 = v ·w. Notice that w � v, by the definition of v and w. The degree
d of w is computed using Lemma 5.13:

d = n+ jr0 − ir0 + s− s0 − |Icr0
| −

s∑
r=s0+1

|Jcr |

= jr0 − ir0 + s− s0 + |Ir0 ∩ Js0+1 ∩ · · · ∩ Js|
> s− s0 + 1 + |Ir0 ∩ Js0+1 ∩ · · · ∩ Js| = n− p(v).

From d+ p(v) > n we see that the product v · w is zero. �

To study the blocks on the main diagonal we proceed as follows: We first
prove an identity which reduces the number of exceptional divisors in the
product for certain monomials. Let Y be a blow-up of Cn−1 at some step
in the construction of Un−1. Suppose that

V1 ∩ · · · ∩ Vk ∩W = Z

is a transversal intersection of tautological classes, whereW = D1∩· · ·∩Dr

is a transversal intersection of divisors D1, . . . , Dr ∈ R1(Y ), and let f ∈
R∗(Y ) be an element of degree d = dim(Z). Denote by EZ the exceptional
divisor of the blow-up BlZY of Y along Z and by EV1 , . . . , EVk

those of
the blow-up Ỹ of BlZY along the proper transform of the subvarieties
V1, . . . , Vk. It follows from Lemma 3.5 that PW/Y (−EZ) ∈ J

Ṽ /Ỹ
, for V =

V1 ∩ · · · ∩ Vk. Using the same argument as in Lemma 3.6 we observe that
the equality

f · ErZ · EV1 · · ·EVk
= (−1)r−1f ·W · EV1 · · ·EVk

holds in Rr+d+k(Ỹ ). If the codimension of the subvariety Vi is ri and that
of Z is r0, then from the proven result in Lemma 3.6 one gets the following
identity:

(4) f · ErZ · E
r1
V1
· · ·Erk

Vk
= (−1)r0−k−1f · Z.

Notice that this identity reduces the computation of certain monomials
containing the exceptional divisors to one which belongs to the Chow ring
A∗(Y ). We now use this identity to compute the numbers occurring on the
main diagonal of the intersection matrix.

Let I1, . . . , Im be subsets of the set {1, . . . , n} containing at most n − 3
elements such that for every pair Ir and Is the property (∗) holds. Let G
be the associated forest of the collection I1, . . . , Im and J1, . . . , Js, the set
S and αr ∈ Jr for 1 6 r 6 s be as in Definition 5.8. If n /∈ ∩mr=1Ir, let J1
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be the unique root of G not containing n. Define

E :=
m∏
r=1

EirIr
,

where

ir =


| ∩Ir⊂Is

Is| − |Ir|+ deg(Ir)− 1 if Ir is an internal vertex of G

n− 1− |Ir| if Ir is an external vertex of G.

Consider an element f ∈ Q[ai, bi,j : i, j ∈ S], of degree | ∩mr=1 Ir|+ s− 1.
Then from the identity (4) it follows that

(5) f · E = (−1)εf ·
∏

i∈{1,...,n−1}−S

ai.

where ε = n+ | ∩mr=1 Ir|+
∑
i∈V (G) deg(i), using Lemma 5.13.

Note that for any v ∈ Rd(Un−1), the product E := E(v) ·E(v∗) is in the
form given above according to Definition 5.10.

Theorem 5.17. — For any 0 6 d 6 n− 1, the pairing

Rd(Un−1)×Rn−1−d(Un−1)→ Q

is perfect.

Proof. — Let A := {v1, . . . , vr} ⊂ Rd(Un−1), where v1 < · · · < vr, be the
set of standard monomials of degree d, and {v∗1 , . . . , v∗r} ⊂ Rn−1−d(Un−1)
be the set of their duals defined above. For a monomial

E ∈ Q[EI : I ⊂ {1, . . . , n} and |I| 6 n− 3],

define
AE := {v ∈ A : E(v) = E}.

Let G be the graph associated to the monomial E, and define S as in
Definition 5.8. For vi, vj ∈ AE the number

vi · v∗j ∈ Rn−1(Un−1) = Q

is the same as

(−1)εa(vi)b(vi) · a(v∗j )b(v∗j ) ∈ RS(CS) = Q,

by the identity (5), where ε = n+ | ∩mr=1 Ir|+
∑
i∈V (G) deg(i).

This means that the intersection matrices (vi · v∗j ) and (a(vi)b(vi)
· a(v∗j )b(v∗j )), for vi, vj in the set AE , are the same up to a sign after the
identifications above. From the study of the tautological ring R∗(CS) of
CS , we know that the kernel of the matrix above is generated by relations
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in R∗(CS). After choosing a basis for Rd−deg(E)(CS), the resulting matrix
is invertible. It means that the intersection matrix of the pairing

Rd(Un−1)×Rn−1−d(Un−1)→ Q

with this choice of basis elements for the tautological groups consists of
invertible blocks on the main diagonal and zero blocks below the diagonal,
hence is invertible. This proves the claim. �

6. The tautological ring R∗(M ct
1,n)

In the first part we obtained the morphism F : Un−1 → M ct
1,n, induced

from the family of curves π : Un → Un−1. The morphism F induces a ring
homomorphism

F ∗ : A∗(M ct
1,n)→ A∗(Un−1).

For a subset J ⊂ {1, . . . , n}, the pull back F ∗(DJ) of the divisor class
DJ is a subvariety of Un−1 for which the fiber π−1(P ) is a nodal curve of
type given by DJ , when P is its generic point. It follows that P is a point
of the proper transform of the subvariety XI , where I := {1, . . . , n} − J ,
when |J | > 3, and belongs to the proper transform of the divisors ai, dj,k
if J = {i, n}, {j, k}, for 1 6 i 6 n − 1 and 1 6 j < k 6 n − 1. But the
proper transform of XI is equal to EI , when |I| 6 n− 3, and those of the
divisors ai, dj,k are ai−

∑
i/∈I⊂{1,...,n−1}EI and dj,k−

∑
I⊂{1,...,n}−{j,k}EI

respectively, for 1 6 i 6 n− 1 and 1 6 j < k 6 n− 1. This means that

F ∗(D{i,n}) = ai −
∑

i/∈I⊂{1,...,n−1}

EI for 1 6 i 6 n− 1,

F ∗(D{j,k}) = dj,k −
∑

I⊂{1,...,n}−{j,k}

EI for 1 6 j < k 6 n− 1,

F ∗(DJ) = EI , where I = {1, . . . , n} − J for |J | > 3.

From this we see that the pull-back homomorphism F ∗ sends tautological
classes to tautological classes, and defines a ring homomorphism

F ∗ : R∗(M ct
1,n)→ R∗(Un−1).

If we rewrite the expressions above, we get that

ai = F ∗(
∑
i,n∈J

DJ) for 1 6 i 6 n− 1,

di,j = F ∗(
∑
j,k∈J

DJ) for 1 6 j < k 6 n− 1,

EI = F ∗(DJ), where J = {1, . . . , n} − I for |I| 6 n− 3.
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This shows that F ∗ is a surjection. We prove that F ∗ is injective by ex-
tending the function

G : {ai, dj,k, EI : 1 6 i 6 n− 1, 1 6 j < k 6 n− 1, I ⊂ {1, . . . , n}
and |I| 6 n− 3} → R∗(M ct

1,n),

defined by the rule

G(ai) =
∑
i,n∈J

DJ for 1 6 i 6 n− 1,

G(dj,k) =
∑
j,k∈J

DJ for 1 6 i 6 n− 1 and 1 6 j < k 6 n− 1,

G(EI) = DIc for |I| 6 n− 3

to a ring homomorphism

G : R∗(Un−1)→ R∗(M ct
1,n).

This is done by verifying that all relations between elements ai, dj,k, EI ’s on
the left hand side hold between classes on the right hand side. To simplify
the notation, we drop the letter G for tautological classes in R∗(M ct

1,n).
For instance, we write ai =

∑
i,n∈J DJ and EI = DIc for a subset I ⊂

{1, . . . , n} with |I| 6 n− 3.
Let us introduce the following notation: Suppose S is a subset of the set

{1, . . . , n}. By M ct
1,S , we mean the moduli space of stable curves of genus

one of compact type whose marking set is S. Let

πS : M ct
1,n →M ct

1,S

be the projection which forgets the markings in {1, . . . , n}−S and contracts
unstable components.

• We first deal with relations among generators of R∗(Cn−1): Notice
that

ai = π∗{i,n}(D{i,n}), dj,k = π∗{j,k}(D{j,k}),
bj,k = π∗{j,k,n}(D{j,k} −D{j,n} −D{k,n} −D{j,k,n}).

From the relations D2
{i,n} = D2

{j,k} = 0 in R2(M ct
1,{i,n}) and

R2(M ct
1,{j,k}), we obtain that the relations a2

i = d2
j,k = 0 hold in

R2(M ct
1,n), for 1 6 i 6 n − 1 and 1 6 j < k 6 n − 1. On the other

hand, the relation

(D{i,j} −D{i,n} −D{j,n} −D{i,j,n}) · (D{i,n} +D{i,j,n})

= 0 ∈ R2(M ct
1,{i,j,n})
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says that aibi,j = 0. From the relation d2
j,k = 0 obtained above,

we get that b2
j,k = −2ajak. Now suppose that i, j, k, l are distinct

elements of the set {1, . . . , n− 1}. As we saw in the fourth section,
the relation (1) in R2(M ct

1,{i,j,k,n}) can be written as

12(aibj,k − bi,jbi,k) = 0.

The relation

12(bi,jbk,l + bi,kbj,l + bi,lbj,k) = 0

is the pull-back of the relation above to R2(M ct
1,{i,j,k,l,n}) along the

morphism

π{i,j,k,n} : M ct
1,{i,j,k,l,n} →M ct

1,{i,j,k,n}.

This shows that the classes ai, bj,k ∈ R∗(M ct
1,n) satisfy all relations

among ai, bj,k ∈ R∗(Un−1).
• Note that the following

DI ·DJ 6= 0⇒ I ⊆ J or J ⊆ I or I ∩ J = ∅

is true. But this can be written as

EI · EJ 6= 0⇒ I ⊆ J or J ⊆ I or I ∪ J = {1, . . . , n}.

This proves that the EI ’s in R∗(M ct
1,n) satisfy this class of relations

between EI ’s in R∗(Un−1) obtained above.
• For any I ⊂ {1, . . . , n} with |I| 6 n − 3, we found the relations
x.EI = 0 for x ∈ ker(i∗I), where iI : XI → Cn−1 denotes the inclu-
sion. If n /∈ I, then ker(i∗I) is generated by divisor classes ai, bi,j ,
where i ∈ J := {1, . . . , n−1}− I, and j ∈ {1, . . . , n−1} is different
from i. Let us see that ai · EI = 0 in this case:

ai · EI = D2
J +

∑
J0:i,n∈J0⊂J

DJ0 ·DJ +
∑

J0:i,n∈J0,J⊂J0

DJ0 ·DJ .

But this expression is zero from the following known formula for ψ
classes in genus zero and one:

Proposition 6.1.
(a) The following relation holds in A1(M0,n) :

ψi =
∑

j,k/∈J,i∈J,|J|>2

DJ

for some fixed distinct j, k ∈ {1, . . . , n} − {i}.

TOME 61 (2011), FASCICULE 7



2776 Mehdi TAVAKOL

(b) The following relation holds in A1(M ct
1,n) :

ψi =
∑

i∈J,|J|>2

DJ .

Proof.
(a) is Proposition 1.6 in [1].
To prove (b), it is enough to restrict the divisor classes given in

Proposition 1.9 of [1], to the space M ct
1,n. �

If i ∈ {1, . . . , n − 1} − I, and j ∈ {1, . . . , n − 1} is distinct from
i, we saw that ai · EI = 0, and by the same argument as above we
see that aj · EI = di,j · EJ , from which it follows that

bi,j · EI = (di,j − ai − aj) · EI = 0.

The case n ∈ I is proven by the same argument.
• We get a relation PW/Y (−EZ)·EV1 · · ·EVk

= 0, when the subvariety
Z is a transversal intersection V1 ∩ · · · ∩ Vk ∩ W . After possibly
relabeling the indices, we can assume that

Z = XI0 , Vi = XIi
, for 1 6 i 6 k,

W =
r1∏

i=r0+1
ai ·

k−1∏
j=1

arj+1,

where r0 6 r1 < · · · < rk < n, and I0 = {1, . . . , r0}, Ici = {ri +
1, . . . , ri+1}, for 1 6 i < k, and Ick = {rk + 1, . . . , n}. Let us prove
that

PW/Cn−1(−
∑
J⊆I0

EI) · EI1 · · ·EIk
= 0 ∈ Rr1−r0+2k−1(M ct

1,n)

by showing that any monomial in the expansion of this expression
is zero. Let

r1∏
i=r0+1

EJi
·
k−1∏
j=1

EJrj +1 · EI1 · · ·EIk
,

where

i, n ∈ Jci for r0 + 1 6 i 6 r1, and rj + 1, n ∈ Jcj for 1 6 j 6 k − 1,

be any such monomial.
For r0 + 1 6 i 6 r1, if the product EJi

· EIk
is non-zero, then

Ji ⊆ Ik − {i}. For 1 6 j 6 k − 1, if the product EJrj +1 · EIj is
non-zero, then Jrj+1 ⊆ Ij . On the other hand, since n /∈ Ji, Jrj+1
for all i, j, the product EJi1

· EJi2
is non-zero only if Ji1 ⊆ Ji2 or
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Ji2 ⊆ Ji1 . It follows that the subsets Ji’s are totally ordered by
inclusion, which means that their intersection is one of them. We
conclude that for some i the inclusion Ji ⊆ I0 holds. But this term
is excluded from expression above, whence the product is zero.

• For any subset I ⊂ {1, . . . , n}, where |I| 6 n − 3, we prove that
PXI/Cn−1(−

∑
J⊆I EJ) is zero by the same argument as in the pre-

vious case, by showing that the monomials occurring in the expan-
sion of the expression above are all zero.

The argument above shows that F ∗ is an isomorphism, and hence, our
proof of Theorem 0.1 is complete.

Appendix: Derivation of the relations (2) and (3)

In this appendix we explain why the relations (2) and (3) follow from
Getzler’s relation (1). First note that the restriction of the relation (1) to
the space M ct

1,4 becomes

(6) 12δ2,2 − 4δ2,3 − 2δ2,4 + 6δ3,4 = 0.

Then we compute the pull-back of the classes above to the space U3 along
the morphism

F : U3 →M ct
1,4.

Recall that

δ2,2 = D{1,2} ·D{3,4} +D{1,3} ·D{2,4} +D{1,4} ·D{2,3},
δ2,3 = D{1,2} ·D{1,2,3} +D{1,2} ·D{1,2,4} +D{1,3} ·D{1,2,3}

+D{1,3} ·D{1,3,4} +D{1,4} ·D{1,2,4} +D{1,4} ·D{1,3,4}
+D{2,3} ·D{1,2,3} +D{2,3} ·D{2,3,4} +D{2,4} ·D{1,2,4}
+D{2,4} ·D{2,3,4} +D{3,4} ·D{1,3,4} +D{3,4} ·D{2,3,4},

δ2,4 = D{1,2} ·D{1,2,3,4} +D{1,3} ·D{1,2,3,4} +D{1,4} ·D{1,2,3,4}
+D{2,3} ·D{1,2,3,4} +D{2,4} ·D{1,2,3,4} +D{3,4} ·D{1,2,3,4},

δ3,4 = D{1,2,3} ·D{1,2,3,4} +D{1,2,4} ·D{1,2,3,4} +D{1,3,4} ·D{1,2,3,4}
+D{2,3,4} ·D{1,2,3,4}.

From the argument given in Section 6 we see that

F ∗(DI) = E{1,2,3,4}−I when |I| = 3, 4,
F ∗(D{i,4}) = ai − E0 − Ej − Ek,
F ∗(D{j,k}) = dj,k − E0 − Ei − E4,
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for 1 6 i 6 3 and j 6= k ∈ {1, 2, 3} − {i}, from which we conclude that

F ∗(δ2,2) = a1d2,3 + a2d1,3 + a3d1,2 + 3E2
0 ,

F ∗(δ2,3) = 3(a1a2 + a1a3 + a2a3 + d1,2d1,3)
+ 3(4E0 + E1 + E2 + E3 + E4)E0,

F ∗(δ2,4) = −3(2E0 + E1 + E2 + E3 + E4)E0,

F ∗(δ3,4) = (E1 + E2 + E3 + E4)E0.

If we substitute the expressions above into the relation (6), we get that

12(a1d2,3 + a2d1,3 + a3d1,2 − a1a2 − a1a3 − a2a3 − d1,2d1,3)
= 12(a1b2,3 − b1,2b1,3) = 0.

The push-forward of the relation above via the blow-down map to C3 gives
the relation (2).
To get the relation (3), notice that the pull-back of the divisor class ai,

for 1 6 i 6 3, via the morphism π : U4 → U3, is di,4, and that of bi,j ,
for 1 6 i, j 6 3, is di,j − di,4 − dj,4. From this observation it is easy to see
that the pull-back of the relation above to R2(U4) along the morphism π

gives a relation whose push-forward to R2(C4) via the blow-down map is
the relation (3).
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