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IRREDUCIBILITY OF AUTOMORPHIC GALOIS
REPRESENTATIONS OF GL(n), n AT MOST 5

by Frank CALEGARI & Toby GEE (*)

Abstract. — Let π be a regular, algebraic, essentially self-dual cuspidal au-
tomorphic representation of GLn(AF ), where F is a totally real field and n is at
most 5. We show that for all primes l, the l-adic Galois representations associated
to π are irreducible, and for all but finitely many primes l, the mod l Galois repre-
sentations associated to π are also irreducible. We also show that the Lie algebras
of the Zariski closures of the l-adic representations are independent of l.
Résumé. — Nous prouvons l’irréductibilité pour n inférieur ou égal à 5 des

représentations galoisiennes l-adiques associées aux représentations automorphes
cuspidales algébriques et régulières de GLn sur un corps totalement réel qui sont
autoduales à torsion près. Nous prouvons également l’irréductibilité des représen-
tations galoisiennes modulo l pour presque tout l, et nous montrons l’indépendance
en l de l’algèbre de Lie de la clôture Zariskienne de la représentation l-adique.

1. Introduction

1.1.

It is a folklore conjecture that the Galois representations (conjecturally)
associated to algebraic cuspidal automorphic representations of GLn(AF )
over a number field F are all irreducible. In general, rather little is known in
this direction. Ribet ([24]) proved this result for classical modular forms,
and his proof extends to the case of Hilbert modular forms ([25]). The
result was proved for essentially self-dual representations of GL3(AF ), F
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totally real, in [7]. In [13], Dieulefait and Vila proved big image results
for a compatible family arising from a rank four pure motive M over Q
with Hodge-Tate weights (0, 1, 2, 3), coefficients in a quadratic field K, and
certain other supplementary hypotheses (see also [12]). In a 2009 preprint
([23]), Ramakrishnan proves irreducibility of the associated l-adic represen-
tations for essentially self-dual representations of GL4(AQ) for sufficiently
large l; his argument also applies without the assumption of self-duality
assuming the existence of the corresponding Galois representations.

Until recently, very little was known in the general case. It is sometimes
the case that the Galois representations can be proved to be irreducible for
purely local reasons; if the automorphic representation is square-integrable
at some finite place, then it is a consequence of the expected local-global
compatibility that the corresponding local Galois representation is inde-
composable, which implies that the global Galois representation, being
semisimple, is irreducible. In [27], this observation was used to prove the
irreducibility of the Galois representations considered in [17] whenever the
square-integrability hypothesis holds.

One reason to suppose that the Galois representations should be irre-
ducible is that if the Fontaine–Mazur–Langlands conjecture holds, then (by
a standard L-function argument) the reducibility of an l-adic Galois rep-
resentation associated to an automorphic representation would show that
the automorphic representation could not be cuspidal. In fact, it is enough
to know that any geometric Galois representation is potentially automor-
phic, as this L-function argument is compatible with the usual arguments
involving Brauer’s theorem. This observation was exploited in [4] to prove
that if K is an imaginary CM field and π is a regular, algebraic, essentially
self-dual cuspidal automorphic representation of GLn(AK) which has ex-
tremely regular weight (a notion defined in [4]), then for a density one set of
primes l, the l-adic Galois representations associated to π are irreducible.
While this theorem is useful in practice, the condition that the weight of π
be extremely regular is sometimes too restrictive. For example, it is never
satisfied by the base change of an automorphic representation over a totally
real field if n > 3. In the present paper, we begin by extending the result
of [4] to the case of totally real fields if n 6 5, with no assumption on the
weight of π. Just as in [4], we use potential automorphy theorems and the
L-function argument mentioned above. The key difficulty with applying the
potential automorphy theorems available to us is to show that any hypo-
thetical summand of the Galois representation to be proved irreducible is
both essentially self-dual and odd. It is here that the arguments of [4] make
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use of the condition of extreme regularity, which is not available to us. In-
stead, we observe that if n 6 5 then any constituent of dimension at least
3 must be essentially self-dual for dimension reasons, and is then odd by
the main result of [6]. One dimensional summands are trivial to deal with,
which leaves us with the problem of dealing with 2-dimensional summands.
However, any two-dimensional representation is essentially self-dual, so we
need only show that we cannot have even two-dimensional constituents, at
least outside of a set of places of density zero. To do this, we use a variant
of the arguments of [8], together with an argument using class field theory
to show that there cannot be too many residually dihedral representations.
The arguments outlined so far suffice to prove the result for a set of

primes of density 1. In order to extend our result to all primes, we make use
of a group-theoretic argument (in combination with our density 1 result)
to show that the characteristic polynomials of the images of the Frobenius
elements can only be divisible by the characteristic polynomials of a global
character in certain special cases, which rules out the possibility of any of
the Galois representations having a one-dimensional summand. We use the
same argument to show that it is not possible for any of the representations
to have a dihedral summand. We make use of the self-duality of the Galois
representations we consider to reduce to these possibilities and so obtain
the result.
In order to extend this argument to the characteristic l representations,

we show using class field theory that if infinitely many of the characteristic
l representations have a one-dimensional summand, then the characteristic
polynomials of the images of the Frobenius elements are divisible by the
characteristic polynomials of a global character, which reduces us to the
cases above. We prove a similar result for dihedral representations. This
quickly reduces us to one special case, that of an irreducible 4-dimensional
subrepresentation which when reduced mod l splits up as a sum of two ir-
reducible 2-dimensional representations. In this case, we are able to exploit
the connection between GO4 and GL2×GL2 to reach a contradiction.

Using similar arguments, we are also able to show that the Lie algebras
of the Zariski closures of the images of the l-adic representations are in-
dependent of l. Following [23], we additionally extend our analysis to the
Galois representations associated to regular algebraic cuspidal automor-
phic representations of GL3 or GL4 over a totally real field which are not
assumed to be essentially self-dual, under the hypothesis that the Galois
representations exist.
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One may naturally ask whether these methods can be generalized to
n > 6; we explain why this might be difficult. Suppose that π is a regular
algebraic cuspidal automorphic representation of GL3(AQ) which is not
essentially self-dual (they exist!). Then, conjecturally, there should exist a
compatible system of three dimensional Galois representationsR = {rλ(π)}
of GQ. For a sufficiently large integer n, the compatible system R⊕ (εn ⊗
R∨) is a six dimensional compatible system of essentially self-dual regular
Galois representations. Our method for ruling out that this (completely
reducible) compatible system is associated to a regular, algebraic essentially
self-dual cuspidal automorphic representation Π of GL6(AQ) would consist
of recognizing it as an isobaric sum π�(π∨⊗|·|n) by proving the (potential)
automorphy of a non-essentially self-dual representation rλ(π) : GQ →
GL3(Ql) for some prime l. However, such automorphy results are out of
reach at present.
We would like to thank Florian Herzig for helpful conversations about

representation theory, and Dinakar Ramakrishan for making available to
us the preprint [23]. We would also especially like to thank Robert Gu-
ralnick, who (together with Malle in [15]) answered a difficult problem of
the first author in the modular representation theory of finite groups. Even
though (due to subsequent simplifications) we did not end up using this
result, the mere knowledge of its veracity was helpful psychologically in
the construction of several of our arguments. We would also like to thank
Tom Barnet-Lamb, Kevin Buzzard, Luis Dieulefait, Matthew Emerton and
Florian Herzig for their helpful comments on an earlier draft of this paper,
and the referee for their helpful comments and corrections.

2. Preliminaries

2.1.

We recall some notions from [4]. Let F be a totally real field. By a
RAESDC (regular, algebraic, essentially self-dual, cuspidal) automorphic
representation of GLn(AF ), we mean a pair (π, χ) where:

• π is a cuspidal automorphic representation of GLn(AF ) such that
π∞ has the same infinitesimal character as some irreducible alge-
braic representation of the restriction of scalars from F to Q of
GLn,

• χ : A×F /F× → C× is a continuous character such that χv(−1) is
independent of v|∞,
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• and π ∼= π∨ ⊗ (χ ◦ det).
If Ω is an algebraically closed field of characteristic 0, we write

(Zn)Hom(F,Ω),+ for the set of a = (aτ,i) ∈ (Zn)Hom(F,Ω) satisfying

aτ,1 > · · · > aτ,n.

If a ∈ (Zn)Hom(F,C),+, let Ξa denote the irreducible algebraic representa-
tion of GLHom(F,C)

n which is the tensor product over τ of the irreducible
representations of GLn with highest weights aτ = (aτ,i)16i6n. We say that
a RAESDC automorphic representation (π, χ) of GLn(AF ) has weight a if
π∞ has the same infinitesimal character as Ξ∨a (this is necessarily the case
for some unique a). There is necessarily an integer w such that

aτ,i + aτ,n+1−i = w

for all τ , i (cf. section 2.1 of [4]).
We refer the reader to section 5.1 of [4] for the definition of a compatible

system of Galois representations, and for various attendant definitions. If
(π, χ) is a RAESDC automorphic representation of GLn(AF ), then there
is a number field M containing the images of all embeddings F ↪→M and
weakly compatible systems of Galois representations

rλ(π) : GF → GLn(Mλ)

and
rλ(χ) : GF →M

×
λ

as λ ranges over the finite places ofM (cf. the last paragraph of section 5.1
of [4]). Suppose that π has weight a ∈ (Zn)Hom(F,C),+, and regard each
element of Hom(F,C) as an element of Hom(F,M). Then:

• if S is the finite set of finite places v of F at which πv is ramified,
then rλ(π) and rλ(χ) are unramified unless v ∈ S or v|l;

• rλ(π) ∼= rλ(π)∨ ⊗ ε1−nrλ(χ);
• if v|l then rλ(π)|GFv and rλ(χ)|GFv are de Rham. If furthermore
v /∈ S then rλ(π)|GFv and rλ(χ)|GFv are crystalline;

• for each τ : F ↪→M and anyM ↪→Mλ overM , the set HTτ (rλ(π))
of τ -Hodge-Tate weights of rλ(π) is equal to

{aτ,1 + (n− 1), aτ,2 + (n− 2), . . . , aτ,n}.

In arguments it will occasionally be useful to replace M with a finite ex-
tension, in order to compare two different compatible systems; we will do
this without comment.
While we will not make explicit use of this fact, to orient the reader we

remark that if v /∈ S, v - l is a finite place of F , and Frobv is a geometric
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Frobenius element at v, then the characteristic polynomial of rλ(π)(Frobv)
is

Xn − t(1)
v Xn−1 + · · ·+ (−1)jt(j)v (Nv)j(j−1)/2Xn−j

+ · · ·+ (−1)jt(n)
v (Nv)n(n−1)/2Xn,

where the t(j)v are the eigenvalues of the usual Hecke operators on πGL2(OFv )
v .

If ρ : G→ GL(V ) is any semi-simple two dimensional irreducible repre-
sentation which is induced from an index two subgroup G′ of G, then, by
abuse of notation, we call r dihedral. The image of a dihedral representa-
tion is a generalized dihedral group; equivalently, the projective image of ρ
in PGL(V ) is a dihedral group.

2.2. Oddness

We now recall from section 2.1 of [4] the notion of oddness for essentially
self-dual representations of GF . Let l > 2 be a prime number, and let
K = Ql or Fl. If r : GF → GLn(K) and µ : GF → K× are continuous
homomorphisms, then we say that the pair (r, µ) is essentially self-dual
if for some (so any) infinite place v of F there is an εv ∈ {±1} and a
non-degenerate pairing 〈, 〉 on Kn such that

〈x, y〉 = εv〈y, x〉

and
〈r(σ)x, r(cvσcv)y〉 = µ(σ)〈x, y〉

for all x, y ∈ Kn and all σ ∈ GF . Equivalently, (r, µ) is essentially self-
dual if and only if either µ(cv) = −εv and r factors through GSpn(K) with
multiplier µ, or µ(cv) = εv and r factors through GOn(K) with multiplier µ.

We say that the pair (r, µ) is odd and essentially self-dual if it is essen-
tially self-dual, and εv = 1 for all v|∞.

Lemma 2.1. — If (r, µ) is essentially self-dual and n is odd, then (r, µ)
is odd.

Proof. — Since n is odd, r factors through GOn(K) with multiplier µ.
Taking determinants, we see that for each v|∞, µ(cv)n = 1, so that µ(cv) =
1, as required. �

We also have the following trivial lemma.

Lemma 2.2. — If χ : GF → K× is a character, then (χ, χ2) is odd and
essentially self-dual.

ANNALES DE L’INSTITUT FOURIER
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We have the following important result of [6].
Theorem 2.3. — Let (π, χ) be a RAESDC automorphic representation

of GLn(AF ), and denote the corresponding compatible systems of Galois
representations by (rλ(π), rλ(χ)). If for some λ we have an irreducible sub-
representation r of rλ(π) with r ∼= r∨ ⊗ ε1−nrλ(χ), then (r, ε1−nrλ(χ)) is
essentially self-dual and odd.
Proof. — This is Corollary 1.3 of [6]. �

Since rλ(π) ∼= rλ(π)∨⊗ε1−nrλ(χ), if r is an irreducible subrepresentation
of rλ(π) then there must be an irreducible subrepresentation r′ of rλ(π)
(possibly equal to r) with r′ ∼= r∨ ⊗ ε1−nrλ(χ). In particular, we have:
Corollary 2.4. — Let (π, χ) be a RAESDC automorphic represen-

tation of GLn(AF ), and denote the corresponding compatible systems of
Galois representations by (rλ(π), rλ(χ)). If for some λ we have an irre-
ducible subrepresentation r of rλ(π) with dim r > n/2, then (r, ε1−nrλ(χ))
is essentially self-dual and odd.
Proof. — There is an irreducible subrepresentation r′ of rλ(π) with r′ ∼=

r∨ ⊗ ε1−nrλ(χ); but dim r + dim r′ > dim rλ(π), so we must have r′ = r.
The result then follows from Theorem 2.3. �

Suppose now that r : GF → GL2(Ql). Then r factors through GSp2(Ql)
with multiplier det r, so the pair (r, det r) is essentially self-dual and odd if
det r(cv) = −1 for all v|∞. We have the following variant on Theorem 1.2
of [8].
Proposition 2.5. — Suppose that l > 7 is prime, and that r : GF →

GL2(Ql) is a continuous representation. Assume that
• r is unramified outside of finitely many primes.
• Sym2 r̄|GF (ζl)

is irreducible.
• l is unramified in F .
• For each place v|l of F and each τ : Fv ↪→ Ql, HTτ (r|GFv ) is a set of
2 distinct integers whose difference is less than (l− 2)/2, and r|GFv
is crystalline.

Then the pair (r, det r) is essentially self-dual and odd.
Proof. — Consider the representation s =Sym2 r. Since the pair (r, det r)

is essentially self-dual, so is the pair (s, (det r)2). By Lemma 2.1, (s, (det r)2)
is odd. By Corollary 4.5.2 and Lemma 1.4.3(2) of [4], there is a Galois
totally real extension F ′/F such that (s|GF ′ , (det r)2|GF ′ ) is automorphic.
By Proposition A of [26], for any place v|∞ of F ′ we have

tr s|GF ′ (cv) = ±1,

TOME 63 (2013), FASCICULE 5
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so that
det r|GF ′ (cv) = −1,

and (r, det r) is odd, as required. �

2.3. Residually dihedral compatible systems

We now show that residually dihedral compatible systems are themselves
dihedral up to a set of places of density zero.

Lemma 2.6. — Suppose that l > 2 is unramified in F , and that s :
GF → GL2(Ql) is a continuous irreducible representation, such that if v|l
is a place of F , then

• s|GFv is crystalline, and
• for all embeddings F ↪→ Ql, HTτ (s|GFv ) consists of two distinct

integers with difference less than (l − 2)/2.
Assume that s̄ is dihedral, so that s̄ is induced from a character of a qua-
dratic extension K/F . Then l is unramified in K.

Proof. — Let v|l be a place of F . Assume for the sake of a contradiction
that v is ramified in K. If s̄|GFv is irreducible, then s̄|GFv is induced from
a character χ of GL, where L is the quadratic unramified extension of Fv.
But then

s̄|GKv ∼= (IndGFvGL
χ)|GKv ∼= IndGKvGLKv

χ|GLKv
is irreducible, a contradiction.
If on the other hand s̄|GFv is reducible, then since it is isomorphic to the

induction from Kv of some character, it must be of the form ψ1 ⊕ ψ2 with
ψ1ψ

−1
2 quadratic. Let k be the residue field of Fv, and for each σ : k ↪→ Fl

let ωσ be the corresponding fundamental character of GFv of niveau 1. By
Fontaine-Laffaille theory,

ψ1ψ
−1
2 |IFv =

∏
σ:k↪→Fl

ωaσσ

where aσ is the (positive or negative) difference between the elements of
HTτ (s|GFv ), where τ : Fv ↪→ Ql is the unique lift of σ. By assumption,
we have 2aσ ∈ [2 − l, l − 2], so (ψ1ψ

−1
2 )2|IFv 6= 1, a contradiction. So l is

unramified in K, as claimed. �

Proposition 2.7. — Suppose that R is a regular, weakly compatible
system of l-adic representations of GF . Then there is a set of rational
primes L of density one such that if λ lies over a place of L and s is a
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two-dimensional irreducible summand of rλ such that s̄ is dihedral, then s
is also dihedral, and the pair (s,det s) is essentially self-dual and odd.

Proof. — Note firstly that if s is dihedral, then it is induced from an alge-
braic character of a quadratic extension of F . If this quadratic extension is
not totally imaginary, then this character would be a finite order character
times a power of the cyclotomic character, contradicting the regularity of
s. So the extension must be totally imaginary, in which case det s(cv) = −1
for all places v|∞ of F , and the pair (s,det s) is essentially self-dual and
odd.
Let S be the finite set of primes at which R ramifies, and let F ′ be the

maximal abelian extension of F of exponent 2 which is unramified outside
S (the extension F ′/F is finite). By Lemma 2.6, for all but finitely many
λ, if s is as in the statement of the proposition then s̄|GF ′ is reducible.
Applying Proposition 5.2.2 of [4] to the regular weakly compatible system
R|GF ′ , we see that there is a set L of rational primes of density one such
that if λ lies over an element of L and s is as in the statement of the
proposition, then s|GF ′ is reducible, so that s is dihedral, as required. �

3. Irreducibility for a density one set of primes

3.1.

In this section, we establish the irreducibility of rλ(π) for a density one
set of primes λ.

Proposition 3.1. — Let F be a totally real field. Suppose that π is
a RAESDC automorphic representation of GLn(AF ), and that for some λ
we have a decomposition

rλ(π) = rλ(π)1 ⊕ · · · ⊕ rλ(π)j ,

where each rλ(π)i is irreducible. Suppose also that there is a totally real
Galois extension F ′/F such that each rλ(π)i|GF ′ is irreducible and auto-
morphic. Then j = 1, so rλ(π) is irreducible.

Proof. — This may be proved by an identical argument to the proof of
Theorem 5.4.2 of [4]. �

Theorem 3.2. — Let F be a totally real field. Suppose that (π, χ) is a
RAESDC automorphic representation of GLn(AF ) with n 6 5. Then there
is a density one set of rational primes L such that if λ lies over a prime in
L, then rλ(π) is irreducible.

TOME 63 (2013), FASCICULE 5
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Proof. — Write

rλ(π) = rλ(π)1 ⊕ · · · ⊕ rλ(π)jλ ,

with each rλ(π)i irreducible. By Proposition 5.2.2 of [4] there is a density
one set of rational primes L such that if λ lies over a prime of L, then
each r̄λ(π)i|GF (ζl)

is irreducible. We may assume that every prime in L is
at least 13.
If dim rλ(π)i > 3, then by Corollary 2.4 and the hypothesis that n 6 5

we see that the pair (rλ(π)i, ε1−nrλ(χ)) is essentially self-dual and odd. If
dim rλ(π)i = 1, then by Lemma 2.2, the pair (rλ(π)i, rλ(π)2

i ) is essentially
self-dual and odd.
Suppose now that dim rλ(π)i = 2. By removing finitely many primes

from L, we see from Proposition 2.5 that we may assume that if λ lies
over an element of L, and Sym2 r̄λ(π)i|GF (ζl)

is irreducible, then the pair
(rλ(π)i,det rλ(π)i) is essentially self-dual and odd. If λ lies over an ele-
ment of L and Sym2 r̄λ(π)i|GF (ζl)

is reducible, then since r̄λ(π)i|GF (ζl)
is

irreducible, it follows from Lemmas 4.2.1 and 4.3.1 of [3] that r̄λ(π)i has
dihedral image. By Proposition 2.7, after possibly replacing L with a subset
of density one, the pair (rλ(π)i,det rλ(π)i) is essentially self-dual and odd.
Thus if λ divides a prime in L, for each i there is a character χλ,i such

that the pair (rλ(π)i, χλ,i) is essentially self-dual and odd. After possibly
removing a finite set of primes from L, we may assume that every element
of L is unramified in F , and that each rλ(π)i is crystalline with Hodge-
Tate weights in the Fontaine-Laffaille range. Fix some l ∈ L and some
λ|l. Let K be an imaginary quadratic extension of F in which each place
of F above l splits completely. By Theorem 4.5.1 of [4], there is a finite
Galois CM extension K ′ of K such that each rλ(π)i|GK′ is irreducible and
automorphic.
Let F ′ be the maximal totally real subfield of K ′. By Lemma 1.5 of

[5] each rλ(π)i|GF ′ is irreducible and automorphic. The result now follows
from Proposition 3.1. �

4. Irreducibility for all primes

4.1.

In this section we prove that the representations rλ(π) are irreducible for
all λ.
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Theorem 4.1. — Let F be a totally real field. Suppose that (π, χ) is a
RAESDC automorphic representation of GLn(AF ) with n 6 5. Then all of
the representations rλ(π) are irreducible.

By Theorem 3.2, rλ(π) is irreducible for a set of λ of density one. By
Proposition 5.2.2 of [4], this implies that r̄λ(π) is irreducible for a set of λ
of density one.

Definition 4.2. — Let F be a number field. We say that a represen-
tation r : GF → GLn(Ql) is strongly irreducible if for all finite extensions
E/F , r|GE is irreducible.

We would like to understand when the Galois representations rλ(π) which
are irreducible can fail to be strongly irreducible. We begin with an easy
group theory lemma.

Lemma 4.3. — Suppose that G acts irreducibly on a finite dimensional
vector space V of dimension n. Let G′ be a normal finite index subgroup
of G, and suppose that V |G′ '

⊕
Wk decomposes non-trivially as a G′

representation into m distinct irreducible representations. Then m|n and
there exists a proper subgroup H ⊇ G′ of G of index m and an irreducible
representation W of H such that V ' IndGHW .

Proof. — Since the representations Wk are distinct, and since G′ is nor-
mal, the group G acts transitively on the set of representations Wk. In
particular, all theWk have the same dimension. LetW be one of these rep-
resentations, and let H denote the stabilizer of W . By the orbit–stabilizer
theorem, the index of H in G is m. The representation W extends to a
representation of H. Since HomH(V,W ) is non-trivial, by Frobenius reci-
procity HomG(V, IndGHW ) is also non-trivial. Yet IndGH(W ) has dimension
[G : H] dim(W ) = dim(V ) and V is irreducible, and thus the homomor-
phism V → IndGH(W ) must be both an injection and a surjection, and
hence an isomorphism. �

Using this lemma, we shall see that the density one set of irreducible Ga-
lois representations rλ(π) remain irreducible upon restriction to any fixed
finite extension, except in situations in which we can prove Theorem 4.1
directly.

Corollary 4.4. — Let F be a totally real field. Let (π,χ) be a RAESDC
automorphic representation of GLn(AF ) with n 6 5. Let λ be a prime such
that rλ(π) is irreducible. Then either:

(1) rλ(π) is strongly irreducible, or
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(2) (π, χ) is an automorphic induction, rλ(π) is irreducible for all λ,
and r̄λ(π) is irreducible for all but finitely many λ.

Proof. — We claim that for any finite extension E/F , either rλ(π)|GE
is irreducible or it decomposes into a sum of distinct irreducible represen-
tations. This follows immediately from the fact that rλ(π)|GE has distinct
Hodge–Tate weights at any prime w|l. (Note that rλ(π)|GE is necessarily
semisimple; if V denotes any irreducible subrepresentation, then the var-
ious conjugates of V are stable under the conjugates of GE , and we see
that rλ(π)|GE becomes completely decomposable under restriction to a fi-
nite index subgroup, so must already have been semisimple.) Suppose that
rλ(π)|GE is reducible for some finite extension E/F . Replacing E by its
normal closure over F , we may assume that the extension E/F is Galois,
and hence by Lemma 4.3, we see that rλ(π) is the induction of an irre-
ducible representation from some finite extension of degree dividing n. If
n = 2, 3 or 5, the only possibility is that rλ(π) is the induction of a charac-
ter from some degree n extension H of F . This character is de Rham, and is
thus the Galois representation associated to an algebraic Hecke character.
If n = 3 or 5, then [H : F ] is odd, and thus H does not contain a CM field.
It follows that the corresponding Galois representation is a finite order
character times some power of the cyclotomic character. This contradicts
the regularity of rλ(π). If n = 2, then H must be a CM field, and rλ(π)
is the induction of an algebraic Hecke character. The claims regarding the
irreducibility of r̄λ(π) are elementary to verify in this case.
If n = 4, then either rλ(π) is the induction of a character from some de-

gree 4 extension L/F , or the induction of a two dimensional representation
of some quadratic extension K/F . In the first case, since rλ(π) is regular,
L contains a CM field. It follows that L must contain a subfield K of index
two, and thus in both cases rλ(π) is the induction of some two dimensional
representation of some quadratic extension K/F . It follows that there is an
isomorphism rλ(π) ' rλ(π)⊗η, where η is the quadratic character of K/F .
By multiplicity one for GL4(AF ) ([18]) and by Theorem 4.2 (p.202) of [1],
we deduce that (π, χ) is an automorphic induction from some quadratic
field K/F .
It suffices to prove that when n = 4 and (π, χ) is an induction of some

cuspidal automorphic representation $ of GL2(AK) from some quadratic
field K/F , then rλ(π) is irreducible for all λ, and r̄λ(π) is irreducible for all
but finitely many λ. If K/F is totally real, then $ corresponds to a Hilbert
modular form with corresponding Galois representations sλ($), and there
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are isomorphisms rλ(π) ' IndGFGK sλ($). The representation sλ($) is irre-
ducible for all λ, and s̄λ($) is irreducible for all but finitely many λ ([14,
Proposition 0.1]). If rλ(π) is reducible, then sλ($) ' scλ($) where c is
the non-trivial element of Gal(K/F ). Similarly, if r̄λ(π)|GF is reducible for
infinitely many primes λ, then s̄λ($) ' s̄cλ($) for infinitely many λ. In
either case, by multiplicity one, we deduce that $ ' $c, and by Theo-
rem 4.2 (p.202) of [1], we deduce that $ itself arises from base change from
GL2(AF ). If this is so, however, then π is not cuspidal, contrary to assump-
tion. Suppose instead that K/F is not totally real. By (3.6.1) of [16]), the
infinitesimal character of $ at any pair of complex conjugate infinite places
must be equal, contradicting the regularity of π. �

In the sequel, it will be useful to collate some information about irre-
ducible representations of semi-simple Lie algebras of small dimension.

Proposition 4.5. — Let k be an algebraically closed field of charac-
teristic zero. Let G be the k-points of a reductive algebraic group acting
faithfully and irreducibly on a vector space over k of dimension n. Let G0

denote the connected component of G, let g be the Lie algebra of G0, and
write g = z ⊕ h, with z is abelian and h semisimple. Suppose that G0 is
not abelian. Then, for n 6 6, h is one of the following algebras, where
the columns of the table correspond to whether G preserves a generalized
orthogonal pairing, a generalized symplectic pairing, or does not preserve
any such pairing respectively.

GO GSp GL
2 * sl2 *
3 sl2 * sl3
4 so4 = sl2 × sl2 sl2, sl2 × sl2, sp4 sl4
5 sl2, so5 = sp4 * sl5
6 so6 sl2, sl2 × sl2, sp6 sl2 × sl3, sl2 × sl2 × sl2, sl3 × sl3, sl4, sl6

Proof. — This can be checked directly by hand. In dimension n, the
representation of sl2 is the (n − 1)st symmetric power of the tautological
representation, which is orthogonal if n is odd and symplectic if n is even.
The four dimensional symplectic representation of sl2×sl2 is reducible, but
the image of GL(2) × GL(2) in GL(4) is normalized by a group G which
contains it with index two and does act irreducibly. The same is true of
sl3 × sl3 (index two) and sl2 × sl2 × sl2 (index six) in dimension six. The
algebra sl2 × sl2 has a six dimensional representation which is the tensor
product of the standard representation of the first factor and the symmetric
square of the second. Finally, sl4 has a six dimensional representation which
is ∧2 of the tautological representation. �
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The key idea of our argument is that, with certain caveats, we can detect
reducibility on the level of compatible systems. Suppose that R and S are
two weakly compatible systems of Galois representations.

Definition 4.6. — Say that S weakly divides R if the characteristic
polynomials of S divide the characteristic polynomials of R.

It is not true that if S weakly divides R then there is a corresponding
splitting of Galois representations. A good example to keep in mind is
as follows. Suppose that π is a RAESDC automorphic representation for
GL2(AF ) with central character ψ which does not have CM. Then if R and
S are the compatible systems associated to Symn−2(π) ⊗ ψ and Symn(π)
respectively then S weakly divides R, but both compatible systems are
irreducible. Nevertheless, we will be able to detect non-trivial information
from weak divisibility. The key result is the following.

Theorem 4.7. — Let V be a vector space of dimension n 6 5 over
an algebraically closed field of characteristic zero. Let H ⊆ GL(V ) be a
Zariski closed subgroup, and assume that the connected component of the
identity H0 acts irreducibly on V . Suppose that every h ∈ H has a fixed
vector in V . Then H = PSL(2), n is odd, and V ' Symn−1(W ) where W
is the standard representation of SL(2). For a generic semi-simple element
h ∈ H, one has dim(V |h = 1) = 1.

Proof. — Tautologically, H admits a faithful irreducible representation
into GL(V ), and thus H is reductive. Let Z be the center of H. By Schur’s
lemma, Z acts on V via scalars. Yet (by assumption) any z ∈ Z ⊂ H

has a fixed vector, and thus Z is trivial. In particular, H is semi-simple.
It suffices to assume that every t ∈ T ⊂ H has a fixed vector for every
torus T on H. Since H0 is connected, we may check this condition for H0

on the level of Lie algebras. The only (semi-simple) Lie algebras h which
admit faithful irreducible representations of dimension at most five are sl2,
sl3, so4 = sl2 × sl2, sp4 = so5, sl4, and sl5. It is easy to check that the
only possibility is that h = sl2. Since H0 is connected with trivial center
it must be the adjoint form of SL(2), which is PSL(2). The irreducible
representations of PSL(2) are given by the even symmetric powers of the
standard representation of SL(2). The group H0 = PSL(2) has a trivial
outer automorphism group. Hence the action of conjugation by h ∈ H on
H0 is given by conjugation by a element γ of PSL(2). It follows that γ−1h

acts trivially on PSL(2), and thus, by Schur’s lemma, γ−1h is a scalar, and
so lies in the center Z of H. Yet we have seen that Z is trivial, and so it
follows that H = H0. A generic semi-simple element in PSL(2) is conjugate
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to an element of the form h =
(
z

z−1

)
, for which dim(V |h = 1) = 1

unless z is a root of unity of sufficiently small order. �

Using this, we prove the following.

Lemma 4.8. — Let F be a totally real field. Let (π, χ) be a RAESDC
automorphic representation of GLn(AF ) with n 6 5, and let R be the
corresponding weakly compatible system. Suppose that either:

(1) R is weakly divisible by a compatible system of algebraic Hecke
characters.

(2) For some finite extension E/F , R|GE is weakly divisibly by a direct
sum of compatible systems of two algebraic Hecke characters over E.

Then either (π, χ) is an automorphic induction, or n is odd, and there
exists a finite Galois extension F ′/F and a compatible system of two di-
mensional irreducible Galois representations S of GF ′ such that R|GF ′ is a
twist of Symn−1(S). In either case, rλ(π) is irreducible for all λ, and r̄λ(π)
is irreducible for all but finitely many λ.

Proof. — We may assume that (π, χ) is not an automorphic induction.
By Corollary 4.4, we may find a sufficiently large λ such that rλ(π) is
strongly irreducible. We may also assume that r̄λ(π) is irreducible. Let us
assume that we are in case (1). After twisting, we may assuming that the
compatible system R is divisible by the trivial character. Let H denote
the Zariski closure of the image of rλ(π), and let H0 denote the connected
component of H. Since Frobenius elements are Zariski dense, we deduce
that every h ∈ H has a fixed vector. We deduce from Theorem 4.7 that
n is odd, and that the image of rλ(π) lands in the image of PSL2(Ql) in
GOn(Ql) under the (n − 1)-st symmetric power map. In particular, the
image of rλ(π) lands in SOn(Ql) and det(rλ(π)) = 1. The obstruction
to lifting a projective homomorphism from PSL2(Ql) to GL2(Ql) lies in
H2(GF ,Q

×
l ), which vanishes by a result of Tate (for example, see Theorem

5.4 of [9]). Hence there exists a Galois representation sλ : GF → GL2(Ql)
and an isomorphism

rλ(π) = Symn−1 sλ ⊗ det(sλ)
1−n

2 .

We will show that sλ is potentially modular, and use known irreducibility
results for the Galois representations associated to Hilbert modular forms
to conclude.
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We first show that ad0(sλ) = Sym2(sλ) det(sλ)−1 is de Rham. We see this
from the following plethysm for the standard representation W of GL(2):

(Symn−1W )⊗2 ⊗ det(W )−(n−1) =
n−1⊕
i=0

Sym2iW ⊗ det(W )−i.

In particular, ad0(sλ) is a constituent of (rλ(π))⊗2, and hence is crystalline
with Hodge–Tate weights in the Fontaine–Laffaille range for sufficiently
large λ. We claim that in fact ad0(sλ) is regular; in the cases n = 1, 3 this
is immediate from the regularity of rλ(π), and in the case n = 5 it follows
from the regularity of rλ(π) and the relation

Sym2(ad0(sλ)) = rλ(π)⊕ 1.

Since rλ(π) is odd, it follows immediately that sλ and hence ad0(sλ) is also
odd. Since it is 2-dimensional, sλ is automatically essentially self-dual, so
that ad0(sλ) is also essentially self-dual. If s̄λ was dihedral or reducible, then
r̄λ(π) would be reducible, contrary to assumption. Hence if λ is sufficiently
large, ad0(s̄λ)|GF (ζl)

is irreducible, and so we deduce from Corollary 4.5.2
and Lemma 1.4.3(2) of [4] that there is a finite Galois extension of totally
real fields F ′/F such that ad0(sλ)|GF ′ is automorphic. It follows that up to
twist sλ|GF ′ itself is automorphic (using the characterization of the image of
the symmetric square in Theorem A and Corollary B of [22]), say sλ|GF ′ ∼=
rλ(π′) ⊗ ψ for some ψ. Since rλ(π) is strongly irreducible, rλ(π)|GF ′ ∼=
Symn−1 rλ(π′)⊗det(rλ(π′)) 1−n

2 is irreducible, so π′ cannot be of CM type.
Thus, for all λ′, we have rλ′ |GF ′ ∼= Symn−1 rλ′(π′) ⊗ det(rλ(π′)) 1−n

2 is
irreducible, and r̄λ′ |GF ′ is irreducible for all but finitely many λ′ (since for
all but finitely many λ′, the image of r̄λ′ |GF ′ will contain SL2(F) for some
finite field F by [14, Proposition 0.1]).
Suppose instead that we are in case (2). After twisting, we may assume

that the compatible system R|GE is divisible by the trivial character. If the
second character is also trivial (after this twist), we obtain a contradiction
with Theorem 4.7, since the generic multiplicity of the h = 1 eigenspace
is 1. Hence the characters are different. It follows as in the first paragraph
of this proof that both the representations rλ(π) and rλ(π)⊗χ have trivial
determinant for some χ 6= 1, which implies that χ has finite order. Replac-
ing E with the fixed field of the kernel of χ, we reduce to the case that
both characters are trivial, which is a contradiction. �

Corollary 4.9. — Let F be a totally real field. Let (π,χ) be a RAESDC
automorphic representation of GLn(AF ) with n 6 5. Suppose that some
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rλ(π) is reducible, say rλ(π) = sλ ⊕ tλ. Then min(dim sλ,dim tλ) > 2, and
neither of sλ, tλ can be dihedral.

Proof. — Suppose that without loss of generality dim sλ = 1. Since rλ(π)
is de Rham, so is sλ, so by e.g. Lemma 4.1.3 of [10] there is an algebraic
character χ of A×F /F× such that sλ = rλ(χ). Then the weakly compatible
system {rλ(χ)} weakly divides {rλ(π)}, so by Lemma 4.8, we see that rλ(π)
is irreducible for all λ, a contradiction.
Suppose now that sλ is dihedral. Then there is a quadratic extension

E/F such that sλ|GE is reducible, so is a sum of two de Rham characters.
Arguing in the same way, we again obtain a contradiction from Lemma
4.8. �

We now prove Theorem 4.1. We proceed by contradiction, assuming that
for some λ we have rλ(π) = sλ⊕ tλ. By Corollary 4.9, it suffices to consider
the cases that both sλ and tλ are irreducible, that n = 4 or 5, and that
dim sλ = 2.

4.2. The case n = 5

Since 5 is odd, we see from Lemma 2.1 that rλ(π) factors through GO5
with even multiplier. Since 2 6= 3, we see that sλ factors through GO2 with
even multiplier, so sλ is dihedral. This contradicts Corollary 4.9.

4.3. The n = 4 symplectic case

Suppose that rλ(π) is symplectic with odd multiplier. If V is a (general-
ized) symplectic representation of a group G with multiplier χ, then there
is a surjection ∧2V → χ. Hence the virtual representation ∧2(V ) − χ is
an actual representation of G. In particular, if R is the compatible system
of Galois representations associated to (π, χ), then A := ∧2(R) − χ is a
compatible system of Galois representations such that aλ : GF → GL5(Ql)
has image in GO5(Ql). Moreover, this compatible system is odd (automatic
since 5 is odd) and regular.

Since rλ(π) = sλ ⊕ tλ, we have

aλ ⊕ χλ = sλ ⊗ tλ ⊕ det(sλ)⊕ det(tλ).

In particular, as there are two characters on the right hand side, the rep-
resentation aλ contains a character, and we deduce that the compatible
system A is weakly divisible by the compatible system of a character.
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For a density one set of primes λ′, the representation rλ′(π) is irreducible.
For such a prime λ′, let G denote the Zariski closure of the image, and G0

the connected component of the identity. Let Z denote the center of H. If
G0 acts reducibly, then rλ′ is potentially reducible and hence (π, χ) is an
automorphic induction by Corollary 4.4, and we would be done. Hence G0

acts irreducibly. Let g be the Lie algebra of G0, and let g = h⊕z for h semi-
simple and z central. We deduce that h acts irreducibly, and hence h = sp4
or sl2 ⊂ sp4 acting through the third symmetric power representation. In
either case, the corresponding representation in dimension 5 of so5 = sp4
is irreducible, and thus aλ′ is also irreducible, even after restricting to any
finite extension E/F . Arguing as in the proof of Lemma 4.8, we deduce that
there is a finite Galois extension F ′/F of totally real fields and a RAESDC
automorphic representation π′ of GL2(AF ′) such that, for all λ′′, we have
aλ′′ |GF ′ ∼= Sym4 rλ′′(π′)⊗det(rλ′′(π′))−2. Since aλ′ is irreducible, π′ cannot
be of CM type, so that in fact aλ′′ is irreducible for all λ′′. This contradicts
the reducibility of aλ.

4.4. The n = 4 orthogonal case

Suppose finally that rλ(π) is orthogonal with even multiplier, and that
rλ(π) = sλ ⊕ tλ. By Corollary 4.9 both sλ and tλ are non-dihedral two-
dimensional representations.
Since rλ(π) factors through GO(4), it must either be the case that each of

sλ and tλ factors through GO(2), or that the orthogonal pairing identifies
sλ with t∨λ⊗ε−3rλ(χ). In the former case both sλ and tλ would be dihedral,
a contradiction, so we must be in the latter case. Since we also have t∨λ ∼=
tλ ⊗ det(tλ)−1, we may write

rλ(π) ∼= tλ ⊕ tλ ⊗ ψ,

where ψ = ε−3rλ(χ) det(tλ)−1. Since rλ(π) is de Rham, we see that tλ and
ψ are de Rham. Thus ψ is pure of some weight. However, the representation
rλ(π) is pure, so if v - l is a finite place of F with πv unramified, then all of
the eigenvalues of rλ(π)(Frobv) are Weil numbers of the same weight. This
implies that ψ must be pure of weight 0; but this contradicts the regularity
of rλ(π).
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5. Representations with small image

5.1.

With an eye to proving that r̄λ(π) is irreducible for all but finitely many
λ, in this section, we prove a variety of results on residually reducible
or dihedral 2-dimensional representations, using class field theory and the
main conjecture of Iwasawa theory.

Fix number fields F ,M such that |HomQ(F,M)| = [F : Q]. Fix a positive
integer n and an element σ ∈ (Zn)Hom(F,M). Let λ be a place of F with
residue characteristic l and residue field kλ, and let ρλ : GF → GLn(Mλ) be
a continuous de Rham representation. Then we say that ρ has Hodge-Tate
weights σ if for each embedding τ ∈ Hom(F,M) inducing a place v of F
via F ↪→M ↪→Mλ, the τ -Hodge-Tate weights of ρλ|GFv are στ . Similarly,
we say that a continuous representation ρλ : GF → GLn(kλ) is Fontaine-
Laffaille of weight σ if l is unramified in F , and for each v|l, ρλ|GFv admits
a crystalline lift with Hodge-Tate weights σ in the Fontaine–Laffaille range
(equivalently, it has Fontaine-Laffaille weights determined by σ in the usual
way).

Lemma 5.1. — Let F/Q be a number field, and let σ ∈ ZHom(F,M)

denote a fixed weight. Suppose that there exist infinitely many primes
λ such that GF admits a character: χλ : GF → k

×
λ with the following

properties:
(1) χλ is Fontaine-Laffaille of weight σ.
(2) The conductor of χλ away from l is bounded independently of l.

Then, for infinitely many λ, there exists a finite order character φ of GF
such that χλφ−1 = ψλ for a fixed algebraic Hecke character ψ of weight
σ. If F does not contain a CM field, then ψλ is a power of the cyclotomic
character times a finite order character.

Proof. — The last sentence follows from the rest of the result by Weil’s
classification of algebraic Hecke characters. Note that since there are only
finitely many finite order characters ofGF with fixed ramification, it suffices
to show that there is some algebraic Hecke character of weight σ. Without
loss of generality we may assume thatM/Q is Galois, and then by (the proof
of) Weil’s classification, it is enough to check that for any g ∈ Gal(M/Q),
gσ⊗ 1 annihilates O×F ⊗R. Replacing σ by gσ and each ψλ by gψλ, we see
that it is enough to check that σ ⊗ 1 annihilates O×F ⊗ R.

Regard each ψλ as a character of A×F /F× by class field theory. Since the
ramification of the ψλ outside of l is bounded independently of l, we see
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that there is a finite index subgroup U of O×F such that each ψλ|U is just
the composition of σ and reduction mod λ. Thus, for any u ∈ U , we see
that (σ(u)− 1) is divisible by λ; since this holds for infinitely many λ, we
see that σ(u) = 1. Since U has finite index in O×F , the result follows. �

Corollary 5.2. — Let F be a totally real field. Suppose that there
are infinitely many primes l and 2-dimensional dihedral representations
s̄λ : GF → GL2(kλ) of fixed distinct Fontaine-Laffaille weights and fixed
tame level. Then:

(1) For all but finitely many l, s̄λ is induced from a quadratic CM
extension F ′/F unramified at l. In particular, s̄λ is (totally) odd.
(The field F ′ may depend on l.)

(2) For infinitely many l, s̄λ is the reduction of the Galois representation
associated to a fixed RAESDC automorphic representation πs of
GL2(AF ) which arises from the induction of an algebraic Hecke
character for A×F ′ for some CM extension F ′/F .

Proof. — Each s̄λ is induced from some quadratic extension Fλ/F un-
ramified outside of l and a fixed set of places. By Lemma 2.6, for all but
finitely many λ, Fλ/F is unramified at places dividing l. Thus there are
only finitely many possible extensions Fλ/F , so it suffices to show that
any extension F ′/F which occurs infinitely often is CM. However, if F ′ is
not CM, then it does not contain a CM subfield, and Lemma 5.1 (applied
to the characters of GF ′ from which the sλ are induced) contradicts the
assumption that sλ has distinct Fontaine-Laffaille weights.

The second part now follows from Lemma 5.1 in the same way. �

Lemma 5.3. — Let F be a number field. Fix a dimension n and distinct
Fontaine–Laffaille weights, and fix a bound on the order of the projective
images of the Galois representations under consideration (for example, sup-
pose that the projective images are all A4, S4 or A5). Then there are only
finitely many λ such that there exists an irreducible representation

ρλ : GF → GLn(kλ)

such that ρλ has these fixed distinct Fontaine-Laffaille weights, and has
projective image of bounded order.

Proof. — Suppose to the contrary that there are infinitely many such
representations. By Fontaine-Laffaille theory, we see that the order of the
projective image of ρλ grows at least linearly with l; but it is also bounded,
a contradiction. �
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Lemma 5.4. — Let F be a totally real field. Then there are only finitely
many λ such that there exists an irreducible representation

ρλ : GF → GL2(Mλ)

such that det(ρλ(cv)) is independent of any infinite place v of F , ad0(ρλ)
is crystalline with fixed distinct Hodge-Tate weights and fixed tame level,
and ρλ is reducible.

Proof. — Assume not, so that infinitely many such representations ex-
ist. We may assume that l is odd, unramified in F and is sufficiently large
that ad0(ρλ) has Hodge-Tate weights in the Fontaine–Laffaille range. By
Lemma 5.1, we may deduce that, for infinitely many λ, there is an isomor-
phism (ρλ)ss ' ψωk⊕1⊕ψ−1ω−k for a fixed integer k 6= 0 and a fixed finite
order character ψ. By Fontaine–Laffaille theory, we deduce that ad0(ρλ) is
ordinary at all primes v|l.
Suppose that ρλ ∼= ψωkφ⊕φ. Applying Ribet’s lemma, we obtain integral

lattices in ρλ which give nonzero classes in the groups Ext1
GF (ψωkφ, φ) and

Ext1
GF (φ, ψωkφ). Consider the corresponding lattices in ad0 rλ. Looking at

the “top extension” in ad0(ρλ), we obtain classes in the groups

H1(F, ωkψ), H1(F, ω−kψ−1).

These classes are nonzero since l 6= 2, and are unramified outside N , l,
and ∞ by construction. Moreover, in the second case, by the ordinarity of
ad0(ρλ) the class is also unramified and consequently trivial at all v|l. IfM
is a GF -module, we may define a set of Selmer conditions as follows. Let
L = {Lv} where Lv ⊂ H1(Gv,M) is defined to be:

(1) Lv = H1(Gv/Iv,M Iv ) if v - l.
(2) Lv = 0 if v|l.

We note the following:

Proposition 5.5. — Fix a place v, an integer m /∈ {0, 1}, and a finite
order character χ. Let ω denote the mod-l cyclotomic character. Then
H1(Fv, ωm · χ) = 0 for sufficiently large l.

Proof. — We may assume that v - l. Let q = N(v) and let p be the
residue characteristic of v. There is an equality

|H1(Fv,M)| = |H0(Fv,M)||H2(Fv,M)| = |H0(Fv,M)||H0(Fv,M∗)|.

Hence, if H1(Fv, ωm · χ) is non-trivial, then χ is unramified at v, and

ωm(Frobv)χ(Frobv) ∈ {1, q}.
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Since ω(Frobv) = q, it follows that χ(Frobv) ∈ {q−m, q1−m}. If χ has order
d, it follows that

(qdm − 1)(qd(m−1) − 1) ≡ 0 (mod l).

Since m /∈ {0, 1}, this equality can only occur for finitely many l. �

It follows that for sufficiently large l the classes constructed above lie
in the Selmer groups H1

L∗(F, ωkψ) and H1
L(F, ω−kψ−1) respectively, where

L∗ is the dual Selmer condition (with no restriction on the class at v|l),
with the possible exception of the class in H1(F, ωψ) when k = 1. We now
consider three cases.

(1) Suppose that ωkψ is (totally) odd. Then the main conjecture for
totally real fields as proven by Wiles [28] shows that (for l odd) l
divides |H1

L(F, ω−kψ−1)| if and only if l divides

L(0, ω−kψ−1) ≡ L(−k, ψ−1) 6= 0.

(2) Suppose that ωkψ is even and k > 1. Then, by Theorem 2.19 of [11]
(the global duality formula for Selmer groups, which is a reflection
formula in this case), we deduce that

|H1
L∗(F, ωkψ)| = |H1

L(F, ω1−kψ−1)|.

Once more by Wiles this group is non-trivial if and only if l divides

L(0, ω1−kψ−1) ≡ L(1− k, ψ−1) 6= 0.

(3) Suppose that ωkψ is even and k = 1. Then we still have a class in
H1
L(F, ω−1ψ−1). Let E = F (ψ). Then, by restriction, we obtain a

class in

H1
L(F, ω−1ψ−1) ↪→ H1

L(E,ω−1) ↪→ H1
L(E(ζl),Fl)ω

−1
.

The latter group is isomorphic to the ω−1-part of the l-torsion of
the class group of E(ζl). Yet, by Theorem 5.4 of [19], the ω−1 part
of this group injects into K2(OE)/l. Since K2(OE) is finite, this
group is trivial for l sufficiently large.

In each case, we deduce that l divides a fixed non-zero rational number
which is independent of l, and hence l is bounded. �

6. Residual irreducibility for all but finitely many primes

6.1.

We now bootstrap our previous arguments to prove the following result.
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Theorem 6.1. — Let F be a totally real field. Suppose that (π, χ) is
a RAESDC automorphic representation of GLn(AF ) with n 6 5. Then all
but finitely many of the residual representations r̄λ(π) are irreducible.

We firstly establish the following corollary of Lemma 4.8 and Corol-
lary 4.9.

Lemma 6.2. — Let F be a totally real field. Let (π, χ) be a RAESDC
automorphic representation of GLn(AF ), n 6 5, and let R = {rλ(π)} be
the associated weakly compatible system. Suppose that, for infinitely many
primes λ, at least one of the following holds:

(1) r̄λ(π)ss contains a character.
(2) r̄λ(π)ss contains a two dimensional dihedral representation.

Then, respectively, at least one of the following also holds:
(1) R is weakly divisible by a compatible system of algebraic Hecke

characters.
(2) For some finite extension E/F , R|GE is weakly divisibly by a direct

sum of two compatible systems of algebraic Hecke characters.
In particular, r̄λ(π) is irreducible for all but finitely many λ.

Proof. — Denote the corresponding sub-representations of r̄λ(π)ss by s̄λ.
If the Hodge-Tate weights of rλ(π) are in the Fontaine–Laffaille range,
then there are a fixed number of possible Fontaine-Laffaille weights of s̄λ,
which are independent of λ. Similarly, there are finitely many possible Serre
levels determined by the auxiliary ramification structure of R. The result
follows by Lemma 5.1 and Corollary 5.2 respectively (with the last sentence
following from Lemma 4.8). �

We now prove Theorem 6.1. Assume for the sake of contradiction that
there are infinitely many λ with r̄λ(π) reducible. By Lemma 6.2, there can
only be finitely many λ such that r̄λ(π)ss contains a character. This is
already a contradiction when n 6 3, and when n = 4 or n = 5 it implies
that there are infinitely many λ for which r̄λ(π)ss ∼= s̄λ⊕ t̄λ with s̄λ and t̄λ
both irreducible, dim s̄λ = 2, and neither of s̄λ and t̄λ are dihedral.

6.2. The case n = 5

Since 5 is odd, we see from Lemma 2.1 that rλ(π) and thus r̄λ(π) factors
through GO5 with even multiplier. Since 2 6= 3, we see that s̄λ factors
through GO2 with even multiplier, so s̄λ is dihedral. This can only happen
for finitely many λ by Lemma 6.2.
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6.3. The n = 4 symplectic case

We argue as in section 4.3. Let R be the compatible system of Galois
representations associated to (π, χ), and define A := ∧2(R) − χ, a com-
patible system of Galois representations such that aλ : GF → GL5(Ql) has
image in GO5(Ql). Again, this compatible system is odd and regular.
Since r̄λ(π) = s̄λ ⊕ t̄λ, we have

aλ ⊕ χ̄λ = s̄λ ⊗ t̄λ ⊕ det(s̄λ)⊕ det(t̄λ).

In particular, as there are two characters on the right hand side, the repre-
sentation aλ contains a character for infinitely many λ, and as in the proof
of Lemma 6.2, we deduce that the compatible system A is weakly divisible
by the compatible system of a character.
Arguing as in section 4.3, we deduce that there is a finite Galois extension

F ′/F of totally real fields and a RAESDC automorphic representation π′ of
GL2(AF ′), which is not of CM type, such that, for all λ, we have aλ|GF ′ ∼=
Sym4 rλ(π′)⊗det(rλ(π′))−2. Then for all but finitely many λ the projective
image of r̄λ(π′) contains PSL2(Fl) and aλ|GF ′ is irreducible, a contradiction.

6.4. The n = 4 orthogonal case

It will be useful in the sequel to exploit the exceptional isomorphism of
Lie groups so4 ' sl2 × sl2. More precisely:

Lemma 6.3. — Let F be a number field. Suppose that r : GF →
GO4(Ql) is a continuous representation. Then either:

(1) there are continuous representations a, b : GF → GL2(Ql) with
r ∼= a⊗ b, or

(2) there is a quadratic extension K/F and a continuous representation
a : GK → GL2(Ql) with r|GK ∼= a⊗ ac, where Gal(K/F ) = {1, c}.

Proof. — We have an exact sequence

0→ Q×l → GL2(Ql)×GL2(Ql)→ GO4(Ql)→ {±1} → 0

(cf. section 1 of [21]). Suppose firstly that the composite r :GF→GO4(Ql)→
{±1} is not surjective. Then the obstruction to lifting r to a homomorphism
GF → GL2(Ql)×GL2(Ql) lies in H2(GF ,Q

×
l ), which vanishes by the proof

of Theorem 5.4 of [9]. If the composite r : GF → GO4(Ql) → {±1} is
surjective, then we let GK be the kernel of this composite, and the result
follows as in the previous case. �
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By Lemma 6.3, we may assume either that for infinitely many λ we have
rλ ∼= aλ ⊗ bλ for some aλ, bλ : GF → GL2(Ql), or that for infinitely many
λ there is a quadratic extension K = Kλ/F with r|GK ∼= aλ ⊗ acλ for some
aλ : GK → GL2(Ql).

Suppose that we are in the first case. If aλ and bλ are both reducible,
then the semi-simplification of aλ⊗ bλ consists of four characters, contrary
to assumption. Hence, without loss of generality, we may assume that bλ is
irreducible infinitely often. There is an isomorphism

∧2rλ(π)⊗ (det rλ(π))−1 ' ad0 aλ ⊕ ad0 bλ,

from which we see that ad0 aλ and ad0 bλ are both de Rham, and are
crystalline for all but finitely many λ. They are both regular (this can be
seen from a consideration of the Hodge-Sen-Tate weights of aλ and bλ).

After passing to a subset, we may assume that the Hodge-Tate weights
of ad0(aλ) and ad0(bλ) are independent of λ. Assume firstly that aλ and
bλ are irreducible for infinitely many λ.

By Lemma 5.3 and the classification of finite subgroups of PGL2(Fl) (cf.
Theorem 2.47 of [11]), we may assume that aλ and bλ are either dihedral
or have images containing SL2(Fl).
If both aλ and bλ have image containing SL2(Fl), then aλ ⊗ bλ is either

irreducible or breaks up as a sum of a character and a 3-dimensional rep-
resentation, a contradiction. If without loss of generality aλ is dihedral and
bλ has image containing SL2(Fl), let K/F be the quadratic extension from
which aλ is induced. Then bλ|GK is irreducible, so aλ ⊗ bλ is irreducible,
a contradiction. The remaining case is that aλ and bλ are both dihedral.
Then r̄λ(π) is completely decomposable over some quartic extension, which
implies that s̄λ and t̄λ are both dihedral, a contradiction.

We may thus assume that for infinitely many λ, aλ is reducible and bλ
is irreducible. If bλ is dihedral then one of s̄λ and t̄λ is dihedral, which
can only occur finitely often, so by Lemma 5.3 (applied to ad0 bλ) we may
assume that the image of bλ contains SL2(Fl). Then for λ sufficiently large
ad0 bλ is irreducible, so as in the proof of Proposition 2.5 we see that ad0 bλ
is potentially automorphic and bλ is odd. Since the multiplier character of
rλ(π) = aλ⊗bλ is even, we see that det aλ(cv) is independent of v|∞. Then
Lemma 5.4 implies that there are only finitely many λ for which such an
aλ can exist.
This contradiction means that we may assume that we are in the second

case, so that for infinitely many λ, there is a quadratic extension K/F

(which might depend on λ) and a continuous representation aλ : GK →
GL2(Ql) such that rλ(π)|GK ∼= aλ ⊗ acλ.
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We claim that aλ is necessarily dihedral for all but finitely many of the
λ under consideration. We prove this by eliminating the other possibilities.
Firstly, aλ cannot be reducible, because if aλ ∼= φ̄⊕ χ̄, then

aλ ⊗ acλ ∼= φ̄⊗ φ̄c ⊕ χ̄⊗ χ̄c ⊕ φ̄⊗ χ̄c ⊕ χ̄⊗ φ̄c,

and the first two characters descend to Q, so that r̄λ(π) would have one-
dimensional subrepresentations.
If aλ has projective image A4, S4 or A5, then the projective image of

r̄λ(π) is bounded independently of λ. By Lemma 5.3, this can only happen
for finitely many λ.
The image of aλ cannot contain SL2(F`). If it did, then aλ ⊗ acλ would

either be irreducible or a sum of an irreducible three-dimensional represen-
tation and a character, depending on whether the projective representation
associated to aλ extends to F or not. This again contradicts the assumption
that r̄λ(π) is a sum of two irreducible 2-dimensional representations.

Having eliminated the other possibilities, we see that for infinitely many
λ, aλ is dihedral. Then for infinitely many λ, s̄λ and t̄λ each become re-
ducible over quartic extensions of F , and are thus dihedral. This contra-
diction completes the proof.

7. Lie algebras

In this section we prove that the Lie algebras of the images of the rλ(π)
are independent of λ. More specifically, we prove the following theorem.

Theorem 7.1. — Let F be a totally real field. Suppose that (π, χ) is
a RAESDC automorphic representation of GLn(AF ) with n 6 5. Let Gλ
denote the Zariski closure of the image rλ(π)(GF ), and let gλ = zλ ⊕ hλ
denote the Lie algebra of Gλ, where zλ is abelian and hλ is semisimple.
Then gλ is independent of λ, and hλ is either sl2, so4 or sp4 (if n = 4), or
so5 = sp4 (if n = 5).

Proof. — The result is trivial if n = 1 and standard if n = 2, so we may
assume that n > 3. If (π, χ) is the automorphic induction of a character,
then certainly gλ is abelian and independent of λ. If n = 4 and (π, χ)
is the automorphic induction of a RAESDC automorphic representation
of GL2(AF ′) for F ′/F a quadratic totally real extension, then either this
representation is of CM type, and (π, χ) is the automorphic induction of a
character, or gλ is independent of λ and hλ is equal to sl2 (acting reducibly).
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Excluding these cases, by Corollary 4.4 (and its proof) we may assume
that (π, χ) is not an automorphic induction, and that rλ(π) is strongly
irreducible. In general the independence of zλ of λ is an easy consequence
of Schur’s lemma. Therefore we need only determine hλ. Suppose firstly
that the compatible system {rλ(π)} is weakly divisible by a compatible
system of algebraic Hecke characters. Then by Lemma 4.8 we see that
n = 3 or 5, and that hλ = sl2, acting through the (n − 1)st symmetric
power representation, independently of λ.
Conversely, if n = 3 or 5 and for some λ we have hλ = sl2 acting through

the (n−1)st symmetric power representation, then we claim that the com-
patible system {rλ(π)} is weakly divisible by a compatible system of al-
gebraic Hecke characters. To see this, write G for the Zariski closure of
rλ(π)(GF ), and G0 for the connected component of the identity. Then
the derived subgroup of G0 must be PSL2, and since PSL2 has no outer
automorphisms, Schur’s lemma shows that G is necessarily of the form
Z(G) × PSL2. Since Z(G) acts via a character (again by Schur’s lemma),
we see that the compatible system {rλ(π)} is weakly divisible by a com-
patible system of algebraic Hecke characters, as required.
Examining the table in Proposition 4.5, we see that we are done unless

n = 4. In this case if χ is odd then each rλ(π) has even multiplier and
is thus orthogonal, and we see from the same table that hλ = so4 for
all λ. If χ is even then for each λ either hλ = sl2 (acting via Sym3) or
hλ = sp4. We distinguish between these two possibilities by arguing as
in Section 4.3. Consider the compatible system A := ∧2(R) − χ. This
is a compatible system of odd, regular Galois representations such that
aλ : GF → GL5(Ql) has image in GO5(Ql). If for some λ we have hλ = sl2
then as above the compatible system A is weakly divisible by a compatible
system of algebraic characters, and the argument of the proof of Lemma 4.8
shows that hλ = sl2 for all λ, as required. �

8. Non self-dual representations of GL3 and GL4

In this section, we follow [23] and sketch a proof that our earlier ir-
reducibility results extend to the case of regular algebraic cuspidal auto-
morphic representations π of GL3(AF ) or GL4(AF ), F a totally real field,
without assuming that π is essentially self-dual, but with the assumption
that the Galois representations rλ(π) exist.
Assume throughout this section that F is totally real, that n = 3 or 4 and

that there is a weakly compatible system {rλ(π)} of Galois representations
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associated to π. We will demonstrate the required irreducibility results by
reducing to the essentially self-dual case.
Note firstly that the proof of Corollary 4.4 made no use of the essential

self-duality of π, so we have the following.

Lemma 8.1. — Let λ be a prime such that rλ(π) is irreducible. Then
either:

(1) rλ(π) is strongly irreducible, or
(2) π is an automorphic induction, rλ(π) is irreducible for all λ, and

r̄λ(π) is irreducible for all but finitely many λ.

The following Lemma and Corollary will be our main tool to reduce to
the essentially self-dual case.

Lemma 8.2. — Suppose that r : GF → GL4(Ql) is strongly irreducible,
and suppose that ∧2r : GF → GL6(Ql) is not strongly irreducible. Then
r ' r∨χ for some character χ.

Proof. — This is a standard argument (cf. Theorem 6.5 of [2]). Consider
the Zariski closure G of the image of r. Let G0 denote the connected com-
ponent of G, let g be the Lie algebra of G0, and write g = z ⊕ h, with z

is abelian and h semisimple. By assumption, G0 acts irreducibly in dimen-
sion 4. If ∧2r is not strongly irreducible, then h = sl2, so4, or sp4. It follows
that G0 preserves a symplectic or orthogonal form, from which it is easy to
deduce (using, for example, the facts that the normalizers of Sp4 and SO4
in GL4 are respectively GSp4 and GO4) that the image of r is symplectic
or orthogonal, as required. �

Corollary 8.3. — Suppose that n = 4, that π is not essentially self-
dual, and that for some λ, rλ(π) is strongly irreducible. Then ∧2rλ(π) is
strongly irreducible.

Proof. — Suppose that ∧2rλ(π) is not strongly irreducible. By Lem-
ma 8.2, we see that rλ(π) ' rλ(π)∨χλ for some character χλ; but then
strong multiplicity one for GL4 implies that π is essentially self-dual, a
contradiction. �

Lemma 8.4. — If n = 4, then it is impossible for rλ(π) to have a 1-
dimensional summand.

Proof. — This may be proved in exactly the same way as Proposition 7.8
of [23]. Suppose that rλ(π) = χλ ⊕ sλ with χλ a character. Then χλ and
det sλ are both algebraic characters of GF , so arise from automorphic repre-
sentations χ and ν of GL1(AF ). One easily obtains an equality of incomplete
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L-functions

LS(s, π ⊗ χ−1)LS(s, π∨ ⊗ νχ−1) = LS(s,∧2(π)⊗ χ−1)ζS(s)LS(s, νχ−3).

Since ∧2(π) is an isobaric automorphic representation of GL6(AF ) by [20],
we see that the left hand side is holomorphic at s = 1, but the right hand
side has at least a simple pole at s = 1, a contradiction. �

Lemma 8.5. — For a density one set of primes λ, rλ(π) is irreducible.

Proof. — Suppose not. By Lemma 8.4, there is a set of primes λ of
positive density such that rλ(π) decomposes as a sum of irreducible rep-
resentations of dimension at most 2. The result now follows by the same
proof as Theorem 3.2. �

Theorem 8.6. — rλ(π) is irreducible for all λ.

Proof. — Let R denote the compatible system {rλ(π)}. By Theorem 4.1,
we may assume that π is not essentially self-dual. By Lemmas 8.1 and
8.5, and Proposition 5.2.2 of [4], we may assume that rλ(π) is strongly
irreducible for some λ. Then the proof of Lemma 4.8 goes through verbatim,
as does that of Corollary 4.9, and we see that it is impossible for rλ′(π) to
have a one-dimensional summand for any λ′.

We are done if n = 3. If n = 4, the only possibility is that for some
λ′, rλ′(π) ∼= sλ′ ⊕ tλ′ , with sλ and tλ both 2-dimensional. Since we have
assumed that π is not essentially self-dual, we see from Corollary 8.3 that
(using the same λ as in the first paragraph) ∧2rλ(π) is strongly irreducible.
On the other hand,

∧2rλ′(π) ∼= sλ′ ⊗ tλ′ ⊕ det(sλ′)⊕ det(tλ′).

It follows that the compatible system ∧2R is weakly divisible by the com-
patible system of a character (in fact, two characters). After twisting, we
may suppose that this character is trivial. We then obtain a contradiction
as in the proof of Theorem 4.7 (note that the semisimple part of the Lie al-
gebra of the Zariski closure of ∧2rλ(π)(GF ) is sl4 acting via ∧2, and it is not
the case that every element of sl4 fixes some vector under this action). �

Theorem 8.7. — For all but finitely many λ, r̄λ(π) is irreducible.

Proof. — By Theorem 6.1, it is enough to assume that π is not essentially
self-dual. Again, the proof of Lemma 6.2 goes over without change to the
present setting, completing the proof if n = 3. If n = 4, it suffices to show
that there cannot be infinitely many λ for which r̄λ(π) = s̄λ ⊕ t̄λ with sλ
and tλ 2-dimensional. However, we again note that in this case we have

∧2rλ(π) = s̄λ ⊗ t̄λ ⊕ det(s̄λ)⊕ det(t̄λ),
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and we deduce that the compatible system {∧2rλ(π)} is weakly divisible
by the compatible system of a character. This gives a contradiction as in
the proof of Theorem 8.6. �

Theorem 8.8. — Let gλ be the Lie algebra of the Zariski closure of
rλ(GF ). Then gλ is independent of λ.

Proof. — As in the proof of theorem Theorem 7.1, if we write gλ = hλ⊕zλ
with hλ semisimple and zλ abelian, it suffices to show that hλ is independent
of λ.
If n = 3, then the proof of Theorem 7.1 goes through unchanged, so we

may assume that n = 4. By Theorem 7.1, we may assume that π is not
essentially self-dual, and by Lemma 8.1 and Theorem 8.6, we may assume
that rλ(π) is strongly irreducible for all λ. It then follows from the proofs
of Lemma 8.2 and Corollary 8.3 that hλ = sl4 for all λ, as required. �
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