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AMENABLE, TRANSITIVE AND FAITHFUL ACTIONS
OF GROUPS ACTING ON TREES

by Pierre FIMA (*)

Abstract. — We study under which condition an amalgamated free product
or an HNN-extension over a finite subgroup admits an amenable, transitive and
faithful action on an infinite countable set. We show that such an action exists if
the initial groups admit an amenable and almost free action with infinite orbits
(e.g. virtually free groups or infinite amenable groups). Our result relies on the
Baire category Theorem. We extend the result to groups acting on trees.
Résumé. — Nous étudions sous quelles conditions un produit libre amalgamé

ou une extension HNN sur un sous groupe fini admet une action moyennable,
transitive et fidèle sur un espace dénombrable. Nous montrons qu’une telle action
existe lorsque les groupes initiaux admettent une action moyennable et presque
libre à orbites infinies (e.g. les groupes virtuellement libres ou moyennables infinis).
Notre résultat s’appuie sur le théorème de Baire. Nous étendons ce résultat aux
groupes agissant sur un arbre.

1. Introduction

The notion of amenable groups or, more generally, amenable actions was
first introduced by von Neumann [12] who proposed to study whether or
not, given a group acting on a set X, there exists a mean on X invariant
by the action (or equivalently a Følner sequence for the action).

Definition 1.1. — An action Γ y X of a countable group Γ on a
countable set X is called amenable if there exists a sequence (Cn) of non-
empty finite subsets of X such that

|Cn∆gCn|
|Cn|

→ 0 for all g ∈ Γ.

Such a sequence (Cn) is called a Følner sequence.

Keywords: amenable action, free product, HNN extension, groups acting on trees.
Math. classification: 43A07, 20E06, 57M07.
(*) Partially supported by the Agence Nationale de la Recherche (Grant ANR 2011
BS01 008 01).



2 Pierre FIMA

This notion of amenability is different from the one introduced later by
Zimmer [13].

Obviously, every action of an amenable group (i.e. such that the left
translation on itself is an amenable action) is amenable. Greenleaf [4] asked
for the converse: does the existence of an amenable action of Γ implies the
amenability of Γ? To avoid any trivial negative answer, one should assume
that the action is faithful and transitive. If the action is free then the
converse holds. However van Douwen [11] gave a counter example: the free
group F2 admits a faithful, transitive and amenable action.
This leads Glasner and Monod [3] to introduce the class A of countable

groups admitting an amenable, transitive and faithful action. Grigorchuk
and Nekrashevych [5] have constructed a class of amenable, transitive and
faithful actions of finitely generated free groups using Schreier graphs. Si-
multaneously Glasner and Monod [3] gave a necessary and sufficient con-
dition for a free product to be in the class A. In particular, they showed
that the class A is closed under free products. They also asked when free
products with amalgamations and HNN-extensions are in A.
S. Moon [7], [8] showed that a free product of finitely generated free

groups amalgamated over a cyclic group is in A. She also proved [9] that
an amalgamated free product of amenable groups over a finite group as
well as an amalgamated free product of a residually finite group with an
infinite amenable group over a finite group is in A.
The initial motivation of the present work was to study the case of an

HNN-extension Γ = HNN(H,Σ, θ), where Σ is a subgroup of H and θ :
Σ→ H is an injective group homomorphism. Few results are known: Monod
and Popa [6] showed that Γ ∈ A whenever Σ = H ∈ A and S. Moon
observed that the Baumslag-Solitar groups are in A.

We say that an action has infinite orbits if every orbit is infinite. Our
first result is as follows.

Theorem 1.2. — Let Γ1, Γ2 and H be countable groups and Σ be a
finite subgroup of Γ1, Γ2 and H. Let θ : Σ → H be an injective group
homomorphism.

(1) If there exists an amenable and faithful action of H on a countable
set with infinite orbits and free on Σ and θ(Σ) then HNN(H,Σ, θ) ∈
A.

(2) If, for i = 1, 2, there exists an amenable and faithful action of Γi on
a countable set with infinite orbits and free on Σ then Γ1 ∗Σ Γ2 ∈ A.

ANNALES DE L’INSTITUT FOURIER



AMENABLE, TRANSITIVE AND FAITHFUL ACTIONS 3

To prove Theorem 1.2 we use the Baire category Theorem. Such an
approach has been used for example in [2], [1], [3], [7], [8] and [9].

An action is called almost free if every non-trivial group element acts
with finitely many fixed points. During the investigation of the HNN-
extension case we realized that the class AF of countable groups admitting
an amenable and almost free action with infinite orbits on a countable set
appears naturally. Observe that the class AF contains all infinite amenable
groups. Moreover, the amenable, transitive and faithful action of F2 con-
structed in [11] is actually almost free and an obvious adaptation of his
construction shows that Fn admits an amenable, transitive and almost free
action on an infinite countable set for all n > 2. van Douwen also showed
that the same conclusion holds for F∞.
It is easy to check that if H has an amenable and almost free action

with infinite orbits and if H is a finite index subgroup of Γ then, the
induced action is still amenable and almost free with infinite orbits (and also
transitive if the original action is). It follows that virtually free groups are
in AF . Moreover, the obstruction to be in A discovered in [3, Lemma 4.3] is
also an obstruction to be in AF . Namely, let N CH be a normal subgroup
such that the pair (H,N) has the relative property (T ). If H ∈ AF then
N has finite exponent. In particular, Z2 o SL2(Z) /∈ AF . The proof of this
assertion is an obvious adaptation of the proof of [3, Lemma 4.3].
We say that a graph is non-trivial if it has at least two edges, e and its

inverse edge e. Our second result is as follows.

Theorem 1.3. — Let Γ be a countable group acting without inversion
on a non-trivial tree T with finite edge stabilizers and finite quotient graph
T/Γ. If all the vertex stabilizers are in AF then Γ ∈ A.

The case when Γ acts with finite vertex stabilizers is not covered by
Theorem 1.3 but is obvious since Γ must be virtually free.
We prove Theorem 1.3 by induction and by using a slightly stronger

version of Theorem 1.2 (see Remarks 3.3 and 4.3). A particular case of
Theorem 1.3 is the following. Let Γ1,Γ2 ∈ AF . Then, for all finite common
subgroup Σ < Γ1,Γ2 one has Γ1 ∗Σ Γ2 ∈ A. Also, if H ∈ AF then, for all
finite subgroup Σ < H and all injective group homomorphism θ : Σ→ H,
one has HNN(H,Σ, θ) ∈ A.

The paper is organized as follows. The section 2 is a preliminary section
in which we prove five basic general lemmas which will be used in the
paper. In section 3 we prove the HNN-extension case of Theorem 1.2. The
section 4 covers the case of an amalgamated free product. Finally, we prove
Theorem 1.3 in section 5.
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2. Generalities

Our first lemma is certainly well known but we could not find any refer-
ence in the literature.

Lemma 2.1. — Let Γ y X be an amenable action of a countable group.
If the action has infinite orbits then there exists a Følner sequence (Cn)
such that |Cn| → ∞.

Proof. — Let (Dn) be a Følner sequence for Γ y X. Suppose that
|Dn| 9 ∞. By taking a subsequence if necessary we may and will sup-
pose that (|Dn|) is bounded. It follows that, for all g ∈ Γ, |Dn∆gDn| → 0.

Set K = ∪n∈NDn and suppose that K is finite. By the pigeonhole prin-
ciple, there exists x0 ∈ K such that I = {n ∈ N : x0 ∈ Dn} is infinite.
Let g ∈ Γ. Since gDn = Dn for n big enough, we find n0 ∈ I such that
gx0 ∈ gDn0 = Dn0 . Hence, gx0 ∈ K for all g ∈ Γ, contradicting the
assumption that x0 has infinite orbit. It follows that K is infinite.
Write Γ = ∪↑Fk, where Fk are finite subsets. For all k ∈ N, let nk,mk ∈ N

such that FkDn = Dn for all n > nk and
∣∣∪mk
n=nk

Dn

∣∣ > k. Define Ck =
∪mk
n=nk

Dn. Then (Ck) is a Følner sequence and |Ck| → ∞. �

Let Γ y Y be an action and m ∈ N. Observe that the complement of the
large diagonal in Y m:

{(y1, . . . , ym) : yi 6= yj for all i 6= j} ⊂ Y m

is globally invariant under the diagonal action of Γ on Y m.

Lemma 2.2. — If Γ acts amenably with infinite orbits on Y then Γ acts
amenably on the complement of the large diagonal in Y m.

Proof. — Denote by X the complement of the large diagonal in Y m. By
Lemma 2.1, let (Cn) be a Følner sequence for the action Γ y Y such that
|Cn| → ∞. One has

|Cmn ∩Xc|6
∑

16i<j6m
|{(y1, . . . , ym) ∈ Cmn : yi = yj}| =

m(m− 1)
2 |Cn|m−1.

ANNALES DE L’INSTITUT FOURIER
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Since |Cn| → ∞ one has |C
m
n ∩X

c|
|Cm

n |
→ 0 and |C

m
n ∩X|
|Cm

n |
→ 1. Define Dn =

Cmn ∩ X. Since |Cn| → ∞ we have |Dn| → ∞ and we may assume that
Dn 6= ∅ for all n ∈ N. It is easy to check that (Cmn ) is a Følner sequence
for the action Γ y Y m hence, for all g ∈ Γ, one has

|Dn∆gDn|
|Dn|

6
|Dn∆Cmn |
|Dn|

+ |C
m
n ∆gCmn |
|Dn|

+ |gC
m
n ∆gDn|
|Dn|

= 2 |Dn∆Cmn |
|Dn|

+
(
|Cmn |
|Dn|

)
|Cmn ∆gCmn |
|Cmn |

= 2 |C
m
n ∩Xc|
|Cmn ∩X|

+
(
|Cmn |

|Cmn ∩X|

)
|Cmn ∆gCmn |
|Cmn |

→ 0. �

Given an action Γ y X and g ∈ Γ, we define FixX(g) = {x ∈ X : gx =
x}. If the context is clear, we omit the subscript X.

Lemma 2.3. — If Γ ∈ AF then, for every finite subset F ⊂ Γ with
1 /∈ F , there exists an amenable and almost free action with infinite orbits
Γ y X on a countable set X such that FixX(g) = ∅ for all g ∈ F .

Proof. — Let Γ y Y be an amenable and almost free action with infinite
orbits on a countable set Y . Let m = Max{|FixY (g)| : g ∈ F}+ 1 and X
be the complement of the large diagonal in Y m. The action of Γ on X is
obviously almost free, every orbit is infinite and every element of F acts
freely. By Lemma 2.2 this action is also amenable. �

The following Lemma is inspired by [9, Lemma 6].

Lemma 2.4. — Let Γ y Y be an action of a countable group Γ on a
countable set Y . Define X = Y × N and consider the action Γ y X given
by g(y, n) = (gy, n) for all g ∈ Γ and (y, n) ∈ X. If Γ y Y is amenable
then, for all sequence (an) of real numbers such that an →∞, there exists
a Følner sequence (Cn) for Γ y X and a subsequence (aϕ(n)) such that
aϕ(n)
|Cn| → 1.

Proof. — Write Γ = ∪↑Fk, where (Fk)k is an increasing sequence of finite
subsets. It suffices to construct a strictly increasing sequence of integers
(nk)k and a sequence of non-empty finite subsets (Ck)k of X such that Ck
is a ( 1

k , Fk)-Følner set for all k > 1 and,

1 6 ank

|Ck|
< 1 + 2

k
for all k > 1.

In the sequel, given x ∈ R, we denote by [x] the unique integer such that
[x] 6 x < [x] + 1. For k = 1, let D1 be a (1, F1)-Følner set for the action

TOME 64 (2014), FASCICULE 1



6 Pierre FIMA

Γ y Y . Let n1 > 1 big enough such that [an1 ] > |D1|. By Euclidean
division, we write [an1 ] = q1|D1| + r1, where 0 6 r1 < |D1| and q1 > 1.
Define C1 = tq1

n=1D
(n)
1 ⊂ X, where D(n)

1 = D1 × {n}. Then, |C1| = q1|D1|
and, for all g ∈ F1,

|gC1∆C1| 6
q1∑
n=1
|gD(n)

1 ∆D(n)
1 | 6 q1|D1| = |C1|.

Hence, C1 is a (1, F1)-Følner set. Moreover,

1 6 [an1 ]
|C1|

6
an1

|C1|
<

[an1 ] + 1
|C1|

= q1|D1|+ r1 + 1
|C1|

= 1 + r1 + 1
q1|D1|

< 1 + 1
q1

+ 1
q1|D1|

6 1 + 2
q1
6 1 + 2.

Now, suppose that, for k > 1, we have constructed n1 < . . . < nk ∈ N∗ and
C1, . . . , Ck ⊂ X such that Ci is a ( 1

i , Fi)-Følner set and 1 6 ani

|Ci| < 1 + 2
i

for all 1 6 i 6 k. Let Dk+1 be a ( 1
k+1 , Fk+1)-Følner set for Γ y Y and

nk+1 > nk big enough such that [ank+1 ] > (k + 1)|Dk+1|. Write [ank+1 ] =
qk+1|Dk+1| + rk+1, where 0 6 rk+1 < |Dk+1| and qk+1 > k + 1. Define
Ck+1 = tqk+1

n=1D
(n)
k+1 ⊂ X, where D(n)

k+1 = Dk+1 × {n}. Then, |Ck+1| =
qk+1|Dk+1| and, for all g ∈ Fk+1,

|gCk+1∆Ck+1| 6
qk+1∑
n=1
|gD(n)

k+1∆D(n)
k+1| 6 qk+1

|Dk+1|
k + 1 = |Ck+1|

k + 1 .

Hence, Ck+1 is a ( 1
k+1 , Fk+1)-Følner set. Moreover,

1 6
[ank+1 ]
|Ck+1|

6
ank+1

|Ck+1|
<

[ank+1 ] + 1
|Ck+1|

= qk+1|Dk+1|+ rk+1 + 1
|Ck+1|

< 1 + 1
qk+1

+ 1
qk+1|Dk+1|

6 1 + 2
qk+1

6 1 + 2
k + 1 . �

Let H < Γ, H y Y and consider the diagonal action H y Y ×Γ. Define
X = H \ (Y × Γ). The induced action is the action Γ y X given by right
multiplication (by the inverse element) on the Γ part in X. The following
proposition contains some standard observations on the induced action. We
include a proof for the reader’s convenience.

Lemma 2.5. — Let H < Γ, H y Y and Γ y X the induced action.
The following holds.

(1) If H y Y is faithful then Γ y X is faithful.
(2) If H y Y is amenable then H y X is amenable.

ANNALES DE L’INSTITUT FOURIER
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(3) If H y Y has infinite orbits and H is almost malnormal (1) in Γ
then H y X has infinite orbits.

(4) If K < Γ is infinite and gKg−1 ∩ H is finite for all g ∈ Γ then
K y X has infinite orbits.

(5) Let (Σε)ε∈E be a family of subgroups of H such that Σε y Y is free
for all ε ∈ E. If, for all g ∈ Γ \H, gHg−1 ∩H ⊂ ∪ε∈E, s∈HsΣεs−1

then, for all h ∈ H such that FixY (h) = ∅, one has FixX(h) = ∅.
(6) Let Σ < H such that Σ y Y is free. If K < Γ is a subgroup and
∪g∈ΓgKg

−1 ∩H ⊂ ∪h∈HhΣh−1 then K y X is free.

Proof. — For (y, g) ∈ Y ×Γ we denote by [y, g] its class in X. Let t ∈ Γ.
Observe that

FixX(t) = {[y, g] ∈ X : gtg−1 ∈ H and y ∈ FixY (gtg−1)}. (2.1)

1. Suppose that FixX(t) = X. Then, for all y ∈ Y , [y, 1] ∈ FixX(t) and
Equation (2.1) implies that t ∈ H and FixY (t) = Y . Since H y Y is
faithful we have t = 1.

2. Since the map y 7→ [y, 1] is H-equivariant (and injective), the action
H y X is amenable whenever that action H y Y is.

3. Let y ∈ Y and g ∈ Γ. Let us show that the H orbit of [y, g] is infinite
under the hypothesis of 3.
Case 1: g ∈ H. One has, for all h ∈ H, h[y, g] = [y, gh−1] = [hg−1y, 1].

Since the map y 7→ [y, 1] is injective, the H-orbit of [y, g] is infinite for all
g ∈ H whenever H y Y has infinite orbits.
Case 2: g ∈ Γ \H. If the H-orbit H[y, g] is finite the stabilizer in H of

[y, g] must be infinite. However,

{h ∈ H : h[y, g] = [y, g]} ⊂ {h ∈ H : ghg−1 ∈ H} = g−1Hg ∩H

which is finite since H is almost malnormal in Γ.
4. The proof of 4 is similar: if theK-orbitK[y, g] is finite andK is infinite

then the stabilizer in K of [y, g] must be infinite. However,

{k ∈ K : k[y, g] = [y, g]} ⊂ {k ∈ K : gkg−1 ∈ H} = K ∩ g−1Hg

which is finite.
5. Let h ∈ H \ {1} such that FixX(h) 6= ∅ and take [y, g] ∈ FixX(h).

By Equation (2.1), ghg−1 ∈ H and y ∈ FixY (ghg−1). If g ∈ Γ \ H then,
there exists ε ∈ E, σ ∈ Σε \ {1} and s ∈ H such that ghg−1 = sσs−1.
Hence, y ∈ FixY (ghg−1) = FixY (sσs−1) = sFixY (σ). Hence, FixY (σ) 6= ∅,

(1)The subgroup H is called almost malnormal in Γ if, for all g ∈ Γ\H, the set g−1Hg∩H
is finite.

TOME 64 (2014), FASCICULE 1



8 Pierre FIMA

a contradiction since Σε y Y is free. Thus, g ∈ H and y ∈ FixY (ghg−1) =
gFixY (h) which implies that FixY (h) 6= ∅.

6. The proof of 6 is similar: Let k ∈ K \{1}. If [y, g] ∈ FixX(k) Equation
(2.1) implies that gkg−1 ∈ H and y ∈ FixY (gkg−1). By the hypothesis on
K, there exists h ∈ H and σ ∈ Σ \ {1} such that gkg−1 = hσh−1. Hence,
FixY (gkg−1) = FixY (hσh−1) = hFixY (σ) = ∅, a contradiction. �

Example 2.6. — The following holds.
(1) Let Γ = HNN(H,Σ, θ) = 〈H, t | θ(σ) = tσt−1, ∀σ ∈ Σ〉 be a non-

trivial HNN-extension. The hypothesis of 5 holds and H is almost
malnormal in Γ whenever Σ is finite. Actually, for all g ∈ Γ \ H,
there exists s ∈ H such that gHg−1 ∩H ⊂ sΣs−1 or gHg−1 ∩H ⊂
sθ(Σ)s−1. Indeed, let v0 be the vertex in the Bass-Serre tree of Γ
with stabilizer H and take g /∈ H. Denote by e the unique edge on
the geodesic [gv0, v0] that contains v0. Since gv0 and v0 are fixed by
gHg−1 ∩H the geodesic [gv0, v0] is pointwise fixed by gHg−1 ∩H.
In particular, gHg−1 ∩H is contained in the stabilizer of e which
is of the form sΣs−1 or sθ(Σ)s−1 with s ∈ H.

(2) If Γ = Γ1 ∗Σ Γ2 is a non-trivial amalgamated free product. By
the same geometric argument, for all i = 1, 2, for all g ∈ Γ \ Γi,
there exists s ∈ Γi such that gΓig−1 ∩ Γi ⊂ sΣs−1. Hence, the
hypothesis of 5 holds (with H = Γi) and Γi is malnormal in Γ
whenever Σ is finite. Also, for all g ∈ Γ, there exists s ∈ Γ1 such
that gΓ2g

−1 ∩ Γ1 ⊂ sΣs−1. Hence, the hypothesis of 4 (if Σ is
finite) and 6 hold with H = Γ1 and K = Γ2 and, by symmetry,
with H = Γ2 and K = Γ1.

3. HNN-extensions in the class A

This section is dedicated to the proof of Theorem 1.2.1.
Let H be a countable group, Σ < H a finite subgroup and θ : Σ → H

an injective group homomorphism. Define the HNN-extension

Γ = HNN(H,Σ, θ) = 〈H, t | θ(σ) = tσt−1, ∀σ ∈ Σ〉.

Let X be an infinite countable set and denote by S(X) the Polish(2)

group of bijections of X.

(2)With the topology of pointwise convergence: wn → w ⇔ for all finite subset F ⊂ X
∃n0 ∈ N such that wn|F = w|F ∀n > n0.

ANNALES DE L’INSTITUT FOURIER
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For the rest of this section we suppose that H < S(X) such that the
actions of Σ and θ(Σ) on X are free. Define

Z = {w ∈ S(X) : wσw−1 = θ(σ) for all σ ∈ Σ}.

It is clear that Z is a closed subset of S(X). Moreover, since the actions of
Σ and θ(Σ) are free, it is easy to see that Z is non-empty.
By the universal property, for all w ∈ Z, there exists a unique group

homomorphism πw : Γ → S(X) such that πw(t) = w and πw(h) = h for
all h ∈ H. The strategy is to prove, under suitable assumptions on the
action H y X, that the set of w ∈ Z such that πw is amenable, transitive
and faithful is a dense Gδ in Z.
We first study the set of w ∈ Z such that πw is transitive.

Lemma 3.1. — If the action H y X has infinite orbits then the set
U = {w ∈ Z : πw is transitive} is a dense Gδ in Z.

Proof. — Write U = ∩x,y∈XUx,y, where Ux,y = {w ∈ Z : ∃g ∈ Γ,
πw(g)x = y}. It suffices to show that Ux,y is open and dense in Z for all
x, y ∈ X. It is obvious that Ux,y is open. Let us show that Ux,y is dense. Let
w ∈ Z \Ux,y and F ⊂ X a finite subset. It suffices to construct γ ∈ Z and
g ∈ Γ such that γ|F = w|F and πγ(g)x = y. Since the action has infinite
orbits, there exists h0, h1 ∈ H such that h0y /∈ w(ΣF ) and h1x /∈ ΣF .
Observe that Σh1x ∩ Σw−1h0y = ∅. Indeed, if we have Σh1x = Σw−1h0y

then, for some σ ∈ Σ, we have σh1x = w−1h0y. Hence, πw(g)x = y with
g = h−1

0 tσh1, a contradiction. Define Y = Σh1xtΣw−1h0y. Then, F ⊂ Y c
and w(Y ) = θ(Σ)wh1x t θ(Σ)h0y. Define a bijection γ ∈ S(X) by γ|Y c =
w|Y c and

γ(σh1x) = θ(σ)h0y and γ(σw−1h0y) = θ(σ)wh1x for all σ ∈ Σ.

By construction, γ ∈ Z, γ|F = w|F and πγ(h−1
0 th1)x = y. �

Next, we give a sufficient condition for the set of w ∈ Z for which πw is
amenable to be a dense Gδ.

Lemma 3.2. — If the action H y X admits a Følner sequence (Cn)
such that |Cn| → ∞ then the set

V = {w ∈ Z : πw is amenable}

is a dense Gδ in Z.

Proof. — At first we prove the following claim.

Claim. — Let Y, F ⊂ X be finite subsets and w ∈ Z such that θ(Σ)Y ∩
w(F ) = ∅. There exists γ ∈ Z such that ΣY ∩Σγ−1Y = ∅ and γ|F = w|F .

TOME 64 (2014), FASCICULE 1
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Proof of the Claim. — Write θ(Σ)Y = tni=1θ(Σ)yi. Since the set ΣY ∪
ΣF ∪ Σw−1(Y ) is finite and Σ-invariant, we can find n disjoint Σ-orbits
Σz1, . . . ,Σzn in its complement.

Define F̃ = tnj=1(Σzj t Σw−1yj). Then F ⊂ F̃ c and w(F̃ ) =
tnj=1(θ(Σ)wzj t θ(Σ)yj). By the freeness assumption, we can define a bi-
jection γ ∈ S(X) by γ|

F̃ c = w|
F̃ c and,

γ(σzj) = θ(σ)yj and γ(σw−1yj) = θ(σ)wzj σ ∈ Σ, 1 6 j 6 n.

By construction γ ∈ Z and γ|F = w|F . Moreover, ΣY ∩Σγ−1Y = tnj=1ΣY ∩
Σγ−1(yj) = tjΣY ∩ Σzj = ∅. �

End of the proof of Lemma 3.2. — Write H = ∪↑Fm where (Fm) is an
increasing sequence of finite subsets. Since Γ is generated by H and t it
follows that πw is amenable if and only if, for all m > 1 there exists a
non-empty finite set C ⊂ X such that

Supg∈Fm∪{w}
|gC∆C|
|C|

<
1
m
.

Write V = ∩m>1Vm where

Vm=
{
w∈Z : ∃C⊂X such that 0< |C|<∞ and Supg∈Fm∪{w}

|gC∆C|
|C|

<
1
m

}
.

It is easy to see that Vm is open. Let us show that Vm is dense. Let w ∈ Z
and F ⊂ X a finite subset. Observe that, for any Følner sequence (Cn) and
any finite subset K ⊂ H, the sequence (KCn) is again a Følner sequence.
Also, if |Cn| → ∞ then, for all finite subset F ⊂ X, there exists n0 ∈ N
such that the sequence (Cn \ F )n>n0 is a Følner sequence. Hence, up to
a shifting of the indices, the sequence (Dn), where Dn = ΣCn \ (ΣF ∪
Σw(ΣF )) is a Σ-globally invariant Følner sequence such that Dn ∩ F = ∅
and θ(Σ)Dn ∩ w(F ) = ∅ for all n ∈ N. Let N ∈ N large enough such that

|gDN∆DN | <
|DN |
2m|Σ| for all g ∈ Fm ∪ θ(Σ).

By the claim, there exists γ0 ∈ Z such that γ0|F = w|F and DN ∩
Σγ−1

0 (DN ) = ∅. Write

DN = tLi=1Σxi and θ(Σ)DN = tKi=1θ(Σ)yi,

where K > L. Observe that the sets Σxi and Σγ−1
0 yj are pairwise dis-

joint. Define Y =
⊔L
i=1 Σxi t Σγ−1

0 yi. Observe that F ⊂ Y c and γ0(Y ) =⊔L
i=1 θ(Σ)γ0xi t θ(Σ)yi. Define a bijection γ ∈ S(X) by γ|Y c = γ0|Y c and,

γ(σxi) = θ(σ)yi and γ(σγ−1
0 yi) = θ(σ)γ0xi σ ∈ Σ, 1 6 i 6 L.
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By construction, γ ∈ Z and γ|F = γ0|F = w|F . Observe that

|θ(Σ)DN∆γ(DN )| = |θ(Σ)DN | − |γ(DN )| = |θ(Σ)DN | − |DN |
= |θ(Σ)DN∆DN |.

Moreover,

|DN∆θ(Σ)DN | 6
∑
σ∈Σ
|DN∆θ(σ)DN | <

|DN |
2m .

It follows that

|DN∆γ(DN )| 6 |DN∆θ(Σ)DN |+ |θ(Σ)DN∆γ(DN )| < |DN |
m

.

We also have |DN∆gDN | < |DN |
m for all g ∈ Fm hence, it suffices to define

C = DN to see that γ ∈ Vm. �

We can now prove Theorem 1.2.1. It suffices to prove that, under suitable
conditions, the set of w ∈ Z such that πw is faithful is a dense Gδ in Z. It
is obvious that such a set is a Gδ. The difficulty will be to prove that it is
dense. The idea is very simple: we will start from a faithful action of Γ on
Y and consider the faithful action of H obtained by restricting the faithful
action of Γ on infinitely many copies of Y . For this action of H, any w ∈ Z
can be approximate by a γ ∈ Z such that πγ is faithful by taking roughly
γ equals to w on sufficiently many (but finitely) copies of Y and γ equals
to the original stable letter t ∈ Γ on the remaining copies of Y to insure
that πγ is faithful. Let us write this argument precisely.
Proof of Theorem 1.2.1. — Suppose that H admits an amenable and

faithful action with infinite orbits and free on Σ and θ(Σ). Define Γ =
HNN(H,Σ, θ) = 〈H, t〉. By Lemma 2.5 and example 2.6, there exists a
faithful action Γ y Y with infinite H-orbits such that Σ, θ(Σ) y Y are
free and the actionH y Y is amenable. Consider the faithful action Γ y X

with X = Y × N given by g(y, n) = (gy, n) for g ∈ Γ and (y, n) ∈ X. We
view H < Γ < S(X). It is obvious that the actions Σ, θ(Σ) y X are free,
the H-orbits are infinite and the action H y X is amenable. Hence, by
Lemma 2.1, there exists a Følner sequence (Cn) for the H-action whose
size goes to infinity (one could also use Lemma 2.4). Thus, we can apply
Lemmas 3.1 and 3.2 to the action H y X. Hence, it suffices to show
that the set O = {w ∈ Z : πw is faithful} is a dense Gδ in Z. Writing
O = ∩g∈Γ\{1}Og, where Og = {w ∈ Z : πw(g) 6= id} is obviously open, it
suffices to show that O is dense. Write X = ∪↑Xn where Xn = {(x, k) ∈
X : k 6 n} is infinite and globally invariant under Γ for the original
action. Let w ∈ Z and F ⊂ X a finite subset. Let N ∈ N large enough such
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that ΣF ∪ w(ΣF ) ⊂ XN . The set XN \ ΣF (resp. XN \ w(ΣF )) is infinite
and globally invariant under Σ (resp. θ(Σ)). Hence, there exists a bijection
γ0 : XN \ ΣF → XN \ w(ΣF ) satisfying γ0σ = θ(σ)γ0 for all σ ∈ Σ.
Define γ ∈ S(X) by γ|ΣF = w|ΣF , γ|XN\ΣF = γ0 and γ|Xc

N
= t|Xc

N
. By

construction, γ ∈ Z and γ|F = w|F . Moreover, since πγ(g)(y, n) = (gy, n)
for all n > N and since Γ y Y is faithful, it follows that πγ is faithful. �

Remark 3.3. — The following more general result is actually true.
For all amenable and faithful action on a countable set H y Y with

infinite orbits and free on Σ and θ(Σ), there exists an amenable, transitive
and faithful action on a countable set Γ y X such that, for all h ∈ H,
FixY (h) = ∅ implies FixX(h) = ∅.

Indeed, it follows from Lemma 2.5 and Example 2.6, that the replacement
by the induced action preserves the property that elements in H have an
empty fixed point set. Also, the replacement by the action on X = Y × N
preserves this property. Since πw(h) = h for all h ∈ H and all w ∈ Z, this
proves the remark.

4. Amalgamated free products in the class A

In this section we prove Theorem 1.2.2. The notations are independent
of the ones of section 3.

Let X be an infinite countable set. For the rest of this section we assume
that Γ1,Γ2 < S(X) are two countable subgroups of the Polish group of
bijections of X with a common finite subgroup Σ such that Σ y X is free.
Define

Z = {w ∈ S(X) : wσ = σw for all σ ∈ Σ}.
Z is a non-trivial closed subgroup of S(X). Let Γ = Γ1 ∗Σ Γ2. By the
universal property, for all w ∈ Z, there exists a unique group homorphism
πw : Γ → S(X) such that πw(g) = g and πw(h) = w−1hw for all g ∈
Γ1, h ∈ Γ2.

Lemma 4.1. — If the actions Γ1 y X and Γ2 y X have infinite orbits
then the set

U = {w ∈ Z : πw is transitive }
is a dense Gδ in Z.

Proof. — Write U = ∩x,y∈XUx,y, where Ux,y = {w ∈ Z : there exists
g ∈ Γ such that πw(g)x = y}. Since Ux,y is open in Z for all x, y ∈ X, it
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suffices to show that it is dense in Z. Let x, y ∈ X, w ∈ Z and F ⊂ X a
finite subset. Since Γ1 y X has infinite orbits, there exists g1 ∈ Γ1 such
that g1x /∈ ΣF . By the same argument, there exists also g2 ∈ Γ1 such
that g−1

2 y /∈ ΣF ∪ Σg1x. Take z, t ∈ X in the same Γ2-orbit and in the
complement of the finite set w(ΣF ∪Σg1x∪Σg−1

2 y) such that Σz∩Σt = ∅.
Write t = hz where h ∈ Γ2 and define

Y = Σg1x t Σg−1
2 y t Σw−1z t Σw−1t.

One has F ⊂ Y c and w(Y ) = Σwg1xtΣwg−1
2 ytΣztΣt. Define γ ∈ S(X)

by γ|Y c = w|Y c and,

γ(σg1x) = σz, γ(σg−1
2 y) = σt, γ(σw−1z) = σwg1x,

γ(σw−1t) = σwg−1
2 y ∀σ ∈ Σ.

By construction, γ ∈ Z and γ|F = w|F . Moreover, with g = g2hg1 ∈ Γ, one
has

πγ(g)x = g2γ
−1hγg1x = g2γ

−1hz = g2γ
−1t = g2g

−1
2 y = y. �

Lemma 4.2. — If there exist Følner sequences (Cn) and (Dn) for the
actions Γ1 y X and Γ2 y X respectively such that |Cn|, |Dn| → ∞ and
|Dn|
|Cn| → 1 then the set V = {w ∈ Z : πw is amenable } is a dense Gδ in Z.

Proof. — We start the proof with the following simple claim.

Claim. —
(1) For all finite subsets Y1, Y2 ⊂ X there exists Σ-invariant Følner

sequences (C ′n) and (D′n) for the actions Γ1 y X and Γ2 y X

respectively such that |C ′n|, |D′n| → ∞, |D
′
n|

|C′
n|
→ 1 and C ′n ∩ Y1 = ∅,

D′n ∩ Y2 = ∅ for all n ∈ N.
(2) Let F, Y1 ⊂ X be finite subsets such that ΣY1 ∩ F = ∅. For all

finite subset Y2 ⊂ X and all w ∈ Z, there exists γ ∈ Z such that
γ|F = w|F and ΣY1 ∩ γ−1(ΣY2) = ∅.

Proof of the claim. — 1. Take C ′n = ΣCn \ ΣY1 and D′n = ΣDn \ ΣY2
and shift the indices if necessary. We leave the details to the reader.

2. Write ΣY1 = tli=1Σxi. Since the set ΣwY1 ∪ ΣwF ∪ ΣY2 is finite and
Σ invariant, we can find l disjoint Σ-orbits Σz1, . . .Σzl in its complement.
Define Y = tli=1ΣxitΣw−1zi. Then, F ⊂ Y c and w(Y ) = tli=1ΣwxitΣzi.
Define γ ∈ S(X) by γ|Y c = w|Y c and,

γ(σxi) = σzi γ(σw−1zi) = σwxi for all σ ∈ Σ, 1 6 i 6 l.

By construction γ ∈ Z and γ|F = w|F . Moreover, γ(ΣY1) ∩ ΣY2 = ∅. �
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End of the proof of Lemma 4.2. — Write Γ1 = ∪↑Fm and Γ2 = ∪↑Gm,
where |Fm|, |Gm| < ∞. Since Γ is generated by Γ1 and Γ2 it follows that
πw is amenable if and only if, for all m > 1 there exists a non-empty finite
set C ⊂ X such that

|πw(g)C∆C|
|C|

= |gC∆C|
|C|

<
1
m
∀g ∈ Fm

and
|πw(h)C∆C|

|C|
= |hw(C)∆w(C)|

|C|
<

1
m
∀h ∈ Gm.

Write V = ∩m>1Vm where

Vm = {w ∈ Z : ∃C ⊂ X, 0 < |C| <∞,

such that
|gC∆C|
|C|

<
1
m

and |hw(C)∆w(C)|
|C|

<
1
m
∀g ∈ Fm, h ∈ Gm}.

Since Vm is open in Z, it suffices to show that Vm is dense in Z. Let w ∈ Z
and F ⊂ X a finite subset. By the first assertion of the claim, we can
assume that (Cn) and (Dn) are Σ-invariant Følner sequences such that
Cn∩F = ∅ and Dn∩w(F ) = ∅ for all n ∈ N. Let N ∈ N large enough such
that

|gCN∆CN |
|CN |

<
1
m
,
|hDN∆DN |
|DN |

<
1

4m,∣∣∣∣1− |DN |
|CN |

∣∣∣∣ < 1
4m for all g ∈ Fm, h ∈ Gm.

By the second assertion of the claim we may and will assume that
CN ∩ w−1(DN ) = ∅. Write CN = tli=1Σxi and DN = tkj=1Σyj . Let
M = Min(l, k) and define Y = tMi=1Σxi t Σw−1yi. Then, one has F ⊂ Y c

and w(Y ) = tMi=1Σwxi t Σyi. Define γ ∈ S(X) by γ|Y c = w|Y c and,

γ(σxi) = σyi γ(σw−1yi) = σwxi for all σ ∈ Σ, 1 6 i 6M.

By construction γ ∈ Z and γ|F = w|F . Moreover,

|γ(CN )∆DN | = | |DN | − |CN | | <
|CN |
4m .

Hence, for all h ∈ Gm, one has,
|hγ(CN )∆γ(CN )| 6 |hγ(CN )∆hDN |+ |hDN∆DN |+ |DN∆γ(CN )|

= 2|γ(CN )∆DN |+ |hDN∆DN |

<
|CN |
2m +

(
1 + 1

4m

)
|hDN∆DN |
|DN |

|CN | <
|CN |
m

.

Defining C = CN , we see that γ ∈ Vm. �
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Proof of Theorem 1.2.2. — Suppose that the triple (Σ,Γ1,Γ2) satisfies
the hypothesis of Theorem 1.2.2 and define Γ = Γ1 ∗Σ Γ2. By Lemma
2.5, for all i ∈ {1, 2}, there exists a faithful action Γ y Yi with infinite
Γi-orbits such that Σ y Yi is free and the action Γi y Yi is amenable.
Moreover, by Example 2.6, Γ y Yi also has infinite Γj-orbits for j 6= i.
Define Y = Y1 t Y2. Then the natural faithful action Γ y Y has infinite
Γi-orbits for i = 1, 2, Σ y Y is free and Γi y Y is amenable for i = 1, 2.
Define X = Y ×N with the faithful Γ-action given by g(y, n) = (gy, n) for
g ∈ Γ and (y, n) ∈ X. View Σ < Γ1,Γ2 < Γ < S(X). It is clear that Σ
acts freely on X. Moreover, by Lemma 2.4, we can find Følner sequences
(Cn) and (Dn) for the actions of Γ1 and Γ2 on X respectively such that
|Cn| → ∞, |Dn| → ∞ and |Dn|

|Cn| → 1. Thus, we can apply Lemmas 4.1
and 4.2 to the actions Γ1,Γ2 y X. Hence, it suffices to show that the
set O = {w ∈ Z : πw is faithful} is a dense Gδ in Z. As in the proof
of Theorem 1.2.1 it is easy to write O as a countable intersection of open
sets. Hence, it suffices to show that O is dense in Z. Let w ∈ Z and
F ⊂ X a finite subset. Write X = ∪↑Xn where Xn = {(x, k) ∈ X :
k 6 n} is infinite globally invariant under Γ. Let N ∈ N large enough
such that ΣF ∪ w(ΣF ) ⊂ XN . Since the sets XN \ ΣF and XN \ w(ΣF )
are infinite and Σ-invariant, there exists a bijection γ0 : XN \ ΣF →
XN \ w(ΣF ) such that γ0σ = σγ0 for all σ ∈ Σ. Define γ ∈ S(X) by
γ|ΣF = w|ΣF , γ|XN\ΣF = γ0 and γ|Xc

N
= id|Xc

N
. By construction, γ ∈ Z

and γ|F = w|F . Moreover, since πγ(g)(y, n) = (gy, n) for all g ∈ Γ and all
(y, n) ∈ X with n > N and because Γ y Y is faithful, it follows that πγ is
faithful. �

Remark 4.3. — The following more general result is actually true.

If, for i = 1, 2, there exists an amenable and faithful action on a countable
set Γi y Yi with infinite orbits and free on Σ then, there exists an amenable,
transitive and faithful action on a countable set Γ y X with the property
that, for all i = 1, 2, for all h ∈ Γi, FixYi

(h) = ∅ implies FixX(h) = ∅.

Indeed, the first replacement by the induced action from Γi to Γ pre-
serves the property that the elements in Γi have an empty fixed point set.
Moreover, Lemma 2.5 and example 2.6 imply that Γi y Yj is free for
i 6= j. Hence, the property to have an empty fixed point set for the actions
Γ1,Γ2 y Y = Y1 t Y2 is preserved. The replacement by the action on
X = Y × N also preserves this property. Since, for all w ∈ Z, πw(g) = g

for all g ∈ Γ1 and FixX(πw(h)) = w−1(FixX(h)) for all h ∈ Γ2, this proves
the remark.
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5. Groups acting on trees in the class A

This section contains the proof of Theorem 1.3. Let G be a graph. We
denote by E(G) its edge set and by V(G) its vertex set. For e ∈ E(G) we
denote by s(e) the source of e and r(e) the range of e.
Let Γ be a countable group acting without inversion on a non-trivial

tree T with finite quotient graph G = T/Γ and finite edge stabilizers. By
[10], the quotient graph G can be equipped with a structure of a graph of
groups (G, {Γp}p∈V(G), {Σe}e∈E(G)) where each Σe is isomorphic to an edge
stabilizer and each Γp is isomorphic to a vertex stabilizer and such that Γ
is the fundamental group of this graph of groups i.e., given a fixed maximal
subtree T ⊂ G, Γ is generated by the groups Γp for p ∈ V(G) and the edges
e ∈ E(G) with the relations

e = e−1, se(x) = ere(x)e−1 , ∀x ∈ Σe and e = 1 ∀e ∈ E(T ),

where se : Σe → Γs(e) and re : Σe → Γr(e) are respectively the source and
range group homomorphisms. We will prove the following stronger version
of Theorem 1.3 by induction on n = 1

2 |E(G)| > 1.

Theorem 5.1. — Suppose that, for all p ∈ V(G), there exists an ame-
nable and faithful action on a countable set Γp y Xp with infinite orbits
and free on se(Σe) for all e ∈ E(G) such that s(e) = p. Then, there exists
an amenable, faithful and transitive action on a countable set Γ y X such
that, for all p ∈ V(G) and all h ∈ Γp, FixXp

(h) = ∅ implies FixX(h) = ∅.

Proof. — If n = 1 then Γ is either an amalgamated free product Γ =
Γ1 ∗Σ Γ2 where (Σ,Γ1,Γ2) satisfies the hypothesis of Theorem 1.2.2 or an
HNN-extension Γ = HNN(H,Σ, θ) where (H,Σ, θ) satisfies the hypothesis
of Theorem 1.2.1. In the amalgamated free product case we use Remark
4.3 and in the HNN-extension case we use Remark 3.3 to obtain that Γ
satisfies the conclusion of the theorem. Let n > 1 and suppose that the
conclusion holds for all 1 6 k 6 n. Suppose that 1

2 |E(G)| = n + 1. Let
e ∈ E(G) and let G′ be the graph obtained from G by removing the edges
e and e.

Case 1: G′ is connected. It follows from Bass-Serre theory that Γ =
HNN(H,Σ, θ) where H is the fundamental group of our graph of groups
restricted to G′, Σ = re(Σe) < H and θ : Σ→ H is given by θ = se ◦ r−1

e .
By the induction hypothesis and Remark 3.3 it follows that Γ satisfies the
conclusion of the theorem.

Case 2: G′ is not connected. Let G1 and G2 be the two connected
components of G′ such that s(e) ∈ V(G1) and r(e) ∈ V(G2). Bass-Serre
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theory implies that Γ = Γ1 ∗Σ Γ2, where Γi is the fundamental group of
our graph of groups restricted to Gi, i = 1, 2, and Σ = Σe is viewed as a
subgroup of Γ1 via the map se and as a subgroup of Γ2 via the map re. By
the induction hypothesis and Remark 4.3, Γ satisfies the conclusion of the
theorem. �

The proof of Theorem 1.3 follows from Theorem 5.1 and Lemma 2.3 since
an almost free action on an infinite set is faithful.
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