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THE BRIANÇON-SKODA NUMBER OF ANALYTIC
IRREDUCIBLE PLANAR CURVES

by Jacob SZNAJDMAN

Abstract. — The Briançon-Skoda number of a ring R is defined as the small-
est integer k, such that for any ideal I ⊂ R and l > 1, the integral closure of Ik+l−1

is contained in Il. We compute the Briançon-Skoda number of the local ring of any
analytic irreducible planar curve in terms of its Puiseux characteristics. It turns
out that this number is closely related to the Milnor number.
Résumé. — Le nombre de Briançon-Skoda d’un anneau R est défini comme

le plus petit entier k, tel que pour tout idéal I ⊂ R et l > 1, la clôture intégrale
de Ik+l−1 est contenu dans Il. Nous calculons le nombre de Briançon-Skoda de
l’anneau local d’une courbe analytique plane et irréductible en fonction de ses
exposants caractéristiques de Puiseux. Il s’avère que ce nombre est étroitement lié
au nombre de Milnor.

Acknowledgements. I would like to thank Jan Stevens for pointing out
the alternative approach to Theorem 1.1 mentioned in Remark 2.6. I also
thank the anonymous referee for carefully reading the manuscript and for
valuable comments.

1. Introduction

The Briançon-Skoda theorem is a famous theorem in commutative alge-
bra. It was first proven in 1974 by Joël Briançon and Henri Skoda [18]. In
the original setting, the theorem dealt with the ring of germs of holomor-
phic functions at 0 ∈ Cn, but other rings have been studied as well.

Given a ring R, one defines the integral closure of an ideal I ⊂ R as

(1.1) I = {φ ∈ R : ∃(N > 1, bj ∈ Ij) φN + b1φ
N−1 + · · ·+ bN = 0}.

We are interested in integers k such that the inclusion Ik+l−1 ⊂ I l holds
for any ideal I ⊂ R and l > 1. We will denote the smallest such integer k

Keywords: Briançon-Skoda theorem, Puiseux pairs, Milnor number, residue currents.
Math. classification: 14H20, 32B10.



178 Jacob SZNAJDMAN

by bs(R). If no such integer exists, we say that bs(R) = ∞. Huneke, [9],
proved that bs(R) < ∞, given some fairly mild assumptions on R. It is
desirable to express bs(R) in terms of invariants of (the singularity of) R.

In the case R is the local ring OZ,z of an analytic variety Z at some point
z, Huneke’s result was later proven analytically in [3]. In this setting,

(1.2) I = {φ ∈ OZ,z : ∃K > 0 |φ| 6 K|I| on Z},

where |I| = |a1| + · · · + |am|, and aj generate I. A proof of (1.2) is found
in [13]. We shall prefer the alternative definition of the Briançon-Skoda
number as the smallest integer k such that, for all φ ∈ OZ,z and all ideals
I ⊂ OZ,z,

(1.3) |φ| . |I|k+l−1 on Z

implies that φ ∈ I l.
In the original setting, that is, R = OCn,0, the Briançon-Skoda theorem

states that bs(OCn,0) = n. The subject of this paper is the case when R

is the local ring at 0 of an irreducible analytic curve C in C2. Our main
result is a formula that expresses bs(C) := bs(OC,0) in terms of the Puiseux
characteristics of C at 0.

Let m be the multiplicity of the curve C at the origin. Recall that m = 1
if and only if the curve is smooth near 0. Note that bs(C) = 1 if and only if
C is smooth; if bs(C) = 1, then every weakly holomorphic on C is strongly
holomorphic, so C is normal, and therefore smooth. The same steps applied
backwards give that bs(C) = 1 whenever C is smooth.
When dimZ > 1, one may ask if Z is regular if and only if bs(Z) = dimZ.

We do not know the answer to this question. However, it is known that there
are rings with mild singularities so that bs(R) = dimR, for example, the
class of pseudo-rational rings, see [14].
According to Puiseux’s theorem, for a suitable choice of coordinates, the

curve is locally parametrized by the normalization Π : ∆ ⊂ C → C, given
by (z, w) = Π(t) = (tm, g(t)), for some analytic function g(t) =

∑
k>m ckt

k.
Puiseux’s theorem is proven analytically in [20], Chapter 1, Section 10, and
algebraically in [12].
Set e0 = m and define inductively

(1.4) βj = min{k ∈ N : ck 6= 0, ej−1 - k}

and
ej = gcd(ej−1, βj) = gcd(m,β1, β2, . . . , βj).

The construction stops when, for some integer M , one has eM = 1. These
numbers are known as the Puiseux characteristics of the curve. Since ck = 0
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for k < m, one has βj > m. It is not hard to see that β• is strictly increasing
and e• is strictly decreasing. Thus βj > β1 > m.
Recall that dxe is the ceiling function applied to x, that is, the smallest

integer n such that n > x.

Theorem 1.1. — For any germ of an analytic irreducible planar curve
C, one has

bs(C) =
⌈

1
m

(
1 +

M∑
i=1

(ei−1 − ei)βi
)⌉
.

We see from this formula and the comments above that indeed bs(C) = 1
if and only if C is smooth. By Remark 10.10 in [15], this formula can be
rewritten as

bs(C) =
⌈

1 + µ

m

⌉
,

where µ is the Milnor number of the germ C.

2. Analytic formulation of the Briançon-Skoda problem

Any ideal I = (a1, . . . , am) ⊂ OC,0 has a reduction, that is, an ideal
J ⊂ I such that |J | ' |I|, and J = (a) is generated by dimC = 1 element.
This is not hard to see. Indeed, if Π : C→ C is the normalization of C, we
see that |a| ' |I| holds if and only if

|Π∗a| . |Π∗a1|+ · · ·+ |Π∗am|.

Clearly |Π∗a1| + · · · + |Π∗am| ' |Π∗aj |, where j is an index such that the
vanishing order of Π∗aj at 0 is minimal. Thus J is a reduction of I if we
take a = aj . For the purposes of finding bs(C), we can replace I by its
reduction J . We henceforth set I = (a).
A (germ of a) meromorphic form on C is defined as a meromorphic form

on Creg which is the pull-back of a meromorphic form near 0 ∈ C2 with
respect to the inclusion map i : C → C2. A weakly holomorphic function
on C is a holomorphic function on Creg that is locally bounded on C. Any
weakly holomorphic function is meromorphic.
The following lemma gives an alternative characterization of the number

bs(C).

Lemma 2.1. — The Briançon-Skoda number bs(C) is the smallest inte-
ger k > 1, such that if we are given any a ∈ OC,0 with a(0) = 0, and any
weakly holomorphic function ψ, then

(2.1) |ψ| . |a|k−1 on C,

TOME 64 (2014), FASCICULE 1



180 Jacob SZNAJDMAN

implies that ψ is strongly holomorphic.

Proof. — Assume that k is any integer that satisfies the property given
in the lemma. Take any non-trivial ideal (a) ⊂ OC,0 and a function φ so
that |φ| . |a|k+l−1. Then ψ = φ/al is meromorphic and, satisfies (2.1). In
particular, ψ is weakly holomorphic. By our assumption on k, ψ is strongly
holomorphic, so φ ∈ (a)l. We have thus shown that bs(C) 6 k.
Let K be the smallest integer k with the property given in the lemma. It

remains to show that bs(C) > K. There is a weakly holomorphic but not
holomorphic function ψ such that |ψ| . |a|K−2 for some holomorphic non-
unit a. Thus |aψ| . |a|K−1 which implies that φ := aψ is holomorphic. Note
that φ does not belong to (a). Since |φ| . |a|K−1, we obtain bs(C) > K. �
We need some preliminaries before stating a criterion for when a weakly

holomorphic function is strongly holomorphic. A (p, q)-current T on C is
a current acting on (1 − p, 1 − q)-forms in the ambient space, with the
additional requirement that T.ξ = 0 whenever i∗ξ = 0 on Creg. The ∂-
operator is defined as usual by ∂T.ξ = (−1)p+q+1T.∂ξ, where ξ is a test
form. If i∗ξ = 0 on Creg, then i∗∂ξ = ∂i∗ξ = 0 on Creg. Thus ∂T is a
(p, q + 1)-current on C. Any meromorphic (p, q)-form η on C can be seen
as a (p, q)-current on C which acts by

η.ξ =
∫
C

η ∧ ξ :=
∫
C

Π∗(η ∧ ξ),

where the right-most side is a principal value integral of a meromorphic
form in one variable.
According to Weierstrass preparation theorem, for an appropriate choice

of coordinates, we may assume that C is the zero locus of a Weierstrass
polynomial P (z, w) = wm+ b1(z)wm−1 + · · ·+ bm(z), where m was defined
as the multiplicity of C at 0. Let ω′ be any meromorphic form acting on
the tangent space of C2, but defined on C, such that

(2.2) dP ∧ ω′ = dz ∧ dw.

Then ω = i∗ω′ is a well-defined meromorphic form on C. We choose the
representative

(2.3) ω′ = − 1
P ′w

dz

for ω; this shows that (2.2) can be satisfied. Theorem 2.2 below is a re-
formulation of a result by A. Tsikh, [19]. Tsikh’s proof, which is given in
Section 3, relies on residue theory in two variables, and implicitly, therefore
also Hironaka resolutions. We are not aware of any elementary proof.

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.2. — Let ψ be any meromorphic function on C. Then ψ is
strongly holomorphic if and only if ψω is ∂-closed.

Remark 2.3. — The form ω generates all ∂-closed meromorphic (1, 0)-
forms on C. In fact, let ξ be any meromorphic (1, 0)-form on C. Then there
is a meromorphic function α such that ξ = αω. Hence, if ∂ξ = 0, we have
that αω is ∂-closed, so by Theorem 2.2, α ∈ OC,0.

Lemma 2.4. — The Briançon-Skoda number is given by the identity

(2.4) bs(C) =
⌈
(1 + ord0(Π∗P ′w))/m

⌉
.

Proof. — Let k be the right hand side of (2.4). We will first show that
bs(C) 6 k. Assume that ψ is weakly holomorphic on C and satisfies (2.1).
According to Lemma 2.1, it suffices to show that ψ is strongly holomorphic.
Using Π(t) = (tm, g(t)) and (2.1), we see that

(2.5) − ψω.∂η =
∫
C

ψ

P ′w
dz ∧ ∂η =

∫
C

h(t)t(k−1) ord0(Π∗a)

tord0(Π∗P ′w) d(tm) ∧ ∂(Π∗η),

where h is holomorphic in t and η ∈ C∞0 (C2, 0) is an arbitrary test function.
In view of Theorem 2.2, we would like to show that ψω.∂η = 0, because
then ψ is holomorphic. The last integral in equation (2.5) vanishes if

(2.6) (k − 1) ord0(Π∗a) > ord0(Π∗P ′w)− (m− 1),

since then the integrand is the product of a holomorphic function and a
∂-exact form with compact support. Clearly the worst case in (2.6) occurs
when ord0(Π∗a) is minimal. Since ord0(g(t)) > m, the minimal value is
ord0(Π∗a) = m, which is attained for example when a = z. By the definition
of k, we see that (2.6) holds with equality in the worst case.
We will now show that bs(C) > k. Let Q = (1+ord0(Π∗P ′w))/m, so that

k = dQe. Then

|Π∗P ′w| ' |t|ord0(Π∗P ′w) = |Π∗z|ord0(Π∗P ′w)/m = |Π∗z|Q−1/m,

and thus |P ′w| ' |z|Q−1/m. Let us check that P ′w /∈ (z), that is, that P ′w/z /∈
OC,0. If m = 1, then bs(C) = 1 and we have nothing to prove, so assume
that m > 1. Recall that e0 > e1, so we have

ord0(Π∗P ′w) > β1 > m = ord0(Π∗z).

Thus ψ := P ′w/z is weakly holomorphic on C. If ξ is a test function on C
such that ξ(0) 6= 0, then∫

C

ψω ∧ ∂ξ = −
∫
C

dz

z
∧ ∂ξ = −m

∫
C

dt

t
∧ ∂Π∗ξ = −2mπiξ(0) 6= 0.

TOME 64 (2014), FASCICULE 1



182 Jacob SZNAJDMAN

Theorem 2.2 now gives that ψ is not strongly holomorphic on C. Thus
bs(C) > Q− 1/m. Since Q ∈ 1/m · Z, bs(C) = dQe as claimed. �

Remark 2.5. — One may wish to remove the restriction on the Briançon-
Skoda number that it has to be an integer. It is then natural to consider

(2.7) κ := inf{k ∈ R : |ψ| . |a|k−1 =⇒ ψ ∈ OC,0},

where the implication is assumed to hold for all weakly holomorphic func-
tions ψ on C and all a ∈ OC,0 that are not invertible. The argument
below yields that the set in the right hand side of (2.7) is open. We claim
that κ = Q − 1/m. This can be seen as follows. Note that the same in-
fimum is attained in (2.7) if we assume that a = z (or more generally
that ord0(Π∗a) = m). The example ψ = P ′w/z which we considered before,
shows that κ cannot be smaller than Q − 1/m. If k = Q − 1/m + ε and
|ψ| . |a|k−1, then ord0(Π∗ψ) > m(k − 1). Hence

ord0(Π∗ψ) > m(k − 1) + 1 = m(Q− 1) = ord0(Π∗P ′w)− (m− 1),

but then the first half of the proof of Lemma 2.4 shows that ψ ∈ OC,0. We
conclude that k = Q− 1/m+ ε is a candidate for the infimum in (2.7), so
κ 6 Q− 1/m since ε is arbitrary.

In Section 4 we express ord0(Π∗P ′w) in terms of Puiseux’s invariants in
Lemma 4.1. Together with Lemma 2.4, this yields Theorem 1.1.

Remark 2.6 (Outline of alternative proof of Theorem 1.1). — Note that
(2.1) is equivalent to

ord0(Π∗ψ) > (k − 1) ord0(Π∗a).

Furthermore, one can assume that ord0(Π∗a) = m since this is the worst
case. The integer in the lemma is therefore

min{k : ∀ψ ∈ ÕC,0 ord0(Π∗ψ) > (k − 1)m =⇒ ψ ∈ OC,0} =

min{k : ∀ψ ∈ ÕC,0 \ OC,0 ord0(Π∗ψ) < (k − 1)m},(2.8)

where ÕC,0 is the set of weakly holomorphic functions on C. The maximal
value of ord0(Π∗ψ) given that ψ ∈ ÕC,0 \ OC,0 is c − 1, where c is the
conductor number of the curve. We conclude by Lemma 2.1 and (2.8) that
bs(C) is the smallest integer that is strictly larger than c/m+1−1/m, which
is the same as d1+c/me. Gorenstein [7] and Samuel [17] (see Kodaira [11, 10]
for corresponding result in the analytic setting) prove that c = 2δ, where
δ is a well-known invariant in singularity theory. Finally, by Theorem 10.5
in [15], µ = 2δ.

ANNALES DE L’INSTITUT FOURIER
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3. Proof of Theorem 2.2

One can define the principal value current 1/P as follows: Let χ be a
smooth cut-off function such that χ ≡ 0 on some interval [0, δ] and χ ≡ 1
on [1,∞). For any full-degree test form ξ, one defines

(3.1)
∫
Cn

1
P
ξ = lim

ε→0

∫
Cn

χ(|P |/ε) ξ
P
.

The existence of such principal values was proved in [8], although with a
slightly different definition; however (3.1) is just an avarage of principal
values in the sense of Herrera-Lieberman. We now apply the ∂-operator in
the sense of currents to obtain ∂(1/P ).
Let ψ be a meromorphic function on C and let Ψ = Ψ1/Ψ2 be a repre-

sentative in the ambient space such that Ψ1 and Ψ2 are relatively prime.
Then ψ∂(1/P ) can be defined as

(3.2) lim
ε→0

Ψ1
χ(|Ψ2|/ε)

Ψ2
∂

1
P
.

It is not obvious that (3.2) is a valid definition, that is, that the limits exist
and does not depend on the choice of χ, nor on the representative Ψ of ψ;
see e.g. Theorem 1 in [5] and the comments that follow it.
We now formulate (for the special case of hypersurfaces) a criterion which

is due to Tsikh, [19]. A generalized version of this criterion can be found in
[1], cf. Remark 3.2.

Theorem 3.1. — Let ψ be any meromorphic function on C. Then ψ is
strongly holomorphic if and only if ψ∂(1/P ) is ∂-closed.

Proof. — Assume that ψ∂(1/P ) is ∂-closed and write ψ = g/h for some
functions g, h ∈ OC2,0. By basic rules for Coleff-Herrera products, which
can be deduced for example from Theorem 1 in [5], we have

g∂
1
h
∧ ∂ 1

P
= ∂(ψ∂ 1

P
) = 0.

By the duality theorem, [16], [6], it follows that g ∈ (h, P ), so g−αh ∈ (P )
for some α ∈ OC2,0. Thus ψ = α on C. The converse is immediate. �

Remark 3.2. — More generally, if f = (f1, . . . , fp) defines a complete
intersection and ψ is a meromorphic function on Z = Z(f), then Tsikh’s
result states that ψ is strongly holomorphic if and only if ψ

[
∂(1/f1)∧ . . .∧

∂(1/fp)
]
is ∂-closed, where the current in square brackets in the Coleff-

Herrera product. The generalization by Andersson [1] to arbitrary Z is an
analogous criterion on ψRZ , where RZ is the Andersson-Wulcan current,

TOME 64 (2014), FASCICULE 1
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[4], associated to Z. If Z is a complete intersection, then RZ coincides with
the Coleff-Herrera product.

The form ω is by definition Leray’s residue form of dz∧dw/P , and Leray’s
residue formula states that∫

C

ω ∧ ξ = 1
2πi

∫
∂

1
P
∧ dz ∧ dw ∧ ξ

for any (0, 1)-test form ξ. It follows from this formula that ψω is ∂-closed
if and only if ψ∂(1/P ) is ∂-closed. Therefore, Theorem 2.2 follows from
Theorem 3.1.

Remark 3.3. — Andersson and Samuelsson [2] construct an intrinsic
form ω on Z – the the structure form. The structure form of the plane
curve C is (up to a non-vanishing holomorphic factor) precisely ω = dz/P ′w
as above. Theorem 2.2 also has a generalized counterpart; in the complete
intersection case it is given simply by replacing C by Z and interpreting ω
as the structure form on Z. For the general case see [2], equation (i)’.

4. The singularity of Leray’s residue form

In this section, we will prove Lemma 4.1 below, and thereby finish the
proof of Theorem 1.1. Previously we have chosen the coordinates (z, w) in
C2, so that C is the zero locus of an irreducible Weierstrass polynomial

P (z, w) = wm + a1(z)wm−1 + · · ·+ am(z).

Lemma 4.1. — The vanishing order of Π∗P ′w at 0 is

(4.1)
M∑
l=1

(el−1 − el)βl.

Proof. — For any (small) z 6= 0, let αj(z), 1 6 j 6 m, be the roots of
w 7→ P (z, w); then P =

∏m
j=1(w − αj(z)). It is well-known that the αj(z)

are holomorphic on some sufficiently small neighbourhood V of z. Recall
that Π(t) = (tm, g(t)), where g(t) =

∑
k>m ckt

k. Choose t such that tm = z,
and let ρ be a primitive m:th root of unity. Then Π maps {t, ρt, . . . , ρm−1t}
bijectively onto the fibre ({z}×Cw)∩C. Thus {g(ρjt) : 1 6 j 6 m} are the
roots of w 7→ P (z, w). After possibly possibly renumbering the m roots, we
get g(ρjt) = αj(tm).
We claim that

(4.2) Π∗P ′w =
m−1∏
j=1

(g(t)− g(ρjt)).

ANNALES DE L’INSTITUT FOURIER
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Since we are asserting the identity of two holomorphic functions, it is
enough to prove equality locally outside of {t = 0}. We have

P ′w =
m∑
l=1

∏
16j6m, j 6=l

(w − αj(z)),

so

Π∗P ′w =
m∑
l=1

∏
16j6m, j 6=l

(g(t)− αj(tm)) =
∏

16j6m−1
(g(t)− g(ρjt)).

Since g(t) =
∞∑
k=m

ckt
k, we have that

(4.3) g(t)− g(ρjt) =
∞∑
k=m

ck(1− ρkj)tk.

Let k∗j = ord0(g(t)− g(ρjt)). Then by (4.3),

k∗j = min{k : ck 6= 0, (1− ρkj) 6= 0}(4.4)
= min{k : ck 6= 0,m - kj}.

We also consider the number

r(j) = min{l : m - jβl},

for each 1 6 j 6 m− 1. The sequence β1, β2, . . . , βM is strictly increasing,
so

(4.5) m | jβl for all l < r(j),

and

(4.6) m - jβr(j).

Since jel = gcd(jm, jβ1, . . . , jβl), the statements (4.5) and (4.6) together
imply

(4.7) m | jel if and only if l < r(j).

Now note that k∗j 6 βr(j). We claim that, in fact, k∗j = βr(j). Assume to
the contrary that k∗j < βr(j). Then er(j)−1 | k∗j by (1.4), so we have

jer(j)−1 | jk∗j .

Together with (4.7), this gives m | jk∗j , contradicting the definition of k∗j .

TOME 64 (2014), FASCICULE 1
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By (4.2), we have

ord0(Π∗P ′w) =
m−1∑
j=1

ord0(g(t)− g(ρjt))(4.8)

=
m−1∑
j=1

k∗j =
M∑
l=1

#{j : k∗j = βl}βl,

where the last equality follows since k∗j = βr(j).
Using that k∗j =βr(j) and the strict monotonicity of the sequence β1,β2,...,

we see that k∗j > βl is equivalent to r(j) > l. Thus (4.7) gives that

#{j : k∗j > βl} = #{j ∈ [1,m− 1] : m | jel−1}

= #{ m

el−1
, 2 m

el−1
, . . . , (el−1 − 1) m

el−1
} = el−1 − 1.

Clearly, #{j : k∗j = βl} = #{j : k∗j > βl}−#{j : k∗j > βl+1} = el−1−el. We
substitute this into (4.8), and thereby obtain the desired formula (4.1). �

Remark 4.2. — Recall that ω = −i∗[(P ′w)−1dz], where i is the inclusion
of C \{0} into C2. It follows from Lemma 4.1 and Remark 10.10 in Milnor’s
book [15] that Π∗ω = u(t)t−µdt, where u is holomorphic and non-vanishing
and µ is the Milnor number of C. By Remark 2.3, we then have that the
maximal singularity of any ∂-closed (1, 0)-form on C is precisely the Milnor
number.
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