
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Behrouz TAJI

Birational positivity in dimension 4
Tome 64, no 1 (2014), p. 203-216.

<http://aif.cedram.org/item?id=AIF_2014__64_1_203_0>

© Association des Annales de l’institut Fourier, 2014, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie de cet article sous quelque forme que
ce soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2014__64_1_203_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
64, 1 (2014) 203-216

BIRATIONAL POSITIVITY IN DIMENSION 4

by Behrouz TAJI

With an appendix by Frédéric CAMPANA

Abstract. — In this paper we prove that for a nonsingular projective variety
of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira
dimension of coherent subsheaves of Ωp is bounded from above by the Kodaira
dimension of the variety. This implies the finiteness of the fundamental group
for such an X provided that X has vanishing Kodaira dimension and non-trivial
holomorphic Euler characteristic.
Résumé. — Dans cet article, nous montrons que pour une variété projective

lisse, X, de dimension au plus 4 et de dimension de Kodaira non négative, la dimen-
sion de Kodaira des sous-faisceaux cohérents de Ωp est majorée par la dimension
de Kodaira de X. Cela implique la finitude du groupe fondamental de X lorsque
la dimension de Kodaira de X est nulle et sa caractéristique holomorphe d’Euler
est non nulle.

1. Introduction

It is a classical result of Bogomolov known as Bogomolov-De Franchis-
Castelnuovo inequality that for projective varieties, Kodaira dimension of
rank one subsheaves of Ωp is bounded form above by p. In [3] Campana has
proved that assuming some standard conjectures for non-uniruled varieties,
the Kodaira dimension of such subsheaves admits another upper bound,
namely the Kodaira dimension of the variety (see Theorem 1.3).
Throughout this paper we will refer to the conjectures of the minimal

model program. See [11] for the basic definitions and background. Here we
will only state the ones that we need.

Keywords: Kodaira dimension, varieties of Kodaira dimension zero, minimal model
theory.
Math. classification: 14J35, 14E30.
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Conjecture 1.1 (The minimal model conjecture for nonsingular varie-
ties). — Let X be a nonsingular projective variety over Z. If KX is pseudo-
effective/ Z, then X/Z has a minimal model. Otherwise it has a Mori fiber
space/ Z.

Remember that by KX pseudo-effective/Z, we mean KX can be realized
as limit of effective divisors in the relative Neron-Severi space N1(X/Z).

Conjecture 1.2 (The abundance conjecture for minimal models with
terminal singularities). — Let X/Z be a normal projective variety with
terminal singularities and Q-Cartier canonical divisor . If KX is nef/ Z

then it is semi-ample/ Z, i.e., it is pull back of a divisor that is ample/Z.

These two conjectures put together is sometimes referred to as the good
minimal model conjecture.

For nonsingular projective varieties, Campana has introduced in [3] a
new and a more general notion of Kodaira dimension defined by

κ+(X) := max
{
κ
(
det F

) ∣∣F is a coherent subsheaf of ΩpX , for some p
}

and conjectured that κ = κ+ when κ > 0. He proves that the conjectured
equality holds assuming the good minimal model conjecture:

Theorem 1.3 (Equality of κ and κ+ when κ > 0, cf. [3, Prop. 3.10]).
Let X be a nonsingular projective variety in dimension n with non-negative
Kodaira dimension. If the good minimal model conjecture holds for nonsin-
gular projective varieties of dimension up to n and with vanishing Kodaira
dimension, then κ(X) = κ+(X).

This in particular refines Bogomolov’s inequality when the Kodaira di-
mension is relatively small, for example when κ(X) = 0 and L ⊆ ΩpX , then
κ(L) 6 0.
Note that when c1 = 0 then we have κ = κ+ by Bochner’s vanishing

coupled with Yau’s solution [15] to the Calabi’s conjecture.
By Theorem 1.3, κ(X) and κ+(X) coincide for non-uniruled threefolds

as a consequence of the minimal model program or MMP for short (see for
example [9]). We prove Campana’s conjecture in dimension four and for
varieties with positive Kodaira dimension in dimension five:

Theorem 1.4. — Let X be a nonsingular projective variety.
(i) If dimension of X is at most 4 and κ(X) > 0, then κ = κ+.
(ii) If dimension of X is 5 and κ(X) > 1, then κ = κ+.

Furthermore one can show that the cotangent bundle of such varieties is
birationally stable (see the appendix A).
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BIRATIONAL POSITIVITY 205

Theorem 1.4 is a consequence of a much more general result that we
obtain in this paper:

Theorem 1.5. — Let X be a nonsingular projective variety of dimen-
sion n. Assume that the good minimal model conjecture holds for terminal
projective varieties with zero Kodaira dimension up to dimension n −m,
where m > 0. If κ(X) > m− 1 then κ = κ+.

An important corollary of 1.4 is the finiteness of the fundamental group
of 4-dimensional varieties with vanishing Kodaira dimension and non-zero
holomorphic Euler characteristic (see 1.7 below) which follows from a re-
markable result of Campana:

Theorem 1.6 (Finiteness of the fundamental groups, cf. [3, Cor. 5.3]).
Let X be a nonsingular projective variety. If κ+(X) = 0 and χ(X,OX) 6= 0,
then π1(X) is finite.

Theorem 1.7. — Let X be a nonsingular projective variety of dimen-
sion at most 4. Assume κ(X) = 0 and χ(X,OX) 6= 0, then π1(X) is finite.

Acknowledgements. The author would like to thank his advisor S. Lu
for his advice, guidance and constant support. A special thanks is owed
to F. Campana for his suggestions and encouragements. The author also
wishes to express his gratitude to the anonymous referee for the insightful
comments.

2. Generic semi-positivity and pseuodo-effectivity

Let X be a non-uniruled nonsingular projective variety. It is a well known
result of Miyaoka, cf. [12, 13] that ΩX is generically semi-positive. This
means that the determinant line bundle of any torsion free quotient of ΩX
has non-negative degree on curves cut out by sufficiently ample divisors.
Equivalently we can characterize this important positivity result by saying
that ΩX restricted to these general curves is nef unless X is uniruled. This
property is sometimes called generic nefness. Since nefness is invariant un-
der taking symmetric powers this result automatically generalizes to ΩpX .
Using the same characteristic p arguments as Miyaoka and some deep re-
sults in differential geometry, Campana and Peternell have shown that in
fact such a determinant line bundle is dual to the cone of moving curves,
i.e., its restriction to these curves has non-negative degree. By [1] this is
the same as saying that it is pse udo-effective.

TOME 64 (2014), FASCICULE 1
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Theorem 2.1 (Pseudo-effectivity of quotients of ΩpX , cf. [6, Thm. 1.7]).
Let X be a non-uniruled nonsingular projective variety and let F be an
OX - module torsion free quotient of ΩpX . Then det F is a pseudo-effective
line bundle.

3. The refined Kodaira dimension

In this section we will use more or less the same ideas as Cascini [7]
to show that κ and κ+ coincide for nonsingular projective varieties of di-
mension four with non-negative Kodaira dimension and also for varieties of
dimension five with positive Kodaira dimension. The following proposition
is a result of Campana, cf. [3]. We include a proof for completeness.

Proposition 3.1. — Let X be a nonsingular projective variety with
κ(X) = 0. If X has a good minimal model then κ = κ+.

Proof. — Let Y be a Q-factorial normal variety with at worst terminal
singularities serving as a good minimal model for X. Note that KY is
numerically trivial. Let π : Ỹ → Y be a resolution. Since κ(Ỹ ) = 0, Ỹ is
not uniruled. Let F ⊆ Ωp

Ỹ
be a coherent subsheaf with maximum Kodaira

dimension, i.e., κ(det F ) = κ+(Ỹ ).
Let C be an irreducible curve on Y cut out by sufficiently general hy-

perplanes and let C̃ to be the corresponding curve in Ỹ . Now using the
standard isomorphism: Ωp

Ỹ
|
C̃
∼= K

Ỹ
|
C̃
⊗∧n−pT

Ỹ
|
C̃
, we get F ∗|

C̃
as a quo-

tient of K∗
Ỹ
|
C̃
⊗ Ωn−p

Ỹ
|
C̃
. But K∗

Ỹ
is numerically trivial on C̃ and Ωn−p

Ỹ
|
C̃

is nef by Miyaoka, so F ∗|
C̃

must also be nef and we have

deg(det F |
C̃

) 6 0.

But this inequality holds for a covering family of curves and thus κ(F ) 6 0.
ay from these divisors, so they must coincide everywhere and hence they
are proportional everywhere. �

As was mentioned in the introduction (Theorem 1.3), assuming the good
Minimal Model conjecture for varieties up to dimension n and with zero
Kodaira dimension, we have κ = κ+ in the case of n-dimensional varieties
of positive Kodaira dimension as well. See [3, Prop. 3.10] for a proof. The
main result of this paper is concerned with replacing this assumption with
the abundance conjecture in lower dimensions.

Remark 3.2. — Following the recent developments in the minimal model
program, we now know that we have a good minimal model when numeri-
cal Kodaira dimension is zero. The Proposition 3.1 shows that κ+(X) also
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vanishes in this case. By [3] this implies in particular that nonsingular va-
rieties with vanishing numerical dimension have finite fundamental groups
as long as they have non-trivial holomorphic Euler characteristic (see 1.6).

We will need the following lemmas in the course of the proof of our main
result.

Lemma 3.3. — Let f : X → Z be a surjective morphism with connected
fibers between normal projective varieties X and Z. Let D be an effective
Q-Cartier divisor in X that is numerically trivial on the general fiber of f .
If D is f -nef, then there exist biratioanl morphisms π : Z̃ → Z, µ : X̃ → X,
a Q-Cartier divisor G in Z̃, and an equidimensional morphism f̃ : X̃ → Z̃

such that µ∗(D) = f̃∗(G).

Proof. — The fact that we can modify the base of our fibration to get
a morphism whose fibers are of constant dimension is guaranteed by [14].
This is called flattening of f . Let X̃ be a normal birational model of X and
Z̃ a smooth birational model for Z such that f̃ : X̃ → Z̃ is flat.
If general fibers are curves, by assumption the degree of µ∗(D) on general

fibers of f̃ is zero. On the other hand µ∗(D) is effective and relatively nef,
so it must be trivial on all fibers. This implies the existence of the required
Q-Cartier divisor G in Z̃.

In the case of higher dimensional fibers, µ∗(D) must still be numerically
trivial on all fibers of f̃ . To see this, let C be an irreducible curve contained
in a d-dimensional non-general fiber F̃0 of f̃ . Then for a sufficiently general
members Di of the linear system of an ample divisor H, we have

D1...Dd−1.F̃0 = mC + C ′,

where C ′ is an effective curve and m accounts for the multiplicity of the
irreducible component of F0 containing C. Now since µ∗(D) is numerically
trivial on the general fiber of f̃ , we have

µ∗D.(mC + C ′) = 0.

But µ∗(D) is f̃ -nef, so that µ∗(D).C = 0.
We know that µ∗(D) is effective, so µ∗(D) must be trivial on all fibers.

Again this ensures the existence of a Q-Cartier divisor G in Z̃ such that
µ∗(D) = f̃∗(G). �

In the course of the proof of Lemma 3.3 we repeatedly used the standard
fact that given a surjective morphism f : X → Z between normal varieties
X and Z, where Z is Q-factorial, and an effective Q-Cartier divisor D
that is trivial on all fibers, we can always find a Q-Carier divisor G in

TOME 64 (2014), FASCICULE 1
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Z such that D = f∗(G). One can verify this by reducing it to the case
where X is a surface and Z is a curve. Here the negative semi-definiteness
of the intersection matrix of the irreducible components of singular fibers
establishes the claim.
For application a natural setting for Lemma 3.3 is the relative minimal

model program. The following is a reformulation of this lemma in this
context.

Lemma 3.4. — Let f : X → Z be a surjective morphism with connected
fibers between nonsingular projective varieties X and Z with dimension n
and m respectively. Assume κ(X) > 0 and that X/Z has a minimal model
model Y/Z. Denote the morphism between Y and Z by ψ. Also assume
that the abundance conjecture for varieties of vanishing Kodaira dimension
holds in dimension n−m. If the Kodaira dimension of the general fiber of
f is zero, then there exist birational morphisms π : Z̃ → Z, µ : Ỹ → Y ,
a Q-Cartier divisor G in Z̃, and an equidimensional morphism ψ̃ : Ỹ → Z̃

such that µ∗(KY ) = ψ̃∗(G).

X //

��>
>>

>>
>>

> Y

ψ

��

Ỹ
µoo

ψ̃

��
Z Z̃π

oo

Proof. — Since KY is ψ-nef and that the dimension of the general fibers
is n −m, we find that the canonical of the general fiber is torsion by the
abundance assumption. Now apply Lemma 3.3 to ψ : Y → Z and take KY

to be D. �

We now turn to another crucial ingredient that we shall use in the Proof
of 3.7.

Lemma 3.5. — Let f : X → Z be a surjective morphism with connected
fibers between normal projective varieties X and Z of dimension n and k
respectively. Let D be a Q-Cartier divisor in Z. If f∗D is dual to the cone
of moving curves then so is D.

Proof. — First assume that f is birational. Let C be a moving curve in Z
and let µ : Z̃ → Z, be a birational morphism such that µ∗(C̃) = C, where
C̃ is a complete intersection curve cut out by hyperplanes. Let π : X̃ → X

be a suitable modification such that f̃ : X̃ → Z̃ is a morphism and we have
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the following commutative diagram.

X̃
f̃ //

π

��

Z̃

µ

��
X

f // Z

Now let C̃ = H1...Hk−1, where H1,..., Hk−1 are ample divisors in Z̃. We
have

µ∗D.C̃ = µ∗D.H1...Hk−1

= f̃∗(µ∗D).f̃∗H1...f̃
∗Hk−1

= π∗(f∗D).f̃∗H1...f̃
∗Hk−1 by commutativity of the diagram.

Clearly π∗(f∗D) is pseudo-effective. Now since nef divisors are numerically
realized as limit of ample ones we have

π∗(f∗D).f̃∗H1...f̃
∗Hk−1 > 0,

which implies µ∗(D).C̃ > 0. So that D.C > 0 as required.
Now assume that f is not birational and let C = H1...Hk−1 be an irre-

ducible curve cut out by ample divisors in Z. In particular C is of constant
dimension along the image of fibers. After cutting down by general hyper-
planes H ′1,..., H ′n−k, we can find an irreducible curve

C ′ = H ′1...H
′
n−k.f

∗(H1)...f∗(Hk−1)

that maps surjectively onto C. Thus we have (deg f |C′)D.C = f∗D.C ′ > 0.
For a moving curve that is not given by intersections of hyperplanes, we

repeat the same argument as above after going to a suitable modification.
�

Remark 3.6. — We know by [1] that for nonsingular projective varieties,
pseudo-effective divisors are dual to the cone of moving curves. Using the
lemma above, we can easily extend this to normal varieties by going to a
resolution. This fact is of course already well known. For convenience we
rephrase the Lemma 3.5 as follows:

Lemma 3.5’. — Let f : X → Z be a surjective morphism with con-
nected fibers between normal projective varieties. Let D be a Q-Cartier
divisor in Z. If f∗D is pseudo-effective then so is D.

We shall prove Theorem 1.5 as a consequence of the following proposition:

TOME 64 (2014), FASCICULE 1



210 Behrouz TAJI

Proposition 3.7. — Let X be a nonsingular projective variety of di-
mension n with κ(X) > 0. Assume that the good minimal model conjecture
holds for terminal projective varieties with zero Kodaira dimension up to
dimension n −m, where m > 0. Let F ⊆ ΩpX be a coherent subsheaf and
define the line bundle L = det F . If κ(KX + L) > m, then κ(L) 6 κ(X).

Proof. — First a few observations. The isomorphismK∗X⊗ΩpX∼=∧n−pTX

implies that K∗X ⊗F is a subsheaf of ∧n−pTX . But X is not uniruled and
so by 2.1, rKX − L is pseudo-effective as a Cartier divisor, where r is the
rank of F .
We can of course assume that X is not general type. Now if we assume

that KX + L is big then by using the equality (r + 1)KX = (rKX − L) +
(KX + L) and pseudo-effectivity of rKX − L, we conclude that KX must
be big as well. So we may also assume that KX + L is not big and that
κ(L) > 0.
Without loss of generality we can also assume that the rational map

X 99K Z corresponding to KX + L is a morphism, since we can always go
to a suitable modification, pull back L and prove the theorem at this level.
Denote this map by iKX+L and note that by definition we have κ((KX +
L)|F ) = 0 , where F is the general fiber of iKX+L. Finally, we observe that
κ(F ) 6 κ((KX+L)|F ) = 0 and as we are assuming thatX has non-negative
Kodaira dimension, we have κ(F ) = 0.

Claim 3.8. — Without loss of generality, we can assume L is the pull
back of a Q-Cartier divisor L1 in Z.
Assuming this claim for the moment, our aim is now to show that after

a modification π : Z̃ → Z, we can find a big divisor in Z̃ whose Kodaira
dimension matches that of X. This will imply that κ(L) = κ(L1) 6 κ(X),
as required.
To this end take Y to be a relative minimal model for X over Z and de-

note the birational map between X and Y by φ and the induced morphism
Y → Z by ψ (see the diagram below). Observe that we can assume that φ
is a morphism without losing generality. Denote ψ∗(L1) by LY . Fix KY to
be the cycle theoretic push forward of KX .

Now by Lemma 3.4 and the abundance assumption after modifying the
base by π : Z̃ → Z, we can find a morphism ψ̃ : Ỹ → Z̃ such that the
dimension of the fibers of this new fibration are all the same and µ∗(KY ) =

ANNALES DE L’INSTITUT FOURIER
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ψ̃∗(G) for some Q-Cartier divisor G in Z̃.

X
φ //

iKX +L ��>
>>

>>
>>

> Y

ψ

��

Ỹ
µoo

ψ̃

��
Z Z̃π

oo

Noting that Y is at worst terminal, i.e., KX + L = φ∗(KY + LY ) + E for
an effective exceptional divisor E, we have κ(KX +L) = κ(KY +LY ). We
also observe that rKY − LY must be pseudo-effective.
Define L̃1 := π∗(L1), so that µ∗(LY ) = ψ̃∗(L̃1) and ψ̃∗(G + L̃1) =

µ∗(KY + LY ). This implies that G + L̃1 is big in Z̃. We also know that
µ∗(rKY −LY ) is pseudo-effective and µ∗(rKY −LY ) = ψ̃∗(rG− L̃1). Thus
by Lemma 3.4, rG− L̃1 is pseudo-effective too. Additionally we have

(r + 1)G = (rG− L̃1) + (G+ L̃1),

where the right hand side is a sum of pseudo-effective and big divisors. This
implies that G is big and we have

κ(L) = κ(L̃1) 6 κ(G) = κ(µ∗(KY )) = κ(KX).

Now it remains to prove 3.8.
Proof of 3.8. — Let X 99K Z ′ be the map given by the global sections

of large enough multiple of L, and let iL : X ′ → Z ′ be the Iitaka fibration
corresponding to L, where µ : X ′ → X is a suitable modification of X.
As κ(KX) > 0, we have κ(L) 6 κ(KX + L), where the right hand side of
this inequality is zero on the general fiber of iKX+L. On the other hand
since we have assumed κ(L) to be positive, we find that κ(L|F ) = 0. Hence
iKX+L factors through iL via a rational map g and we have the following
commutative diagram:

X ′

µ

��

iL // Z ′

X
iKX +L

//

==

Z

g

OO

Now by considering suitable modifications ofX, Z andX ′, we can assume
that g is a morphism. Define the line bundle L′ := µ∗(L) − A = i∗L(H),
where A is an effective divisor and H is an ample Q-Cartier divisor in Z ′.
Let L” be the pull back of H in X via g and iKX+L, so that µ∗(L”) = L′

and that µ∗(L”) +A = µ∗(L). We claim that we don’t lose generality if we

TOME 64 (2014), FASCICULE 1
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replace L by L”. To see this we need to check the following two properties:
(i) rKX − L” is pseudo-effective and (ii) κ(L”) = κ(L).
To see that (i) holds, note that we have µ∗(rKX − L”) = µ∗(rKX) −

(µ∗(L) − A) = µ∗(rKX − L) + A. Now since rKX − L is pseudo-effective
and A is effective, rKX − L” must also be pseudo-effective.

For (ii) it suffices to show κ(L) = κ(L′) which is a consequence of the
following inequality:

κ(L) = κ(µ∗L) 6 dimZ ′ = κ(L′).

This finishes off the proof of Claim 3.8 after a possible base change corre-
sponding to KX + L”. �

Now our main result immediately follows:
Proof of Theorem 1.5. — Let F ⊆ ΩpX be a coherent subsheaf with

maximum Kodaira dimension, i.e., κ(L) = κ+(X), where L = det(F ).
Assume that κ(L) > κ(X). Then κ(L) > m and in particular we have
κ(KX + L) > m. Now the proposition above implies that κ(L) 6 κ(X),
which is a contradiction. �

As we discussed in the introduction, this greatly improves the Bogo-
molov’s inequality for projective varieties of dimension at most five and
with relatively small Kodaira dimension.

Remark 3.9 (Birational stability in dimension 4). — Theorem 1.4 can
be further strengthened by replacing κ+ by a stronger birational invariant
ω(X) (see A for the definition) which measures the maximal positivity of
coherent rank one subsheaves of Ω1

X
⊗m, for anym > 0, i.e., κ(X) and ω(X)

coincide for fourfolds with non-negative Kodaira dimension. The proof is
identical to that of Theorem 1.4 by observing that pseudo-effectivity of
rKX −L in 3.7 can be be replaced by that of mKX −L, where m denotes
the tensorial power of cotangent bundle containing the line bundle L .

Remark 3.10. — We would like to point out that when κ(X) > dimX−
3, we have κ = κ+ by [3, Prop. 10.9] , where 3 in this inequality comes
from the abundance result for varieties of dimension at most 3. So the real
improvement provided by 1.4 is when κ = 0 in dimension 4 and κ = 1 in
dimension 5.

Appendix A. Birational stability of the cotangent bundle
(by Frédéric Campana)

We present here a new birational invariant ω(X) similar to the Kodaira
dimension κ(X), at least equal to κ(X) and to our previous κ+(X) and

ANNALES DE L’INSTITUT FOURIER
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κ+(X), and conjecturally equal to all these when X is not uniruled. The
preceding arguments of Behrouz Taji directly apply to show this conjecture
in dimension 4 as well, and also under the situations considered in his The-
orem 1.5 above. This invariant can be introduced in the orbifold compact
Kähler case as well, with similar expected properties.
A major aim of algebraic geometry consists in deriving the qualitative

geometry of a complex connected projective manifold X from the posi-
tivity/negativity properties of its canonical bundle KX (e.g: it has been
shown that X is rationally connected, hence simply connected when its
canonical bundle is anti-ample). An intermediate step consists in relating
the positivity/negativity of its cotangent bundle Ω1

X from the one of KX .
The positivity of KX is suitably measured by the canonical (or Ko-

daira) dimension of its canonical algebra K(X) := ⊕m>0H
0(X,K⊗mX ),

defined as: κ(X) := max{m>0}(dim Φm(X)) ∈ {−∞, 0, 1, . . . , n}, where
Φm : X 99K P(H0(X,K⊗mX )∗) is the rational map defined by the linear
system H0(X,K⊗mX ) if this is nonzero, and is −∞ otherwise.

In a similar way, we define: Ω(X) := ⊕m>0H
0(X,Ω1

X
⊗m), to be the the

cotangent algebra of X, and its dimension to be: ω(X) := max{m>0,L}
(dim ΦL(X)) ∈ {−∞, 0, 1, . . . , n}, where L ⊂ Ω1

X
⊗m ranges over all of

its coherent rank one subsheaves, with m > 0 arbitrary. Here, ΦLX 99K
P(H0(X,L)∗) is the rational map associated with the linear system defined
by the sections of L.

Basic properties. — 1. ω(X) > κ(X) is a birational invariant of X.
We say that Ω1

X is birationally stable if ω(X) = κ(X), which means that
κ(X,L) 6 κ(X), for any L ⊂ Ω1

X
⊗m, coherent of rank 1, if m > 0 is

arbitrary. We shall see below that this happens, conjecturally, if and only
if X is not uniruled (or if and only if κ(X) > 0).
2. Recall that we defined in [3] and [4] two other invariants: κ+(X) :=

max{F⊂Ωp
X
,p>0}(κ(det(F )), and: κ+(X) := max{L⊂Ωp

X
,p>0}(κ(L)), where

F and L are arbitrary coherent subsheaves, L being of rank one.
We thus have: ω(X) > κ+(X) > κ+(X) > κ(X) in general.
3. Moreover, Ω(X) is (in contrast to K(X)) functorial in X, that is: any

dominant rational map f : X 99K Y induces naturally an injective algebra
morphism f∗ : Ω(Y )→ Ω(X), and so ω(X) is increasing: ω(X) > ω(Y ) in
this situation. The invariant ω thus provides an obstruction to the existence
of such an f .
4. Let f : X → Y be a surjective morphism between projective manifolds

X,Y . Let Xy be its general fibre. If ω(Xy) = −∞ (resp. if ω(Xy) = 0),
then ω(X) = ω(Y ) (resp. ω(X) 6 dim(Y )). We omit the easy proof.
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This inequality is, in general, optimal, as seen by considering the
Moishezon-Iitaka fibration f : X → Y of a manifold X with κ(X) > 0, such
that c1(Xy) = 0 (the examples below indeed show that ω(Xy) = κ(Xy) = 0,
then).
If rX : X → R(X) is the rational quotient of X (defined in [2], and called

“MRC fibration” in [10]), the first statement implies that ω(X) = ω(R(X)).
Recall that r is the only fibration on X having rationally connected fibres
and non-uniruled base R(X) (by [8]).

Examples A.1. — 1. If X is rationally connected, ω(X) = −∞. Conjec-
turally, the opposite implication holds as well, and follows from the Abun-
dance conjecture.
2. If c1(X) = 0, then ω(X) = 0, as seen from the existence of a Ricci-

flat Kähler metric and Bochner principle. Alternatively, the general semi-
positivity Theorem of Myiaoka shows that ω(X) = 0 if X has a birational
(normal) modelX ′ such thatKX′ is numerically trivial over its non-singular
locus (i.e., such that its degree is zero on each projective curve not meeting
its singular locus). The existence of such a model is implied by the Abun-
dance conjecture, too. The Abundance conjecture (and Miyaoka’s Theo-
rem) thus imply that ω(X) = 0 if κ(X) = 0.

Conjecture A.2. — For any X, we have: ω(X) = κ(R(X)) (by con-
vention: κ(pt) = −∞).

Remark A.3. — This conjecture follows from the Abundance conjec-
ture. Indeed: we need only check that ω(R(X)) = κ(R(X)), since ω(X) =
ω(R(X)), by the property 4 above. Since R(X) := Y is not uniruled, we
have: κ(Y ) > 0, by Abundance. Let f : Y → Z be the Moishezon-Iitaka
fibration of Y . Since its general fibres have κ = 0, they have ω = 0 as well
by Abundance (example 2 above). Thus ω(Y ) 6 dim(Z) = κ(Y ) 6 ω(Y ).
Thus dim(Z) = κ(R(X)) = ω(Y ) = ω(R(X)).

Remark A.4. — The definition of Ω(X) and ω(X) with entirely similar
properties can be extended to the case when X is compact Kähler, and
more importantly, when X (possibly compact Kähler) is equipped with an
orbifold divisor ∆ :=

∑
j aj .Dj , where the D′js are irreducible pairwise

distinct divisors on X whose union is of normal crossings, and the a′js are
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in Q ∩ [0, 1]. See [4] and [5] for the relevant definitions. The details will be
written elsewhere.
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