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FOLNER SETS OF ALTERNATE DIRECTED GROUPS

by Jérémie BRIEUSSEL

Abstract. — An explicit family of Folner sets is constructed for some directed
groups acting on a rooted tree of sublogarithmic valency by alternate permutations.
In the case of bounded valency, these groups were known to be amenable by prob-
abilistic methods. The present construction provides a new and independent proof
of amenability, using neither random walks, nor word length.
Résumé. — On construit une famille explicite d’ensembles de Folner pour cer-

tains groupes dirigés agissant sur des arbres enracinés à valence sous-logarithmique
par des permutations alternées. Dans le cas d’arbres à valence bornée, la moyenna-
bilité de ces groupes avait déjà été prouvée au moyen de techniques probabilistes.
La construction présentée ici fournit une nouvelle preuve, n’utilisant ni marches
aléatoires, ni longueur des mots.

1. Introduction

By a criterion of Folner [9], amenable groups are those that admit fi-
nite subsets with arbitrary small boundaries relatively to their cardinality.
A sequence of such subsets, called a Folner sequence, is easily described
for abelian groups, and well-understood for some classes of solvable groups
([17], [8]). Many non-solvable amenable groups are directed groups act-
ing on rooted trees. This family of groups gathers many examples with
“exotic” properties, such as infinite torsion groups of intermediate growth
constructed by Aleshin ([1], [10]) or groups with non-uniform exponential
growth by Wilson [19].

Their amenability in the case of bounded valency was shown in [6] by
use of Kesten’s probabilistic criterion [14]. The strategy, introduced by
Bartholdi and Virag in [4], is to show that a self-similar random walk on a
Cayley graph diffuses slowly, in the sense that its return probability does

Keywords: Groups acting on rooted trees, directed groups, bounded automata groups,
Folner sets, amenability.
Math. classification: 20E08, 20F65, 43A00.



1110 Jérémie BRIEUSSEL

not decay exponentially, or that its entropy is sublinear ([13]). The same
method permits to show that automata groups are amenable when their
activity is bounded [3] or linear [2]. Though it ensures their existence, such
a probabilistic proof does not exhibit Folner sets.
For the groups of [1] and [10], subexponential growth easily implies the

existence of a subsequence of the family of balls (for a word length) which
is a Folner sequence, but it is not known if the whole sequence of balls is
Folner and the subsequence (even though it has density 1) is not explicit.
Even for groups of polynomial growth, it is not elementary to show that
balls form a Folner sequence, a result due to Pansu [16], using technics from
Gromov [12].
The object of the present article is to exhibit explicit Folner sets for some

groups with a property denoted DP, satisfied in particular by directed
groups acting on a rooted tree by alternate permutations. A group Γ with
property DP is defined (see section 4) by two subgroups A finite and H

finitely generated, together with an action on a rooted tree with valency
sequence (dk)k∈N. The main result is:

Theorem 1.1. — Let Γ have propertyDP withH amenable and dk
log k →

0, then the group Γ is amenable.

In particular, the direct description of Folner sets provides a new proof,
using neither random walks nor word length, that directed groups acting on
a rooted tree of bounded valency are amenable ([6]). It also provides many
new examples of amenable directed groups acting on a tree of unbounded
sublogarithmic valency. Moreover it permits to reprove amenability of au-
tomata groups with bounded activity by methods different from [3].

The article is structured as follows. Rooted trees and their automorphism
groups are described in section 2. Section 3 is devoted to the construction
of explicit Folner sets for the archetypal example of the alternate mother
group Gd acting on a regular rooted tree of valency d > 5. This example,
treated first for simplicity of notations, is generalized to groups with prop-
erty DP in section 4. Finally, section 5 is devoted to the construction of
groups satisfying DP, including the saturated alternate directed groups,
and some groups acting on trees with unbounded valency.

2. Rooted trees and their groups of automorphisms
Let Sd denote the group of permutations of the set {1, . . . , d} with d ele-

ments, and Ad = A{1,...,d} denote the subgroup of alternate permutations.
Given a sequence d̄ = (dk)k>0 of integers > 2, the spherically homo-

geneous rooted tree Td̄ is the graph with vertex set {t0t1 · · · tk | ti ∈
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FOLNER SETS OF ALTERNATE DIRECTED GROUPS 1111

{1, . . . , di}, k > −1}, including the empty sequence ∅, called the root, corre-
sponding to k = −1, and edge set {(t0 · · · tk, t0 · · · tktk+1)}. The vertex set
restricted to a fixed k is called the (k+1)st level of the tree. It is the direct
product {1, . . . , d0} × · · · × {1, . . . , dk}. When the sequence d̄ is constant
equal to d, the tree is called d-regular, denoted Td.
The group of automorphisms Aut(Td̄) of the rooted tree Td̄ is the group

of graph automorphisms that fix the root ∅. It satisfies a canonical isomor-
phism:

(2.1) ϕ : Aut(Td̄)
'−→ Aut(Tsd̄) o Sd0 ,

where sd̄ = (dk)k>1 is the shifted sequence obtained by deleting the first
entry, and G o Sd = (G × · · · × G) o Sd is the semi-direct product where
Sd acts by permuting factors, called wreath product. Since ϕ is canonical,
we identify g and ϕ(g) and write g = (g1, . . . , gd0)σ = (gt0)σ. The product
rule is gg′ = (g1g

′
σ(1), . . . , gd0g

′
σ(d0))σσ′, where g is applied before g′.

By iterating the wreath product isomorphism (2.1), a family of canonical
isomorphisms is obtained:

(2.2) Aut(Td̄) ' Aut(Tskd̄) o Sdk−1 o · · · o Sd0 .

Identifications are denoted g = (gt0···tk)(σt0···tk−1) · · · (σt0)σ, where (σt0···tj )
is a sequence of permutations in Sdj indexed by the (j+1)st level of the tree
and (gt0···tk) is a sequence of automorphisms of Tσkd̄ indexed by level k+1.
The automorphism g is determined by the whole sequence of permutations
(σv)v∈Td̄ , called its portrait.

The automorphism g is said to be alternate if all the permutations σv
of its portrait are alternate permutations. Denote Autalt(Td̄) the group of
alternate automorphisms of Td̄. It also satisfies canonical isomorphisms:

Autalt(Td̄) ' Autalt(Tskd̄) o Adk−1 o · · · o Ad0 .

The neutral element of a group G is denoted eG or e.

3. Folner sets of the alternate mother group

3.1. The alternate mother group

In the case of a d-regular rooted tree Td, the canonical wreath product
isomorphism of the group of alternate automorphisms has the form:

(3.1) ϕ : Autalt(Td)
'−→ Autalt(Td) o Ad.

It permits to define recursively some alternate automorphisms of Td as
follows.

TOME 64 (2014), FASCICULE 3



1112 Jérémie BRIEUSSEL

• Given σ in Ad, denote A = {a(σ) | σ ∈ Ad} ' Ad with:

ϕ(a(σ)) = (e, . . . , e)σ.

The elements a = a(σ) of A are alternate automorphisms of Td,
called rooted automorphisms, because the portrait of a(σ) is given
by σ∅ = σ and σv = e for v 6= ∅.

• Given a2, . . . , ad in Ad and ρ in FixAd(1) = A{2,...,d} = Ad−1,
the alternate automorphism b = b(a2, . . . , ad, ρ) satisfies under the
wreath product isomorphism:

ϕ
(
b(a2, . . . , ad, ρ)

)
=
(
b(a2, . . . , ad, ρ), a2, . . . , ad

)
ρ.

This defines recursively a tree automorphism b = b(a2, . . . , ad, ρ)
with portrait the family of permutations (σv)v∈Td given by σ1···11 =
ρ, σ1···1t = at for 2 6 t 6 d and σv = e for the other vertices v.

Denote B = {b(a2, . . . , ad, ρ) | a2, . . . , ad ∈ Ad, ρ ∈ FixAd(1)}.
The elements of B are called directed. The set B forms a finite
subgroup of Aut(Td). Indeed, the following is an isomorphism:

B → (Ad × · · · × Ad) oA{2,...,d}
b(a2, . . . , ad, ρ) 7→ (a2, . . . , ad)ρ.

.(3.2)

• The alternate mother group Gd is the subgroup of alternate auto-
morphisms of Td generated by the sets A,B:

Gd = 〈A,B〉 < Autalt(Td).

By construction, the group Gd is an automata group. It is essentially the
mother group of degree 0 (see [3], [2]), but the permutations involved are
alternate. Since Ad is simple hence perfect for d > 5, the group Gd satisfies
the:

Proposition 3.1. — If d > 5, the canonical isomorphism (3.1) induces
an isomorphism:

ϕ : Gd
'−→ Gd o Ad.

This isomorphism will also be considered canonical Gd ' Gd o Ad, and
the elements g and ϕ(g) will be identified in the remainder of this section.
The proposition follows from the:

Fact 3.2. — Let d > 5, then for any generator a = a(σ) ∈ A and
b = b(a2, . . . , ad, ρ) ∈ B, the elements (a, e, . . . , e) and (b, e, . . . , e) belong
to ϕ(Gd).

Recall the conjugacy notation ga = aga−1, and observe that for g =
(g1, . . . , gd)σ and a in A, one has ga = (ga(1), . . . , ga(d))σa.

ANNALES DE L’INSTITUT FOURIER



FOLNER SETS OF ALTERNATE DIRECTED GROUPS 1113

Proof of Fact 3.2. — Take τ in Ad such that τ(1) = 1 and τ−1(2) = 3
and observe the commutator relations:

ϕ(b) = ϕ(b(α2, eA, . . . , eA, eA)) = (b, α2, eG, eG, . . . , eG)eA,
ϕ(b′τ ) = ϕ(b(α′2, eA, . . . , eA, eA)τ ) = (b′, eG, α′2, eG, . . . , eG)eA,

ϕ([b, b′τ ]) = ([b, b′], eG, eG, eG, . . . , eG).

As [b(α2, eA, . . . , eA, eA), b(α′2, eA, . . . , eA, eA)] = b([α2, α
′
2], eA, . . . , eA, eA)

and as the group A ' Ad is perfect (because it is simple), any element a2
in A ' Ad is a product of commutators. This shows that ϕ(Gd) contains
(b2, eG, . . . , eG) for any b2 = b(a2, eA, . . . , eA, eA) with a2 in Ad. Moreover
for any b∅ = b(eA, . . . , eA, ρ) with ρ in FixA(1) ' Ad−1, the group ϕ(Gd)
contains ϕ(b∅a(ρ−1)) = (b∅, eG, . . . , eG).
Now the elements b2 = b(a2, eA, . . . , eA, eA) and b∅ = b(eA, . . . , eA, ρ)

generate B by isomorphism (3.2), because ρ inA{2,...,d} and (a2, eA, . . . , eA)
for a2 in Ad generate the finite group (Ad × · · · × Ad) o A{2,...,d}. Thus
ϕ(Gd) contains (b, eG, . . . , eG) for any b in B.
Finally given a2 in A, for b2 = b(a2, eA, . . . , eA, eA) = (b2, a2, eG, . . . , eG),

the element (b−1
2 , eG, . . . , eG) belongs to ϕ(Gd) by the above. So do (b−1

2 ,

eG, . . . , eG)ϕ(b2) = (eG, a2, eG, . . . , eG) and (eG, a2, eG, . . . , eG)τ = (a2,

eG, . . . , eG) for τ in ϕ(A) ' A ' Ad such that τ−1(2) = 1. �

Proof of Proposition 3.1. — By definition of the generators of Gd, the
morphism ϕ is an embedding into the wreath product GdoAd. The key point
is that this embedding is surjective. Clearly ϕ(A) ' A ' Ad is the set of
rooted automorphisms. Moreover, Fact 3.2 shows that Gd×{e}× · · ·× {e}
is in ϕ(Gd). As Ad acts transitively on {1, . . . , d}, conjugation shows that
{e} × · · · × Gd × · · · × {e} also belongs to ϕ(Gd) for any position of the
non-trivial factor. Then Gd × · · · ×Gd belongs to ϕ(Gd) by product. This
proves the wreath product isomorphism. �

3.2. Definition of Folner sets

For a group Γ with finite generating set S, the boundary of a subset
L ⊂ Γ is defined as:

∂SL =
{
γ ∈ L | ∃s ∈ S, γs /∈ L

}
.

The interior of L is the set IntS(L) = Lr ∂SL.
A sequence Lk of subsets of Γ is a Folner sequence if |∂Lk||Lk| → 0. By [9],

a finitely generated group Γ is amenable if and only if it admits a Folner

TOME 64 (2014), FASCICULE 3



1114 Jérémie BRIEUSSEL

sequence for some (equivalently for any) finite generating set S. For the
remainder of this section, the set S = A ∪ B is considered the canonical
generating set of Gd and the notations ∂L and Int(L) stand for ∂A∪BL and
IntA∪B respectively.
Let us define a sequence of subsets of Gd as follows:

L0 =
{
g ∈ Gd | ∃β ∈ B,α2, . . . , αd, σ ∈ A, g = (β, α2, . . . , αd)σ

}
.

By induction on k, define:

Lk+1 =
{
g∈Gd

∣∣∣∣ g = (g1, . . . , gd)σ, such that σ∈A,∀t∈{1, . . . , d}, gt∈Lk
and ∃T∈{1, . . . , d}, gT∈ Int(Lk)

}
.

By Proposition 3.1, the sets Lk are included in Gd for d > 5, and not just
in the automorphism group Aut(Td).

Theorem 3.3. — For d > 5, the sets Lk form a Folner sequence for Gd.
In particular, the group Gd is amenable.

The group Gd was known to be amenable by [6] (use of Kesten criterion
on return probability) or [3] (triviality of the Poisson boundary). However,
these proofs, based on contraction in the wreath product of word length
for some random walks, did not provide explicit Folner sets. The following
proof uses neither random walks, nor word length.

Remark 3.4. — Estimation on the rate of convergence of |∂Lk|/|Lk|
to zero and on the cardinality of Lk will show that the Folner function
Fol(n) = min{|L|/n|∂L| 6 |L|} is bounded above by a function expC
×(expC(nd−1+ε)) for some constant C and any positive ε where expC(x) =
Cx. However, the return probability of a symmetric simple random walk on
Gd is bounded below by exp(−nβd) for βd = log d/ log d2

d−1 by Theorem 6.1
in [7]. Combined with Corollary V.2 in [11], this shows that the function
Fol(n) cannot be bounded below by exp(nα) for α = 2βd/1− βd. Thus the
sequence Lk exhibited here is far from optimal as a Folner sequence.

3.3. Proof of Theorem 3.3

Observe that for any a in A and g = (β, α2, . . . , αd)σ in L0, the ele-
ment ga = (β, α2, . . . , αd)σa still belongs to L0. Moreover, for any b =
b(a2, . . . , ad, ρ) = (b, a2, . . . , ad)ρ in B, one has:

gb =
{

(βb, α2aσ(2), . . . , αdaσ(d))σρ if σ−1(1) = 1,
(βaσ(1), α2aσ(2), . . . , ασ−1(1)b, . . . , αdaσ(d))σρ if σ−1(1) 6= 1.

ANNALES DE L’INSTITUT FOURIER
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As the sets A and B are finite groups, this shows equivalence of (1), (2)
and (3) in the:

Fact 3.5. — The following are equivalent:

(1) g belongs to Int(L0),
(2) gb ∈ L0 for all b ∈ B,
(3) σ−1(1) = 1,
(4) gb ∈ Int(L0) for all b ∈ B.

In particular, | Int(L0)|
|L0| = 1

d , hence δ0 = |∂L0|
|L0| = 1− 1

d .

Proof. — Point (4) is equivalent to (3) due to the fixed point assump-
tion ρ(1) = 1 in the definition of B, which guarantees that (σρ)−1(1) =
(ρ−1σ−1)(1) = σ−1(ρ−1(1)) = 1 when σ−1(1) = 1.

The evaluation of δ0 is done by counting |L0| = |B||A|d as g is described
by β, α2, . . . , αd, σ, and condition σ−1(1) = 1 occurs with probability 1

d . �

Lemma 3.6. — Let g ∈ Lk, the following are equivalent:

(1) g belongs to Int(Lk),
(2) gb ∈ Lk for all b ∈ B,
(3) σ−1(1) ∈ I(g) = {T | gT ∈ Int(Lk−1)},
(4) gb ∈ Int(Lk) for all b ∈ B.

Proof of Lemma 3.6. — The case k = 0 is treated by Fact 3.5 with
convention that I(g) = {1} if g ∈ L0. Assume by induction that the result
is true for k − 1, and prove it for k.
Again ga = (g1, . . . , gd)σa belongs to Lk for any value of a in A, g in Lk.

Moreover:

gb =
(
g1aσ(1), . . . , gσ−1(1)b, . . . , gdaσ(d)

)
σρ.

Suppose (3) holds true, that is gσ−1(1) ∈ Int(Lk−1), then as (1) implies
(4) for k − 1, the element gσ−1(1)b belongs to Int(Lk−1) for any b in B, so
that gb belongs to Lk for any b in B, proving (2). Then (1) follows because
ga also belongs to Lk for a in A, hence g is an interior point of Lk.

Suppose (3) does not hold, so gσ−1(1) ∈ ∂Lk−1. By equivalence of (1)
and (2) for k − 1, there exists b in B such that gσ−1(1)b /∈ Lk−1, so that gb
is not in Lk, disclaiming (1) and (2) for g. This proves equivalence of (1),
(2) and (3) for k.

Now gb belongs to Int(Lk) if and only if (σρ)−1(1) ∈ I(g) by equivalence
of (1) and (3). But (σρ)−1(1) = σ−1(ρ−1(1)) = σ−1(1) because ρ(1) = 1. So
(3) implies (4). Obviously, (4) implies (2), closing step k of induction. �

TOME 64 (2014), FASCICULE 3



1116 Jérémie BRIEUSSEL

There remains to evaluate the sizes of the interior and boundary of Lk.
Set:

δk = |∂Lk|
|Lk|

, 1− δk = | Int(Lk)|
|Lk|

.

Lemma 3.7. — The sequence (δk) satisfies:

1− δk+1 = 1− δk
1− δdk

.

Proof of Lemma 3.7. — Given a subset I ⊂ {1, . . . , d}, denote:

JI =
{
g = (g1, . . . , gd)σ | ∀T ∈ I, gT ∈ Int(Lk) and ∀t /∈ I, gt ∈ ∂Lk

}
.

By definition, Lk+1 is the disjoint union Lk+1 = t|I|>1JI .
For i = |I|, the size of JI and its intersection with Int(Lk+1) are evaluated

as:
|JI | = |Ad|| Int(Lk)|i|∂Lk|d−i = |Ad||Lk|d(1− δk)iδd−ik ,

|JI ∩ Int(Lk+1)| = |I|
d
|Ad|| Int(Lk)|i|∂Lk|d−i = i

d
|JI |,

where the factor i
d comes from (3) of Lemma 3.6. Denote Cid the number

of subsets of size i in {1, . . . , d}, and use the mean of binomial distribution
to get:

| Int(Lk+1)| =
d∑
i=1

Cid(1− δk)iδd−ik

i

d
|Lk|d|Ad| = (1− δk)|Lk|d|Ad|,

|Lk+1| =
d∑
i=1

Cid(1− δk)iδd−ik |Lk|d|Ad| = (1− δdk)|Lk|d|Ad|.

This shows that:

1− δk+1 = | Int(Lk+1)|
|Lk+1|

= 1− δk
1− δdk

.

�

Proof of Theorem 3.3. — As δk > 0, Lemma 3.7 implies 1 − δk+1 >

1 − δk, so the sequence (δk) is decreasing, tending to a limit δ satisfying
1− δ = 1−δ

1−δd , hence δ is 0 (or 1, ruled out by δ0 < 1). �

More precisely, Lemma 3.7 implies that for any η < 1
d−1 , one has δk =

O(k−η), as shown below in Lemma 4.13. On the other hand:

|Lk| = |B|d
k

|A|(d−1)dk+(dk+···+d+1) > 22k .

This provides the estimate on the Folner function in remark 3.4.

ANNALES DE L’INSTITUT FOURIER
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Remark 3.8. — Lemma 3.6 provides a complete combinatorial descrip-
tion of Lk. An element g ofGd has the form g = (gt0···tk)(σt0···tk−1) · · · (σt0)σ
in the kth iteration of the wreath product. Such an element g belongs to
Lk if and only if it satisfies the three following conditions:

(1) ∀t0 · · · tk−1, the element gt0···tk−11 is in B and gt0···tk−12, . . . ,

gt0······tk−1d are in A,
(2) ∀t0 · · · tk−2, the set I(t0 · · · tk−2) = {Tk−1 | σ−1

t0···tk−2Tk−1
(1) = 1} is

non-empty.
(3) ∀3 6 l 6 k + 1,∀t0 · · · tk−l, the set

I(t0 · · · tk−l) = {Tk−l+1 | σ−1
t1···tk−lTk−l+1

(1) ∈ I(t1 · · · tk−lTk−l+1)},

defined by induction on l, is non-empty (for l = k+1, consider I(∅)
where ∅ is the root vertex of Td).
The element g belongs to Int(Lk) if and only if it satisfies (1), (2),
(3) and moreover:

(4) σ−1(1) ∈ I(∅) = {T | σT ∈ I(T )}.
Note that condition (2) is a specific case of condition (3) where
I(t0 · · · tk−1) = {1} for all t0 · · · tk. As an interpretation, say a vertex
v = t0 · · · tl with l 6 k− 1 is open if σ−1

v (1) ∈ I(v). Conditions (1), (2), (3)
ensure that g belongs to Lk if and only if each vertex v has at least one
neighbour of next level vT which is open. Condition (4) ensures that g is
in the interior Int(Lk) if and only if the root itself is open.

4. Generalization

4.1. Property DP

Theorem 3.3 can be generalized to the following wider setting.

Definition 4.1. — A sequence of groups is said to have property DP
if it satisfies the two following conditions for all i in N:

(1) the group Γi contains two subgroups Ai and Hi such that:
(a) the set Ai ∪Hi generates the group Γi,
(b) the group Ai is finite, acting transitively on a finite set
{1, . . . , di} of size di > 2,

(c) the group Hi is finitely generated,
(2) there is an isomorphism:

ϕi : Γi −→ Γi+1 oAi = (Γi+1 × · · · × Γi+1) oAi,

TOME 64 (2014), FASCICULE 3



1118 Jérémie BRIEUSSEL

with di factors in the direct product, on which Ai is acting by
permutation of coordinates, according to its transitive action on
{1, . . . , di}. Moreover, this isomorphism ϕi satisfies:
(a) ∀s ∈ Ai, ϕi(s) = (eΓi+1 , . . . , eΓi+1)s,
(b) ∀hi ∈ Hi,∃hi+1 ∈ Hi+1,∃a2, . . . , ad0 ∈ Ai+1,∃ρ ∈ Ai, with

ρ(1) = 1 and:

ϕi(hi) = (hi+1, a2, . . . , adi)ρ,

where the groups Ai+1 and Hi+1 are the subgroups of Γi+1
satisfying condition (1).

A group Γ is said to have property DP if there exists a sequence {Γi}i∈N
with property DP such that Γ ' Γ0.

Groups with property DP are related to the groups of non-uniform
growth constructed by Wilson (see [19],[18],[6]). In particular, if all the
groups Γi of a sequence with property DP are generated by a finite num-
ber (independent of i) of involutions, and if all the groups Ai involved are
alternate groups Adi acting on sets of size di > 29, then they have non-
uniform growth by [18]. This is the case of the examples in proposition 5.3
below.

Fact 4.2. — If Γ0 belongs to DP, there exists a sequence d̄ = (di)i
of integers di > 2, and the group Γ0 is acting by automorphisms on the
spherically homogeneous rooted tree Td̄. This action is transitive on each
level.

Note that this action on the tree is not necessarily faithful. For instance,
the subgroup F of the group Γ = Γ(Ad0 , Ad̄, F ) of section 2.4 of [7] has
a trivial action on the tree Td̄, even though Γ has property DP, for the
sequence Γi = Γ(Adi , Asid̄, F ).

Proof. — Combining the isomorphisms of Definition 4.1, there is an iso-
morphism Γ0 ' Γi+1 oAi o · · · oA0. As Ai is acting transitively on {1, . . . , di},
the group Ai o · · · oA0 is acting transitively on {1, . . . , d0}×· · ·×{1, . . . , di},
which is the i + 1st level of Td̄. Taking the limit with i, this provides the
action on the tree Td̄. �

Consider a group Γ0 with property DP and take notations of Defini-
tion 4.1. Let B0 be a fixed finite generating set of H0. Define inductively the
sequence Bi of subsets of Hi by condition (2)(b). For any bi ∈ Bi, set bi+1
to be the unique element in Hi+1 such that ϕi(bi) = (bi+1, a2, . . . , adi)ρ,
and Bi+1 = {bi+1 | bi ∈ Bi}. By construction, Bi is a subset of Hi of size
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6 |B0|. It is not true in general that Bi generates Hi for all i ∈ N, however,
we have:

Fact 4.3. — Let Γ0 have property DP and Bi be as above. Then the
conditions of Definition 4.1 are fulfilled if Hi is replaced by the subgroup
〈Bi〉 of Γi.

Proof. — It is sufficient to check conditions (1) and (2) of Definition 4.1
for all i in N. For i = 0, (1) is true since H0 = 〈B0〉, and (2) is true by
definition of B1. Then:

Γ1 oA0 ' ϕ0(Γ0) ⊂ 〈B1 ∪A1〉 oA0.

The inclusion is forced to be an equality since A1, B1 are included in Γ1,
thus A1 ∪ B1 generates Γ1. This shows that H1 can be replaced by 〈B1〉.
The fact follows by induction. �

This shows that up to replacing the groups Hi by the groups 〈Bi〉, which
does not affect the groups Γi, we may and shall assume that Bi is a canon-
ical generating set for Hi.

Fact 4.4. — The group H0 is amenable if and only if the groups Hi are
amenable for all i.

Proof. — By (2)(b), the restriction of ϕ0 to H0 provides an embedding:

ϕ0
∣∣
H0

: H0 ↪→ H1 ×
(
A1 o FixA0(1)

)
.

As the second factor is a finite group, amenability of H1 implies that of H0.
Conversely assume that H0 is amenable. By (2)(b), any relation between

the generators in B0 implies a relation between the corresponding genera-
tors in B1 of H1. Thus H1 is a quotient of H0, hence is amenable.
The same proof shows that amenability of Hi+1 is equivalent to that

of Hi. �

Question 4.5. — If a group Γ0 = 〈A0 ∪H0〉 has property DP with H0
amenable, is the group Γ0 amenable?

The following theorem provides a partial answer, with a condition on the
sequence of integers d̄ = (di)i.

Theorem 4.6. — Let Γ0 have property DP with H0 amenable and d̄

growing sufficiently slowly (for instance dk
log k → 0), then Γ0 is amenable.

This theorem generalizes Theorem 3.3. The proof is similar, though
slightly more technical.
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4.2. Proof of Theorem 4.6

Given Γ0 = 〈A0∪B0〉 with propertyDP, consider the associated sequence
of finitely generated groups ΓK = 〈AK ∪ BK〉, where BK is the canonical
generating set of the group HK . The notions of interior and boundary used
below refer to these generating sets.
To ease notations, write g instead of ϕK(g). For Ω ⊂ HK+1, set:

LK0 (Ω) =
{
g ∈ ΓK | ∃h ∈ Ω, α2, . . . , αdK ∈ AK+1,

σ ∈ AK , g = (h, α2, . . . , αdK )σ
}
,

ιLK0 (Ω) =
{
g ∈ LK0 (Ω) | σ−1(1) = 1

}
,

and by induction for 1 6 k 6 K, set:

LKk (Ω) =
{
g = (g1, . . . , gdK−k)σ ∈ ΓK−k | ∀t, gt ∈ LKk−1(Ω),

∃T, gT ∈ ιLKk1
(Ω)
}
,

ιLKk (Ω) =
{
g ∈ LKk (Ω) | gσ−1(1) ∈ ιLKk−1(Ω)

}
.

The sets ιLKk (Ω) should be considered as “combinatorial interiors” of
LKk (Ω). They satisfy a combinatorial description as Remark 3.8, but slightly
differ from the actual interior of LKk (Ω), unless the set Ω has empty bound-
ary (see Remark 4.10 below). Fact 3.5 generalizes as:

Fact 4.7. — The three following are equivalent:
(1) g ∈ Int(LK0 (Ω)),
(2) gbK ∈ LK0 (Ω) for all bK ∈ BK ,
(3) σ−1(1) = 1 and h ∈ Int(Ω) ⊂ Ω ⊂ HK+1.

Moreover they also imply:
(4) gbK ∈ ιLK0 (Ω) for all bK ∈ BK .

In particular, | Int(LK0 (Ω))|
|LK0 (Ω)| = | Int(Ω)|

dK |Ω| , and δ
K
0 (Ω) = |∂LK0 (Ω)|

|LK0 (Ω)| = 1− | Int(Ω)|
dK |Ω| .

Proof. — Let g = (h, α2, . . . , αdK )σ belong to LK0 (Ω). By (2)(a) of Def-
inition 4.1 for AK , the element gaK still belongs to LK0 (Ω) for aK in AK .
This proves equivalence of (1) and (2).
Now take bK = (bK+1, a2, . . . , adK )ρ in BK , then:

gbK =
{

(hbK+1, α2aσ(2), . . . , αdaσ(d))σρ if σ−1(1) = 1,
(haσ(1), α2aσ(2), . . . , ασ−1(1)bK+1, . . . , αdaσ(d))σρ if σ−1(1) 6= 1.

This shows that gbK belongs to LK0 (Ω) for all bK if and only if σ−1(1) = 1
and h belongs to Int(Ω), i.e. equivalence of (2) and (3).
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This implies (4) because then (σρ)−1(1) = 1. Computing the sizes follows
from (3). �

Notation 4.8. — Let g = (g1, . . . , gdi)σ = (gti)σ in Γi, with σ in Ai, gti
in Γi+1 for ti ∈ {1, . . . , di} by identification of g with ϕi(g). More generally,
identify gti···tj with ϕj+1(gti···tj ) for i 6 j 6 K and denote:

g = (gti···tK )(σti···tK−1) · · · (σti)σ,

where σti···tj belongs to Aj+1 and gti···tK to ΓK+1. Set τi = σ−1(1) ∈
{1, . . . , di}, and by induction τj+1 = (στi···τj )−1(1) ∈ {1, . . . , dj+1}, which
guarantees g(τiτi+1 · · · τj) = 11 · · · 1 for the action on the tree of fact 4.2.

The following generalizes Lemma 3.6.

Lemma 4.9. — For 0 6 k 6 K, the three following are equivalent:
(1) g ∈ Int(LKk (Ω)),
(2) gbK−k ∈ LKk (Ω) for all bK−k ∈ BK−k,
(3) g ∈ ιLKk (Ω) (i.e. σ−1(1) ∈ I(g) = {T | gT ∈ ιLKk−1(Ω)}) and

gτK−k···τK ∈ Int(Ω).
Moreover, they also imply:

(4) gbK−k ∈ ιLKk (Ω) for all bK−k ∈ BK−k.

Observe that if g ∈ ιLKk (Ω), then gτK−k···τK ∈ Ω, by definitions of ιLKk (Ω)
and τK−k · · · τK .
Proof. — Let g = (g1, . . . , gdK−k)σ belong to LKk (Ω). For a in AK−k, ga

still belongs to LKk (Ω) (no condition on σ). Thus (1) is equivalent to (2).
To prove equivalence with (3) and implication of (4), proceed by induction
on 0 6 k 6 K. The case k = 0 was treated as fact 4.7 (where h = g1 =
gσ−1(1) = gτK ), now assume the lemma is known for k − 1.
For bK−k =

(
bK−k+1, a2, . . . , adK−k)ρ, one has:

gbK−k = (g1aσ(1), . . . , gσ−1(1)bK−k+1, . . . , gdK−kaσ(dK−k)
)
σρ.

Assume (2) for g, then gσ−1(1)bK−k+1 ∈ LKk−1(Ω) for all bK−k+1 ∈
BK−k+1, which means (2) for k − 1 applied to gσ−1(1). By induction hy-
pothesis, gσ−1(1) satisfies (3), which means that it belongs to ιLKk−1(Ω), so
g ∈ ιLKk (Ω), and gσ−1(1)τK−k+1···τK = gτK−kτK−k+1···τK ∈ Int(Ω), proving
(3) for g.
Moreover, (2) applied to gσ−1(1) implies, by induction, (4) that

gσ−1(1)bK−k+1 ∈ ιLKk−1(Ω) for all bK−k+1 ∈ BK−k+1. As (σρ)−1(1) =
σ−1(ρ−1(1)) = σ−1(1), this shows gbK−k ∈ ιLKK−k(Ω), which is (4) for g.

Conversely, assume (3) for g, then gσ−1(1) ∈ ιLKk−1(Ω), and
gτK−kτK−k+1···τK = gσ−1(1)τK−k+1···τK ∈ Int(Ω), i.e. (3) for gσ−1(1). As (3)
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implies (4) for k − 1, one has gσ−1(1)bK−k+1 ∈ ιLKk−1(Ω) for all bK−k+1 ∈
BK−k+1, so gbK−k ∈ LKk (Ω) for all bK−k ∈ BK−k, which means (2)
for g. �

Remark 4.10. — The combinatorial description of Remark 3.8 still ap-
plies to an element g ∈ ΓK−k of the form:

g = (gtK−k···tK )(σtK−k···tK−1) · · · (σtK−k)σ,

with tK−k+l∈{1, . . . , dK−k+l}, σtK−k···tK−k+l ∈ AK−k+l+1 and gtK−k···tK ∈
ΓK+1. Such an element g belongs to LKk (Ω) if and only if it satisfies the
three following conditions:

(1) ∀tK−k · · · tK−1, the element gtK−k···tK−11 is in Ω ⊂ HK+1 and the
elements gtK−k···tK−12, . . . , gtK−k···tK−1dK are in AK+1,

(2) ∀tK−k · · · tK−2, the set:

I(tK−k · · · tK−2)

= {TK−1 ∈ {1, . . . , dK−1} | σ−1
tK−k···tK−2TK−1

(1) = 1}

= {TK−1 ∈ {1, . . . , dK−1} | gtK−k···tK−2TK−1 ∈ ιLK0 (Ω) ⊂ ΓK}

is non-empty.
(3) ∀2 6 l 6 k, ∀tK−k · · · tK−l, the following subset of {1, . . . , dK−l+1}:

I(tK−k · · · tK−l)

=
{
TK−l+1 | σ−1

tK−k···tK−lTK−l+1
(1) ∈ I(tK−k · · · tK−lTk−l+1)

}
,

=
{
TK−l+1 | gtK−k···tK−lTK−l+1 ∈ ιLKl−2(Ω) ⊂ ΓK−l+2

}
,

defined by induction on l, is non-empty.
The element g belongs to ιLKk (Ω) if and only if it satisfies (1), (2),
(3) and moreover:

(4) σ−1(1) belongs to the set:

I(∅) =
{
TK−k | σ−1

TK−k
(1) ∈ I(TK−k)

}
=
{
TK−k | gTK−k ∈ ιLKk−1(Ω) ⊂ ΓK−k+1

}
.

The element g belongs to Int(LKk (Ω)) if and only if it satisfies (1),
(2), (3), (4) and moreover:

(5) gτK−k···τK ∈ Int(Ω).

This description and especially point (5) prove the:
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Fact 4.11. — With respect to the generating set AK−k ∪BK−k of the
group ΓK−k, and the generating set BK+1 of the group HK+1, one has:

| Int(LKk (Ω))| = |ιLKk (Ω)| | Int(Ω)|
|Ω| .

In particular, the set ιLKk (Ω) is precisely the interior Int(LKk (Ω)) when
Int(Ω) = Ω. This happens when HK+1 (hence H0) is finite.

For 0 6 k 6 K, set |ιL
K
k (Ω)|

|LK
k

(Ω)| = 1− εk. The number εk will be denoted εKk
later on to emphasize the dependance on K. Lemma 3.7 generalizes as:

Lemma 4.12. — The sequence (εk)06k6K satisfies ε0 = 1− 1
dK

and:

1− εk+1 = 1− εk
1− εdK−k−1

k

.

Proof. — Given a subset I ⊂ {1, . . . , dK−k−1}, denote:

JI =
{
g = (g1, . . . , gdK−k−1)σ | ∀T ∈ I, gT ∈ ιLKk (Ω)

and ∀t /∈ I, gt ∈ LKk (Ω) r ιLKk (Ω)
}
.

By definition, LKk+1(Ω) is the disjoint union LKk+1(Ω) = t|I|>1JI .
As in the proof of Lemma 3.7, one has for i = |I|:

|JI | = |AK−k−1||LKk (Ω)|dK−k−1(1− εk)iεdK−k−1−i
k ,

|JI ∩ ιLKk+1(Ω)| = i

dK−k−1
|JI |.

Again by use of the mean of binomial distribution, get:

|ιLKk+1(Ω)|

=
dK−k−1∑
i=1

CidK−k−1
(1− εk)iεdK−k−1−i

k

i

dK−k−1
|LKk (Ω)|dK−k−1 |AK−k−1|

= (1− εk)|LKk (Ω)|dK−k−1 |AK−k−1|,

|LKk+1(Ω)| =
dK−k−1∑
i=1

CidK−k−1
(1− εk)iεdK−k−1−i

k |LKk (Ω)|dK−k−1 |AK−k−1|

= (1− εdK−k−1
k )|LKk (Ω)|dK−k−1 |AK−k−1|.

This proves the lemma. �

Lemma 4.13. — If dk
log k −→ 0, then εKK −→ 0. If dk 6 D for all k, then

εKK = O(K−η) for all η < 1
D−1 .

First check the elementary:
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Fact 4.14. — Let f(D, ε) = 1−εD−1

1−εD , for D > 2 and ε ∈ (0, 1). Then
for fixed D, the function f(D, ε) is decreasing with ε, and for fixed ε, the
function f(D, ε) is increasing with D.

Proof. — Compute derivatives:

(1− εD)2 ∂f

∂ε
(D, ε) = εD−2(1− ε)

(
εD−1 + · · ·+ ε2 + ε− (D − 1)

)
< 0,

(1− εD)2 ∂f

∂D
(D, ε) = εD−1(ε− 1) log ε > 0.

�

Proof of Lemma 4.13. — For a fixed K, and 0 6 k 6 K, set Dk = dK−k,
and D(K) = max06k6K{dk} = o(logK). By Lemma 4.12, one has:

εk+1 = εk
1− εDk+1−1

k

1− εDk+1
k

= εkf(Dk+1, εk).

By fact 4.14, as long as εk > E, one has:

εk+1 6 εkf(Dk+1, E) 6 εkf(D(K), E),

so εK = εKK 6 max{E, f(D(K), E)K} for any E ∈ (0, 1). Now consider a
sequence EK −→ 0 so that |D(K) logEK | = o(logK) (it exists). One has:

f(D(K), EK)K = expK
(
log(1− ED(K)−1

K )− log(1− ED(K)
K )

)
,

= exp
(
−KED(K)−1

K +O(KED(K)
K )

)
−→ 0,

because KED(K)−1
K −→ +∞. This shows εKK −→ 0.

If moreover dk 6 D, take EK = K−η with η < 1
D−1 , then:

f(D,EK)K = exp
(
−K1−η(D−1) +O(K1−ηD)

)
= o(K−η),

so εKK = O(K−η). �

Proof of Theorem 4.6. — By Fact 4.11, one has:

| Int(LKK(Ω))|
|LKK(Ω)|

= |ιL
K
K(Ω)|

|LKK(Ω)|
| Int(Ω)|
|Ω| = (1− εKK) | Int(Ω)|

|Ω| .

As the group HK+1 is amenable by Fact 4.4, the set Ω can be chosen with
| Int(Ω)|
|Ω| arbitrarily close to 1. By Lemma 4.13, this shows that there exists a

sequence of sets ΩK ⊂ HK+1 so that the sets LKK(ΩK) ⊂ Γ0 form a Folner
sequence. �
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5. Examples of groups with property DP

5.1. Alternate directed groups

Given a sequence d̄ = (di)i∈N of integers di > 2, set:

ATi = AT (di, di+1) = (Adi+1 × · · · × Adi+1) oAdi−1 = Adi+1 o Adi−1,

where Ad is the alternate group of even permutations of the set {1, . . . , d},
there are di − 1 factors in the product (indexed by {2, . . . , di}), and Adi−1
acts by permuting these factors. Consider the countable infinite direct prod-
uct:

Halt
d̄

=
∞∏
i=0

ATi =
∞∏
i=0
Adi+1 o Adi−1.

Its elements are denoted as sequences h = (hi)∞i=0 with hi = (ai,2, . . . ,
ai,di)ρi ∈ ATi.
The group Halt

d̄
acts faithfully on the spherically homogeneous rooted

tree Td̄ in the direction of the ray 1∞, where under the canonical isomor-
phism (2.1), one has:

(hi)∞i=0 = ((hi)∞i=1, a0,2, . . . , a0,d0)ρ0,

where ρ0∈Ad0−1 ' FixAd0
(1). Inductively under isomorphism Aut(Tskd̄) '

Aut(Tsk+1d̄) o Sdk , one has (hi)∞i=k = ((hi)∞i=k+1, ak,2, . . . , ak,dk)ρk.
On the other hand, the group Ad0 acts on Td̄ by rooted automorphisms:

Ad0 3 a = (e, . . . , e)a.

Definition 5.1. — An alternate directed group G is a subgroup of
Autalt(Td̄) with generating set A∪H, with A ⊂ Ad0 and H ⊂ Halt

d̄
. Denote:

G(A,H) = 〈A ∪H〉 < Autalt(Td̄).

When the sequence d̄ is constant di = d, if A ' Ad and H ' Ad oAd−1 is
diagonaly embedded into the direct productHalt

d̄
, then G(A,H) = Gd is the

alternate mother group of section 3. Directed groups (not necessarily alter-
nate) satisfy the same definition without requirement that the permutations
involved are even, that is with Sd instead of Ad and Hd̄ =

∏∞
i=0 Sdi+1 oSdi−1

instead of Halt
d̄

(see [6], [7]).
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5.2. Case of bounded valency

In this section, assume that the sequence d̄ is bounded 5 6 di 6 D. Let
B ⊂ Halt

d̄
be a finite subset, and denote its elements by β = (βi)∞i=0 ∈ Halt

d̄
.

Then for each i, the set {βi, β ∈ B} is a B-indexed subset of ATi =
AT (di, di+1). As the valency sequence d̄ is bounded, there is a finite set
of pairs: {

(AT (s), {β(s), β ∈ B}), s ∈ J
}
,

such that for any i, there exists s(i) in the finite set J with (ATi, {βi, β ∈
B}) = (AT (s(i)), {β(s(i)), β ∈ B}), as pairs of finite groups withB-indexed
subsets.
This provides an isomorphism:

Halt
d̄

> H = 〈β, β ∈ B〉 ' 〈(β(s))s∈J , β ∈ B〉 <
∏
s∈J

AT (s).

The group H is said saturated if H =
∏
s∈J AT (s). (Mind a difference with

the notion of saturation in [6] and [7], where it was only required that H
surjects on each factor AT (s). The present condition is slightly stronger.)
Finiteness of J shows the:

Fact 5.2. — If d̄ is bounded, any finitely generated subgroup of Halt
d̄

is
contained in a finite saturated subgroup H.

The following proposition will permit to show amenability of all directed
groups acting on a tree of bounded valency.

Proposition 5.3. — Let d̄ be a bounded sequence of integers di > 5. If
H < Halt

d̄
is a finite saturated subgroup, then the alternate directed group

G(Ad0 , H) < Aut(Td̄) has property DP.

Proof. — Set Ak = Adk , Hk = {(hi)∞i=k | (hi)∞i=0 ∈ H}, define Γk =
G(Ak, Hk) < Autalt(Tskd̄) and check that the sequence {Γk}k∈N has prop-
erty DP. In order to ease notations, we treat the case k = 0, the general
case is similar.
The only non-trivial point in order to verify the conditions of Defini-

tion 4.1 is surjectivity of the isomorphism:

ϕ0 : G(Ad0 , H) −→ G(Ad1 , H1) o Ad0 .

Given h = (hi)∞i=0 in Hd̄ with hi = (ai,2, . . . , ai,di)ρi, set:

h(2) = ((ai,2, e, . . . , e)e)∞i=0, and h(∅) = ((e, . . . , e)ρi)∞i=0.

In each factor AT (s) = Ad′(s) o Ad(s)−1, the subset

{(a2, e, . . . , e) | a2 ∈ Ad′(s)} ∪ {(e, . . . , e)ρ | ρ ∈ Ad(s)−1}
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generates the group AT (s). Thus by saturation

〈h(2), h ∈ H〉 '
∏
s∈J
Ad′(s)×{e}×· · ·×{e}, and 〈h(∅), h ∈ H〉 '

∏
s∈J
Ad′(s).

So saturation shows that the subsets H(2) = {h(2), h ∈ H} and H(∅) =
{h(∅), h ∈ H} are subgroups of H, and moreover 〈H(2) ∪H(∅)〉 = H.
The proofs of Fact 3.2 and Proposition 3.1 apply directly, replacing the

generators b2 = b(α2, e, . . . , e, eA) and b∅ = b(e, . . . , e, ρ) by h(2) and h(∅)
respectively. �

Let σ be a permutation of the set {1, . . . , d}. Denote σ′ another copy of
σ acting on the set {d + 1, . . . , 2d} by σ′(t) = σ(t − d) + d, and consider
the embedding a : Sd ↪→ A2d given by a(σ) = σσ′. It can be extended to
furnish:

a : Aut(Td̄)→ Autalt(T2̄d),
an embedding of the group of automorphisms of the tree Td̄ into the group
of alternate automorphisms of the tree T2̄d.
Indeed, let γ ∈ Aut(Td̄) be described by a family of permutations

{σv}v∈Td̄ , where σv ∈ Sdk for every v = t1 · · · tk in Td̄. The automor-
phism a(γ) is described by a family of permutations {a(γ)v}v∈T2̄d

given
by a(γ)v = a(γv) ∈ A2dk for v = t1 · · · tk in Td̄ ⊂ T2̄d and a(γ)v = e for
v ∈ T2̄d r Td̄.

Fact 5.4. — Directed elements have directed image under a, i.e.
a(Hd̄) ⊂ Halt

2̄d . In particular, the mother group of degree 0 acting on a
d-regular tree embeds in the alternate mother group G2d acting on a 2d-
regular tree.

Proof. — As a shortcut denote 1k for the sequence 11 · · · 1 with k ones.
By definition, an automorphism γ is directed if and only if σ1k ∈FixSdk (1) '
Sdk−1 and σv = e if v is not of the form 1k−1t for some t in {1, . . . , dk}.
This is still the case for a(γ). �

The following result from [6] can now be reproved.

Corollary 5.5. — Directed groups acting on a tree of bounded valency
are amenable.

Proof. — Let Γ be a directed group, with generating set S ∪ H where
S ⊂ Sd0 andH ⊂ Hd̄. By fact 5.4, the group a(Γ) < Autalt(T2̄d) is alternate
and directed. By fact 5.2, it can be included in a directed, alternate and
saturated subgroup of Autalt(T2̄d), which has property DP by Proposition
5.3, hence a(Γ) is amenable by Theorem 4.6, since 2̄d is bounded and H0
finite. The group Γ is also amenable as a subgroup. �
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Corollary 5.6 (Main theorem in [3]). — Automata groups with boun-
ded activity are amenable.

Proof. — By Theorem 3.3 in [3], an automata group Γ with bounded
activity is a subgroup of the alternate mother group of degree 0 acting on
a d-regular tree for d large enough. By Fact 5.4, Γ is a subgroup of G2d,
hence is amenable by Theorem 3.3. �

5.3. Examples with unbounded valency

This section aims at constructing examples of groups with property DP
for which the sequence d̄ of fact 4.2 is unbounded.
Let H be a finitely generated, residually finite, perfect group with a

sequence of normal subgroups (Ni)i>0 of finite index so that each quotient
Ai = H/Ni is perfect, acting faithfully and transitively on a finite set
{1, . . . , di} of size di > 2. For h in H, denote ai(h) = hNi ∈ Ai. Assume
moreover that there exists τi ∈ Ai such that τi(1) = 1 and τ−1

i (2) /∈ {1, 2}.
To the group H = H0 together with subgroup sequence (Nk)k>0 is as-

sociated an action on the rooted tree Td̄ of valency sequence d̄ = (dk)k>0,
denoted b0 : H0 → Aut(Td̄), given by the portrait (b0(h))1k−12 = ak(h) and
(b0(h))v = e if v is not of the form 1k−12 for k > 1 (notation 1k is a shortcut
for 11 · · · 1 with k ones).
More generally, to Hi = H together with the sequence (Nk)k>i is asso-

ciated an action on Tsid̄ denoted bi : Hi → Aut(Tsid̄), given by the portrait
(bi(h))1k−12 = ak+i(h) and (bi(h))v = e if v is not of the form 1k−12.
The group Ai = Hi/Ni = H/Ni also acts on Tsid̄ as a rooted au-

tomorphism acting on {1, · · · , di}, i.e. ai(h) = (e, . . . , e)ai(h). Set Γi =
〈Ai ∪Hi〉 < Aut(Tsid̄), with the bi action.

Fact 5.7. — The sequence of groups {Γi}i∈N has property DP.

Proof. — In the wreath product isomorphism ϕi of (2.1) for Tsid̄, one
has:

(5.1) ϕi(bi(h)) =
(
bi+1(h), ai+1(h), e, . . . , e

)
.

Thus it induces an embedding ϕi : Γi ↪→ Γi+1 o Ai. The only non-trivial
point in the conditions of Definition 4.1 is to check that this embedding is
onto.
As ϕi(bi(h′)τi) = (bi+1(h′), e, . . . , ai+1(h′), . . . , e), one has ϕi([bi(h′)τi ,

bi(h)]) = (bi+1([h′, h]), e, . . . , e). As H is perfect, the image contains Hi+1×
{e} × · · · × {e}, and also {e} ×Ai+1 × {e} × · · · × {e} by (5.1). Moreover,
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the image contains Ai rooted which has a transitive action on {1, . . . , di}.
Thus ϕi(Γi) finally contains Γi+1 oAi. �

As an example of such a finitely generated, residually finite, perfect group
H, one may take the alternate mother group Gd of section 3 for d > 6 (for
which both finite generating subgroups A and B are perfect). This group
satisfies Gd ' Gd o Ad. Its finite index normal subgroups are:

Stj = ker(Gd → Ad o · · · o Ad),

where the j factors in the iterated wreath product are obtained by iteration
of the above isomorphism. The group Stj is called stabilizer of level j of
the group Gd. The quotient Gd/Stj is acting transitively on level j, which
is the set {1, . . . , d}j . By [15], these stabilizers Stj are the only finite index
normal subgroups of Gd.
For an arbitrary function j : N → N, take Nk = Stj(k) as a sequence of

normal subgroups. The group Γ0 defined by H = Gd together with the
function j(k) has property DP by Fact 5.7. It is amenable when dj(k) is
sublogarithmic by Theorem 4.6. Note that in the construction above, one
could use any group of Proposition 5.3 with di > 6 instead of Gd.
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