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SESHADRI CONSTANTS AND INTERPOLATION ON
COMMUTATIVE ALGEBRAIC GROUPS

by Stéphane FISCHLER & Michael NAKAMAYE

Abstract. — In this article we study interpolation estimates on a special
class of compactifications of commutative algebraic groups constructed by Serre.
We obtain a large quantitative improvement over previous results due to Masser
and the first author and our main result has the same level of accuracy as the
best known multiplicity estimates. The improvements come both from using special
properties of the compactifications which we consider and from a different approach
based upon Seshadri constants and vanishing theorems.
Résumé. — Dans cet article on étudie les lemmes d’interpolation dans les

compactifications à la Serre de groupes algébriques commutatifs. On obtient un
résultat aussi précis que les meilleurs lemmes de multiplicité connus, ce qui amé-
liore notablement le lemme d’interpolation de Masser et celui du premier auteur.
Ce raffinement provient d’une approche différente, fondée sur les constantes de
Seshadri et les théorèmes d’annulation, et utilise les propriétés particulières des
compactifications considérées.

Introduction

Suppose X is a smooth projective variety, L a line bundle on X, and
P1, . . . , Pn points in X. The basic interpolation question asks to determine,
with respect to the positivity of L and the geometry of the collection of
points {Pi}, whether or not the natural evaluation map

H0(X,L)→ H0 (X,L⊗⊕ni=1OX/mr
Pi

)
is surjective for a given positive integer r, where mx ⊂ OX is the maximal
ideal sheaf corresponding to the point x ∈ X. More generally, the ideals
mr
Pi

may be replaced with ideals which only measure vanishing in “certain

Keywords: Interpolation estimate, Seshadri constant, ample line bundle, commutative
algebraic group, obstruction subgroup, Seshadri exceptional subvariety.
Math. classification: 14L10, 14C20, 11J95, 14L40.



1270 Stéphane FISCHLER & Michael NAKAMAYE

directions”. A first result of this type, in the context of commutative alge-
braic groups and with r = 1, was established by Masser [11] and generalized
by the first author [4] to allow an arbitrary value of r and also substantial
flexibility in the choice of the ideal sheaves that can be used instead of
mr
Pi
; in this paper we further refine these estimates. The importance of

this question, in addition to being a fundamental issue of positivity in al-
gebraic geometry, lies in its potential applications in transcendence theory.
Such a result can replace a zero (or multiplicity) estimate in a transcen-
dence proof, by constructing an auxiliary functional instead of an auxiliary
function (see [21], [22], [23], and [24]). From a Diophantine point of view,
this new strategy may lead to new results in transcendence or Diophan-
tine approximation because the parameters are chosen in a different way.
In addition, our new proof of an interpolation estimate is geometric in na-
ture, using Seshadri exceptional subvarieties; in particular, we are able, as
in [18], to relate the algebraic subgroup responsible for a possible defect in
this estimate to a Seshadri exceptional subvariety.
In order to state our results, we require a definition of Seshadri constants.

These numerical invariants attached to a line bundle and a finite set of
points measure the answer to the interpolation question as we will see
below. Greater details will be found in §2.

Definition 0.1. — Suppose X is a smooth projective variety, L an
ample line bundle on X, and Ω ⊂ X a finite set. We define the Seshadri
constant of L at Ω by

ε(Ω, L) = inf
C∩Ω6=∅

{
degL(C)∑

x∈Ω multx(C)

}
;

here the curve C ⊂ X in the infimum is irreducible. We call a positive di-
mensional, irreducible subvariety V ⊂ X Seshadri exceptional for L relative
to Ω if (

degL(V )∑
x∈Ω multx(V )

) 1
dim(V )

= ε(Ω, L)

and if V is not properly contained in any subvariety V ′ satisfying this same
equality.

Let G be a connected commutative algebraic group, and X a Serre com-
pactification [20] of G (see §1.1). The group law on G will play a fundamen-
tal role: it is used both to extend the collection of points Ω = {P1, . . . , Pn}
under consideration and to define the invariants which enter into our main
theorems. Using the language of Seshadri constants, our goal in this paper
is to show that the interpolation problem for X, an ample line bundle L,
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SESHADRI CONSTANTS AND INTERPOLATION 1271

and a finite subset Ω of G can be reduced to the corresponding interpolation
problem on the compactifications of subgroups of G and their translates.
More precisely, we will associate numerical invariants to each translate of
a compactified subgroup of G:

Definition 0.2. — Let G be a connected commutative algebraic group,
X a Serre compactification of G, L an ample line bundle on X, and Ω ⊂ G
a finite subset. Suppose H ⊂ G is a translate of a positive-dimensional
connected subgroup and H̄ ⊂ X its compactification. Let

µ(Ω, H, L) =

(
degL(H̄)

|(Ω∩H)(dim(H))|

)1/ dim(H)

dim(H) :

here Ω(dim(H)) denotes Ω + . . .+ Ω with dim(H) summands. Let

ν(Ω, L) = min
H⊂G
{µ(Ω, H, L)}

where the minimum runs over all translates H of positive-dimensional con-
nected subgroups of G.

For algebraic subgroupsH such that Ω∩H = ∅, we agree that µ(Ω, H, L) =
+∞.
When Definition 0.2 is applied in the special case where H = G we will

simply write

µ(Ω, L) =

(
Ld

|Ω(d)|

)1/d

d
;

throughout this paper we let d = dim(G). Our first theorem shows that if
ε(Ω, L) < µ(Ω, L) then any Seshadri exceptional subvariety V for Ω and
L is contained in the compactification of a translate of a proper algebraic
subgroup of G, for which the corresponding inequality does not hold.

Theorem 0.3. — Suppose L is an ample line bundle on X, a Serre
compactification of a connected commutative algebraic group G. Suppose
Ω ⊂ G is a finite set such that

ε(Ω, L) < µ(Ω, L).

Let V be a Seshadri exceptional subvariety of X relative to Ω, and let
H denote the smallest translate of a connected algebraic subgroup that
contains V ∩G. Then

(i) The translate H is distinct from G and so V ∩G is degenerate.
(ii) We have ε(Ω, L) > µ(Ω, H, L).

TOME 64 (2014), FASCICULE 3



1272 Stéphane FISCHLER & Michael NAKAMAYE

We provide a simple example where the invariants of Theorem 0.3 can
be calculated explicitly. Suppose G = Ga × Ga where Ga is the additive
group, X = P1 × P1, L = OX(1, 1), and Ω = {(0, 1), . . . , (0, k)} for an
integer k > 2. Then we can calculate ε(Ω, L) = 1

k with {0} × P1 the

Seshadri exceptional subvariety. We also find µ(Ω, L) =
√

2
2k−1
2 . As long as

k > 4, ε(Ω, L) < µ(Ω, L). In this case, the Seshadri exceptional subvariety
is the compactification of the degenerate subgroup {0} ×Ga.
When the assumption ε(Ω, L) < µ(Ω, L) is not satisfied, part (ii) of

the conclusion holds with H = G. Therefore we obtain as a corollary the
following lower bound for the Seshadri constant ε(Ω, L), which depends
only on translates of subgroups of G.

Corollary 0.4. — Suppose L is ample on X, a Serre compactification
of a connected commutative algebraic group G. Suppose Ω ⊂ G is a finite
set. Then

ε(Ω, L) > ν(Ω, L).

Corollary 0.4 says that the only severe obstructions for the interpolation
problem along Ω come from translates of non-trivial subgroups. This result
is close to being optimal, since linear algebra (see [10, Proposition 5.1.9],
stated below in Lemma 2.2) yields

ε(Ω, L) 6 min
H⊂G

(
degL(H)
|Ω ∩H|

)1/ dim(H)

where the minimum runs over all translates H of positive-dimensional con-
nected subgroups of G. Corollary 0.4 is the best result one can hope for
using the methods of this paper. It is as close to being optimal as the most
precise multiplicity estimate in this setting [16].
A standard argument with vanishing theorems translates Corollary 0.4

into an interpolation estimate, but one which involves the canonical divisor
KX . Fortunately, this divisor is particularly convenient for the Serre com-
pactifications of G : − KX is, up to algebraic equivalence, supported on
X rG (see Lemma 1.1 in §1.1 below) and effective, allowing us to remove
the unwanted KX :

Corollary 0.5. — Suppose L is an ample line bundle on a Serre com-
pactificationX of a connected commutative algebraic group G of dimension
d. Let Ω ⊂ G be a finite subset. Suppose α is a positive integer satisfying
d 6 α < ν(Ω, L). Then
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SESHADRI CONSTANTS AND INTERPOLATION 1273

(i) The natural map

H0(X,KX + L)→ H0 (X, (KX + L)⊗⊕x∈ΩOX/mα+1−d
x

)
is surjective.

(ii) The natural map

H0(X,L)→ H0 (X,L⊗⊕x∈ΩOX/mα+1−d
x

)
is surjective.

The hypothesis ν(Ω, L) > d will not in general be satisfied. But by [10,
Example 5.1.4] ν(Ω, kL) = kν(Ω, L) so this can always be obtained by
scaling L. Note also that if G is an abelian variety then X = G is a
Serre compactification, so that this corollary applies. These interpolation
estimates are much more precise than those obtained by Masser [11] and
the first author [4]; we refer to §1.2 for a detailed comparison. We will
apply these new estimates in a forthcoming paper [5], in a situation where
previously known results are not sufficiently precise.
The basic method of proof employed in this article is that of [18]. We

would like to emphasize this similarity. Multiplicity estimates and interpo-
lation estimates are established in the same way by studying the Seshadri
exceptional subvariety for Ω and L. The difference is that the obstruction
subgroup for multiplicity estimates can be larger than the obstruction for
the interpolation problem. In [17] the second author produced, for cer-
tain special cases of Ω, a chain of subgroups, the smallest of which is the
obstruction to the interpolation problem and the largest of which is the
obstruction to multiplicity estimates (see [5] for precise statements).
The outline of the paper is as follows. We gather in §1 some properties

of Serre compactifications and provide a detailed comparison with pre-
viously known interpolation estimates. Then we move in §2 to Seshadri
constants and Seshadri exceptional subvarieties, recalling their properties
and establishing how they behave under translation in the case of interest
here. We also discuss differentiation of sections of L which is fundamental
to the proofs. Finally in §3 we prove Theorem 0.3 and derive Corollaries 0.4
and 0.5.

Acknowledgments. — It is a pleasure to thank the Université de Paris-
Sud, Orsay for receiving the second author during January and February,
2012, providing an opportunity to start this work. The second author would
also like to thank Imperial College which provided a pleasant environment
in which to continue work on this article. The first author is supported by
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Agence Nationale de la Recherche (project HAMOT, ref. ANR 2010 BLAN-
0115-01), and would like to warmly thank Michel Waldschmidt for asking
him to prove essentially the results presented here, almost 15 years ago in
his thesis. The second author would also like to thank Michel Waldschmidt
for his long standing encouragement to work on the important and difficult
questions of multiplicity and interpolation estimates.

1. Background

In this section we recall the definition and properties of Serre compact-
ifications (§1.1) and study their canonical bundles. Then we compare in
§1.2 our interpolation estimate to those of Masser and the first author; we
mention there the case of arbitrary compactifications.

1.1. Serre compactifications

Except in §1.2 below, we shall always compactify the commutative alge-
braic group G following the procedure due to Serre [20] that we describe
now. Our proof might work for more general compactifications, but tech-
nical difficulties would appear that depend on the compactification. The
same assumption appears already in [16].
A commutative algebraic group G can be viewed as an extension of an

abelian variety by a linear group. In particular, there is an exact sequence
of groups

0→ L→ G→ A→ 0
where A is an abelian variety and L is a linear group. The linear group L
can be written as a product (Gm)r × (Ga)s where Gm is the multiplicative
group and Ga the additive group: note that this expression of L as a prod-
uct is not unique. The linear group L can be compactified as a product of
projective lines (P1)r+s. The Serre compactification of G is then the in-
duced compactifiation X obtained by viewing G as a principal fibre bundle
over A and then compactifying the fibres. To describe X more concretely,
suppose π : G → A is the projection map and U ⊂ A is an open subset
so that π−1(U) can be written as a product L × U . If p : X → A is the
projection then p−1(U) can be expressed as (P1)r+s × U . In other words,
the linear group L can be compactified over an open cover of A and then
these open sets glue together to give the Serre compactification X of G.
It is important for us that this compactification is equivariant, that is the
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group law on G extends to an action of G on X. Also important to note
here is that X rG is a union of divisors. The number of irreducible com-
ponents of X rG is 2r + s because P1 rGm is two points while P1 rGa
is a single point.
We shall compute now the canonical divisor KX on the Serre compacti-

fication of G by reviewing the argument at the end of §1 of [14]. In precise
terms, we prove the following lemma which will allow us to prove Corol-
lary 0.5 at the end of §3.

Lemma 1.1. — If X is a Serre compactification of a commutative al-
gebraic group G then −KX is linearly equivalent to the sum of a divisor
π∗(N), where N is algebraically equivalent to zero on A, and an effective
divisor supported on X rG.

Proof of Lemma 1.1. — Knopf and Lange [9, §2] show that if M is an
invertible sheaf on X which admits an L action then M can be expressed
as

M = π∗(N)⊗
(
r+s⊗
i=1
OX(aiDi)

)
where N is an invertible sheaf on A, the ai are integers, and the Di are the
irreducible components of X rG: only one of the two components coming
from each compactifiation of Gm is taken here. Since the compactification
X is equivariant, the canonical sheaf OX(KX) is acted on by G hence by
L. Thus we can write

OX(KX) = π∗(N)⊗
(
r+s⊗
i=1
OX(aiDi)

)
.

Since G acts on X and the canonical bundle of X is preserved by this
action, it follows that G acts on and preserves π∗(N). This is only pos-
sible, according to [1, Corollary 2.5.4] or [13, p.77 Theorem 1], if N is
algebraically equivalent to 0. To calculate the integers ai, we can consider
OX(KX)|p−1(x) where x is a point of A. On the one hand,OX(KX)|p−1(x) '
Op−1(x)(Kp−1(x)) as can be seen, for example, by repeatedly applying the
adjunction formula to divisors which are pulled back via p from the base
A. On the other hand, we know that p−1(x) = (P1)r+s. This tells us that
ai = −2 for all i, and concludes the proof of Lemma 1.1. �

1.2. Connection with previous estimates

In order to compare our results to those of [11] and [4], let us state and
prove a weaker form a Corollary 0.5 valid for any compactification of G. It

TOME 64 (2014), FASCICULE 3



1276 Stéphane FISCHLER & Michael NAKAMAYE

involves a projective embedding of G, which is standard when interpolation
estimates are applied to transcendental number theory.

Corollary 1.2. — Let G be a connected commutative algebraic group
of dimension d and Y a compactification of G. Let us fix a very ample
divisor on Y , corresponding to a locally closed immersion into a projective
space PN . Then:

(i) There exists a positive constant c (depending only on Y and on this
divisor) with the following property. Let Ω ⊂ G be a finite subset
and D,T positive integers such that

(1.1) D > cT |(Ω ∩H)(dim(H))|1/ dim(H)

for any translate H of a non-zero connected algebraic subgroup of
G. Then the evaluation map

H0(X,O(D))→ H0 (X,O(D)⊗⊕x∈ΩOX/mT
x

)
is surjective.

(ii) If Y is a Serre compactification of G then (i) holds with (1.1) re-
placed with

(1.2) (degO(1)H)Ddim(H)

> (dim(H))dim(H)(T + d− 1)dim(H)|(Ω ∩H)(dim(H))|.

Proof of Corollary 1.2. — Assertion (ii) is just a reformulation of Corol-
lary 0.5 when L is very ample. It implies that (i) holds when Y is a Serre
compactification of G, with c = d2 + 1 in (1.1) (actually any value greater
than d2 can be chosen, since dT > T + d− 1).

Now let us fix a very ample divisor on the Serre compactification of G,
corresponding to a locally closed immersion into PM . In the setting of (i),
consider the identity map of G to G with respect to the embeddings of G in
PN on the left, and in PM on the right. On a open subset of G containing
Ω, it is given by a family of M + 1 homogeneous polynomials in N + 1
variables, of the same degree δ. Then (i) holds in PN with c = δ(d2 + 1) in
(1.1) because it does in PM with c = d2 + 1: this follows from Lemma 1.3
and Proposition 2.3 of [4] with H = 0, I ′ = I, D′′ = 0 because conclusion
(ii) of this proposition never holds in this case. Note that in [4] the set Ω
is assumed to have a special form (namely Γ(S1, . . . , Sr), see below), but
this plays no role in this part of the paper [4]. This concludes the proof of
Corollary 1.2. �

We would like to emphasize the fact that part (i) of Corollary 1.2 is
a drastic weakening of Corollary 0.5, as the proof shows. We recall that
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SESHADRI CONSTANTS AND INTERPOLATION 1277

(ii), as Corollary 0.5, is very precise: the best possible assumption (up
to O(Ddim(H)−1)) would be to replace (dim(H))dim(H) with 1 and (Ω ∩
H)(dim(H)) with Ω ∩H in (1.2). It is essentially as precise as the second
author’s zero estimate [16].
On the other hand, in (i) the degree of H does not appear in (1.1),

and the constant c depends on the embedding of G in PN (as in early
zero estimates, for instance [12]); of course this is very unpleasant, and
in contrast our results stated in the introduction depend only on G. In
particular, unless c is bounded explicitly, this corollary is only asymptotic
with respect to D: (1.1) can hold only if D is sufficiently large with respect
to c.
The previously known interpolation estimates in this setting ([11], [4])

can be stated as follows: part (i) of Corollary 1.2 holds if Ω = Γ(S1, . . . , Sr)
is the set of elements n1γ1 + . . . + nrγr with fixed γ1, . . . , γr ∈ G and
integers nj with |nj | 6 Sj ; moreover the constant c in (1.1) may depend
on the embedding of G in PN and on γ1, . . . , γr. Therefore Corollary 1.2
contains, and refines, these results — except that in [4] the order up to
which derivatives are considered may vary according to the direction.
Whereas the proof of (i) of Corollary 1.2 provides a value for c (even

though not a very natural one), the proof of [11] and [4] does not provide
easily an explicit value. This constant depends (among others) on the de-
gree of a family of homogeneous polynomials representing the addition law
in this embedding (see [12, pp. 492–494]), and on the arbitrary choice of
projective embeddings of finitely many quotients G/H (see [11, p. 165],
or [4, §2.1]).
A more serious drawback of the interpolation estimates of [11] and [4] is

that c depends also on γ1, . . . , γr. This makes the result only asymptotic
in S1, . . . , Sr (and not only with respect to D, as (i) of Corollary 1.2).
For instance, if Ω has no special structure with respect to the group law
of G, then one has to take {γ1, . . . , γr} = Ω and S1 = . . . = Sr = 1
to apply it: the assumption (1.1) means that D/T is sufficiently large in
terms of Ω, and the result is completely trivial (it simply states that the
Seshadri constant exists). The same conclusion holds if Ω consists only of
torsion points (whereas this could be interesting in possible Diophantine
applications); more generally, the torsion part of the Z-module generated
by Ω disappears in this result (see [11, §4], or [4, Step 2 in §4.2]).
Finally, Theorem 0.3 and Corollary 0.4 provide a so-called obstruction

subgroup for interpolation (in a terminology close to that of [4]), that is a
translate H such that ε(Ω, L) > µ(Ω, H, L), with an additional property:

TOME 64 (2014), FASCICULE 3



1278 Stéphane FISCHLER & Michael NAKAMAYE

H is the smallest translate that contains a Seshadri exceptional subvariety
for Ω and L (see also [17] and [18]). On the contrary, no such interpretation
follows from the proofs of [4] and [11].

There is only one aspect of the first author’s result [4] which is not con-
tained in ours: the fact that in [4] the order up to which derivatives are
considered may vary according to the direction. We would like to briefly
address why the methods of this article do not suffice to establish an inter-
polation estimate in the case of multiplicity along a proper analytic sub-
group 0 6= Λ ⊂ T0(G). In the multiplicity setting where Λ = T0(G) the jets
which multiples of L generate are controlled, up to requiring an additional
KX , by the Seshadri constant ε(Ω, L) which has nice geometric properties.
When Λ 6= T0(G), there is no longer a simple global geometric invariant
which measures positivity in the direction of Λ. The Seshadri constant can
be studied naturally on a single blow-up while the corresponding constant
associated to derivation in the directions of Λ requires more and more blow-
ups as the order of jets increases. These blow-ups then influence the end
result adversely: indeed, in Corollary 0.5, the 1− d in the exponent comes
from the relative canonical bundle of the blow up of X along Ω. In the case
where Λ ⊂ T0(G) is a proper subspace, the number of blow-ups is roughly
equal to the order of vanishing along Λ and each blow-up introduces a new
exceptional divisor and a more complicated relative canonical bundle. The
fundamental issue here is that the canonical bundle KX which enters in
these vanishing theorems is a global object associated to X, whereas what
would be needed, in the case of a proper subspace Λ ⊂ T0(G), is a different
object which only measures positivity in certain directions.
Even though our point of view in this paper is to work only with Serre

compactifications (because they make everything easier), it could be inter-
esting to prove sharp interpolation estimates for other compactifications.
Then several parts of our argument would have to change. First, we would
need to define the translation operators tg, in a given embedding, in terms
of homogeneous forms of bounded degree: this unfortunately brings back
all of the constants which depend on the embedding. Secondly and more
seriously, we could no longer use the fact that numerically equivalent line
bundles have the same Seshadri exceptional subvarieties: we apply this to
the line bundle L and its translates but in the absence of translation oper-
ators an alternative method would need to be developed here. Thirdly, an
alternative means of differentiation would need to be found.

ANNALES DE L’INSTITUT FOURIER
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To conclude this section, we would like to compare and contrast the
method of proof here with the one employed by Masser [11] and gener-
alized by the first author [4]. Rather than using positivity and vanishing
theorems as is done here, Masser takes a more concrete approach we sum-
marize briefly here. If the evaluation map is not surjective (say with no
multiplicities, i.e. T = 1) and if there is no obstructing subgroup, then
there is a linear relation between the values at the points of Ω of all
P ∈ H0(X,O(D)) — that is, a non-zero functional that vanishes when
applied to any P . Then translating this functional yields many relations
between the values at the points of Ω(d). Linear algebra yields the existence
of a non-zero P ∈ H0(X,O(D′)) (for some D′ close to D) which vanishes
at many points among those of Ω(d); these many relations imply that it
vanishes at all points of Ω(d). This contradicts a zero estimate, for instance
that of Philippon [19].

2. Seshadri constants and Seshadri exceptional
subvarieties

In this section we gather together all of the preliminary results which
we will need in proving the main theorems. We first recall in §2.1 some
of the important properties of Seshadri constants and Seshadri exceptional
subvarieties which we use repeatedly in our proofs. Then we focus in §2.2 on
the order of vanishing of sections along Seshadri exceptional subvarieties:
here we prove Theorem 2.6, the main ingredient in our approach.

2.1. General properties

Most results of this section apply in general and do not require that X
be a compactification of a commutative algebraic group. Until the end of
this section, we let X denote a smooth projective variety with additional
hypotheses as needed. These results will be applied in §3 to the case where
X is a Serre compactification of a commutative algebraic group, but they
hold in general and are of independent interest.

We first discuss in detail Seshadri constants and Seshadri exceptional
subvarieties. A useful reference for this material is Chapter 5 of [10], where
complete proofs are provided when Ω consists in a single point: the general
results for a finite subset Ω can be proved in the same way. In addition
to the definition of Seshadri constants in terms of curves and multiplicities
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1280 Stéphane FISCHLER & Michael NAKAMAYE

which was given in the introduction, there is an alternative definition which
is often useful. For this definition, given in [10, Definition 5.1.1], note that
a divisor D on X is called nef if D · C > 0 for every curve C ⊂ X.

Definition 2.1. — Suppose Ω ⊂ X is a finite set, L an ample line
bundle on X. Let π : Y → X be the blow-up of X along Ω with exceptional
divisor E. Then the Seshadri constant of L along Ω is

ε(Ω, L) = sup{α > 0: π∗(L)(−αE) is nef}.

The fact that Definition 0.1 and Definition 2.1 are equivalent can be
found in [10, Proposition 5.1.5]. We will only use this alternative charac-
terization of Seshadri constants in the proof of Corollary 0.5. Campana and
Peternell [2] established that a Seshadri exceptional subvariety for L and
Ω, as defined in Definition 0.1, always exists; a proof can be found in [10,
Proposition 2.3.18]. Combining Definition 0.1 with Proposition 5.1.9 of [10]
yields the following lemma:

Lemma 2.2. — For any positive-dimensional irreducible subvariety V

of X we have

ε(Ω, L)dim(V )

( ∑
x∈Ω∩V

multx(V )
)
6 degL(V ).

If V is a Seshadri exceptional subvariety with respect to L and Ω, then
equality holds.

Of great importance to us is the fact that Seshadri exceptional subva-
rieties for Ω and L depend only on the numerical equivalence class of L:
recall that two line bundles L and M on a variety X are called numerically
equivalent if L ·C = M ·C for every curve C ⊂ X. Since the Seshadri con-
stant ε(Ω, L) is defined in terms of intersection numbers of L with curves on
X, it follows that ε(Ω, L) = ε(Ω,M) ifM and L are numerically equivalent
ample line bundles on X. Similarly V is Seshadri exceptional with respect
to L and Ω if and only if it is Seshadri exceptional for M :

Lemma 2.3. — SupposeM and L are numerically equivalent ample line
bundles on a smooth projective variety X. Let Ω ⊂ X be a finite subset.
Then a subvariety V ⊂ X is a Seshadri exceptional for Ω and L if and only
if it is Seshadri exceptional for Ω and M .

When X is an equivariant compactification of G let tg : X → X be the
extension of translation by g to X. Using [6, §19.1] we deduce that the

ANNALES DE L’INSTITUT FOURIER



SESHADRI CONSTANTS AND INTERPOLATION 1281

line bundles t∗g(L) are all numerically equivalent. Hence, we derive from
Lemma 2.3 the important corollary:

Corollary 2.4. — For any ample line bundle L on X and any g ∈ G, a
subvariety V is Seshadri exceptional for Ω and L if and only if it is Seshadri
exceptional for Ω and t∗g(L).

Before presenting in §2.2 the main result of this section, we require one
more preliminary lemma about jet separation. Using the notation of [10,
Definition 5.1.15], write Jsx(L) for H0(X,L⊗OX/ms+1

x ), the jets of order
s at x for a line bundle L. Similarly, write JsΩ(L) = ⊕x∈ΩJ

s
x(L). We say

that a line bundle L separates s-jets along Ω if the natural map

H0(X,L)→
⊕
x∈Ω

Jsx(L)

is surjective. Following [10, Definition 5.1.16] we write s(L,Ω) for the largest
non-negative integer s such that L separates s-jets along Ω, assigning the
value −1 if L does not separate zero jets along Ω. Proposition 5.1.17 of [10]
gives the following important relationship between the Seshadri constant
ε(Ω, L) and the asymptotic separation of jets by powers of the line bundle L:

Lemma 2.5. — Suppose L is an ample line bundle on a smooth projec-
tive variety X and Ω ⊂ X a finite subset. Then

ε(Ω, L) = lim
k→∞

s(kL,Ω)
k

.

2.2. Order of vanishing along exceptional subvarieties

From now on we denote by X a Serre compactification of a connected
commutative algebraic group G. To begin with, let us state (and prove) the
main theorem of this section, relating the order of vanishing of a section of L
along Ω to its order of vanishing along any Seshadri exceptional subvariety
V relative to L and Ω. It is closely related to [3, Proposition 2.3], [15,
Lemma 1.3], and is a simplified version of [18, Proposition 5]:

Theorem 2.6. — Suppose X is a Serre compactification of a connected
commutative algebraic group G. Let L be an ample line bundle on X,
Ω ⊂ X a finite subset, s ∈ H0(X,L) a non-zero section. Suppose V is
Seshadri exceptional for L relative to Ω. Let m = multΩ(s). Then

multV (s) > m− ε(Ω, L).
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An important feature in our proof is that we differentiate sections, in
the same way as in [18, 16]; let us recall this briefly. To each non-zero
vector v ∈ T0(G) is associated a translation invariant vector field on X.
If s ∈ H0(X,L) then the derivative of s can be taken locally with respect
to this vector field and we denote this derivative by Dv(s). This is not in
general a section of L on X because the local patching restraints on s are
destroyed when taking derivatives: however, Dv(s) is a well-defined section
of H0(Z,L) if Z is contained in the zero locus of s. For any r > 1 we shall
consider differential operators of order r, that is polynomials of degree r
in these operators Dv. In the same way, if s ∈ H0(X,L) vanishes along
Z with multiplicity at least µ then D(s) ∈ H0(Z,L) for any differential
operator D of order less than or equal to µ. The reader is referred to §1
of [16] for more details. We shall use the following result, which is a special
case of Lemma 4 from [16].

Lemma 2.7. — Suppose X is a Serre compactification of a connected
commutative algebraic group G. Let L be an ample line bundle on X. Let
x ∈ X and 0 6= s ∈ H0(X,L). Let V ⊂ X be an irreducible subvariety
containing x, and D be a differential operator of order r on X. Assume
that r = multV (s) < multx(s) = M . Let Z(D(s)) =

∑n
i=1 aiWi where

D(s) is considered as a global section of L on V . Then
n∑
i=1

ai multx(Wi) > multx(V )(M − r).

Proof of Theorem 2.6. — Suppose that the conclusion of Theorem 2.6
is false so that

multV (s) < m− ε(Ω, L).
Choose a differential operator D on X of order multV (s) so that D(s) ∈
H0(V,L) is well defined and non-zero. Write

Z(D(s)) =
n∑
i=1

aiWi.

Lemma 2.7 gives, for each x ∈ Ω ∩ V

(2.1) multx(D(s)) =
n∑
i=1

ai multx(Wi) > multx(V )ε(Ω, L)

Applying Lemma 2.5 and (2.1), we may choose k sufficiently large so that
for each x ∈ Ω ∩ V

(2.2) multx(D(s))
(
s(kL,Ω)

k

)dim(V )−1
> multx(V )ε(Ω, L)dim(V ).
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By definition of s(kL,Ω) there exist sections s1, . . . , sdim(V )−1 ∈ H0(X, kL)
so that

(2.3) multx(si) = s(kL,Ω)

for each x ∈ Ω and the tangent cones (see [6, p. 227]) of the divisors Z(si)
meet properly at each point in x ∈ Ω ∩ V . It follows that each x ∈ Ω ∩ V
is an isolated irreducible component of

(2.4) Z(s1) ∩ . . . ∩ Z(sdim(V )−1) ∩ Z(D(s)).

Although each point of x ∈ Ω ∩ V is an irreducible component of the
intersection (2.4), there may also be positive dimensional components {W ′j}
in (2.4) which do not contain any point of Ω ∩ V . Since L is an ample line
bundle, degkL(W ′j) > 0 for all j and so the part of the intersection (2.4)
which is not supported on Ω ∩ V can be represented by an effective zero
cycle. By [6, Corollary 12.4], for each x ∈ Ω ∩ V the multiplicity of x in
Z(s1) ∩ . . . ∩ Z(sdim(V )−1) ∩ Z(D(s)) is at least

multx Z(D(s))

dim(V )−1∏
i=1

multx(Z(si))

 .

Hence we find

kdim(V )−1 degL(V ) = deg
(
Z(s1) ∩ . . . ∩ Z(sdim(V )−1) ∩ Z(D(s))

)
>

∑
x∈Ω∩V

multx Z(D(s))

dim(V )−1∏
i=1

multx(Z(si))


>

( ∑
x∈Ω∩V

multx(V )
)
kdim(V )−1ε(Ω, L)dim(V )

with the last inequality coming from (2.2) and (2.3). This contradicts
Lemma 2.2 and establishes Theorem 2.6. �

In order to use Theorem 2.6 in a broader setting in what follows we
require

Corollary 2.8. — Suppose X is a Serre compactification of a con-
nected commutative algebraic group G. Suppose L is an ample line bundle
on X, Ω ⊂ X a finite subset, s ∈ H0(X,L) a non-zero section. Suppose V
is Seshadri exceptional for L relative to Ω. Let g ∈ G and m = multg+Ω(s).
Then

multg+V (s) > m− ε(Ω, L).
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Proof of Corollary 2.8. — Let tg : X → X denote the extension of trans-
lation by g toX. It follows from Corollary 2.4 that V is Seshadri exceptional
for t∗g(L) relative to Ω. Since t∗g(s) vanishes to orderm along Ω we can apply
Theorem 2.6 to conclude that

multV (t∗g(s)) > m− ε(Ω, L).

But multV (t∗g(s)) = multg+V (s) so this concludes the proof of Corollary 2.8.
�

3. Proofs of main results

In this section we prove Theorem 0.3 and its two Corollaries 0.4 and 0.5.
Proof of Theorem 0.3. — By the asymptotic Riemann-Roch Theorem [10,

Example 1.2.19],

h0(X, kL) = Ldkd

d! +O(kd−1).

If α is a real number, we let dkαe denote the smallest integer which is
greater than or equal to kα. We have

dim
(
J
dkαe
Ω(d)

)
= (kα)d

d! |Ω(d)|+O(kd−1).

Hence as long as |Ω(d)|αd < Ld or

(3.1) α <

(
Ld

|Ω(d)|

) 1
d

,

when k � 0 there is a non-zero section s ∈ H0(X, kL) whose jets of order
dkαe are identically zero. Consequently, there exists a non-zero section
s ∈ H0(X, kL) such that

(3.2) multΩ(d)(s) > kα.

Since

ε(Ω, L) < µ(Ω, L) =

(
Ld

|Ω(d)|

) 1
d

d
we can apply (3.1) and (3.2) to conclude that for k sufficiently large there
is a non-zero section s ∈ H0(X, kL) such that

(3.3) multΩ(d)(s) > kdε(Ω, L).

Since V is Seshadri exceptional for L and Ω, V must contain at least one
point of Ω and so V ∩G is non-empty. Let V (r) = (V ∩G) + . . .+ (V ∩G)
with r summands. Let V (0) = {0} and Ω(0) = {0} where 0 ∈ G is the
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identity element. We will show by induction on r that for 0 6 r 6 d we
have, provided k is sufficiently large:

(3.4) multΩ(d−r)+V (r)(s) > k(d− r)ε(Ω, L).

For r = 0, (3.4) is (3.3). Suppose 0 6 r 6 d − 1 and that (3.4) has been
verified for r. For each x ∈ Ω(d−r−1)+V (r), we have x+Ω ⊂ Ω(d−r)+V (r).
By (3.4)

multx+Ω(s) > k(d− r)ε(Ω, L) for any x ∈ Ω(d− r − 1) + V (r).

By Corollary 2.8

multx+V (s) > k(d− r − 1)ε(Ω, L) for any x ∈ Ω(d− r − 1) + V (r).

Thus

multx+V (r+1)(s) > k(d− r − 1)ε(Ω, L) for any x ∈ Ω(d− r − 1)

and this is exactly (3.4) for the case r+ 1. When r = d, we conclude that s
vanishes along (V ∩G)+ . . .+(V ∩G) with d summands. Since s is non-zero
and d = dim(G) this is only possible if V ∩ G is contained in a translate
of a proper connected algebraic subgroup of G. This concludes the proof
of (i) in Theorem 0.3.
Suppose that (ii) is false so that

ε(Ω, L) < µ(Ω, H, L).

We will write Y = H, the Zariski closure of H in X. We claim that V is
a Seshadri exceptional subvariety relative to L|Y and Ω ∩ H, where L|Y
denotes the restriction of L to Y . To see this note that H = Y ∩ G is a
translate of a connected algebraic subgroup and so is smooth. Consequently
it makes sense to talk about the Seshadri constant ε(Ω∩Y,L|Y ). Thinking
of ε(Ω ∩ Y,L|Y ) in terms of Definition 0.1, we have

(3.5) ε(Ω ∩ Y,L|Y ) > ε(Ω, L)

because the infimum on the left is taken over a smaller collection of curves
than the infimum on the right, and the multiplicity of these curves is added
on a smaller set of points. On the other hand, using Definition 0.1 we have

ε(Ω, L) =
(

degL(V )∑
x∈Ω multx(V )

) 1
dim(V )

.

But V ∩G ⊂ H and consequently the only points of Ω which can be in V
are those that are also in H so we find

ε(Ω, L) =
(

degL(V )∑
x∈Ω∩H multx(V )

) 1
dim(V )

.
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Now V = V ∩G so that Lemma 2.2 yields

ε(Ω ∩ Y,L|Y ) 6
(

degL(V )∑
x∈Ω∩H multx(V )

) 1
dim(V )

= ε(Ω, L)

and thus, recalling (3.5), equality must hold here and in (3.5). Hence V is
Seshadri exceptional for L|Y and Ω ∩H.
We have assumed that ε(Ω, L) < µ(Ω, H, L). Since Y = H and equality

holds in (3.5) this means

(3.6) ε(Ω ∩H,L|Y ) <

(
degL(Y )

|(Ω∩H)(dim(H))|

)1/ dim(H)

dim(H) .

If H ⊂ G is a subgroup, then we may apply part (i) to H, L|Y , and Ω∩H
and this leads to a contradiction. Suppose then that H is a translate of a
connected, proper algebraic subgroup H0 ⊂ G. Choose g ∈ Ω ∩H and let
tg : X → X denote the extension of translation by g. Denote by

τg : H0 → H

the restriction of tg to H0.
Since tg is an isomorphism it preserves Sesahdri exceptional subvari-

eties: t−g(V ) is Seshadri exceptional relative to t−g(Ω) and t∗g(L) and
ε(t−g(Ω), t∗g(L)) = ε(Ω, L). By Corollary 2.4, t−g(V ) is Seshadri excep-
tional relative to t−g(Ω) and L. In the same way, τ−g(V ) is Seshadri ex-
ceptional relative to τ−g(Ω ∩ H) = t−g(Ω) ∩ H0 and L|H0 because V is
Seshadri exceptional for L|Y and Ω ∩H, and we have

(3.7) ε(t−g(Ω) ∩H0, L|H0) = ε(Ω ∩H,L|H).

Looking at Definition 0.1, since degL(H0) = degL(H) and

|(t−g(Ω) ∩H0)(dim(H0)| = |(Ω ∩H)(dim(H))|

we find

(3.8) µ(Ω, H, L) = µ(t−g(Ω) ∩H0, H0, L).

Combining (3.6), (3.7), and (3.8), part (i) of Theorem 0.3 shows that τ−g(V )
is degenerate in H0 which is not possible since H0 is, by hypothesis, the
smallest connected subgroup of G containing t−g(V ). This concludes the
proof of Theorem 0.3. �

Proof of Corollary 0.4. — By Theorem 0.3, either ε(Ω, L) > µ(Ω, L) or
there is a translate H of a connected proper algebraic subgroup so that

ANNALES DE L’INSTITUT FOURIER



SESHADRI CONSTANTS AND INTERPOLATION 1287

ε(Ω, L) > µ(Ω, H, L). Since µ(Ω, L) > ν(Ω, L) and µ(Ω, H, L) > ν(Ω, L) by
hypothesis, we conclude that

ε(Ω, L) > ν(Ω, L)

as desired. �

Proof of Corollary 0.5. — Let π : Y → X be the blow up of Ω with
exceptional divisor E. By Definition 2.1, π∗(L) (−ε(Ω, L)E) is a limit of
nef line bundles and so [10, Example 1.4.16] shows that π∗(L) (−ε(Ω, L)E)
is nef. Thus

π∗(L) (−ε(Ω, L)E)d > 0.
On the other hand, by hypothesis, 0 < α < ν(Ω, L) so by Corollary 0.4 we
have α < ε(Ω, L). Thus

π∗(L)(−αE)d > π∗(L)(−ε(Ω, L)E)d > 0.

By [10, Theorem 2.2.16], π∗(L)(−αE) is a big line bundle (see [10, Defi-
nition 2.2.1]). We may therefore apply the Kawamata-Viehweg vanishing
theorem, [10, Theorem 4.3.1], and obtain

H1 (Y, (KY + π∗(L)) (−αE)) = 0.

Since KY = π∗(KX) + (d− 1)E this means

(3.9) H1 (Y, π∗(KX + L) ((d− 1− α)E)) = 0.

Let IΩ(α+ 1− d) ⊂ OX denote the sheaf of functions vanishing to order
at least α+ 2− d at each point of Ω. Applying the projection formula ([7,
Exercise 8.1] and [8, Theorem 1-2-3]) to (3.9) gives

(3.10) H1 (X,KX + L⊗ IΩ(α+ 1− d)) = 0.

Using (3.10) and the long exact cohomology sequence associated to the
exact sequence of sheaves

0→ H0(X, (KX +L)⊗IΩ(s))→ H0(X,KX +L)→ Jα+1−d
Ω (KX +L)→ 0

shows that the map

H0(X,KX + L)→ Jα+1−d
Ω (KX + L)

is surjective, concluding the proof of (i) of Corollary 0.5.
The key fact in the proof of Corollary 0.5(i) is that π∗(L)(−ε(Ω, L)E)

is big and nef. If M is a line bundle on X which is numerically equivalent
to zero then π∗(L + M)(−ε(Ω, L)E) is also big and nef and the proof of
Corollary 0.5(i) gives the surjection

(3.11) H0 (X,KX + L+M)→ Jα+1−d
Ω (KX + L+M)
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which will be vital in the proof of Corollary 0.5(ii) which we provide now.
According to Lemma 1.1, −KX is linearly equivalent to the sum of an

effective divisor E supported on XrG and π∗(N) where N is algebraically
equivalent to zero. Since π∗(N) is numerically equivalent to zero, (3.11)
with M = π∗(N) gives a surjection

H0 (X,KX + L+ π∗(N))→ Jα+1−d
Ω (KX + L+ π∗(N)).

Using the fact that KX is linearly equivalent to −E − π∗(N) we obtain a
surjection

H0(X,−E + L)→ Jα+1−d
Ω (−E + L).

Since E is supported on X r G and Ω ⊂ G adding the divisor E induces
the desired surjection

H0(X,L)→ Jα+1−d
Ω (L).

�
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