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ON THE MODULI B-DIVISORS OF LC-TRIVIAL
FIBRATIONS

by Osamu FUJINO & Yoshinori GONGYO

Abstract. — Roughly speaking, by using the semi-stable minimal model pro-
gram, we prove that the moduli part of an lc-trivial fibration coincides with that of
a klt-trivial fibration induced by adjunction after taking a suitable generically finite
cover. As an application, we obtain that the moduli part of an lc-trivial fibration
is b-nef and abundant by Ambro’s result on klt-trivial fibrations.
Résumé. — Grosso modo, en utilisant le programme des modèles minimaux

semi-stables, nous montrons que la partie modulaire d’une fibration lc-triviale coïn-
cide avec celle d’une fibration klt-triviale induite par adjonction aprés changement
de base par un morphisme génériquement fini. Comme application, eu utilisant le
résultat de Ambro sur fibrations klt-triviales, on obtient que la partie modulaire
d’une fibration lc-triviale est b-nef et abondante.

1. Introduction

In this paper, we prove the following theorem. More precisely, we reduce
Theorem 1.1 to Ambro’s result (see [2, Theorem 3.3]) by using the semi-
stable minimal model program (see, for example, [14]). For a related result,
see [6, Theorem 1.4].

Theorem 1.1 (cf. [2, Theorem 3.3]). — Let f : X → Y be a projective
surjective morphism between normal projective varieties with connected
fibers. Assume that (X,B) is log canonical and KX +B ∼Q,Y 0. Then the
moduli Q-b-divisor M is b-nef and abundant.

Let us recall the definition of b-nef and abundant Q-b-divisors.

Keywords: semi-stable minimal model program, canonical bundle formulae, lc-trivial
fibrations, klt-trivial fibrations.
Math. classification: 14N30, 14E30, 14J10.



1722 Osamu FUJINO & Yoshinori GONGYO

Definition 1.2 ([2, Definition 3.2]). — A Q-b-divisor M of a normal
complete algebraic variety Y is called b-nef and abundant if there exists a
proper birational morphism Y ′ → Y from a normal variety Y ′, endowed
with a proper surjective morphism h : Y ′ → Z onto a normal variety Z
with connected fibers, such that:

(1) MY ′ ∼Q h
∗H, for some nef and big Q-divisor H of Z;

(2) M = MY ′ .

Let us quickly explain the idea of the proof of Theorem 1.1. We assume
that the pair (X,B) in Theorem 1.1 is dlt for simplicity. Let W be a log
canonical center of (X,B) which is dominant onto Y and is minimal over
the generic point of Y . We set KW + BW = (KX + B)|W by adjunction.
Then we have KW +BW ∼Q,Y 0. Let h : W → Y ′ be the Stein factorization
of f |W : W → Y . Note that (W,BW ) is klt over the generic point of Y ′. We
prove that the moduli part M of f : (X,B)→ Y coincides with the moduli
part Mmin of h : (W,BW ) → Y ′ after taking a suitable generically finite
base change by using the semi-stable minimal model program. We do not
need the mixed period map nor the infinitesimal mixed Torelli theorem (see
[2, Section 2] and [23]) for the proof of Theorem 1.1. We just reduce the
problem on lc-trivial fibrations to Ambro’s result on klt-trivial fibrations,
which follows from the theory of period maps. Our proof of Theorem 1.1
partially answers the questions in [21, 8.3.8 (Open problems)].
It is conjectured that M is b-semi-ample (see, for example, [1, 0. Intro-

duction], [22, Conjecture 7.13.3], [6], [3], and [16, Section 3]). The b-semi-
ampleness of the moduli part has been proved only for some special cases
(see, for example, [19], [9], and [22, Section 8]). See also Remark 4.1 below.

Acknowledgments. — The first author was partially supported by
the Grant-in-Aid for Young Scientists (A) ]24684002 from JSPS. The sec-
ond author was partially supported by the Grant-in-Aid for Research Activ-
ity Start-up ]24840009 from JSPS. The authors would like to thank Enrica
Floris for giving them some comments and checking the French title and
abstract. They also would like to thank the referee for some comments,
suggestions, and drawing a big diagram in the proof of Theorem 1.1.

We will work over C, the complex number field, throughout this paper.
We will make use of the standard notation as in [12].
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2. Preliminaries

Throughout this paper, we do not use R-divisors. We only use Q-divisors.

2.1 (Pairs). — A pair (X,B) consists of a normal variety X over C and
a Q-divisor B on X such that KX +B is Q-Cartier. A pair (X,B) is called
subklt (resp. sublc) if for any projective birational morphism g : Z → X

from a normal variety Z, every coefficient of BZ is < 1 (resp. 6 1) where
KZ +BZ := g∗(KX +B). A pair (X,B) is called klt (resp. lc) if (X,B) is
subklt (resp. sublc) and B is effective. Let (X,B) be an lc pair. If there is
a log resolution g : Z → X of (X,B) such that Exc(g) is a divisor and that
the coefficients of the g-exceptional part of BZ are < 1, then the pair (X,B)
is called divisorial log terminal (dlt, for short). Let (X,B) be a sublc pair
and let W be a closed subset of X. Then W is called a log canonical center
of (X,B) if there are a projective birational morphism g : Z → X from a
normal variety Z and a prime divisor E on Z such that multE BZ = 1 and
that g(E) = W . Moreover we say that W is minimal if it is minimal with
respect to inclusion.

In this paper, we use the notion of b-divisors introduced by Shokurov.
For details, we refer to [4, 2.3.2] and [15, Section 3].

2.2 (Canonical b-divisors). — Let X be a normal variety and let ω be
a top rational differential form of X. Then (ω) defines a b-divisor K. We
call K the canonical b-divisor of X.

2.3 (A(X,B) and A∗(X,B)). — The discrepancy b-divisor A=A(X,B)
of a pair (X,B) is the Q-b-divisor of X with the trace AY defined by the
formula

KY = f∗(KX +B) + AY ,

where f : Y → X is a proper birational morphism of normal varieties.
Similarly, we define A∗ = A∗(X,B) by

A∗Y =
∑
ai>−1

aiAi

for
KY = f∗(KX +B) +

∑
aiAi,

where f : Y → X is a proper birational morphism of normal varieties. Note
that A(X,B) = A∗(X,B) when (X,B) is subklt.

By the definition, we have OX(dA∗(X,B)e) ' OX if (X,B) is lc (see
[15, Lemma 3.19]). We also have OX(dA(X,B)e) ' OX when (X,B) is
klt.
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1724 Osamu FUJINO & Yoshinori GONGYO

2.4 (b-nef and b-semi-ample Q-b-divisors). — LetX be a normal variety
and let X → S be a proper surjective morphism onto a variety S. A Q-b-
divisor D of X is b-nef over S (resp. b-semi-ample over S) if there exists
a proper birational morphism X ′ → X from a normal variety X ′ such
that D = DX′ and DX′ is nef (resp. semi-ample) relative to the induced
morphism X ′ → S.

2.5. — Let D =
∑
i diDi be a Q-divisor on a normal variety, where Di

is a prime divisor for every i, Di 6= Dj for i 6= j, and di ∈ Q for every i.
Then we set

D>0 =
∑
di>0

diDi and D60 =
∑
di60

diDi.

3. A quick review of lc-trivial fibrations

In this section, we quickly recall some basic definitions and results on
klt-trivial fibrations and lc-trivial fibrations (see also [16, Section 3]).

Definition 3.1 (Klt-trivial fibrations). — A klt-trivial fibration f :
(X,B) → Y consists of a proper surjective morphism f : X → Y between
normal varieties with connected fibers and a pair (X,B) satisfying the
following properties:

(1) (X,B) is subklt over the generic point of Y ;
(2) rank f∗OX(dA(X,B)e) = 1;
(3) There exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f
∗D.

Note that Definition 3.1 is nothing but [1, Definition 2.1], where a klt-
trivial fibration is called an lc-trivial fibration. So, our definition of lc-trivial
fibrations in Definition 3.2 is different from the original one in [1, Definition
2.1].

Definition 3.2 (Lc-trivial fibrations). — An lc-trivial fibration f :
(X,B) → Y consists of a proper surjective morphism f : X → Y be-
tween normal varieties with connected fibers and a pair (X,B) satisfying
the following properties:

(1) (X,B) is sublc over the generic point of Y ;
(2) rank f∗OX(dA∗(X,B)e) = 1;
(3) There exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f
∗D.

ANNALES DE L’INSTITUT FOURIER
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In Section 4, we sometimes take various base changes and construct the
induced lc-trivial fibrations and klt-trivial fibrations. For the details, see
[1, Section 2].

3.3 (Induced lc-trivial fibrations by base changes). — Let f : (X,B)→
Y be a klt-trivial (resp. an lc-tirivial) fibration and let σ : Y ′ → Y be a
generically finite morphism. Then we have an induced klt-trivial (resp. lc-
trivial) fibration f ′ : (X ′, BX′) → Y ′, where BX′ is defined by µ∗(KX +
B) = KX′ +BX′ :

(X ′, BX′)
µ //

f ′

��

(X,B)

f

��
Y ′ σ

// Y,

Note that X ′ is the normalization of the main component of X ×Y Y ′. We
sometimes replace X ′ with X ′′ where X ′′ is a normal variety such that
there is a proper birational morphism ϕ : X ′′ → X ′. In this case, we set
KX′′ +BX′′ = ϕ∗(KX′ +BX′).

Let us explain the definitions of the discriminant andmoduliQ-b-divisors.

3.4 (Discriminant Q-b-divisors and moduli Q-b-divisors). — Let f :
(X,B) → Y be an lc-trivial fibration as in Definition 3.2. Let P be a
prime divisor on Y . By shrinking Y around the generic point of P , we
assume that P is Cartier. We set

bP = max
{
t ∈ Q

∣∣∣∣ (X,B + tf∗P ) is sublc over
the generic point of P

}
and set

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y . Then it is easy to see that BY is
a well-defined Q-divisor on Y and is called the discriminant Q-divisor of
f : (X,B)→ Y . We set

MY = D −KY −BY

and call MY the moduli Q-divisor of f : (X,B) → Y . Let σ : Y ′ → Y

be a proper birational morphism from a normal variety Y ′ and let f ′ :
(X ′, BX′)→ Y ′ be the induced lc-trivial fibration by σ : Y ′ → Y (see 3.3).
We can define BY ′ , KY ′ and MY ′ such that σ∗D = KY ′ + BY ′ + MY ′ ,
σ∗BY ′ = BY , σ∗KY ′ = KY and σ∗MY ′ = MY . Hence there exist a unique
Q-b-divisor B such that BY ′ = BY ′ for every σ : Y ′ → Y and a unique

TOME 64 (2014), FASCICULE 4



1726 Osamu FUJINO & Yoshinori GONGYO

Q-b-divisor M such that MY ′ = MY ′ for every σ : Y ′ → Y . Note that
B is called the discriminant Q-b-divisor and that M is called the moduli
Q-b-divisor associated to f : (X,B) → Y . We sometimes simply say that
M is the moduli part of f : (X,B)→ Y .

For the basic properties of the discriminant and moduli Q-b-divisors, see
[1, Section 2].
Let us recall the main theorem of [1]. Note that a klt-trivial fibration in

the sense of Definition 3.1 is called an lc-trivial fibration in [1].

Theorem 3.5 (see [1, Theorem 2.7]). — Let f : (X,B) → Y be a klt-
trivial fibration and let π : Y → S be a proper morphism. Let B and M
be the induced discriminant and moduli Q-b-divisors of f . Then,

(1) K + B is Q-b-Cartier, that is, there exists a proper birational mor-
phism Y ′ → Y from a normal variety Y ′ such that K + B =
KY ′ + BY ′ ,

(2) M is b-nef over S.

Theorem 3.5 has some important applications, see, for example, [13,
Proof of Theorem 1.1] and [15, The proof of Theorem 1.1].

By modifying the arguments in [1, Section 5] suitably with the aid of
[10, Theorems 3.1, 3.4, and 3.9] (see also [17]), we can generalize Theorem
3.5 as follows.

Theorem 3.6. — Let f : (X,B) → Y be an lc-trivial fibration and let
π : Y → S be a proper morphism. Let B and M be the induced discriminant
and moduli Q-b-divisors of f . Then,

(1) K + B is Q-b-Cartier,
(2) M is b-nef over S.

Theorem 3.5 is proved by using the theory of variations of Hodge struc-
ture. On the other hand, Theorem 3.6 follows from the theory of variations
of mixed Hodge structure. We do not adopt the formulation in [7, Section
4] (see also [21, 8.5]) because the argument in [1] suits our purposes better.
For the reader’s convenience, we include the main ingredient of the proof
of Theorem 3.6, which easily follows from [10, Theorems 3.1, 3.4, and 3.9]
(see also [17]).

Theorem 3.7 (cf. [1, Theorem 4.4]). — Let f : X → Y be a projective
morphism between algebraic varieties. Let ΣX (resp. ΣY ) be a simple nor-
mal crossing divisor on X (resp. Y ) such that f is smooth over Y \ΣY , ΣX
is relatively normal crossing over Y \ΣY , and f−1(ΣY ) ⊂ ΣX . Assume that

ANNALES DE L’INSTITUT FOURIER
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f is semi-stable in codimension one. Let D be a simple normal crossing di-
visor on X such that SuppD ⊂ ΣX and that every irreducible component
of D is dominant onto Y . Then the following properties hold.

(1) Rpf∗ωX/Y (D) is a locally free sheaf on Y for every p.
(2) Rpf∗ωX/Y (D) is semi-positive for every p.
(3) Let ρ : Y ′ → Y be a projective morphism from a smooth variety

Y ′ such that ΣY ′ = ρ−1(ΣY ) is a simple normal crossing divisor on
Y ′. Let π : X ′ → X ×Y Y ′ be a resolution of the main component
of X ×Y Y ′ such that π is an isomorphism over Y ′ \ΣY ′ . Then we
obtain the following commutative diagram:

X ′ //

f ′

��

X

f

��
Y ′ ρ

// Y.

Assume that f ′ is projective, D′ is a simple normal crossing divisor
on X ′ such that D′ coincides with D×Y Y ′ over Y ′ \ΣY ′ , and every
stratum of D′ is dominant onto Y ′. Then there exists a natural
isomorphism

ρ∗(Rpf∗ωX/Y (D)) ' Rpf ′∗ωX′/Y ′(D′)

which extends the base change isomorphism over Y \ ΣY for every
p.

Remark 3.8. — For the proof of Theorem 3.6, Theorem 3.7 for p = 0 is
sufficient. Note that all the local monodromies on Rq(f0)∗CX0\D0 around
ΣY are unipotent for every q because f is semi-stable in codimension one,
where X0 = f−1(Y \ ΣY ), D0 = D|X0 , and f0 = f |X0\D0 . More precisely,
let C [d]

0 be the disjoint union of all the codimension d log canonical centers
of (X0, D0). If d = 0, then we put C [0]

0 = X0. In this case, we have the
following weight spectral sequence

WE
−d,q+d
1 = Rq−d(f |

C
[d]
0

)∗CC[d]
0

=⇒ Rq(f0)∗CX0\D0

which degenerates at E2 (see, for example, [5, Corollaire (3.2.13)]). Since
f is semi-stable in codimension one, all the local monodromies on
Rq−d(f |

C
[d]
0

)∗CC[d]
0

around ΣY are unipotent for every q and d (see, for
example, [18, VII. The Monodromy theorem]). By the above spectral se-
quence, we obtain that all the local monodromies on Rq(f0)∗CX0\D0 around
ΣY are unipotent.

TOME 64 (2014), FASCICULE 4
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We add a remark on the proof of Theorem 3.6. In Remark 3.9, we explain
how to modify the arguments in the proof of [1, Lemma 5.2] in order to treat
lc-trivial fibrations. It will help the reader to understand the main difference
between klt-trivial fibrations and lc-trivial fibrations and the reason why
we need Theorem 3.7.

Remark 3.9. — We use the notation in [1, Lemma 5.2]. We only assume
that (X,B) is sublc over the generic point of Y in [1, Lemma 5.2]. We write

B =
∑
i∈I

diBi

where Bi is a prime divisor for every i and Bi 6= Bj for i 6= j. We set

J = {i ∈ I |Bi is dominant onto Y and di = 1}
and set

D =
∑
i∈J

Bi.

In Ambro’s original setting in [1, Lemma 5.2], we have D = 0 because
(X,B) is subklt over the generic point of Y . In the proof of [1, Lemma 5.2
(4)], we have to replace

f̃∗ωX̃/Y =
b−1⊕
i=0

f∗OX(d(1− i)KX/Y − iB + if∗BY + if∗MY e) · ψi.

with

f̃∗ωX̃/Y (π∗D) =
b−1⊕
i=0

f∗OX(d(1− i)KX/Y − iB+D+ if∗BY + if∗MY e) ·ψi

in order to treat lc-trivial fibrations. We leave the details as exercises for
the reader.

The following theorem is a part of [2, Theorem 3.3].

Theorem 3.10 (see [2, Theorem 3.3]). — Let f : (X,B) → Y be a
klt-trivial fibration such that Y is complete, the geometric generic fiber
Xη = X × SpecC(η) is a projective variety, and Bη = B|Xη is effective,
where η is the generic point of Y . Then the moduli Q-b-divisor M is b-nef
and abundant.

4. Proof of Theorem 1.1

Let us give a proof of Theorem 1.1.
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Proof of Theorem 1.1. — By taking a dlt blow-up, we may assume that
the pair (X,B) is Q-factorial and dlt (see, for example, [14, Section 4]). If
(X,B) is klt over the generic point of Y , then Theorem 1.1 follows from
[2, Theorem 3.3] (see Theorem 3.10). Therefore, we may also assume that
(X,B) is not klt over the generic point of Y . Let σ1 : Y1 → Y be a suitable
projective birational morphism such that M = MY1 and MY1 is nef by
Theorem 3.6. Let W be an arbitrary log canonical center of (X,B) which
is dominant onto Y and is minimal over the generic point of Y . We set

KW +BW = (KX +B)|W

by adjunction (see, for example, [11, 3.9]). By the construction, we have
KW + BW ∼Q,Y 0. We consider the Stein factorization of f |W : W → Y

and denote it by h : W → Y ′. Then KW + BW ∼Q,Y ′ 0. We see that h :
(W,BW )→ Y ′ is a klt-trivial fibration since the general fibers of f |W are klt
pairs. Let Y2 be a suitable resolution of Y ′ which factors through σ1 : Y1 →
Y . By taking the base change by σ2 : Y2 → Y1, we obtain MY2 = σ∗2MY1

(see [1, Proposition 5.5]). Note that the proof of [1, Proposition 5.5] works
for lc-trivial fibrations by some suitable modifications. By the construction,
on the induced lc-trivial fibration f2 : (X2, BX2) → Y2, where X2 is the
normalization of the main component of X ×Y Y2, there is a log canonical
center W2 of (X2, BX2) such that f2|W ν

2
: (W ν

2 , BW ν
2

) → Y2 is a klt-trivial
fibration, which is birationally equivalent to h : (W,BW )→ Y ′. Note that
ν : W ν

2 →W2 is the normalization, KW ν
2

+BW ν
2

= ν∗(KX2 +BX2)|W2 , and
f2|W ν

2
= f2|W2 ◦ ν. It is easy to see that

KY2 + MY2 + BY2 ∼Q KY2 + Mmin
Y2

+ Bmin
Y2

where Mmin and Bmin are the induced moduli and discriminant Q-b-
divisors of f2|W ν

2
: (W ν

2 , BW ν
2

)→ Y2 such that

KW ν
2

+BW ν
2
∼Q (f2|W ν

2
)∗(KY2 + Mmin

Y2
+ Bmin

Y2
).

By replacing Y2 birationally, we may further assume that Mmin = Mmin
Y2

by Theorem 3.5. By Theorem 3.10, we see that Mmin
Y2

is nef and abundant.
Let σ3 : Y3 → Y2 be a suitable generically finite morphism such that the
induced lc-trivial fibration f3 : (X3, BX3) → Y3 has a semi-stable resolu-
tion in codimension one (see, for example, [20], [23, (9.1) Theorem], and
[1, Theorem 4.3]). Note that X3 is the normalization of the main compo-
nent of X ×Y Y3. Here we draw the following big diagram for the reader’s
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convenience.

(V,BV )
log-res.

&&MMMMMMMMMM

(X3, B3) //

f3

��

(X2, B2) //

f2

��

(X,B)

f

��

(W3, BW3)

g3
&&MMMMMMMMMMMM

88qqqqqqqqqq
W ν

2

f2|Wν
2 ))RRRRRRRRRRRRRRRRRR ν

norm. // W2

, �

;;vvvvvvvvv

f2|W2

$$H
HH

HH
HH

HH
H W

- 


<<yyyyyyyyy

h
���� "" ""F

FFFFFFFF

Y3

semistab.

33 Y2
desing. //

σ2
$$H

HH
HH

HH
HH

H Y ′
Stein // Y

Y1

σ1

;;xxxxxxxxx

Note that g3 : (W3, BW3) → Y3 is the induced klt-trivial fibration from
f2|W ν

2
: W ν

2 → Y2 by σ3 : Y3 → Y2. On Y3, we will see the following claim
by using the semi-stable minimal model program.

Claim. — The following equality

BY3 = Bmin
Y3

holds.

Proof of Claim. — By taking general hyperplane cuts, we may assume
that Y3 is a curve. We write

BY3 =
∑
P

(1− bP )P and Bmin
Y3

=
∑
P

(1− bmin
P )P.

Let ϕ : (V,BV )→ (X3, BX3) be a resolution of (X3, BX3) with the following
properties:

• KV +BV = ϕ∗(KX3 +BX3);
• π∗Q is a reduced simple normal crossing divisor on V for every
Q ∈ Y3, where π : V → X3 → Y3;

• Suppπ∗Q ∪ SuppBV is a simple normal crossing divisor on V for
every Q ∈ Y3;

• π is projective.
Let Σ be a reduced divisor on Y3 such that π is smooth over Y3\Σ and that
SuppBV is relatively normal crossing over Y3 \ Σ. We consider the set of
prime divisors {Ei} where Ei is a prime divisor on V such that π(Ei) ∈ Σ
and

multEi(BV +
∑
P∈Σ

bPπ
∗P )>0 < 1.
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We run the minimal model programs with ample scaling with respect to

KV + (BV +
∑
P∈Σ

bPπ
∗P )>0 + ε

∑
i

Ei

over X3 and Y3 for some small positive rational number ε. Note that

(V, (BV +
∑
P

bPπ
∗P )>0 + ε

∑
i

Ei)

is a Q-factorial dlt pair because 0 < ε� 1. We set

E = −(BV +
∑
P

bPπ
∗P )60 + ε

∑
i

Ei.

Then it holds that

KV + (BV +
∑
P

bPπ
∗P )>0 + ε

∑
i

Ei ∼Q,Y3 E > 0.

First we run a minimal model program with ample scaling with respect to

KV + (BV +
∑
P

bPπ
∗P )>0 + ε

∑
i

Ei ∼Q,X3 E > 0

over X3. Note that every irreducible component of E which is dominant
onto Y3 is exceptional over X3 by the construction. Thus, if E is dominant
onto Y3, then it is not contained in the relative movable cone over X3.
Therefore, after finitely many steps, we may assume that every irreducible
component of E is contained in a fiber over Y3 (see, for example, [14,
Theorem 2.2]). Next we run a minimal model program with ample scaling
with respect to

KV + (BV +
∑
P

bPπ
∗P )>0 + ε

∑
i

Ei ∼Q,Y3 E > 0

over Y3. Then the minimal model program terminates at V ′ (see, for ex-
ample, [14, Theorem 2.2]). Note that all the components of E +

∑
iEi are
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contracted by the above minimal model programs. Thus, we have

KV ′ + (BV ′ +
∑
P

bPπ
′∗P )>0 ∼Q,Y3 0,

where π′ : V ′ → Y3 and BV ′ is the pushforward of BV on V ′. Note that
BV ′ +

∑
P bPπ

′∗P is effective since Supp(E +
∑
iEi) is contracted by the

above minimal model programs. Of course, we see that

(V ′, (BV ′ +
∑
P

bPπ
′∗P )>0) = (V ′, BV ′ +

∑
P

bPπ
′∗P )

is a Q-factorial dlt pair. By the construction, the induced proper birational
map

(V,BV +
∑
P

bPπ
∗P ) 99K (V ′, BV ′ +

∑
P

bPπ
′∗P )

over Y3 is B-birational (see [8, Definition 1.5]), that is, we have a common
resolution

Z
a

��~~
~~

~~
~

b

  A
AA

AA
AA

V //_______ V ′

over Y3 such that

a∗(KV +BV +
∑
P∈Σ

bPπ
∗P ) = b∗(KV ′ +BV ′ +

∑
P∈Σ

bPπ
′∗P ).

Let S be any log canonical center of (V ′, BV ′ +
∑
P bPπ

′∗P ) which is dom-
inant onto Y3 and is minimal over the generic point of Y3. Then (S,BS),
where

KS +BS = (KV ′ +BV ′ +
∑
P

bPπ
′∗P )|S ,

is not klt but lc over every P ∈ Σ since it holds that

BV ′ +
∑
P∈Σ

bPπ
′∗P >

∑
P∈Σ

π′∗P. (♠)

Note that (♠) follows from the fact that all the components of
∑
iEi are

contracted in the minimal model programs. Let g3 : (W3, BW3) → Y3 be
the induced klt-trivial fibration from (W ν

2 , BW ν
2

) → Y2 by σ2 : Y3 → Y2.
By [8, Claims (An) and (Bn) in the proof of Lemma 4.9], there is a log
canonical center S0 of (V ′, BV ′ +

∑
P bPπ

′∗P ) which is dominant onto Y3
and is minimal over the generic point of Y3 such that there is a B-birational
map

(W3, BW3 +
∑
P∈Σ

bP g
∗
3P ) 99K (S0, BS0)
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over Y3, where

KS0 +BS0 = (KV ′ +BV ′ +
∑
P∈Σ

bPπ
′∗P )|S0 .

This means that there is a common resolution

T
α

~~}}
}}

}}
}} β

  @
@@

@@
@@

W3 //_______ S0

over Y3 such that

α∗(KW3 +BW3 +
∑
P

bP g
∗
3P ) = β∗(KS0 +BS0).

This implies that bP = bmin
P for every P ∈ Σ. Therefore, we have BY3 =

Bmin
Y3

. �

Then we obtain
MY3 ∼Q Mmin

Y3
= σ∗3Mmin

Y2

because
KY3 + MY3 + BY3 ∼Q KY3 + Mmin

Y3
+ Bmin

Y3
.

Thus, MY3 is nef and abundant. Since

MY3 = σ∗3MY2 = σ∗3σ
∗
2MY1 ,

M is b-nef and abundant. Moreover, by replacing Y3 with a suitable gener-
ically finite cover, we have that MY3 and Mmin

Y3
are both Cartier (see

[1, Lemma 5.2 (5), Proposition 5.4, and Proposition 5.5]) and MY3 ∼
Mmin

Y3
. �

We close this paper with a remark on the b-semi-ampleness of M. For
some related topics, see [16, Section 3].

Remark 4.1 (b-semi-ampleness). — Let f : X → Y be a projective
surjective morphism between normal projective varieties with connected
fibers. Assume that (X,B) is log canonical and KX + B ∼Q,Y 0. Without
loss of generality, we may assume that (X,B) is dlt by taking a dlt blow-up.
We set

df (X,B) =
{

dimW − dimY

∣∣∣∣ W is a log canonical center of
(X,B) which is dominant onto Y

}
.

If df (X,B) ∈ {0, 1}, then the b-semi-ampleness of the moduli part M
follows from [19] and [22] by the proof of Theorem 1.1. Moreover, it is
obvious that M ∼Q 0 when df (X,B) = 0.
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