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STABILITY UNDER DEFORMATIONS OF
HERMITE-EINSTEIN ALMOST KÄHLER METRICS

by Mehdi LEJMI (*)

Abstract. — On a 4-dimensional compact symplectic manifold, we consider
a smooth family of compatible almost-complex structures such that at time zero
the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative
Hermitian scalar curvature. We prove, under certain hypothesis, the existence of
a smooth family of compatible almost-complex structures, diffeomorphic at each
time to the initial one, and inducing constant Hermitian scalar curvature metrics.
Résumé. — Sur une variété symplectique compacte de dimension 4, nous consi-

dérons une famille lisse de structures presque-complexes compatibles tel qu’en
temps zéro, la métrique induite est presque-kählérienne de Hermite-Einstein avec
une courbure scalaire hermitienne nulle ou négative. Nous prouvons, sous une cer-
taine hypothèse, l’existence d’une famille lisse de structures presque-complexes,
difféomorphe à chaque temps à la structure initiale et induisant une métrique à
courbure scalaire hermitienne constante.

1. Introduction

On a 2n-dimensional symplectic manifold (M,ω), an almost-complex
structure J is ω-compatible if it induces a Riemannian metric g via the
relation g(·, ·) = ω(·, J ·). The metric g is called then an almost-Kähler
metric. When J is integrable, the induced metric is Kähler. Given an ω-
compatible almost-complex structure J , there exists a canonical Hermitian
connection with torsion ∇ [11, 20] on the tangent bundle, which preserves
both ω and J . The curvature of the induced Hermitian connection on the
anti-canonical bundle is of the form

√
−1ρ∇, where ρ∇ is a closed real 2-

form called the Hermitian Ricci form. The Hermitian scalar curvature s∇

Keywords: Almost-Kähler geometry, extremal almost-Kähler metrics, constant Hermit-
ian scalar curvature almost-Kähler metrics.
Math. classification: 53C55, 53C15, 53D20.
(*) The work of the author was supported by FQRNT grant.
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is defined as the contraction of ρ∇ by ω and coincides with the (usual)
Riemannian scalar curvature when the metric is Kähler. An almost-Kähler
metric is called Hermite-Einstein [16] (HEAK for short) if the Hermitian
Ricci form ρ∇ satisfies ρ∇ = s∇

2nω (in particular s∇ is a constant). Note that
the terminology ‘Hermite-Einstein’ here does not imply the integrability of
the almost-complex structure.
On a compact symplectic manifold (M,ω), we consider the space AKω

of all ω-compatible almost-complex structures. This is an infinite dimen-
sional Fréchet space equipped with a formal Kähler structure described
by Fujiki [5, 8]. Furthermore, there is a natural action of the Hamiltonian
group Ham(M,ω) on AKω and it turns out that this action is Hamiltonian
[5, 8] with moment map identified with the Hermitian scalar curvature. A
metric induced by a critical point of the square norm of the moment map
J 7→

∫
M

(s∇)2ωn is called an extremal almost-Kähler metric [2, 16, 17].
Moreover, an almost-Kähler metric induced by J is extremal if and only if
the symplectic gradient of its Hermitian scalar curvature is an infinitesimal
isometry of J . Extremal almost-Kähler metrics are a generalization of Cal-
abi extremal Kähler metrics [3]. Furthermore, almost-Kähler metrics with
constant Hermitian scalar curvature are extremal.
In the Kähler setting, Fujiki–Schumacher [9] and Lebrun–Simanca [14]

showed, in the abscence of holomorphic vector fields, that the existence
of extremal Kähler metrics is an open condition. Moreover, Apostolov–
Calderbank–Gauduchon–Friedman [1] proved the openess by fixing a max-
imal torus in the reduced automorphism group of the complex manifold
(M,J). Furthermore, Rollin–Simanca–Tipler [23] showed with a certain
hypothesis the stability of extremal Kähler metrics under complex defor-
mations and hence generalized the results of [14, 13] (see also [24, 25]).
In the general almost-Kähler case, one expects, from the GIT standard

picture [5, 22], the existence and uniqueness of extremal almost-Kähler
metrics, up to the action of Ham(M,ω), in every ‘stable complexified’ or-
bit of the action of Ham(M,ω). The complexification of Ham(M,ω) does
not exist. However, one can complexify the action on the level of the Lie
algebra and once we are restricted to the integrable ω-compatible almost-
complex structures, a description of this complexified orbit is given when
H1(M,R) = 0 [5]. It is identified with the space of Kähler forms in the
cohomology class of ω.

In a previous paper [17], on a compact symplectic 4-manifold (M,ω),
we considered a smooth path of ω-compatible almost-complex structures
Jt invariant under a (fixed) maximal torus T in Ham(M,ω) such that J0
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induces an extremal Kähler metric. In particular, J0 is integrable. Further-
more, we supposed that h−Jt

= b+ − 1 for sufficiently small t, where h−Jt
is

the dimension of gt-harmonic Jt-anti-invariant 2-forms [7] (here gt is the
metric induced by Jt). Then, we showed, for a short time, the existence
of smooth family of T -invariant ω-compatible almost-complex structures
J̃t inducing extremal almost-Kähler metrics such that J̃0 = J0 and J̃t is
diffeomorphic to Jt for each t. In the spirit of Lebrun–Simanca result [14],
the proof consists mainly to deform the symplectic form by introducing a
notion of almost-Kähler potential (defined only in dimension 4) and then
using the Banach implicit function theorem for the Hermitian scalar cur-
vature map. The hypothesis h−Jt

= b+ − 1 was necessarily to insure the
continuity of the Hermitian scalar curvature map since a family of Green
operators is involved in the definition of this almost-Kähler potential. A
recent result of Tan–Wang–Zhang–Zhu [26] implies that one can drop the
assumption h−Jt

= b+ − 1.
Now, if we suppose that J0 is not integrable, it is not clear how to identify

the kernel of the linearization of the Hermitian scalar curvature map with
the Lie algebra of Hamiltonian Killing vector fields even in the simplest case
namely when J0 induces a HEAK metric. The idea in this paper is to define
another suitable almost-Kähler potential for which it is possible to study
the kernel of the derivative of the Hermitian scalar curvature map at least
in the latter case. The almost-Kähler potential defined in this paper follows
from a generalization of the ddc-Lemma [4] to the almost-Kähler case. For
instance, one can derive a Hodge decomposition of the Riemannian dual
of a (real) holomorphic vector field on a compact almost-Kähler manifold.
When J0 induces a HEAK metric with zero or negative Hermitian scalar
curvature, we obtain the following

Theorem 1.1. — Let (M,ω) be a 4-dimensional compact symplectic
manifold. Let Jt be any smooth family of ω-compatible almost-complex
structures such that J0 induces a HEAK metric with zero or negative Her-
mitian scalar curvature. Moreover, suppose that for a small t, h−Jt

= h−J0
=

b+−1. Then, there exists a smooth family of ω-compatible almost-complex
structures J̃t, defined for small t, inducing almost-Kähler metrics with con-
stant Hermitian scalar curvature such that J̃t is diffeomorphic to Jt for
each t and J̃0 = J0.

We note that, in the above theorem, the condition h−Jt
= h−J0

= b+− 1 is
not to ensure the continuity of the Hermitian scalar curvature map but to
guarantee the Jt-invariance of the constructed symplectic forms. Moreover,
by [26], one has only to suppose that h−J0

= b+ − 1. The latter condition
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2254 Mehdi LEJMI

is satisfied in the cases mentionned in [17]. Moreover, by a result of Li and
Tomassini [19], any homogeneous almost-Kähler structure (ω, J) on a 4-
dimensional compact manifold M = G/Γ, where G is a simply-connected
Lie group and Γ ⊂ G a uniform discrete subgroup, verifies h−J = b+ − 1.
Namely, the Kodaira–Thurston manifold has non-integrable almost-Kähler
metrics (ω, J) with vanishing Hermitian Ricci form satisfying the condition
h−J = b+ − 1 [6, 18, 28].

2. Preliminaries

Let (M,ω) be a symplectic manifold of dimension 2n. An almost-complex
structure J is ω-compatible if the induced 2-tensor field g(·, ·) := ω(·, J ·)
is a Riemannian metric. Then, g is called an (ω-compatible) almost-Kähler
metric. In the rest of the paper, we identify the induced metric g with
the couple (ω, J). If, additionally, J is integrable, then (ω, J) is a Kähler
metric.
The almost-complex structure J acts on the cotangent bundle T ∗M

by Jα(X) = −α(JX), where α is a 1-form and X a vector field on M .
The action of J can be extend to any p-form ψ by (Jψ)(X1, · · · , Xp) =
(−1)pψ(JX1, · · · , JXp). The bundle of 2-forms Λ2M decomposes under
the action of J as follows

(2.1) Λ2M = R . ω ⊕ ΛJ,−M ⊕ ΛJ,+0 M,

where ΛJ,−M is the subbundle of J-anti-invariant 2-forms and ΛJ,+0 M is
the subbundle of J-invariant 2-forms pointwise orthogonal to ω.

For an almost-Kähler metric (ω, J), the Hermitian connection ∇ on
(TM,ω, J) is defined by

∇XY = Dg
XY −

1
2J (Dg

XJ)Y,

where Dg is the Levi-Civita connection with respect to the induced metric
g and X,Y are vector fields on M . Let R∇ be the curvature of ∇. Then,
the Hermitian Ricci form ρ∇ is defined by

ρ∇(X,Y ) = − tr(J ◦R∇X,Y ),

where R∇X,Y is viewed as an anti-Hermitian linear operator of (TM,ω, J).
The form ρ∇ is a de Rham representative of 2πc1(TM, J) in H2(M,R),
where c1(TM, J) is the first (real) Chern class. If we suppose that ω and ω̃

ANNALES DE L’INSTITUT FOURIER



STABILITY OF HERMITE-EINSTEIN METRICS 2255

are symplectic forms compatible with the same almost-complex structure
J and satisfy ω̃ = eFωn for some real-valued function F then

(2.2) ρ̃∇ = −1
2dJdF + ρ∇,

where ρ̃∇ (resp. ρ∇) is the Hermitian Ricci form of (ω̃, J) (resp. (ω, J)).
We define the Hermitian scalar curvature s∇ of an almost-Kähler metric

(ω, J) as the trace of ρ∇ with respect to ω, i.e.,

(2.3) s∇ωn = 2n
(
ρ∇ ∧ ωn−1) .

An almost Kähler metric (ω, J) is called Hermite-Einstein (HEAK for
short) if

ρ∇ = s∇

2nω.

In particular, s∇ is a constant.
The Riemannian Hodge operator ∗g : ΛpM → Λ2n−pM is defined to

be the unique isomorphism such that ψ1 ∧ (∗g)ψ2 = g(ψ1, ψ2)ω
n

n! , for any
p-forms ψ1 and ψ2. Moreover, since the dimension of M is even, (∗g)2ψ =
(−1)pψ on p-form ψ. In dimension 4, the bundle of 2-forms decomposes as

Λ2M = Λ+M ⊕ Λ+M,

where Λ±M corresponds to the eignevalue (±1) under the action of the Rie-
mannian Hodge operator ∗g. This decomposition is related to the splitting
2.1 in the following way

Λ+M = Rω ⊕ ΛJ,−M and Λ−M = ΛJ,+0 M.

2.1. Generalized ddc-Lemma

In this section, we generalize the ddc-Lemma [4] to the almost-Kähler
case. For this purpose, we need to present some symplectic commutators.
Let (M,ω, J, g) be a compact almost-Kähler manifold of dimension 2n.

Let δg be the codifferential defined as the formal adjoint of the Levi-Civita
connection Dg with respect to the almost-Kähler metric g when it is ap-
plied to sections of ⊗pT ∗M . In particular, it is the adjoint of the exterior
derivative d when it is applied to p-forms and are related by δg = −∗g d ∗g
since the dimension of M is even. Denote by ∆g = dδg + δgd the Lapla-
cian and G the Green operator associated to ∆g. The Riemannian Hodge
operator ∗g commutes with ∆g. It follows that ∗g commutes with G.
Let δc = (−1)pJδgJ be the twisted codifferential acting on p-forms.

This is the symplectic adjoint of d. Define the twisted differential dc by

TOME 64 (2014), FASCICULE 6



2256 Mehdi LEJMI

dc = (−1)pJdJ acting on p-forms and let ∆c = dcδc + δcdc be the twisted
Laplacian and Gc the Green operator associated to ∆c. One can prove
in elementary way that the codifferential δg and the exterior derivative d
(resp. δc and dc) commute with G (resp. Gc).
We denote by Λω the contraction by the symplectic form ω defined for a

p-form ψ by Λω(ψ) = 1
2
∑2n
i=1 ψ(ei, Jei, · · · ), where {ei} is a local J-adapted

orthonormal frame. The commutator of Λω and dc is given by [10, 21]

(2.4) [Λω, dc] = δg.

It follows that dcδg + δgdc = 0. Furthermore, since Λω commutes with J ,
the relation 2.4 implies [10]

(2.5) [Λω, d] = −δc.

Moreover, if Lω is the adjoint of Λω acting on a p-form ψ by Lωψ = ω∧ψ,
then [10]

(2.6) [Lω, δg] = dc.

Now, we are in position to derive a generalization of the the ddc-Lemma.

Lemma 2.1. — On a compact almost-Kähler manifold, let ψ be any
J-invariant p-form satisfying ψ = dφ for some (p− 1) form φ. Then,

ψ = dGdcψ̃ = Gddcψ̃,

for some (p− 2)-form ψ̃.

Proof. — It follows from the Hodge decomposition with respect to ∆g

of ψ and since dψ = 0 that

(2.7) ψ = (ψ)H + dδgGψ = dδgGψ.

Recall that (ψ)H=0 because ψ is d-exact.
On the other hand, dcψ = 0 since ψ is J-invariant. So, it follows from

the Hodge decomposition with respect to ∆c that ψ = (ψ)Hc + dcδcGcψ
(here (ψ)Hc denotes the harmonic part with respect to ∆c, in particular
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dc(ψ)Hc = δc(ψ)Hc = 0). Plugging this in 2.7, we obtain

ψ = dδgG
((

(ψ)Hc

)
+ dcδcGcψ

)
,

= dδgG
(
(ψ)Hc

)
+ dδgG(dcδcGcψ),

= dGδg
(
(ψ)Hc

)
+ dGδg(dcδcGcψ),

= dG[Λω, dc]
(
(ψ)Hc

)
− dGdc(δgδcGcψ),

= −dGdcΛω((ψ)Hc)− dGdc(δgδcGcψ),

= dGdc
(
− Λω

(
(ψ)Hc

)
− δgδcGcψ

)
.

Here, we used the equality 2.4 and the fact that dcδg + δgdc = 0. The
Lemma follows. �

In the Kähler case, remark that ∆ = ∆c so G = Gc. Hence, dcG = Gdc.
Then, ψ = dGdcψ̃ = ddc(Gψ̃).

Proposition 2.2. — On a compact almost-Kähler manifold, let ψ1, ψ2
be any two real J-invariant closed 2-forms and suppose that ψ1, ψ2 de-
termine the same de Rham cohomology class. Then, there exists a real
function f , uniquely defined up to an additive constant, such that

ψ1 − ψ2 = dGdcf = Gddcf.

Proof. — This is a direct application of Lemma 2.1 for ψ = ψ1 − ψ2.
If Gddcf = 0 then ddcf is harmonic. Since M is compact, ddcf = 0. By
the equality 2.4, it follows that ∆gf = δgdf = [Λω, dc]df = Λωdcdf = 0
(because dcdf = −Jddcf). So f is constant as M is compact. �

As a consequence of Lemma 2.1, we obtain a Hodge decomposition of the
Riemannian dual of a (real) holomorphic vector field on a compact almost-
Kähler manifold (M,ω, J, g). Recall that a (real) vector field X is called
holomorphic if it is an infinitesimal isometry of J i.e., LXJ = 0, where L

is the Lie derivative.

Corollary 2.3. — Let X be a holomorphic vector field on a compact
almost-Kähler manifold and ξ = X[g the dual of X with respect to the
metric g. Then, we have

ξ = (ξ)Hc + dcu− JGdcv,(2.8)

where u, v are real functions, uniquely defined up to an additive constant.
Here (ξ)Hc denotes the harmonic part with respect to ∆c.

Remark that in the Kähler case, (ξ)Hc = ξH and −JGdcv = d(Gv).

TOME 64 (2014), FASCICULE 6
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Proof. — Since X is holomorphic, a direct computation shows that LXω
is a J-invariant 2-form. Hence, dJξ is J-invariant. By Lemma 2.1, dJξ =
dGdcv, for a function v uniquely defined up to a constant. The Hodge
decomposition with respect to ∆c of ξ is given by ξ = (ξ)Hc + dcu + δcφ

for some real function u and 2-form φ. Then

(2.9) dJξ = −dδgJφ = dGdcv.

Moreover, using equality 2.6, we have dGdcv = −dGδg(vω) = −dδgG(vω).
So, from 2.9 we have −dδgJφ = −dδgG(vω), thus −δgJφ = −δgG(vω) =
Gdcv. The Corollary follows. �

Now, given any function f , it is natural to wonder whether dGdcf is
J-invariant.

Proposition 2.4. — In dimension 2n = 4, for any smooth function f ,

(dGdcf)J,− = 1
2(f0ω)H −

1
4g ((f0ω)H , ω) ω.

In particular, if h−J = b+ − 1, then dGdcf is J-invariant (here f0 is the
orthogonal projection of f onto the complement of the constants).

Proof. — Using the equality 2.6 and the fact that the Hodge operator
∗g commutes with G, we have

(dGdcf)J,− = (−dGδg(fω))J,−

= 1
2(I + ∗g)(−Gdδg(fω))− 1

4g ((I + ∗g)(−Gdδg(fω)), ω) ω

= −1
2G∆g(fω) + 1

4g (G∆g(fω), ω) ω

= −1
2fω + 1

2(fω)H + 1
2fω −

1
4g ((fω)H , ω) ω

= 1
2(fω)H −

1
4g ((fω)H , ω) ω

= 1
2(f0ω)H −

1
4g ((f0ω)H , ω) ω.

Here, we use the convention g(ω, ω) = 2. In case when h−J = b+ − 1, we
have (f0ω)H = 0. Indeed, under the latter assumption, for any g-harmonic
2-form ψ (with respect to ∆g), the pairing g(ω, ψ) is a constant function.
Thus, given a function f , we obtain < (f0ω)H , ψ >L2=

∫
M
f0g(ω, ψ)ω

2

2! =0.
Hence, (f0ω)H = 0 and therefore dGdcf is J-invariant. �

Thus, in dimension 4, when h−J = b+−1, the symplectic form ω+dGdcf
is J-invariant for any function f and so f is called almost-Kähler potential
when (ω + dGdcf, J) induces a Riemannian metric. Again remark that in
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the Kähler case, dGdcf = ddcGf , hence Gf coincides with the usual Kähler
potential.
The ‘potential’ Gf coincides with the potential defined by Weinkove [29]

in the following way: Given a symplectic form ω̃ compatible with J and
cohomologous to ω, then ω̃ − ω = dGdcf , for some function f . Now, let
φ = Gf then a direct computation shows that

dGdcf = dGdc∆gφ = ddcφ− 2dδgGDg

(dφ)]g
ω.

The function φ corresponds to φ0 in the terminology of [29].

3. Proof of Theorem 1.1

Let (M,ω) be a 4-dimensional compact and connected symplectic man-
ifold. Suppose that J0 is an ω-compatible almost-complex structure which
induces a HEAK metric with zero or negative Hermitian scalar curvature
i.e., the Hermitian Ricci form ρ∇ of (ω, J0) satisfies ρ∇ = s∇

4 ω with s∇ 6 0.
Moreover, suppose h−J0

= b+−1, where h−J0
is the dimension of g0-harmonic

J0-anti-invariant 2-forms [7]. Let Jt be a smooth family of ω-compatible
almost-complex structures in AKω such that h−Jt

= h−J0
= b+ − 1 for a

small t. Denote by gt(·, ·) = ω(·, Jt·) the induced metric.
We consider the following almost-Kähler deformations

ωt,f = ω + dGtJtdf,

where Gt is the Green operator associated to the Laplacian operator ∆gt

with respect to the metric gt and f ∈ C∞0 (M,R) a smooth function with
zero mean value.
By Proposition 2.4, the assumption h−Jt

= b+ − 1 implies that ωt,f is
Jt-invariant. Then, we define the map:

Φ : R× C∞0 (M,R) −→ C∞0 (M,R)
(t, f) 7−→ s̊∇t,f ,

where s̊∇t,f is the zero integral part of the Hermitian scalar curvature
s∇t,f of the almost-Kähler metric (ωt,f , Jt). We have Φ(t, f) = 0 if and
only if (ωt,f , Jt) is an almost-Kähler metric with constant Hermitian scalar
curvature. In particular, Φ(0, 0) = 0.
Let W p,k be the completion of C∞0 (M,R) with respect to the Sobolev

norm ‖ · ‖p,k involving derivatives up to order k. Denote by Φ(p,k) : R ×
W p,k+2−→W p,k the extension of Φ to the Sobolev completion of C∞0 (M,R).
The map Φ(p,k) is well defined when pk > 2n. The kernel of the Laplacian

TOME 64 (2014), FASCICULE 6
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∆gt are gt-harmonic p-forms and thus the dimension of the kernel of ∆gt

is independent of t. Hence, we deduce from [12, Theorem 7.6] that Gt is a
C1 map. Thus, the map Φ(p,k) is clearly a C1 map.

Using the formula 2.2 and definition of the Hermitan scalar curvature,
we have the following

Proposition 3.1. — Let (M,ω,J,g) be a 4-dimensional compact almost-
Kähler manifold. Denote by G the Green operator associated to the Lapla-
cian ∆g. Suppose that dGdcf is J-invariant for any function f . Then, for
any almost-Kähler variation ω̇ = dGdcḟ of the symplectic form ω (ḟ with
zero integral), the variation of the volume form, of the Hermitian Ricci
form and the Hermitan scalar curvature are given by

˙(ω2
)

= (δgJGdcḟ) ω2 = −ḟω2,(3.1)

˙ρ∇ = 1
2dd

cḟ ,(3.2)

˙s∇ = −∆g ḟ − 2g(ρ∇, dGdcḟ).(3.3)

Remark that, in the Kähler case, if we substitute ḟ by ∆gφ̇, then the
above variations coincide with the variation ω̇ = ddcφ̇ of the Kähler form
ω in the (fixed) Kähler class [15].
Proof. — Let ωt = ω + tdGdcḟ . Then, using the relation 2.5, ˙(ω2

)
=

d
dt (ωt)

2|t=0 = g(dGdcḟ , ω) ω2 = (δgJGdcḟ) ω2. Moreover, using the fact
that dδc + δcd = 0 and the J-invariance of dGdcḟ , we have

dδgJGdcḟ = −dδcGdcḟ

= δcdGdcḟ

= JδgdGdcḟ

= J∆gGdcḟ

= Jdcḟ = −dḟ .

Since ḟ has zero integral, we obtain the second equality in 3.1. The
variation of the Hermitian Ricci form 3.2 follows from 2.2 while the expres-
sion 3.3 is a consequence of 2.3. �

Since (ω, J0) is HEAK and g(dGdcḟ , ω) = −ḟ , it follows from Proposi-
tion 3.1 that the partial derivative ∂Φ

∂f |(0,0) is given by

(3.4) ∂Φ
∂f
|(0,0)(ḟ) = −∆g0 ḟ + s∇

2 ḟ ,

where s∇ is the Hermitian scalar curvature (ω, J0). Clearly, ∂Φ
∂f |(0,0) is a

self-adjoint elliptic linear operator. Furthermore, it is an isomorphism of
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STABILITY OF HERMITE-EINSTEIN METRICS 2261

C∞0 (M,R). Indeed, suppose that −∆g0 ḟ + s∇

2 ḟ = 0 for a function ḟ (with
zero integral), then ∆g0 ḟ = s∇

2 ḟ . By hypothesis, s∇ 6 0. AsM is compact,
ḟ ≡ 0. The natural extension of ∂Φ

∂f |(0,0) toW p,k+2 is again an isomorphism
from W p,k+2 to W p,k. It follows from the implicit function theorem for
Banach spaces that there exists ε, δ > 0 such that for |t| < ε, there exists
ft satisfying ‖ft‖p,k < δ such that Ψ(p,k)(t, ft) = 0. Hence, for each |t| <
ε, (ωt,ft

, Jt) is an almost-Kähler metric with constant Hermitian scalar
curvature of regularity W p,k+2. It follows from the bootstraping argument
used in [17] that (ωt,ft

, Jt) are a family of smooth almost-Kähler metrics
with constant Hermitian scalar curvature. Theorem 1.1 follows from the
Moser Lemma.

Example 3.2. — Theorem 1.1 may be applied to the Kodaira–Thurston
manifold given by S1 × (Nil3 /Γ) where

Nil3 =


 1 x z

0 1 y

0 0 1

 , x, y, z ∈ R

 ,

and Γ is the subgroup of Nil3 consisting of elements with integral entries.
The 1-forms dt, dx, dy, dz− xdy are invariant under the action of Γ (here t
is the S1 coordinate).
By a result of Li and Tomassini [19], any homogeneous almost-Kähler

structure (ω, J) on S1 × (Nil3 /Γ) has h−J = b+ − 1 = 1. Namely, the
following symplectic form

ω = dx ∧ dt+ dy ∧ (dz − xdy)

and the non-integrable ω-compatible almost-complex structure

Jdx = dt, Jdy = (dz − xdy)

verifies h−J = b+ − 1. Moreover, the Hermitian Ricci form ρ∇ of (ω, J) is
zero [6, 18, 28].

Remark 3.3. — When the Hermitian scalar curvature is positive one can
prove the following: Suppose that T is a maximal torus in Ham(M,ω). Let
Jt be any smooth family of ω-compatible T -invariant almost-complex struc-
ture such that J0 induces a HEAK metric with positive Hermitian scalar
curvature and close enough in C∞-topology to an integrable T -invariant ω-
compatible almost-complex structure J . Moreover, suppose that for a small
t, h−Jt

= h−J0
= b+ − 1. Then, there exists a smooth family of ω-compatible

T -invariant almost-complex structures J̃t inducing almost-Kähler metrics

TOME 64 (2014), FASCICULE 6



2262 Mehdi LEJMI

with constant Hermitian scalar curvature such that J̃t is diffeomorphic to
Jt and J̃0 = J0.
Observe that our hypothesis here implies that (M,J) is a Fano complex

surface. Since b+ = 1, the condition h−Jt
= b+ − 1 = 0 is automatically sat-

isfied for any family Jt. By Tian result [27], there exists a Kähler-Einstein
metric except in the first Hirzebruch surface and its blown up at one point
(actually these two surfaces are toric). In the latter two cases, the Futaki
invariant of the anti-canonical class being non-zero implies that there is no
toric HEAK metric [16].
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