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PSEUDO-REAL PRINCIPAL HIGGS BUNDLES ON
COMPACT KÄHLER MANIFOLDS

by Indranil BISWAS,
Oscar GARCíA-PRADA & Jacques HURTUBISE

Abstract. — Let X be a compact connected Kähler manifold equipped with
an anti-holomorphic involution which is compatible with the Kähler structure. Let
G be a connected complex reductive affine algebraic group equipped with a real
form σG. We define pseudo-real principal G-bundles on X. These are generaliza-
tions of real algebraic principal G-bundles over a real algebraic variety. Next we
define stable, semistable and polystable pseudo-real principal G-bundles. Their re-
lationships with the usual stable, semistable and polystable principal G-bundles are
investigated. We then prove that the following Donaldson-Uhlenbeck-Yau type cor-
respondence holds: a pseudo-real principal G-bundle admits a compatible Einstein-
Hermitian connection if and only if it is polystable. A bijection between the fol-
lowing two sets is established:
(1) The isomorphism classes of polystable pseudo-real principal G-bundles such

that all the rational characteristic classes of positive degree of the underlying
topological principal G-bundle vanish.

(2) The equivalence classes of twisted representations of the extended funda-
mental group of X in a σG-invariant maximal compact subgroup of G. (The
twisted representations are defined using the central element in the definition
of a pseudo-real principal G-bundle.)

All these results are also generalized to the pseudo-real Higgs G-bundle.

Keywords: Pseudo-real bundle, real form, Einstein-Hermitian connection, Higgs bundle,
polystability.
Math. classification: 14P99, 53C07, 32Q15.
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Résumé. — Soit X une variété kählerienne compacte et connexe, équipée
d’une involution antiholomorphe compatible avec la structure Kählerienne. Soit
G un groupe algébrique affine complexe, connexe et muni d’une forme réelle σG.
Nous définissons des G-fibrés principaux holomorphes pseudo-réels sur X, ce qui
généralise la notion de G-fibré principal réel sur une variété réelle. Nous intro-
duisons ensuite les notions de G-fibré principal pseudo-réel stable, semi-stable et
polystable. La relation de ces concepts avec les notions usuelles de G-fibré prin-
cipal stable, semi-stable et polystable est discutée. Nous démontrons ensuite qu’il
existe une correspondance de type Donaldson-Uhlenbeck-Yau : un G-fibré principal
holomorphe pseudo-réel admet une connection Hermite-Einstein compatible si et
seulement s’il est polystable. Nous établissons ensuite une bijection entre les deux
ensembles suivants :
(1) Les classes d’isomorphisme de G-fibrés principaux holomorphes pseudo-réels

sur X, dont toutes les classes caractéristiques rationnelles du G-fibré topolo-
gique sous-jacent s’annulent.

(2) Les classes d’équivalence de représentations tordues du groupe fondamental
étendu de X dans un sous-groupe maximal compact σG-invariant de G. (Les
représentations tordues sont définies en utilisant l’élément central qui entre
dans la définition d’un G-fibré principal pseudo-réel.)

Tous ces résultats sont ensuite généralisés au cas du G-fibré de Higgs pseudo-réel.

1. Introduction

Let G be a connected reductive affine algebraic group defined over C.
Let

σG : G −→ G

be a real form on G. Fix a maximal compact subgroup KG ⊂ G such
that σG(KG) = KG. Also, fix an element c in the center of KG such that
σG(c) = c. Let (X,ω) be a compact connected Kähler manifold equipped
with an anti-holomorphic involution σX such that σ∗Xω = −ω.
Using c, we define pseudo-real principal G-bundles on X (see Defini-

tion 2.1). We define stable, semistable and polystable pseudo-real principal
G-bundles on X. These are related to the usual semistable and polystable
principal G-bundles in the following way:

Proposition 1.1. — A pseudo-real principal G-bundle (EG, ρ) on X is
semistable (respectively, polystable) if and only if the underlying holomor-
phic principal G-bundle EG is semistable (respectively, polystable).

Proposition 1.1 is proved in Lemma 2.5, Lemma 3.3 and Corollary 3.11.

Theorem 1.2. — Let (EG, ρ) be a pseudo-real principalG-bundle onX.
The following two statements are equivalent:

(1) (EG, ρ) is polystable.
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(2) The holomorphic principal G-bundle EG has an Einstein-Hermitian
reduction of structure group EKG ⊂ EG to the maximal compact
subgroup KG such that ρ(EKG) = EKG .

Theorem 1.2 is proved in Corollary 3.9 and Proposition 3.10.
Fix a point x0 ∈ X such that σX(x0) 6= x0. Let Γ(X,x0) be the homotopy

classes of paths originating from x0 that end in either x0 or σX(x0). It is a
group that fits in a short exact sequence

e −→ π1(X,x0) −→ Γ(X,x0) η−→ Z/2Z −→ e.

Let K̃ = KG o (Z/2Z) be the semi-direct product constructed using the
involution σG of KG. Let Map′(Γ(X,x0), K̃) be the space of all maps
δ : Γ(X,x0) → K̃ such that δ−1(KG) = π1(X,x0). We will write Z/2Z =
{0, 1}. Let Homc(Γ(X,x0), K̃) be the space of all maps δ ∈ Map′(Γ(X,x0),
K̃) such that

• the restriction of δ to π1(X,x0) is a homomorphism of groups,
• δ(g′g) = cδ(g′)δ(g), if η(g) = 1 = η(g′), where η is the above
homomorphism, and

• δ(g′g) = δ(g′)δ(g) if η(g) · η(g′) = 0.
A more intrinsic definition of Homc(Γ(X,x0), K̃) is given in Remark 4.1.

Two elements δ′, δ′ ∈ Homc(Γ(X,x0), K̃) are called equivalent if there is
an element g ∈ KG such that δ′(z) = g−1δ(z)g for all z ∈ Γ(X,x0).
We prove the following (see Theorem 4.6):

Theorem 1.3. — There is a natural bijective correspondence between
the equivalence classes of elements of Homc(Γ(X,x0), K̃), and the isomor-
phism classes of polystable pseudo-real principal G-bundles (EG, ρ) satis-
fying the following two conditions:

•
∫
X
c2(ad(EG)) ∧ ωdimC(X)−2 = 0, and

• for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero.

It may be mentioned that a polystable principal G-bundle EG satisfies
the above two numerical conditions if and only if all the rational charac-
teristic classes of EG of positive degree vanish.
In Section 5, we extends the above results to the more general context

of pseudo-real principal G-bundle on X equipped with a Higgs field com-
patible with the pseudo-real structure. We prove the following (see Propo-
sition 5.5 and Proposition 5.6):

TOME 64 (2014), FASCICULE 6



2530 Indranil BISWAS, Oscar GARCíA-PRADA & Jacques HURTUBISE

Proposition 1.4. — Let (EG, ρ, θ) be a pseudo-real principal Higgs
G-bundle. Then the principal Higgs G-bundle (EG, θ) admits an Einstein-
Hermitian structure EKG ⊂ EG with ρ(EKG) = EKG if and only if (EG, ρ, θ)
is polystable.

The definition of an Einstein-Hermitian structure on a principal Higgs
G-bundle is recalled in Definition 5.4.
Let G̃ := G o (Z/2Z) be the semi-direct product constructed using σG.

Define Homc(Γ(x0), G̃) as before by replacing K̃ with G̃. See Section 5 for
the equivalence classes of completely reducible elements of Homc(Γ(x0), G̃).

Proposition 1.5. — There is a natural bijective correspondence be-
tween the equivalence classes of completely reducible elements of
Homc(Γ(x0), G̃), and the isomorphism classes of polystable pseudo-real
principal Higgs G-bundles (EG, ρ, θ) satisfying the following conditions:

•
∫
X
c2(ad(EG)) ∧ ωdimC(X)−2 = 0, and

• for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero.

When X is a compact Riemann surface, some of the above results were
obtained in [6].
Without loss of any generality, we may assume that the element c is

of order two (see Remark 3.6 for an explanation). The real principal G-
bundles are very closely related to principal bundles on a variety defined
over R. This is elaborated in Remark 2.2.
A comment on the definition of (semi)stability is in order. As explained

in [6, Section 2.3], when the base field is R (more generally, when it is not
algebraically closed), the definition in [3], and not the one in [15], is the
right one. Therefore, we have to follow the definition of [3] here.

2. Pseudo-real principal bundles

Let X be a compact connected Kähler manifold. The real tangent bundle
of X will be denoted by TRX. The almost complex structure on X, which
is a smooth section of End(TRX) = (TRX)⊗(TRX)∗, will be denoted by J .
Let

σX : X −→ X

be a diffeomorphism such that

(2.1) dσX ◦ J = −J ◦ dσX ,

ANNALES DE L’INSTITUT FOURIER
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where

(2.2) dσX : TRX −→ σ∗XT
RX

is the differential of σX .
Let ω be a Kähler form on X. The inner product on TRX corresponding

to ω will be denoted by ω̃. The Kähler form ω is said to be compatible with
σX if dσX preserves ω̃. Using (2.1) it is straightforward to check that ω is
compatible with σX if and only if σ∗Xω = −ω.

The Kähler manifold X admits a Kähler form compatible with σX . To
see this, take any Kähler form ω on X, and define ω̃ as above. Let ˜̃ω be
the Riemannian metric on X defined by˜̃ω(v, w) := ω̃(v, w) + ω̃(dσX(v), dσX(w))

(dσX is defined in (2.2)). Since dσX ◦ J = −J ◦ dσX , and J is orthogonal
with respect to ω̃, it follows that ˜̃ω also defines a Kähler structure on X.
In fact, the Kähler form for ˜̃ω is ω−σ∗Xω, hence the Kähler form is closed.
This Kähler structure defined by ˜̃ω is clearly compatible with σX .
Fix a Kähler form ω on X compatible with σX . For a torsionfree coherent

analytic sheaf F on X, define

(2.3) degree(F ) :=
∫
X

c1(F )ωdimC(X)−1 ∈ R.

Let G be a connected reductive affine algebraic group defined over C.
We fix a real form σG of G. This means that

σG : G −→ G

is an anti-holomorphic isomorphism of order two. The Lie algebra of G will
be denoted by g. The center of G will be denoted by ZG. Let

ZR := ZG ∩GσG

be the group of fixed points in ZG for the involution σG.
Let EG be a holomorphic principal G-bundle over X. By EG we denote

the C∞ principal G-bundle over X obtained by extending the structure
group of EG using the homomorphism σG:

EG = EG ×σG G.

In other words, EG is the quotient of EG×G where two points (z1, g1) and
(z1, g1) are identified if there is an element g ∈ G such that z2 = z1g and
g2 = σG(g)−1g1. The total space of EG is canonically identified with the
total space of EG; this identification EG → EG sends the equivalence class
of (z, g) to zσG(g) (see [6, p. 960, Remark 2.1]). The pullback σ∗XEG is a
holomorphic principal G-bundle over X, although EG is not equipped with

TOME 64 (2014), FASCICULE 6
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a holomorphic structure. The holomorphic structure on σ∗XEG is uniquely
determined by the following condition: a section of σ∗XEG defined over an
open subset U ⊂ X is holomorphic if and only if the corresponding section
of EG over σX(U) is holomorphic.

Definition 2.1. — A pseudo-real principal G-bundle on X is a pair of
the form (EG, ρ), where EG → X is a holomorphic principal G-bundle, and

ρ : EG −→ σ∗XEG

is a holomorphic isomorphism of principal G-bundles satisfying the condi-
tion that there is an element c ∈ ZR such that the composition

EG
ρ−→ σ∗XEG

σ∗Xρ−→ σ∗Xσ
∗
XEG = σ∗Xσ

∗
XEG = EG

coincides with the automorphism of EG defined by z 7−→ zc.
If (EG, ρ) is a pseudo-real principal G-bundle such that c = e, then it is

called a real principal G-bundle.

Using the C∞ canonical identification between EG and EG, the isomor-
phism ρ in Definition 2.1 produces an anti-holomorphic diffeomorphism of
the total space of EG over the involution σX . This diffeomorphism of EG
will also be denoted by ρ. Clearly, we have

(2.4) ρ(zg) = ρ(z)σG(g)

for all z ∈ EG and g ∈ G. Also, ρ2(z) = zc, where c is the element in
Definition 2.1.
An isomorphism between two pseudo-real principal G-bundles (EG, ρ)

and (FG, δ) is a holomorphic isomorphism of principal G-bundles

µ : EG −→ FG

such that the following diagram commutes:

EG
ρ−→ σ∗XEGyµ yσ∗Xµ

FG
δ−→ σ∗XFG

where σ∗µ is the holomorphic isomorphism of principal G-bundles given by
µ. The map σ∗µ coincides with µ using the above mentioned identification
of the total spaces of EG and FG with those of σ∗EG and σ∗FG respectively.
Let

Ad(EG) := EG ×G G −→ X

be the holomorphic fiber bundle associated to EG for the adjoint action of
G on itself. So Ad(EG) is the quotient of EG×G where two points (z1, g1)
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and (z2, g2) are identified if there is an element g ∈ G such that z2 = z1g

and g2 = g−1g1g. Therefore, the fibers of Ad(EG) are groups identified with
G up to inner automorphisms. The fiber of Ad(EG) over any point x ∈ X
is identified with the space of all automorphisms of the fiber (EG)x that
commute with the action of G on (EG)x. This identification is constructed
as follows: the action of any (z1, g1) ∈ (EG)x×G on (EG)x is z1g 7−→ z1g1g.
This action clearly descends to an action of the group Ad(EG)x.
Let

Ad(EG) := EG ×G G −→ X

be the C∞ fiber bundle associated to EG for the adjoint action of G on
itself. The homomorphism σG produces a C∞ isomorphism of fiber bundles

αE : Ad(EG) −→ Ad(EG)

whose restriction to each fiber is an isomorphism of groups. More precisely,
αE sends the equivalence class of (z, g) ∈ EG ×G to the equivalence class
of (z, σG(g)) ∈ EG ×G (recall that the fibers of EG and EG are naturally
identified). The isomorphism ρ in Definition 2.1 produces an isomorphism

ρ′′ : Ad(EG) −→ Ad(σ∗XEG) = σ∗X Ad(EG)

which is holomorphic. Let

(σ∗Xα−1
E ) ◦ ρ′′ : Ad(EG) −→ σ∗X Ad(EG)

be the composition. It defines a C∞-isomorphism of fiber bundles

(2.5) ρ′ : Ad(EG) −→ Ad(EG)

over the map σX . This map ρ′ is an anti-holomorphic involution, and it
preserves the group-structure of the fibers of Ad(EG). That ρ′ is indeed
an involution follows immediately from the fact that the adjoint action of
c ∈ ZR (see Definition 2.1) on G is trivial.

As before, the Lie algebra of G will be denoted by g. Let

ad(EG) := EG ×G g −→ X

be the holomorphic vector bundle associated to EG for the adjoint action
of G on g. It is the Lie algebra bundle corresponding to Ad(EG). The
anti-holomorphic involution ρ′ in (2.5) produces an anti-holomorphic au-
tomorphism of order two of the vector bundle ad(EG)

(2.6) ρ̃ : ad(EG) −→ ad(EG)

over σX . To describe ρ̃ explicitly, recall that ad(EG) is the quotient of EG×g
where two points (z1, v1) and (z2, v2) of EG× g are identified if there is an;
element g ∈ G such that z2 = z1g and v2 = Ad(g)(v1) the automorphism

TOME 64 (2014), FASCICULE 6
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Ad(g) of g is the differential at identity of the automorphism of G defined
by g′ 7−→ g−1g′g. Let

(2.7) dσG : g −→ g

be the differential, at identity, of σG. The anti-holomorphic automorphism
of EG×g defined by ρ×dσG descends to an anti-holomorphic automorphism
of the quotient ad(EG). This automorphism of ad(EG) will be denoted by
ρ̃ (this notation is justified below). Since the adjoint action of ZG on g is
trivial, it follows that ρ̃ is of order two. This map ρ̃ preserves the Lie algebra
structure of the fibers of ad(EG). The homomorphism in (2.6) coincides
with ρ̃.
For a holomorphic vector bundle V on X, by V we will denote the C∞

vector bundle whose underlying real vector bundle is identified with that
of V , while multiplication by a complex number λ on V coincides with the
multiplication by λ on V . If EGL is the principal GL(r,C)-bundle associ-
ated to V , where r = rank(V ), then V corresponds to EGL; here EGL is
constructed using the anti-holomorphic involution of GL(r,C) defined by
A 7−→ A. The pullback σ∗XV has a natural holomorphic structure. This
holomorphic structure is uniquely determined by the condition that a sec-
tion of σ∗XV defined over an open subset U ⊂ X is holomorphic if and only
if the corresponding section of V over σX(U) is holomorphic.
Note that ρ̃ in (2.6) coincides with the holomorphic isomorphism

ad(EG) −→ ad(σ∗EG) = σ∗Xad(EG)

given by ρ in Definition 2.1 after we use the above conjugate linear iden-
tification of ad(EG) with ad(EG) together with the natural identification
between the total spaces of σ∗X ad(EG) and ad(EG).

Remark 2.2. — Let X ′ be a geometrically irreducible smooth projective
variety defined over the field R of real numbers. Let X := X ′ ×R C be the
base change of it to C. The Galois group Gal(C/R) = Z/2Z produces
an anti-holomorphic involution of X. The pair (G, σG) together define an
algebraic group defined over the field R. This group defined over R will
be denoted by G′. The real principal G-bundles on X are precisely the
algebraic principal G′-bundles over X ′.

2.1. Stability and semistability

A complex linear subspace S ⊂ ad(EG)x is called a parabolic subalgebra
if S is the Lie algebra of a parabolic subgroup of Ad(EG)x. We recall that a

ANNALES DE L’INSTITUT FOURIER
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connected Zariski closed subgroup P of Ad(EG)x is parabolic if Ad(EG)x/P
is compact. A holomorphic subbundle F ⊂ ad(EG)|U defined over an open
subset U ⊂ X is called a parabolic subalgebra bundle if for each point
x ∈ U , the fiber Fx is a parabolic subalgebra of ad(EG)x.

Definition 2.3. — A pseudo-real principal G-bundle (EG, ρ) over X is
called semistable (respectively, stable) if for every pair of the form (U, p),
where

• ιU : U ↪→ X is a dense open subset with σX(U) = U such that
the complement X \ U is a closed complex analytic subset of X of
(complex) codimension at least two, and

• p ( ad(EG)|U is a parabolic subalgebra bundle over U such that
ρ̃(p) = p (see (2.6) for ρ̃), and the direct image ιU∗p is a coherent
analytic sheaf (see Remark 2.4 below),

we have

degree(ιU∗p) 6 0 (respectively, degree(ιU∗p) < 0)

(degree is defined in (2.3)).

Remark 2.4. — Let ιU : U ↪→ X is a dense open subset such that the
complement X \ U is a closed complex analytic subset of X of complex
codimension at least two, and let V be a holomorphic vector bundle on
U . If X is a complex projective manifold, then the direct image ιU∗V is a
coherent analytic sheaf.

Lemma 2.5. — A pseudo-real principal G-bundle (EG, ρ) over X is
semistable if and only if the vector bundle ad(EG) is semistable.

A pseudo-real principal G-bundle (EG, ρ) is semistable if and only if the
principal G-bundle EG is semistable.

Proof. — If ad(EG) is semistable, then clearly (EG, ρ) is semistable.
To prove the converse, assume that ad(EG) is not semistable. Let

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = ad(EG)

be the Harder-Narasimhan filtration of ad(EG). Then n is odd, and V(n+1)/2
is a parabolic subalgebra bundle of ad(EG) over a dense open subset U ⊂ X
such that the complement X \ U ⊂ X is a complex analytic subset of
complex codimension at least two (see [1, p. 216, Lemma 2.11]).
From the uniqueness of the Harder-Narasimhan filtration it follows im-

mediately that
ρ̃(V(n+1)/2) = V(n+1)/2

TOME 64 (2014), FASCICULE 6
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(see (2.6) for ρ̃). Therefore, considering V(n+1)/2 ⊂ ad(EG) we conclude
that (EG, ρ) is not semistable.

The vector bundle ad(EG) is semistable if and only if the principal G-
bundle EG is semistable [1, p. 214, Proposition 2.10]. Therefore, the second
statement of the lemma follows from the first statement. �

Lemma 2.6. — Let (EG, ρ) be a stable pseudo-real principal G-bundle
over X. Then the vector bundle ad(EG) is polystable. Also, the principal
G-bundle EG is polystable.

Proof. — From the first part of Lemma 2.5 we know that ad(EG) is
semistable. A semistable sheaf V has a unique maximal polystable subsheaf
F with

degree(V )/ rank(V ) = degree(F )/ rank(F )

[13, page 23, Lemma 1.5.5]. This F is called the socle of V . Assume that
ad(EG) is not polystable. Then there is a unique filtration

(2.8) 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = ad(EG)

such that for each i ∈ [1, n], the quotient Fi/Fi−1 is the socle of ad(EG)/
Fi−1. Then n is odd, and F(n+1)/2 is a parabolic subalgebra bundle of
ad(EG) over a dense open subset U ⊂ X such that the complement X\U ⊂
X is a complex analytic subset of codimension at least two (see [1, p. 218]).

From the uniqueness of the filtration in (2.8) it follows immediately that
ρ̃(F(n+1)/2) = F(n+1)/2. Therefore, the subsheaf F(n+1)/2 ⊂ ad(EG) shows
that (EG, ρ) is not stable. In view of this contradiction, we conclude that
ad(EG) is polystable.

The second statement of the lemma follows from the first statement and
[1, p. 224, Corollary 3.8]. �

3. Polystable pseudo-real principal bundles and
Einstein-Hermitian connections

Let (EG, ρ) be a pseudo-real principal G-bundle. Let

p ⊂ ad(EG)

be a parabolic subalgebra bundle such that ρ̃(p) = p, where ρ̃ is the invo-
lution in (2.6). Let

Ru(p) ⊂ p

ANNALES DE L’INSTITUT FOURIER
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be the holomorphic subbundle over X whose fiber over any point x ∈ X is
the nilpotent radical of the parabolic subalgebra px. Therefore, the quotient
p/Ru(p) is a bundle of reductive Lie algebras. Note that ρ̃(Ru(p)) = Ru(p).
A Levi subalgebra bundle of p is a holomorphic subbundle

`(p) ⊂ p

such that for each x ∈ X, the fiber `(p)x is a Lie subalgebra of px with the
composition

`(p) ↪→ p −→ p/Ru(p)
being an isomorphism, where p→ p/Ru(p) is the quotient map.
Let `(p) ⊂ p be a Levi subalgebra bundle such that ρ̃(`(p)) = `(p). Since

the fibers of `(p) are reductive subalgebras, we may extend the notion of
(semi)stability to `(p) as follows.

Definition 3.1. — A Levi subalgebra bundle `(p) ⊂ p with ρ̃(`(p)) =
`(p) is called semistable (respectively, stable) if for every pair of the form
(U, q), where

• ιU : U ↪→ X is a dense open subset with σX(U) = U such that
the complement X \ U is a closed complex analytic subset of X of
complex codimension at least two, and

• q ( `(p)|U is a parabolic subalgebra bundle over U such that
ρ̃(q) = q, and the direct image ιU∗q is a coherent analytic sheaf
(see Remark 2.4),

we have

degree(ιU∗q) 6 0 (respectively, degree(ιU∗q) < 0).

Definition 3.2. —A semistable pseudo-real principal G-bundle (EG, ρ)
over X is called polystable if either (EG, ρ) is stable, or there is a proper
parabolic subalgebra bundle p ( ad(EG), and a Levi subalgebra bundle
`(p) ⊂ p, such that the following conditions hold:

(1) ρ̃(p) = p and ρ̃(`(p)) = `(p), and
(2) `(p) is stable (see Definition 3.1).

In Definition 3.2, we start with a semistable pseudo-real principal bundle
to rule out the analogs of direct sum of stable vector bundles of different
slopes.

Lemma 3.3. — Let (EG, ρ) be a polystable pseudo-real principal G-
bundle on X. Then the adjoint vector bundle ad(EG) is polystable. Also,
the principal G-bundle EG is polystable.

TOME 64 (2014), FASCICULE 6
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Proof. — If (EG, ρ) is stable, then it follows by Lemma 2.6. So we assume
that (EG, ρ) is not stable. From the first part of Lemma 2.5 it follows that
ad(EG) is is semistable. Assume that ad(EG) is not polystable. Let

F1 ⊂ ad(EG)

be the socle (see (2.8)).
Recalling Definition 3.2, we observe that the vector bundle `(p) in Def-

inition 3.2 is polystable with a proof identical to that of Lemma 2.6 (this
is due to condition (2) in Definition 3.2). Therefore, we have

(3.1) `(p) ⊂ F1.

But F(n−1)/2 in (2.8) is the nilpotent radical bundle of the parabolic sub-
algebra bundle F(n+1)/2 ⊂ ad(EG). Therefore, all elements of F(n−1)/2 are
nilpotent. In particular, all elements of F1 are nilpotent. On the other hand,
`(p) is a Levi subalgebra bundle. So for each x ∈ X, the fiber `(p)x is a
reductive subalgebra of ad(EG)x. Hence (3.1) is a contradiction. Therefore,
we conclude that ad(EG) is polystable.
The second statement of the lemma follows from the first statement and

[1, p. 224, Corollary 3.8]. �

Consider the semi-direct product G o (Z/2Z) defined by the involution
σG of G. So we have a short exact sequence of groups

e −→ G −→ Go (Z/2Z) −→ Z/2Z −→ e.

Take a maximal compact subgroup K̃ ⊂ Go(Z/2Z) containing the element
(e, 1) ∈ G× (Z/2Z) of order two. Define

(3.2) KG := K̃ ∩G ⊂ G.

It is a maximal compact subgroup of G which is preserved by σG.
By a Hermitian structure on a principal G-bundle EG we will mean

a C∞ reduction of structure group of EG to the subgroup KG. If EG is
holomorphic, and EKG ⊂ EG is an Hermitian structure, then there is a
unique connection ∇ on EKG such that the connection on EG induced
by ∇ has the property that the corresponding C∞ splitting of the Atiyah
exact sequence for EG is C-linear [2, pp. 191-192, Proposition 5]. This ∇ is
called the Chern connection for the reduction EKG . The connection on EG
induced by ∇ is also called the Chern connection for the reduction EKG .
Let EG be a holomorphic principal G-bundle, and let EKG ⊂ EG be an

Hermitian structure on EG. The corresponding Chern connection on EG
will be denoted by ∇. The curvature of ∇ will be denoted by K(∇). Let

Λ: Ωp,qX −→ Ωp−1,q−1
X
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be the adjoint of the exterior product with the Kähler form ω. The reduc-
tion EKG is said to be an Einstein-Hermitian structure on EG if there is
an element λ in the center of g such that the section

ΛK(∇) ∈ C∞(X, ad(EG))

coincides with the one given by λ (since the adjoint action of G on the
center of g is trivial, any element of it defines a section of ad(EG)).
A principal G-bundle EG admits an Einstein-Hermitian structure if and

only if EG is polystable, and, moreover, the Einstein-Hermitian connection
on a polystable principal G-bundle is unique [10], [19], [1, p. 208, Theo-
rem 0.1], [16, p. 24, Theorem 1]. Therefore, Lemma 3.3 has the following
corollary:

Corollary 3.4. — Let (EG, ρ) be a polystable pseudo-real principal
G-bundle. Then EG admits an Einstein-Hermitian structure.

Assumption 3.5. — Henceforth, we will always assume that c ∈ ZR in
Definition 2.1 lies in ZR

⋂
KG. This assumption is justified in Remark 3.6.

Remark 3.6. — Take any λ ∈ ZR. If we replace the isomorphism ρ in
Definition 2.1 by the isomorphism ρ′ defined by z 7−→ ρ(z)λ, then the
composition

EG
ρ′−→ σ∗XEG

σ∗Xρ
′

−→ σ∗Xσ
∗
XEG = σ∗Xσ

∗
XEG = EG

differs from the composition in Definition 2.1 by multiplication with λ2.
We also note that the group of order two elements in ZR surjects onto the
quotient group ZR/(ZR)2. Consequently, without any loss of generality, the
element c ∈ ZR in Definition 2.1 can be taken to be of order two (see also
the end of Section 2.1 of [6]). But all elements of ZR of order two lie in
ZR

⋂
KG. Hence Assumption 3.5 is not restrictive.

Let (V, h) be a holomorphic Hermitian vector bundle on a complex man-
ifold M . Let h′ be another Hermitian structure on V . Then there a unique
C∞ endomorphism A of V such that A∗h = A, and

h′(v, w) = h(x)(exp(A)(v), w), ∀ x ∈M and v, w ∈ Vx,

where A∗h is the adjoint of A with respect to h. Let ∇h be the Chern
connection on V for h.

Lemma 3.7. — The Chern connection on V for h′ coincides with ∇h if
and only if the above endomorphism A is flat with respect to ∇h.
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Proof. — Let ∇h′ be the Chern connection on V for h′. Then

∇h
′
−∇h = ∇h(A)

(both sides are C∞ one-forms with values in ad(EG)). �

Recall that ρ in Definition 2.1 produces an anti-holomorphic diffeomor-
phism of EG which is also denoted by ρ (see (2.4)).

Proposition 3.8. — Let (EG, ρ) be a pseudo-real principal G-bundle
such that the principal G-bundle EG is polystable. Then EG admits an
Einstein-Hermitian structure

EKG ⊂ EG
such that ρ(EKG) = EKG .

Proof. — Let EKG ⊂ EG be a C∞ reduction of structure group of the
holomorphic principal G-bundle EG to the subgroup KG. Since σG(KG) =
KG, from (2.4) it follows immediately that ρ(EKG) ⊂ EG is also a C∞
reduction of structure group toKG. Let ∇′ be a connection on the principal
G-bundle EG; it is a g-valued one-form on the total space of EG. Then
(dσG) ◦ ρ∗∇′ is also a connection on EG, where dσG is the homomorphism
in (2.7) (recall that ρ is a self-map of the total space of EG). If ∇′ is
the Chern connection for the Hermitian structure EKG ⊂ EG, then it is
straightforward to check that (dσG) ◦ ρ∗∇′ is the Chern connection for the
Hermitian structure ρ(EKG) ⊂ EG.
The principal G-bundle EG admits an Einstein-Hermitian structure, and

the Einstein-Hermitian connection on EG is unique (see Corollary 3.4). Let
∇ denote the Einstein-Hermitian connection on EG. Since the Einstein-
Hermitian connection ∇ is unique, it follows that ∇ is preserved by ρ,
meaning (dσG)◦ρ∗∇ = ∇. However, the Hermitian structure on EG giving
the Einstein-Hermitian connection is not unique in general.
Let

EKG ⊂ EG
be an Hermitian structure on EG giving the Einstein-Hermitian connec-
tion ∇. Define

E′KG = ρ(EKG) ⊂ EG.
We noted above that E′KG is also a C∞ reduction of structure group of
EG to KG. Recall from above that the Chern connection on EG for this
Hermitian structure E′KG coincides with one given by ∇ using ρ. Since ∇
is preserved by ρ, the Chern connection on EG for E′KG coincides with ∇.

LetM denote the space of all Hermitian structures on EG that give the
Einstein-Hermitian connection ∇. We note that every Hermitian structure
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inM is Einstein-Hermitian. If EG is regularly stable (meaning EG is stable
and Aut(EG) = ZG), thenM = ZG/(KG ∩ ZG). Let

(3.3) ρM : M−→M

be the map defined by EKG 7−→ ρ(EKG) (constructed as above). Since the
element c in Definition 2.1 lies in KG (see Assumption 3.5), we conclude
that ρM is an involution. The proposition is equivalent to the statement
that ρM has a fixed point.

Fix a reduction
E0
KG ⊂ EG

lying in M. Fix an inner product hg on g which is invariant under the
adjoint action of KG. We note that since KG is compact, such an inner
product exists. Using the reduction E0

KG
, this hg produces an Hermit-

ian structure on the adjoint vector bundle ad(EG). To see this, note that
ad(EG) is identified with the vector bundle E0

KG
×KG g associated to E0

KG

for the adjoint action of KG on g. Therefore, hg induces an Hermitian
structure on E0

KG
×KG g. So ad(EG) gets an Hermitian structure using its

identification with E0
KG
×KG g. This Hermitian structure on ad(EG) will

be denoted by had(EG).
Let

(3.4) S := ad(E0
KG)⊥ ⊂ ad(EG)

be the orthogonal complement of ad(E0
KG

) with respect to the Hermitian
structure had(EG). This orthogonal complement is in fact independent of
the choice of hg. Given any Hermitian structure

EKG ⊂ EG
on EG, there is a unique C∞ section s ∈ C∞(X,S) such that

EKG = exp(s)(E0
KG)

(recall that ad(EG) is the Lie algebra bundle associated to Ad(EG)). Con-
versely, for any

s ∈ C∞(X,S),
the image exp(s)(E0

KG
) ⊂ EG is an Hermitian structure on EG.

Let
s0 ∈ C∞(X,S)

be the section such that exp(s0)(E0
KG

) = ρM(E0
KG

), where ρM is con-
structed in (3.3).
Let ∇ad be the connection on the vector bundle ad(EG) induced by the

Einstein-Hermitian connection ∇. From Lemma 3.7 it can be deduced that
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s0 is covariant constant (flat) with respect to ∇ad. To prove this, take any
faithful holomorphic representation G ↪→ GL(W ). Fix a maximal compact
subgroup of GL(W ) containing KG. Consider the two Hermitian structures
on the associated vector bundle EG ×G W given by E0

KG
and ρM(E0

KG
).

Since their Chern connections coincide, using Lemma 3.7 we deduce that
s0 is flat with respect to ∇ad.
We will prove that that the Hermitian structure exp(s0/2)(E0

KG
) on EG

is fixed by ρM.
To prove that exp(s0/2)(E0

KG
) lies in M, note that s0/2 is flat with

respect to ∇ad because s0 is so. Therefore, using Lemma 3.7 we conclude
that the Chern connection for the Hermitian structure exp(s0/2)(E0

KG
)

coincides with ∇ (as before, take a faithful holomorphic representation G
and apply Lemma 3.7 to the associated vector bundle). Therefore,

exp(s0/2)(E0
KG) ∈M.

Take any point x ∈ X. Fix a point

z0 ∈ (E0
KG)x.

Identify (E0
KG

)x and (EG)x with KG and G respectively by sending any
element z0g to g. The space of all reductions of the structure group of the
principal G-bundle (EG)x → {x} to the subgroup KG is identified with
(EG)x/KG. Hence using the above identification of (EG)x with G, this
space of reductions coincides with G/KG.
Let g0 ∈ G be the unique element such that

(3.5) exp(s0)(x)(z0) = z0g0.

For the element g0KG ∈ G/KG,

g0KG = (ρM(E0
KG))x = ρ((E0

KG)σX(x)) ⊂ (EG)x

using the above identification betweenG/KG and the space of all reductions
of the principal G-bundle (EG)x → {x} to the subgroup KG.
We note that using z0, the fiber ad(EG) is identified with the Lie algebra

g. This identification sends any v ∈ g to the equivalence class of (z0, v)
(recall that the total space of ad(EG) is a quotient of EG × g). Let

v0 ∈ g

be the element given by s0(x)∈ad(EG)x using this identification. From (3.5)
we have

(3.6) exp(v0) = g0.
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Next we show that any reduction E′KG ⊂ EG lying in M is uniquely
determined by its restriction (E′KG)x ⊂ (EG)x. To prove this, recall that
the Chern connection on EG for E′KG coincides with ∇. Hence we can
reconstruct E′KG from (E′KG)x by taking parallel translations of (E′KG)x ⊂
(EG)x using ∇. Hence E′KG is uniquely determined by (E′KG)x.
Let

Mx ⊂ G/KG

be the image of the mapM→ G/KG that sends any E′KG ⊂ EG inM to
the reduction (E′KG)x ⊂ (EG)x (recall that the space of all reductions of
the principal G-bundle (EG)x → {x} to the subgroup KG is identified with
G/KG). Since any reduction E′KG ⊂ EG lying inM is uniquely determined
by its restriction (E′KG)x ⊂ (EG)x, the map ρM in (3.3) produces a map

(3.7) ρ̃xM : Mx −→Mx.

Using (2.4) it follows that ρ̃xM is the restriction of the map

(3.8) fg0 : G/KG −→ G/KG, gKG 7−→ g0σG(g)KG,

where g0 is the element of G in (3.5).
The direct sum of the Killing form on [g, g] and an inner product on the

center of g is a nondegenerate G-invariant form on g. This form produces
a Riemannian metric on G/KG. The map fg0 in (3.8) is an isometry with
respect to this Riemannian metric. Given any two points of G/KG, there
is a unique geodesic passing through them.
The map ρ̃xM in (3.7) interchanges the two points (E0

KG
)x and

(ρM(E0
KG

))x of Mx. Since ρ̃xM is the restriction of the isometry fg0 , the
mid-point of the unique geodesic between the two points (E0

KG
)x and

(ρM(E0
KG

))x is fixed by ρ̃xM, provided this mid-point lies inMx.
The earlier identification between G/KG and the space of all reductions

of the principal G-bundle (EG)x → {x} to KG (given by z0) sends the
reduction (E0

KG
)x (respectively, (ρM(E0

KG
))x) to eKG (respectively, g0KG).

The mid-point of the unique geodesic in G/KG between eKG and g0KG is
exp(v0/2)KG (see (3.6)). Therefore, the mid-point of the unique geodesic
between the two points (E0

KG
)x and (ρM(E0

KG
))x is (exp(s0/2)(E0

KG
))x.

We have shown above that exp(s0/2)(E0
KG

) lies inM. Consequently, for
every point x ∈ X, the reduction

(exp(s0/2)(E0
KG))x ⊂ (EG)x

coincides with (ρM(exp(s0/2)(E0
KG

)))x ⊂ (EG)x. Therefore, the Hermitian
structure exp(s0/2)(E0

KG
) on EG is fixed by ρM. �

Lemma 3.3 and Proposition 3.8 together give the following:
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Corollary 3.9. — Let (EG, ρ) be a polystable pseudo-real principal
G-bundle. Then EG admits an Einstein-Hermitian structure EKG ⊂ EG
such that ρ(EKG) = EKG .

Proposition 3.10. — Let (EG, ρ) be a pseudo-real principal G-bundle
admitting an Einstein-Hermitian structure EKG ⊂ EG such that ρ(EKG) =
EKG . Then (EG, ρ) is polystable.

Proof. — As before, ∇ad is the connection on ad(EG) induced by the
Einstein-Hermitian connection on EG. This connection ∇ad is clearly
Einstein-Hermitian. Therefore, ad(EG) is polystable, in particular, it is
semistable. Hence the pseudo-real principal G-bundle (EG, ρ) is semistable
(see Lemma 2.5). If (EG, ρ) is stable, then (EG, ρ) is polystable. Therefore,
assume that (EG, ρ) is not stable.

Take a pair (U, p) as in Definition 2.3 such that

degree(ιU∗p) = 0.

Since ad(EG) is polystable of degree zero, the subbundle p of ad(EG)|U
extends to a subbundle of ad(EG) over X. To see this write, ad(EG) as
a direct sum of stable vector bundles. The statement is clear for a stable
vector bundle; the statement for polystable case follows from this. This
extended vector bundle will be denoted by p′. Clearly, p′ is a parabolic
subalgebra bundle of ad(EG). We also have ρ̃(p′) = p′, because ρ̃(p) = p.
Furthermore,

degree(p′) = degree(ιU∗p) = 0.
Let

p ⊂ ad(EG)
be a smallest parabolic subalgebra bundle over X such that

• ρ̃(p) = p, and
• degree(p) = 0.

It should be clarified that p need not be unique.
We will show that the connection ∇ad on ad(EG) preserves the subbun-

dle p.
The vector bundle ad(EG) is polystable of degree zero. Since degree(p) =

0, there is a holomorphic subbundle W ⊂ ad(EG) such that the natural
homomorphism

p⊕W −→ ad(EG)
is an isomorphism. Hence both p and W are of polystable of degree zero.
Therefore, from the uniqueness of the Einstein-Hermitian connection it
follows that the Einstein-Hermitian connection ∇ad is the direct sum of the
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Einstein-Hermitian connections on p and W . In particular, the connection
∇ad preserves the subbundle p.
The adjoint vector bundle ad(EKG) is a totally real subbundle of ad(EG),

meaning ad(EKG)
⋂√
−1 · ad(EKG) = 0. Since both the subbundles p and

ad(EKG) are preserved by∇ad, it follows that p
⋂

ad(EKG) is a real subbun-
dle of ad(EG) preserved by ∇ad. Consider the complexified vector bundle

E := (p ∩ ad(EKG))⊗R C.

Since ad(EKG) is a totally real subbundle, this E is a complex subbundle of
ad(EKG). It is clearly preserved by ∇ad. In particular, E is a holomorphic
subbundle of p. This holomorphic subbundle E ⊂ p is a Levi subalgebra
bundle of p.
The given condition that ρ(EKG) = EKG implies that ρ̃(ad(EKG)) =

ad(EKG). Since we also have ρ̃(p) = p, it follows immediately that

ρ̃(E) = E .

From the minimality assumption on p it can be deduced that the Levi
subalgebra bundle E is stable. To see this, assume that q ⊂ E|U is a para-
bolic subalgebra bundle violating the stability of the Levi subalgebra bun-
dle E . Then the direct sum q⊕Rn(p), where Rn(p) ⊂ p|U is the nilpotent
radical, is properly contained in p, and it contradicts the minimality as-
sumption on p. Hence we conclude that the Levi subalgebra bundle E is
stable. Consequently, (EG, ρ) is polystable. �

Proposition 3.8 and Proposition 3.10 together give the following:

Corollary 3.11. — If (EG, ρ) is a pseudo-real principal G-bundle such
that the holomorphic principal G-bundle EG is polystable. Then (EG, ρ) is
polystable.

4. Representations of the extended fundamental group in
a compact subgroup

Fix a point x0 ∈ X such that σX(x0) 6= x0. Let

Γ(x0) = Γ(X,x0)

be the homotopy classes of paths γ : [0, 1] → X such that γ(0) = x0 and
γ(1) ∈ {x0, σX(x0)}. Take two paths γ1, γ2 ∈ Γ(x0). If γ2(1) = x0, then
define γ2 · γ1 = γ1 ◦ γ2, where “◦” denotes composition of paths. If γ2(1) =
σX(x0), then define γ2 · γ1 = σX(γ1) ◦ γ2. These operations make Γ(x0)
into a group (see [5]). The inverse of γ ∈ Γ(x0) with γ(1) = σX(x0) is
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represented by the path t 7−→ σX(γ(1− t)). This group Γ(x0) fits in a short
exact sequence of groups

(4.1) e −→ π1(X,x0) −→ Γ(x0) η−→ Z/2Z −→ e,

where η(γ) = 0 if γ(1) = x0, and η(γ) = 1 if γ(1) = σX(x0). If there is
a point y ∈ X such that σX(y) = y, then (4.1) is a right-split (the exact
sequence is isomorphic to a semi-direct product). To see this, fix a path
γ0 from x0 to y. Then the composition γ1 := σX(γ0)−1 ◦ γ0 ∈ η−1(1) is of
order two. So 1 7−→ γ1 is a right-splitting of (4.1).

LetKG be the maximal compact subgroup ofG defined earlier (see (3.2)).
The group K̃ in (3.2) is identified with the semi-direct productKGo(Z/2Z)
for the involution σG of KG. In particular, the set K̃ is identified with the
set KG × {0, 1}.

Let Map′(Γ(x0), K̃) be the space of all maps

δ : Γ(x0) −→ K̃

such that the following diagram is commutative:

(4.2)
e −→ π1(X,x0) −→ Γ(x0) η−→ Z/2Z −→ ey yδ ‖

e −→ KG −→ K̃
η′−→ Z/2Z −→ e

We write Z/2Z = {0, 1}. For any c ∈ ZR
⋂
KG, let Homc(Γ(x0), K̃) be

the space of all maps
δ ∈ Map′(Γ(x0), K̃)

such that
• the restriction of δ to π1(X,x0) is a homomorphism of groups,
• δ(g′g) = cδ(g′)δ(g), if η(g) = 1 = η(g′) (the homomorphism η is
defined in (4.1)), and

• δ(g′g) = δ(g′)δ(g) otherwise (meaning if η(g) · η(g′) = 0).
We note that if c = e, then Homc(Γ(x0), K̃) is the space of all homomor-

phisms from Γ(x0) to K̃ satisfying (4.2).

Remark 4.1. — We will give a more intrinsic definition of Homc(Γ(x0),
K̃). For that, we first recall that the semi-direct product K̃ = KGo(Z/2Z)
is constructed as follows: the underlying set is KG × {0, 1}, and the multi-
plication is given by

(g1, e1) · (g2, e2) = (g1(σG)e1(g2), e1 + e2),

where gi ∈ KG and ei ∈ {0, 1}; note that (σG)e1 is either σG or the identity
map of G depending on whether e1 is 1 or 0. We now define a new group ˜̃

K.
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The underlying set for ˜̃
K is again KG × {0, 1}, but the multiplication is

now given by

(4.3) (g1, e1) · (g2, e2) = (g1(σG)e1(g2)ce1e2 , e1 + e2);

as before, ce1e2 is either c or the identity element of KG depending on
whether e1e2 is 1 or 0. The subset Homc(Γ(x0), K̃) of Map′(Γ(x0), K̃) con-
sists of those elements that are homomorphisms from Γ(x0) to the group ˜̃

K

defined above.

Take any δ ∈ Homc(Γ(x0), K̃). We will construct from δ a polystable
pseudo-real principal G-bundle on X.
Consider the restriction δ′ := δ|π1(X,x0) (see (4.1)). It is a homomorphism

from π1(X,x0) to KG. Therefore, δ′ gives
• a principal KG-bundle EKG equipped with a flat connection ∇K ,

and
• a base point z0 ∈ (EKG)x0 over the base point x0.

Let EG := EKG ×KG G → X be the principal G-bundle obtained by
extending the structure group of EKG using the inclusion of KG in G. The
flat connection ∇K defines a holomorphic structure on EG. This holomor-
phic principal G-bundle EG is polystable because ∇K is a flat Hermitian
connection.
We will construct a diffeomorphism

(4.4) ρσX(x0) : (EG)σX(x0) −→ (EG)x0

between the fibers of EG. For that, take any γ ∈ Γ(x0) such that η(γ) = 1
(see (4.1) for η). Let gγ ∈ KG be the element such that the canonical
identification of the set K̃ with KG o {0, 1} takes δ(γ) to (gγ , 1). Let

z′0 ∈ (EG)σX(x0)

be the element obtained by the parallel translation of the base point z0
along γ for the connection ∇K . The map ρσX(x0) in (4.4) is defined as
follows:

ρσX(x0)(z′0g) = z0σG(g−1
γ g) ∈ (EG)x0 , g ∈ G.

Lemma 4.2. — The map ρσX(x0) defined above is independent of the
choice of γ.

Proof. — Take an element γ1 ∈ π1(X,x0), and replace γ by the element
γ1γ ∈ Γ(x0) represented by the path γ ◦ γ1. Let gγ1γ be the element of KG

such that
δ(γ1γ) = (gγ1γ , 1).

TOME 64 (2014), FASCICULE 6



2548 Indranil BISWAS, Oscar GARCíA-PRADA & Jacques HURTUBISE

Then gγ1γ = δ(γ1)gγ . The element z′0 gets replaced by z′0δ(γ1)−1. Therefore,
the map ρσX(x0) constructed as above using γ1γ in place of γ sends the point
z′0δ(γ1)−1 to z0σG(g−1

γ )σG(δ(γ1))−1.
Consequently, the two maps ρσX(x0) constructed using γ and γ1γ respec-

tively coincide on the point z′0δ(γ1)−1. On the other hand, both these maps
satisfy the condition that

(4.5) ρσX(x0)(yh) = ρσX(x0)(h)σG(h)

for all y ∈ (EG)σX(x0) and h ∈ G. These together imply the two maps co-
incide on the entire (EG)σX(x0). Therefore, the map ρσX(x0) is independent
of the choice of γ. �

The map ρσX(x0) is clearly anti-holomorphic.
We will now show that ρσX(x0) is independent of the base point z0.
Take any g0 ∈ KG. Define

δ̃ : Γ(x0) −→ K̃, z 7−→ g−1
0 δ(z)g0

(recall that KG is a subgroup of K̃). Note that δ̃ ∈ Homc(Γ(x0), K̃). If
we replace δ by δ̃, then the flat principal EK-bundle (EK ,∇K) remains
unchanged, but the base point z0 gets replaced by z0g0.

Lemma 4.3. — The map ρσX(x0) in (4.4) for δ coincides with the corre-
sponding map for δ̃. In other words, ρσX(x0) does not change if δ is conju-
gated by an element of KG.

Proof. — Take the element γ ∈ Γ(x0) in the construction of the map in
(4.4). Replace δ by δ̃. Then z0 gets replaced by z0g0, and hence z′0 gets
replaced by z′0g0. The element gγ gets replaced by g−1

0 gγσG(g0). Therefore,
the two maps constructed as in (4.4) for δ̃ and δ respectively coincide at
the point z′0g0. Now from (4.5) we conclude that the two maps coincide on
entire (EG)x0 . �

Take a point x1 ∈ X. If σX(x1) 6= x1, then define Γ(x1) = Γ(X,x1) as
before by replacing x0 with x1. If σX(x1) = x1, then define Γ(x1) to be the
semi-direct product

Γ(x1) := π1(X,x1) o (Z/2Z)

constructed using the involution of π1(X,x1) given by σX .
Fix a path γ0 in X from x1 to x0. Then we have an isomorphism

π1(X,x0) → π1(X,x1) defined by γ 7−→ γ−1
0 ◦ γ ◦ γ0 (as before, “◦”

is composition of paths). This isomorphism extends to an isomorphism
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Γ(x0)→ Γ(x1) by sending any γ ∈ η−1(1) to σX(γ−1
0 ) ◦ γ ◦ γ0. The inverse

of this isomorphism Γ(x0)→ Γ(x1) produces a bijection

β : Homc(Γ(x0), K̃)→ Homc(Γ(x1), K̃)

by composition of maps. The flat principal K-bundle corresponding to any

δ ∈ Homc(Γ(x0), K̃)

is identified with the flat principal K-bundle corresponding to β(δ); the
base point in the bundle changes by parallel translation along γ0.
From Lemma 4.3 it can be deduced that the isomorphism

ρσX(x1) : (EG)σX(x1) −→ (EG)x1

constructed as in (4.4) for β(δ) is independent of the choice of γ0. In-
deed, for two choices of γ0, the corresponding isomorphisms Γ(x0) →
Γ(x1) differ by an inner automorphism of Γ(x0) given by an element of
π1(X,x0). Therefore, for two choices of γ0, the corresponding bijections
from Homc(Γ(x0), K̃) to Homc(Γ(x1), K̃) differ by an inner automorphism
of K̃ by an element of KG. By Lemma 4.3, an inner automorphism of K̃
by an element of KG does not affect the map in (4.4).
Therefore, we get a map

ρX : EG −→ EG

by running the base point x1 over entire X. From the construction of ρX
it follows immediately that

• ρX(zg) = ρX(z)σG(g) for all z ∈ EG and g ∈ G, and
• ρX is anti-holomorphic.

Let
ρ : EG −→ σ∗XEG

be the map given by ρX and the natural identification of the total spaces of
EG and σ∗XEG. From the above two properties of ρX it follows immediately
that ρ is a holomorphic isomorphism of principal G-bundles.

Proposition 4.4. — The pair (EG, ρ) constructed above from δ ∈
Homc(Γ(x0), K̃) is a pseudo-real principal G-bundle such that the corre-
sponding element in ZR (see Definition 2.1) is c.

Proof. — To prove the proposition it suffices to show that the composi-
tion

(EG)σX(x0)
ρσX (x0)−→ (EG)x0

ρx0−→ (EG)σX(x0)

is multiplication by c.
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Fix a path γ in X from x0 to σX(x0). So γ ∈ η−1(1) ⊂ Γ(x0). As before,
z0 is the base point in (EG)x0 . Let z′0 ∈ (EG)σX(x0) be the point obtained
by the parallel translation of z0 along γ. We will identify Γ(x0) with Γ(x1)
using the reverse path γ′ : [0, 1] → X from σX(x0) from x0 defined by
γ′(t) = γ(1− t). Let

δ′ ∈ Homc(Γ(x1), K̃)
be the element given by δ using this isomorphism of Γ(x0) with Γ(x1). The
base point in (EG)σX(x0) for δ′ is z′0.
We will use the path γ to construct ρσX(x0), and we will use the path

σX(γ) to construct ρx0 . Although these maps are independent of the choice
of path (see Lemma 4.2), we need to fix paths for explicit computations.
As before, gγ ∈ KG is such that the canonical identification of Γ(x0)

with KG o {0, 1} takes δ(γ) to (gγ , 1).
We have

(4.6) ρσX(x0)(z′0) = z0σG(gγ)−1.

The parallel translation along the path σX(γ) takes z′0 to z0δ(γγ)−1 (the
element γγ ∈ π1(X,x0) is given by the composition σX(γ) ◦ γ). Therefore,

ρx0(z0δ(γγ)−1) = z′0σG(g−1
γ );

this uses the fact that the above isomorphism between Γ(x0) and Γ(x1)
takes γ ∈ η−1(1) ⊂ Γ(x0) to the homotopy class of σX(γ). Therefore,
substituting σX(x0) in place of x0 in the identity (4.5), we get

(4.7) ρx0(z0σG(gγ)−1) = z′0σG(g−1
γ )σG(δ(γγ)σG(gγ)−1).

But δ(γγ) = δ(γ)2c = gγσG(gγ)c. Hence

σG(g−1
γ )σG(δ(γγ)σG(gγ)−1) = σG(g−1

γ )σG(gγ)gγ(gγ)−1c = c.

Therefore, from (4.7) we have

ρx0(z0σG(gγ)−1) = z′0c.

Combining this with (4.6), we conclude that

(4.8) ρx0 ◦ ρσX(x0)(z′0) = z′0c.

From (4.5) it follows that ρx0 ◦ ρσX(x0) commutes the action of G on
(EG)σX(x0). Therefore, from (4.8) we conclude that ρx0 ◦ ρσX(x0) coincides
with multiplication by c. �

We noted earlier that the holomorphic principal G-bundle EG is poly-
stable. Therefore, from Corollary 3.11 it follows that the pseudo-real prin-
cipal G-bundle (EG, ρ) is polystable.
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Since EG admits a flat connection, it follows that all the rational char-
acteristic classes of EG of positive degree vanish.
We will now describe a reverse construction.
Let (EG, ρ) be a polystable pseudo-real principal G-bundle such that the

corresponding element in ZR (see Definition 2.1) is c ∈ ZR
⋂
KG.

Assume that the following two conditions hold:
• the second Chern class of ad(EG) satisfies the condition∫

X

c2(ad(EG)) ∧ ωdimC(X)−2 = 0,

and
• for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero.

These two numerical conditions together imply that the Einstein-Hermitian
connection on EG is flat [14, p. 115, Lemma 4.12]. In [14], this is proved
for vector bundles, but it extends to principal G-bundles by taking vector
bundles associated to irreducible representations of G. Therefore, these
numerical conditions imply that all the rational characteristic classes of
EG of positive degree vanish.

The Einstein-Hermitian connection on EG will be denoted by ∇. Let

EKG ⊂ EG

be an Hermitian structure that gives∇ and satisfies the condition ρ(EKG) =
EKG (it exists by Proposition 3.8).

Fix a base point z0 ∈ (EKG)x0 . Take any γ ∈ π1(X,x0). Let zγ ∈
(EKG)x0 be the point obtained by the parallel translation of z0 along γ
for the connection ∇. Let

gγ ∈ KG

be the unique element such that z0g
−1
γ = zγ .

Now take any γ ∈ η−1(1) ⊂ Γ(x0). Let yγ ∈ (EKG)σX(x0) be the point
obtained by the parallel translation of z0 along γ for the connection ∇. Let

h′γ ∈ KG

be the unique element such that z0 = ρ(yγ)σG(h′γ). Using the canonical set-
theoretic identification of (η′)−1(1) with G (see (4.2) for η′), the element
h′γ gives an element hγ ∈ (η′)−1(1). Let

(4.9) δ : Γ(x0) −→ K̃

be the map that sends any γ ∈ η−1(0) to gγ constructed above and sends
any γ ∈ η−1(1) to hγ .
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Proposition 4.5. — The function δ : Γ(x0) → K̃ in (4.9) lies in
Homc(Γ(x0), K̃).

Proof. — Clearly, δ−1(KG) = π1(X,x0). In other words, The diagram
as in (4.2) is commutative. For any γ, γ′ ∈ π1(X,x0), it is easy to see that
δ(γγ′) = δ(γ)δ(γ′).
Now take γ ∈ π1(X,x0) and γ′ ∈ η−1(1). Let gγ′ (respectively, gγγ′)

be the element of KG given by δ(γ′) (respectively, δ(γγ′)) using the set
theoretic identification of (η′)−1(1) with KG (see (4.2) for η′). We need to
show that

(4.10) gγγ′ = δ(γ)gγ′ .

Let z′0 ∈ (EKG)σX(x0) be the parallel translation of z0 along γ′. Therefore,
the parallel translation of z0 along γγ′ produces z′0δ(γ)−1 ∈ (EKG)σX(x0).
Hence,

ρ(z′0) = z0σG(g−1
γ′ ) and ρ(z′0δ(γ)−1) = z0σG(g−1

γγ′).
Since ρ(yg) = ρ(y)σG(g), we conclude that

z0σG(g−1
γγ′) = z0σG(g−1

γ′ )σG(δ(γ)−1) = z0σG(g−1
γ′ δ(γ)−1).

Hence g−1
γγ′ = g−1

γ′ δ(γ)−1. This implies (4.10).
Hence gγγ′ = δ(γ)gγ′ . This coincides with the corresponding identity in

the definition of Homc(Γ(x0), K̃).
Now take γ ∈ η−1(1) and γ′ ∈ π1(X,x0). Let gγ (respectively, gγγ′)

be the element of KG given by δ(γ) (respectively, δ(γγ′)) using the set
theoretic identification of (η′)−1(1) with KG. We need to show that

(4.11) gγγ′ = gγσG(δ(γ′)).

Let z′0 ∈ (EKG)σX(x0) be the parallel translation of z0 along γ.
We will compute the parallel translation along the path σX(γ′)◦γ which

represents γγ′ ∈ Γ(x0).
Since ρ preserves the connection ∇, the image, under ρ, of the parallel

translation along γ′ is the parallel translation along the loop ρ(γ′).
Since z0 is taken to z0δ(γ′)−1 by the parallel translation along γ′, the

parallel translation along ρ(γ′) takes ρ(z0) to ρ(z0)σG(δ(γ′)−1). We have

(4.12) ρ(z′0) = z0σG(gγ)−1.

Hence ρ(z0σG(gγ)−1) = ρ ◦ (z′0) = z′0c. So,

(4.13) ρ(z0) = z′0gγc.

Since the parallel translation along ρ(γ′) takes z′0gγc to

ρ(z0)σG(δ(γ′)−1) = z′0gγσG(ρ(γ′)−1)c,
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we conclude that this parallel translation takes z′0 to z′0gγσG(δ(γ′)−1)g−1
γ .

Consequently, the parallel translation along ρ(γ′) ◦ γ takes z0 to
z′0gγσG(δ(γ′)−1)g−1

γ . Hence

z0σG(gγγ′)−1 = ρ(z′0gγσG(δ(γ′)−1)g−1
γ ).

Therefore, from (4.12),

σG(gγγ′)−1 = σG(gγ)−1σG(gγσG(δ(γ′)−1)g−1
γ ).

So we have
σG(gγγ′)−1 = σG(σG(δ(γ′)−1)g−1

γ ).

This implies (4.11).
Finally, take γ, γ′ ∈ η−1(1). Let gγ be as in the previous case. Let gγ′ be

the element of KG given by δ(γ′) using the set theoretic identification of
(η′)−1(1) with KG. We need to show that

(4.14) δ(γγ′) = gγσG(gγ′)c.

Define z′0 as before. From (4.12) it follows that

ρ(z′0gγg−1
γ′ ) = z0σG(g−1

γ′ ).

Hence from the definition of δ(γ′) we conclude that z′0gγg−1
γ′ is the parallel

translation of z0 along γ′.
Therefore, the parallel translation along σX(γ′) takes ρ(z0) = z′0gγc

(see (4.13)) to ρ(z′0gγg−1
γ′ ) = z0σG(g−1

γ′ ) (see (4.12)). Hence the parallel
translation along σX(γ′) takes z′0 to z0σG(g−1

γ′ )(gγ)−1c−1. Consequently,
the parallel translation along the loop σX(γ′) ◦ γ, which represents γγ′ ∈
Γ(x0), takes z0 to z0σG(g−1

γ′ )(gγ)−1c−1. Hence

δ(γγ′)−1 = σG(g−1
γ′ )(gγ)−1c−1.

This implies (4.14). �

The above construction of an element of Homc(Γ(x0), K̃) from a poly-
stable pseudo-real principal G-bundle of vanishing characteristic classes of
positive degrees is clearly the reverse of the earlier construction of a flat
polystable pseudo-real principal G-bundle from an element of
Homc(Γ(x0), K̃).
Two elements δ′, δ′ ∈ Homc(Γ(x0), K̃) are called equivalent if there is an

element g ∈ KG such that δ′(z) = g−1δ(z)g for all z ∈ Γ(x0).
We have the following:
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Theorem 4.6. — There is a natural bijective correspondence between
the equivalence classes of elements of Homc(Γ(x0), K̃), and the isomor-
phism classes of polystable pseudo-real principal G-bundles (EG, ρ) satis-
fying the following conditions:

•
∫
X
c2(ad(EG)) ∧ ωdimC(X)−2 = 0,

• for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero, and

• the corresponding element in ZR
⋂
KG is c (see Definition 2.1).

5. Pseudo-real Higgs G-bundles

Consider the differential dσX in (2.2). Using the natural identification of
the holomorphic tangent bundle TX with the real tangent bundle TRX,
this dσX produces a C∞ involution of the total space of TX over the
involution σX . Since dσX ◦J = −J ◦dσX , this involution of the total space
of TX is anti-holomorphic. Let

σ̂ : (TX)∗ = Ω1
X −→ Ω1

X

be the anti-holomorphic involution given by the above involution of TX.
Note that σ̂ is fiberwise conjugate linear.

Let (EG, ρ) be a pseudo-real principal G-bundle on X. The involution ρ̃
of ad(EG) in (2.6) and the above involution σ̂ of Ω1

X together produce an
anti-holomorphic involution

(5.1) ρ̃⊗ σ̂ : ad(EG)⊗ Ω1
X −→ ad(EG)⊗ Ω1

X .

A Higgs field on (EG, ρ) is a holomorphic section

θ ∈ H0(X, ad(EG)⊗ Ω1
X)

such that
• ρ̃⊗ σ̂(θ) = θ, where ρ̃⊗ σ̂(θ) is defined in (5.1), and
• the holomorphic section θ

∧
θ of ad(EG)⊗Ω2

X vanishes identically.
The above section θ

∧
θ is defined using the Lie algebra structure of the

fibers of ad(EG) and the natural homomorphism Ω1
X ⊗ Ω1

X → Ω2
X .

A pseudo-real principal Higgs G-bundle is a pseudo-real principal G-
bundle equipped with a Higgs field.
Definition 2.3 extends as follows:

Definition 5.1. — A pseudo-real principal Higgs G-bundle (EG, ρ, θ)
over X is called semistable (respectively, stable) if for every pair of the
form (U, p), where
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• ιU : U ↪→ X is a dense open subset with σX(U) = U such that
the complement X \ U is a closed complex analytic subset of X of
(complex) codimension at least two,

• p ( ad(EG)|U is a parabolic subalgebra bundle over U such that
ρ̃(p) = p, and ιU∗p is a coherent analytic sheaf (see Remark 2.4),
and

• θ|U ∈ H0(U, p⊗ Ω1
U ),

we have degree(ιU∗p) 6 0 (respectively, degree(ιU∗p) < 0).

Let p ⊂ ad(EG) be a parabolic subalgebra bundle such that ρ̃(p) = p

and θ ∈ H0(X, p ⊗ Ω1
X). Let `(p) ⊂ p be a Levi subalgebra bundle such

that ρ̃(`(p)) = `(p) and θ ∈ H0(X, `(p)⊗ Ω1
X).

The pair (`(p), θ) is called semistable (respectively, stable) if for every
pair of the form (U, q), where

• ιU : U ↪→ X is a dense open subset with σX(U) = U such that
the complement X \ U is a closed complex analytic subset of X of
(complex) codimension at least two,

• q ( `(p)|U is a parabolic subalgebra bundle over U such that ρ̃(q) =
q, and the direct image ιU∗q is a coherent analytic sheaf, and

• θ|U ∈ H0(U, q⊗ Ω1
U ),

we have

degree(ιU∗q) 6 0 (respectively, degree(ιU∗q) < 0).

Definition 5.2. — A semistable pseudo-real principal Higgs G-bundle
(EG, ρ, θ) over X is called polystable if either (EG, ρ) is stable, or there is
a proper parabolic subalgebra bundle p ( ad(EG), and a Levi subalgebra
bundle `(p) ⊂ p, such that the following conditions hold:

(1) ρ̃(p) = p and ρ̃(`(p)) = `(p),
(2) θ ∈ H0(X, `(p)⊗ Ω1

X), and
(3) (`(p), θ) is stable (stability is defined above).

Lemma 5.3. —Let (EG, ρ, θ) be a semistable pseudo-real principal Higgs
G-bundle. Then the principal Higgs G-bundle (EG, θ) is semistable.

Let (EG, ρ, θ) be a polystable pseudo-real principal HiggsG-bundle. Then
(EG, θ) is polystable.

Proof. — We begin by noting that the torsionfree part of the tensor
product of two polystable (respectively, semistable) Higgs sheaves is again
polystable (respectively, semistable); see [7, p. 553, Lemma 4.4] and [7,
p. 553, Proposition 4.5]. Consequently, Proposition 2.10, Lemma 2.11 and
Corollary 3.8 of [1] extends to Higgs G-bundles. In fact, as noted at then
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end of [1], once the polystability of the torsionfree part of the tensor prod-
uct of polystable Higgs sheaves is established, the results of [1] extend to
Higgs G-bundles. Therefore, the lemma follows exactly as Lemma 2.5 and
Lemma 3.3 do. �

Let (EG, θ) be a principal Higgs G-bundle on X. Let EKG ⊂ EG be a
C∞ reduction of structure group to the maximal compact subgroup KG

(see (3.2)). The Chern connection on EG for EKG will be denoted by ∇,
and the curvature of ∇ will be denoted by K(∇). Let θ∗ be the adjoint of
θ with respect to EKG . To describe θ∗ explicitly, first note that we have a
canonical C∞ decomposition into a direct sum of real vector bundles

ad(EG) = ad(EKG)⊕ S,

where S is defined in (3.4). If θ = θ1+θ2 with respect to this decomposition,
then

(5.2) θ∗ = −θ1 + θ2,

where the conjugation is the usual conjugation of one-forms.

Definition 5.4. — The Hermitian structure EKG ⊂ EG is said to be
an Einstein-Hermitian structure if there is an element λ in the center of g
such that the section

Λ(K(∇) + [θ, θ∗]) ∈ C∞(X, ad(EG))

coincides with the one given by λ; here Λ as before is the adjoint of multipli-
cation by the Kähler form. If EKG ⊂ EG is an Einstein-Hermitian structure,
then the corresponding Chern connection∇ is called an Einstein-Hermitian
connection.

A principal Higgs G-bundle admits an Einstein-Hermitian structure if
and only if it is polystable, and furthermore, the Einstein-Hermitian con-
nection on a polystable principal Higgs G-bundle is unique [17], [11], [7,
p. 554, Theorem 4.6].
If (EG, θ) is a polystable principal Higgs G-bundle such that
(1)

∫
X
c2(ad(EG)) ∧ ωdimC(X)−2 = 0, and

(2) for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero.

Then all the rational characteristic classes of EG of positive degree vanish
[18, p. 20, Corollary 1.3].
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Proposition 5.5. — Let (EG, ρ, θ) be a pseudo-real principal Higgs
G-bundle. Then the principal Higgs G-bundle (EG, θ) admits an Einstein-
Hermitian structure EKG⊂EG with ρ(EKG)=EKG if and only if (EG, ρ, θ)
is polystable.

Proof. — The proof is similar to the proofs of Corollary 3.9 and Propo-
sition 3.10. But the following observation is needed to make the proof of
Proposition 3.8 work in the present situation (Corollary 3.9 is a consequence
of Proposition 3.8).

Let (FG, ϕ) be a polystable principal Higgs G-bundle on X. Let

FKG ⊂ FG

be an Einstein-Hermitian structure on FG. Let ∇F be the corresponding
Chern connection on FG. The connection on ad(FG) induced by ∇F will
be denoted by ∇ad. As in (3.4), let

S := ad(FKG)⊥ ⊂ ad(FG)

be the orthogonal complement with respect to an Hermitian structure on
ad(FG) induced by a KG-invariant Hermitian form on g. There is a natural
bijective correspondence between the Hermitian structures on FG and the
smooth sections of S: the Hermitian structure corresponding to a section s
is exp(s)(FKG) ⊂ FG.
An Hermitian structure exp(s)(FKG) ⊂ FG is an Einstein-Hermitian

structure for (FG, ϕ) if and only if
• s is flat with respect to the connection ∇ad on ad(FG), and
• [s, ϕ] = 0 (it is the section of ad(FG)⊗Ω1

X given by the Lie bracket
operation on the fibers of ad(FG)).

Therefore, if exp(s)(FKG) is an Einstein-Hermitian structure for (FG, ϕ),
then the Hermitian structure

exp(s/2)(FKG) ⊂ FG

is also an Einstein-Hermitian structure for (FG, ϕ).
The rest of the proof of Proposition 3.8 works as before once the above

observation is incorporated. �

Let G̃ := Go(Z/2Z) be the semi-direct product defined by the involution
σG. Consider Γ(x0) defined in Section 4. Let Map′(Γ(x0), G̃) be the space
of all maps

δ : Γ(x0) −→ G̃
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such that the following diagram is commutative:

(5.3)
e −→ π1(X,x0) −→ Γ(x0) η−→ Z/2Z −→ ey yδ ‖
e −→ G −→ G̃ −→ Z/2Z −→ e

For an element c ∈ ZR
⋂
KG, let Homc(Γ(x0), G̃) be the space of all

maps
δ ∈ Map′(Γ(x0), G̃)

such that
• the restriction of δ to π1(X,x0) is a homomorphism of groups,
• δ(g′g) = cδ(g′)δ(g), if η(g) = 1 = η(g′) (the homomorphism η is
defined in (4.1)), and

• δ(g′g) = δ(g′)δ(g) otherwise (meaning if η(g) · η(g′) = 0).
If c = e, then Homc(Γ(x0), G̃) is the space of all homomorphisms from

Γ(x0) to G̃ satisfying (5.3).
Imitating the construction of ˜̃

K in Remark 4.1, we construct a group ˜̃
G

whose underlying set is G× {0, 1}, and the group operation is given by

(g1, e1) · (g2, e2) = (g1(σG)e1(g2)ce1e2 , e1 + e2)

(see (4.3)). The subset Homc(Γ(x0), G̃) of Map′(Γ(x0), G̃) consists of those
elements that are homomorphisms from Γ(x0) to the group ˜̃

G.
Two elements δ′, δ′ ∈ Homc(Γ(x0), G̃) are called equivalent if there is an

element g ∈ G such that δ′(z) = g−1δ(z)g for all z ∈ Γ(x0).
Let H be a connected complex reductive affine algebraic group. A ho-

momorphism
γ : π1(X,x0) −→ H

is called irreducible if the image γ(π1(X,x0)) is not contained in some
proper parabolic subgroup of H. A homomorphism

γ : π1(X,x0) −→ G

is called completely reducible if there is a parabolic subgroup P ⊂ G and
a Levi factor L(P ) of P (see [12, p. 184], [8] for Levi factor) such that

• γ(π1(X,x0)) ⊂ L(P ), and
• the homomorphism γ : π1(X,x0) −→ L(P ) is irreducible.

A map
δ ∈ Homc(Γ(x0), G̃)
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is called completely reducible if the homomorphism δ|π1(X,x0) is completely
reducible. Note that if δ is is completely reducible, then all elements in
Homc(Γ(x0), G̃) equivalent to δ are also completely reducible.

Proposition 5.6. — There is a natural bijective correspondence be-
tween the equivalence classes of completely reducible elements of
Homc(Γ(x0), G̃), and the isomorphism classes of polystable pseudo-real
principal Higgs G-bundles (EG, ρ, θ) satisfying the following conditions:

•
∫
X
c2(ad(EG)) ∧ ωdimC(X)−2 = 0,

• for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero, and

• the corresponding element in ZR
⋂
KG is c (see Definition 2.1).

Proof. — The proof is similar to the proof of Theorem 4.6 after we in-
corporate Proposition 5.5. To explain this, take a polystable pseudo-real
principal Higgs G-bundle (EG, ρ, θ) such that

•
∫
X
c2(ad(EG)) ∧ ωdimC(X)−2 = 0,

• for any character χ of G, the line bundle over X associated to EG
for χ is of degree zero, and

• the corresponding element in ZR
⋂
KG is c.

These conditions imply that all the rational characteristic classes of EG of
positive degree vanish [18, p. 20, Corollary 1.3]. From Proposition 5.5 we
know that (EG, ρ, θ) admits an Einstein-Hermitian structure EKG ⊂ EG
such that ρ(EKG) = EKG . Let ∇G be the corresponding Chern connection.
Define θ∗ as done in (5.2). Consider the connection

D := ∇G + θ + θ∗

on EG. It is a flat connection because all the rational characteristic classes
of EG of positive degree vanish. The monodromy representation for D is
completely reducible [18, p. 20, Corollary 1.3], [4, Theorem 1.1].
In Theorem 4.6, consider the construction of an element of Homc(Γ(x0),

K̃) from a polystable pseudo-real principal G-bundle FG such that∫
X
c2(ad(FG))∧ωdimC(X)−2 = 0 and for any character χ of G, the line bun-

dle over X associated to FG for χ is of degree zero (see Proposition 4.5).
In this construction, replace the flat Einstein-Hermitian connection ∇ by
the flat connection D constructed above. It yields a completely reducible
element of Homc(Γ(x0), G̃).
For the reverse direction, take a completely reducible element

δ ∈ Homc(Γ(x0), G̃).
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Consider the homomorphism δ|π1(X,x0). It gives a flat principal G-bundle
(EG, D) and a point z0 ∈ (EG)x0 .

In Theorem 4.6, consider the construction of a pseudo-real principal G-
bundle from an element of Homc(Γ(x0), K̃) (see Proposition 4.4). In this
construction, replace the flat Hermitian connection ∇ by the given flat
connection D on EG. It yields a pseudo-real structure

(5.4) ρ : EG −→ EG

on the principal G-bundle EG.
Since the monodromy representation for D is completely reducible, a

theorem of Corlette says that EG admits a harmonic reduction

EKG ⊂ EG
(see [9, p. 368, Theorem 3.4], [18, p. 19, Theorem 1]). We will show that the
harmonic reduction EKG can be so chosen that it satisfies the condition

(5.5) ρ(EKG) = EKG ,

where ρ is the pseudo-real structure obtained in (5.4).
To prove this, take a harmonic reduction EKG ⊂ EG. As in (3.4), let

S := ad(EKG)⊥ ⊂ ad(EG)

be the orthogonal complement with respect to an Hermitian structure on
ad(EG) induced by a KG-invariant Hermitian form on g. We recall that
every Hermitian structures on EG is of the form exp(s)(EKG), where s is
a smooth sections of S.

Let Dad be the flat connection on ad(EG) induced by the connection D
on EG. An Hermitian structure

exp(s)(EKG) ⊂ EG
is a harmonic reduction for (EG, D) if and only if

Dad(s) = 0.

Therefore, if exp(s)(EKG) ⊂ EG is a harmonic reduction for (EG, D), then

exp(s/2)(EKG) ⊂ EG
is also a harmonic reduction for (EG, D). Now the proof of Proposition 3.8
gives that there is a harmonic reduction EKG for (EG, D) such that (5.5)
holds.
Let (E′G, θ) be the principal Higgs G-bundle corresponding to the triple

(E,D,EKG), where EKG satisfies (5.5). So

D = ∇+ θ + θ∗ = ∇1,0 +∇0,1 + θ + θ∗,
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such that the following three conditions hold:
(1) ∇ is a connection on EG coming from a connection on EKG .
(2) ∇0,1◦∇0,1 = 0, meaning∇0,1 defines a holomorphic structure on the

C∞ principal G-bundle EG. This holomorphic principal G-bundle
(EG,∇0,1) is denoted by E′G.

(3) θ is a Higgs field on the holomorphic principal G-bundle E′G.
(See [18, p. 13].) The triple (E′G, ρ, θ), where ρ is constructed in (5.4), is a
polystable pseudo-real principal Higgs G-bundle. �
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