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ANALYTIC NORMAL FORMS FOR CONVERGENT
SADDLE-NODE VECTOR FIELDS

by Reinhard SCHÄFKE & Loïc TEYSSIER (*)

Abstract. — We give unique analytic “normal forms” for germs of a holomor-
phic vector field of the complex plane in the neighborhood of an isolated singularity
of saddle-node type having a convergent formal separatrix. We specifically address
the problem of computing the normal form explicitly.
Résumé. — Nous donnons des « formes normales », uniques pour l’action des

germes de changements analytiques de coordonnées fixant l’origine du plan com-
plexe, pour les germes de champs de vecteurs holomorphes ayant une singularité
isolée de type nœud-col et possédant une séparatrice formelle convergente. Nous
nous intéressons spécifiquement au problème du calcul explicite de ces formes nor-
males.

1. Introduction and statement of the results

The general question of finding the “simplest” form of a dynamical sys-
tem through changes preserving its qualitative properties is central in the
theory. A simpler form often means a better understanding of the behavior
of the system. This article is concerned with finding “simple” models of
holomorphic dynamical system given by the flow of a vector field near a
singularity of convergent saddle-node kind(1) in C2. We use the technical
term “normal form” for vector fields brought into these forms, although
the latter do not satisfy the properties usually required in the normal form
theory. While this imprecision in the language may be confusing its usage

Keywords: Analytic vector fields, normal forms, singularities, effective methods in dif-
ferential equations.
Math. classification: 34M35, 34M25, 34M50, 34-04, 37F75, 32S65.
(*) Both authors were partially supported by grants of the French National Research
Agency. The first author by ANR-10-BLAN 0102 and ANR-11-BS01-0009, the second
author by ANR-13-JS01-0002-01.
(1)All relevant definitions will be given in due time in the course of the introduction.



934 Reinhard SCHÄFKE & Loïc TEYSSIER

is nonetheless becoming more and more spread to refer to “simple” forms
which are essentially unique (say, up to the action of a finite dimensional
space).
It is possible to attach to a vector field(2) Z := A ∂

∂x+B ∂
∂y two dynamical

systems: the one induced by the flow itself, and the one related to the
underlying foliation. The objects of study in the former case are the integral
curves of Z and their natural parametrization by the flow, that is the
solutions to the differential system{

ẋ (t) = A (x (t) , y (t))
ẏ (t) = B (x (t) , y (t))

,

whereas in the latter case only their images are of interest: the leaves of the
foliation FZ are the images of the integral curves regardless of how they
are parametrized. They correspond to the graphs of the solutions of the
ordinary differential equation

A (x, y (x)) y′ (x) = B (x, y (x)) .

Therefore two vector fields induce the same foliation when they differ by
multiplication with a non-vanishing function.
Being given a (germ of a) holomorphic vector field we want to simplify

its components using local analytic changes of coordinates. In a first step,
one tries to simplify the vector field as much as possible using formal power
series. In the case of saddle-node vector fields this process leads to polyno-
mial formal normal forms [4, 6]. Yet this formal approach does not preserve
the dynamics. Nevertheless analyzing the divergence of these formal trans-
forms provides a lot of information about the dynamics or the solvability
(in some differential field) of the system. The theory of summability was
successfully used to perform this task [10], yielding a complete set of func-
tional invariants to classify the foliation. However their construction did
not directly yield normal forms. Some years later the complete modulus of
classification for saddle-node vector fields was given in [15, 12] by append-
ing to the orbital modulus another functional invariant. Still no normal
form was proposed.

(2)As usual we identify vector fields in C2 given as vector valued functions
[

A
B

]
with

the Lie (directional) derivative A ∂
∂x

+ B ∂
∂y

acting on functions or power series F by(
A

∂

∂x
+ B

∂

∂y

)
· F := A

∂F

∂x
+ B

∂F

∂y
.

ANNALES DE L’INSTITUT FOURIER



NORMAL FORMS FOR CONVERGENT SADDLE-NODE VECTOR FIELDS 935

In [14], a “first order” form allowed one to decide in some cases whether
two vector field are (orbitally or not) conjugate, but the given form was far
from being unique. At the same time F. Loray [9] performed a geometric
construction providing normal forms in some cases, generalizing the ones
stated by J. calle in [7]. In this article we present a generalization of the
approach of [14] and provide normal forms in every case. Moreover, we
prove that this method is constructive or, at least, computable numerically
and in some cases symbolically. These results are related to recent works
of O. Bouillot [2, 3].

1.1. Statement of the results

A saddle-node vector field is a germ of a holomorphic vector field Z

near some isolated singularity, which we conveniently locate at (0, 0), such
that the linear part has two eigenvalues, exactly one of which is nonzero.
In other words we require that A (0, 0) = B (0, 0) = 0 is locally the only
common zero of the components, and that the spectrum of the matrix
[∇A (0, 0) ,∇B (0, 0)] is {0, λ2} with λ2 6= 0. Generically there exists only
one leaf with analytic closure at (0, 0), tangent to the eigenspace of λ2, and
a formal one tangent to the other eigenspace. When this formal separatrix
is a convergent power series we say that Z is convergent, and divergent
otherwise.

x

y

Figure 1.1. Real trajectories of x2 ∂
∂x + y ∂

∂y

TOME 65 (2015), FASCICULE 3



936 Reinhard SCHÄFKE & Loïc TEYSSIER

Regardless of the convergence or not of the formal separatrix, the vector
field Z is always formally conjugate to one of the formal normal form

P (x)
(
xk+1 ∂

∂x
+ y

(
1 + µxk

) ∂
∂y

)
where k ∈ N is a positive integer, µ ∈ C and P is a polynomial of degree at
most k with P (0) = λ2. Throughout the article, we fix a positive integer
k. This form is unique up to linear changes of variables x 7→ αx with
αk = 1, acting on P by right composition. The complex number µ is the
formal orbital modulus [6] while (the class of) P is the formal temporal
modulus [4].

Remark. — Recall that two vector fields Z and Z̃ are called (formally,
analytically) conjugate when there exists a (formal, analytic) change of
variables Ψ such that Ψ∗Z = Z̃, while they are (formally, analytically)
orbitally conjugate when Ψ∗Z induces the same foliation as Z̃, which we
write Ψ∗FZ = FZ̃ . In order to determine the vector field Z̃ obtained by
changing the coordinates in Z by some transformation Ψ, i.e. Z̃ = Ψ∗Z,
one can use the relation

Z̃ ·Ψ = Z ◦Ψ ,

where Z̃· denotes the Lie derivative(3) associated to Z̃.

The complete orbital analytical classification of saddle-node vector fields
is due to J. Martinet and J.-P. Ramis [10]. In the case k = 1 the temporal
classification was obtained by Y. Mershcheryakova and S. Voronin [15] and
at the same time by L. Teyssier [12] in the general case. The corresponding
classification modulus of a convergent vector Z is a (2 + 2k)–tuple

M (Z) := (µ, P )⊕
(
ϕj , f j

)
j∈Z/kZ

where ϕj , f j ∈ hC {h}. The pair (µ, P ) is the formal modulus, as explained
above. The way how Z relates to both its orbital modulus

(
ϕj
)
j∈Z/kZ

and
its temporal modulus

(
f j
)
j∈Z/kZ

is described further down.
Any element of

Modk := C× C [x]6k ⊕ (hC {h})2k

=
{

(µ, P )⊕
(
ϕj , f j

)
j∈Z/kZ

}
is the modulus of some saddle-node vector field. In this paper we are mainly
concerned with giving a constructive proof of this property. We intend

(3)The Lie derivative acts component-wise on vectors.

ANNALES DE L’INSTITUT FOURIER
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to generalize our approach to divergent saddle-node vector fields in an
upcoming work dealing with the analogous problem for resonant-saddles.

Remark 1.1. — There exists a natural action of

Autk := Z/kZ× C6=0

= {(θ, c)}

on Modk by cyclic permutation j 7→ j+ θ of the indexes and right-composi-
tion by the linear maps (x, h) 7→

(
e2iπθ/kx, ch

)
. The actual moduli space is

the quotient Modk/Autk, in the sense that Z and Z̃ are locally analytically
conjugate if, and only if,M (Z) andM

(
Z̃
)
are conjugate by the action of

Autk.

The starting point of this article is the following result due to F. Loray:

Theorem. — [9] Any convergent saddle-node vector field with formal
modulus k = 1 is orbitally conjugate to a vector field of the form

x2 ∂

∂x
+ y (1 + µx+ xR (xσy)) ∂

∂y

where R is a germ of a holomorphic function vanishing at the origin, and
σ is defined by {

σ := 0 if µ /∈ R60

σ := b−µc+ 1 otherwise
.

The germ R is unique up to the action of C6=0 through linear changes of
coordinates y 7→ cy.

We present a generalization of this result to the non-generic case k > 1,
which provides orbital normal forms as well as normal forms for vector
fields.

Main Theorem 1.2. — Let Z be a germ of a convergent saddle-node
vector field. Then Z is analytically conjugate to a vector field of the form:

P (x)
1 + xP (x)G (x, xσy)

(
xk+1 ∂

∂x
+ y

(
1 + µxk + xR (x, xσy)

) ∂
∂y

)
where G (x, u) =

∑
n>0Gn (x)un and R (x, u) =

∑
n>0Rn (x)un are germs

of a holomorphic function, such that each Gn and Rn are polynomials of
degree at most k − 1. This form is essentially unique.

Remark 1.3.
(1) All the results of the present paper remain valid for any choice of

σ ∈ N provided σ + µ /∈ R60.

TOME 65 (2015), FASCICULE 3



938 Reinhard SCHÄFKE & Loïc TEYSSIER

(2) The normal forms presented above agree with the normal forms of
J. calle and of F. Loray when k = 1, with P := 1 and G := 0.

(3) The uniqueness clause of this theorem reflects the action of Autk on
Modk. We show in Proposition 2.15 and Corollary 3.2 that two vector
fields in normal form are locally analytically conjugate if, and only
if, the corresponding triples (P,G,R) are conjugate under the action
of Autk by right-composition (x, y) 7→

(
e2iπθ/kx, cy

)
, the element

(θ, c) ∈ Autk being the same as the one defining the equivalence
between the corresponding classification moduli.

We mentioned earlier that our method is rather constructive. To under-
line that fact we provide algorithms allowing us to prove computability
results, in the sense of the

Definition 1.4.

(1) We say that a number x ∈ R is computable if there exists a halting
Turing machine(4) Nx which inputs an integer k and outputs a dec-
imal number w ∈ 10−kZ such that |x− w| < 10−k. This definition
is extended to points of Rn in the obvious way.

(2) We say that a function f : Ω → Cm defined on Ω ⊂ Cn is com-
putable if for each computable argument x ∈ Ω the value f (x) is
also computable in the following sense: f is uniquely determined by
a halting Turing machine Ff which inputs Nx and outputs Nf(x).

Remark 1.5. — Any path integral of a computable function along a
computable path is computable. More generally the local integral curves of
a computable vector field have a computable parameterization.

Computation Theorem 1.6. — The modulus mapM and the process
of reduction to normal form are explicitly(5) computable, in the following
sense (a formal class (µ, P ) being fixed as well as the knowledge of k).

(1) There exists an explicit halting Turing machine Modulus which in-
puts the Turing machine FZ of a computable vector field Z and
outputs FM(Z).

(2) There exists an explicit halting Turing machine NormalForm which
inputs the Turing machine FM of a computable modulus M ∈ Modk
and outputs FZ where Z is in the form of the above Main Theorem.

(4)We consider here Turing machines with finite alphabet and potentially infinite
memory.
(5)The word explicitly here means that we actually indicate a way to do so.

ANNALES DE L’INSTITUT FOURIER



NORMAL FORMS FOR CONVERGENT SADDLE-NODE VECTOR FIELDS 939

1.2. Description of the techniques and outline of the article

The problem naturally splits into two very distinct tasks: find orbital
normal forms

XR (x, y) = xk+1 ∂

∂x
+ y

(
1 + µxk + xR (x, xσy)

) ∂
∂y

,

i.e. normal forms for the underlying foliation, then find temporal normal
forms UGXR,

UG (x, y) = P (x)
1 + xP (x)G (x, xσy) ,

for a fixed foliation. The method we use here is different from the abstract
proofs given in the original papers [10] or [9] for the orbital part, and
in [15, 12] for the temporal part. In order to present the construction we
need to say a few words about how the moduli are related to the vector
field. Before doing so, however, we indicate how to reduce our results to
the case σ = 0 (that is, µ /∈ R60). This will notably lighten the notations
and improve the clarity of the presentation.

1.2.1. Reduction of the proof

Assume that the Main Theorem is valid for every M ∈ Modk with formal
orbital modulus µ /∈ R60. Take µ̃ 6 0 and pick σ ∈ N such that µ := µ̃+ σ

is positive. For a given M̃ ∈ Modk with formal orbital modulus µ̃, define
M by replacing µ̃ with µ. We transform the normal form Z := UGXR

provided by the Main Theorem with complete modulusM (Z) = M using
the polynomial map

Ψ : C2 −→ C2

(x, y) 7−→ (x, xσy) .

This is a biholomorphism outside {x = 0} such that

Ψ∗Z = UG◦Ψ

(
xk+1 ∂

∂x
+ y

(
1 + µ̃xk + xR ◦Ψ

) ∂
∂y

)
defines a germ of a holomorphic vector field Z̃ in normal form with formal
orbital modulus µ̃. The fact that M

(
Z̃
)

= M̃ will follow from the con-
struction we present now, namely that the non-formal moduli of M

(
Z̃
)

are completely determined by the conformal structure of the dynamical
system outside {x = 0}. The uniqueness of the normal form follows in the
same way.

TOME 65 (2015), FASCICULE 3



940 Reinhard SCHÄFKE & Loïc TEYSSIER

1.2.2. The orbital modulus

It is well-known that a convergent saddle-node is conjugate to some pre-
pared form, called Dulac’s form [5]

Z (x, y) = u (x, y)
(
xk+1 ∂

∂x
+ y

(
1 + µxk + x r (x, y)

) ∂
∂y

)
(1.1)

with u (0, 0) 6= 0 and r (x, 0) = 0. This form is far from being unique as r
and u are otherwise unspecified germs of a holomorphic function. The above
vector field is orbitally conjugate to the formal model X0 over sector-like
domains

(
Vj
)
j∈Z/kZ

by sectorial diffeomorphisms
(

Ψj
O

)
j∈Z/kZ

, see [12]. The

union {x = 0} ∪
⋃
j Vj is a neighborhood of (0, 0). For each j, there exists

a unique such conjugacy Z = Ψj ∗
O X0 which is tangent to the identity and

fibered in the x-variable. We will only use these in the sequel:

Ψj
O : Vj −→ C2

(x, y) 7−→ (x, y + h.o.t.) .

The formal model admits a family of sectorial first integrals with con-
nected fibers(6)

H0 (x, y) := yx−µ exp 1
kxk

.

We actually consider the following choices of sectorial determinations of
this (in general) multivalued function. Let H0

0 denote the determination of
H0 on V0 obtained by taking the principal determination of the logarithm
in x−µ = exp (−µ log x), and for values of j ∈ Z set Hj+1

0 := exp (2iπµ/k)Hj
0

(computed from the analytic continuation of Hj
0 in Vj+1). Notice that then

Hj
0 actually depends only on the class of j in Z/kZ.
From this collection of sectorial functions we define a family of (canon-

ical) first integrals with connected fibers to the original vector field Z by
letting

Hj := Hj
0 ◦Ψj

O ∈ O
(
Vj
)
.

The orbital analytic class of Z is completely encoded in the way sectorial
leaves are connected over intersections of consecutive sectors

Vj,s := Vj+1 ∩ Vj ,

namely we have the relation

Hj+1 = ψj ◦Hj

(6)A first integral of Z is a (perhaps multivalued) function H such that Z ·H = 0, which
means the fibers {H = cst} are a union of integral curves of Z.

ANNALES DE L’INSTITUT FOURIER
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where
(
ψj
)
j
is associated to the orbital modulus

(
ϕj
)
j∈Z/kZ

of Z by

ψj (h) = h exp
(

2iπµ
k

+ ϕj (h)
)
.

Notice that the orbital modulus of X0 is given by ϕj = 0.

1.2.3. Orbital normal forms: Section 2

Being given µ /∈ R60 and
(
ϕj
)
j∈Z/kZ

∈ hC {h} we construct a collection(
Hj
)
j∈Z/kZ

of functions with connected fibers such that Hj+1 = ψj ◦ Hj ,
holomorphic on modified sectors Vj whose union covers C 6=0 × C. This is
done by iterating a Cauchy-Heine integral transformation solving a certain
sectorial Cousin problem. The limit of the sequence obtained in this way is
a fixed-point of a certain operator between convenient Banach spaces. We
then associate to Hj a sectorial vector field

Xj (x, y) = xk+1 ∂

∂x
+ y

(
1 + µxk + xRj (x, y)

) ∂
∂y

such that Hj is a first integral of Xj . The construction guarantees that Rj
is bounded near {x = 0} and Rj+1 = Rj on consecutive sectors. Riemann’s
Theorem on removable singularities asserts that each Rj is the restriction
of a function R holomorphic on the domain

Vρ := {(x, y) : |y| < ρ}

for some ρ > 0. This means that the Xj glue to a convergent saddle-node
vector field X. The growth of R as x → ∞ in Vρ is also controlled by the
Cauchy-Heine integral, finally yielding that XR is in normal form.

1.2.4. The temporal modulus

From now on we assume that Z = UXR has a normalized orbital part
XR. The formal normal form is then P XR, where P (x) is the polyno-
mial of degree at most k such that P (x) ≡ U (x, 0) modxk+1. There exist
sectorial diffeomorphisms

(
Ψj

T

)
j
conjugating Z to the vector field PXR

(they are in particular symmetries of the foliation induced by XR). In a
way, the temporal modulus of Z measures the obstruction to glue together
the sectorial flows of PXR in the intersections Vj,s. This invariant can be
interpreted in terms of the period operator as the obstruction to solve the
cohomological equation

XR · T = 1
U
− 1
P
.(1.2)

TOME 65 (2015), FASCICULE 3
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Let us explain the connection in some detail. By the method of character-
istics, any solution to the above cohomological equation must satisfy

T ◦ γ (1)− T ◦ γ (0) = τ

(
1
U
− 1
P
, γ

)
,

if γ : [0, 1]→
(
C2, 0

)
is any path tangent to XR. Here

τ (g, γ) :=
∫
γ

g (x, y) dx
xk+1 .

By using “asymptotic paths” γ, i.e. satisfying limt→0 γ (t) = (0, 0), tangent
to XR, we can solve the equation on Vj by a holomorphic function. It
follows that the cohomological equation admits a unique bounded solution
T j ∈ O

(
Vj
)
with continuous extension to {x = 0} such that T j (0, 0) = 0.

This function provides the sectorial temporal normalization through the
relation

Ψj
T (x, y) = ΦT

j(x,y)
PXR

(x, y) .

This means that Ψj
T (x, y) is obtained by replacing the time t by T j (x, y)

in the flow ΦtPXR (x, y) of the vector field PXR. Since τ
( 1
U , γ

)
represents

the time needed to go from γ (0) to γ (1) following the flow of Z, the
substitution t = T j(x, y) can be naturally interpreted as a change of time
in the flow of PXR in order to obtain that of Z. We refer to [12] for details.

Now we identify the obstruction to solve (1.2) analytically as the differ-
ence between consecutive sectorial solutions. Since this difference is a first
integral, it can be written

T j+1 − T j = f j ◦Hj ,

where Hj denotes the canonical first integral of XR on V j introduced
in subsection 1.2.2. The obstruction is thus located in the value of the
integral along an “asymptotic cycle” γj,sp passing through p ∈ Vj,s which
is not homotopically trivial in the leaf. We refer to Figure 1.2 for a visual
depiction.

Definition 1.7. — The function

p ∈ Vj,s 7−→ τ

(
1
U
− 1
P
, γj,sp

)
= f j ◦Hj (p) ∈ C

is called the period of 1
U −

1
P along XR on Vj,s. Together, they define a

linear operator

TR : 1
U
− 1
P
7−→

(
f j
)
j∈Z/kZ

∈ (hC {h})k .

ANNALES DE L’INSTITUT FOURIER
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As the asymptotic cycle is the same for all p in Vj,s having the same value
h = Hj (p), we denote it by γj,s (h). The collection

(
f j
)
j
is the temporal

modulus of Z.
(1) The sectorial solutions of XR · T j = g and the collection TR (g) =

(T jR (g))j∈Z/kZ are defined in the same way for arbitrary germs in g ∈
C {x, y} provided g (x, 0) ∈ xk+1C {x}. We introduce the notation
xk+1C {x} + yC {x, y} for the set of these germs. For sufficiently
small complex h, we have

T jR (g) (h) =
∫
γj,s(h)

g (x, y) dx
xk+1

with the above asymptotic cycle in Vj,s corresponding to the value
h of Hj .

(2) The above considerations can be condensed in the statement that
the following sequence of vector spaces is exact

const XR·
0 −→ C −→ C {x, y} −→ xk+1C {x}+ yC {x, y}

TR
−→ (hC {h})k −→ 0

.

1.2.5. Temporal normal forms: Section 3

Being given µ /∈ R60 and XR from the previous step of the construction,
we consider some collection

(
f j
)
j∈Z/kZ

. Using again the Cauchy-Heine trans-
formation, we obtain sectorial functions T j ∈ O

(
Vj
)
such that T j+1−T j =

f j ◦Hj . The construction ensures that XR · T j+1 = XR · T j and hence the
functions gj = XR · T j glue to a holomorphic function g for some g with
g ∈ xN {x, y}, where we define N {x, y} := yC [x]<k {y}, the algebra of
germs of a holomorphic function of the form

N {x, y} =
{
f ∈ C {x, y} : f (x, y) =

∑
n>0

fn (x) yn , fn ∈ C [x]<k

}
.

Let G := g
x ; by construction UGXR has the desired temporal modulus.

The construction yields as a by-product a natural section SR of the period
operator

SR : (hC {h})k −→ xN {x, y}(
f j
)
j∈Z/kZ

7−→ g .

TOME 65 (2015), FASCICULE 3
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0

V 0,s

x

|y|

x (0, 0)

p
γ(p)

Figure 1.2. An asymptotic cycle, in projection in the x-variable (top)
and in the leaf (bottom) when k = 1.

The main difficulty here is to control the size of the domain on which
SR
((
f j
)
j

)
is holomorphic in terms of that of the f j .

1.2.6. Explicit computations and algorithms: Section 4

Apart from numerical algorithms we establish in order to prove the Com-
putation Theorem in Section 4.2, we also present a way to perform symbolic
calculations in Section 4.1. All these techniques are based on the fact that
the orbital and temporal modulus are expressed in terms of the period op-
erator (Remark 2.13) and its natural section. The period is nothing else
than an integral of an explicit differential form along a path tangent to the
vector field. Yet the key point allowing these computations to be carried
out is the fact that when Z is a convergent vector field written in Dulac’s

ANNALES DE L’INSTITUT FOURIER
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prepared form (4.6) then the correspondence linking the Taylor coefficients
of a function and that of its period is block-triangular.
When Z is divergent it is still possible to carry out explicit numerical

computations, as will be presented in our upcoming work, although the
symbolic side appears more difficult to fathom. This difficulty is well-known
to specialists, see for instance the discussion appearing in [7].

1.3. Notations and basic definitions

Throughout the article we use the following notations and conventions:
• We use bold-typed letters to refer to vectors z = (z1, . . . , zn) ∈ Cn.
• C [z]6k is the algebra of polynomials in z of degree at most k. By
extension C [z]<k stands for C [z]6k−1 and so on.

• C [[z]] is the algebra of formal power series in the (multi)variable z.
• C {z} is the algebra of germs of a holomorphic function near 0 in
the (multi)variable z.

• If U is a domain of Cn let O (U) denote the algebra of functions
holomorphic on U . Then let O (U) {y} denote the set of functions
holomorphic on U × rD for sufficiently small r > 0 ; more precisely,
it is the inductive limit of the algebras O (U × rD) as r → 0.

• Z is a saddle-node vector field near (0, 0) under Dulac’s prepared
form (1.1). The notation X is in general reserved to saddle-node
vector fields whose ∂

∂x -component is a function of x only.
• Z· stands for the Lie derivative along Z, stably acting on C [[x, y]]
and on C {x, y}.

• (k, µ) ∈ N>0 × C\R60 is the formal orbital modulus of Z while
P ∈ C [x]6k with P (0) 6= 0 is its formal temporal modulus.

• N {x, y} := yC [x]<k {y} is the algebra of germs of a holomorphic
function f ∈ C {x, y} in the form :

f(x, y) =
∑
n>0

fn(x)yn , fn ∈ C[x]<k

•
(
V j
)
j∈Z/kZ

are the sectors in the x-variable which covers C 6=0, see
Definition 2.1 and Figures 2.1, 2.2. From these we construct

V j,s := V j ∩ V j+1 .

• If V is a domain of C2 we define the associated sectors Vj and Vj,s
as V ∩

(
V j × C

)
and V ∩

(
V j,s × C

)
respectively, for j ∈ Z/kZ. One

kind of domain will be of special interest:

Vρ := C× ρD = {(x, y) : |y| < ρ}
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for ρ > 0.
• XR is the vector field associated to some R ∈ yC {x, y} by

XR := xk+1 ∂

∂x
+ y

(
1 + µxk + xR

) ∂
∂y
.

It represents one of the normal forms given in Theorem 1.2, if R ∈
N {x, xσy}. Observe that for R = 0, we obtain the formal model
X0 = xk+1 ∂

∂x + y
(
1 + µxk

)
∂
∂y .

• N =
(
N j
)
j∈Z/kZ

is the collection of sectorial normalizing functions
forXR, that is functionsN j ∈ yO

(
V j
)
{y} such that

(
x, y expN j

)∗
X0 = XR.

• Hj
N ∈ yO

(
V j
)
{y} , j ∈ Z/kZ, are the sectorial first integral associ-

ated to XR (Definition 2.3):

Hj
N (x, y) := y e2iπµj/k exp

(
x−k

k
− µ log x+N j (x, y)

)
.

Here the branch of the logarithm is chosen according to the sector,
i.e. such that

∣∣arg x− j 2π
k

∣∣ 6 π
k + β for small x.

• TR is the period operator associated to XR (see Definition 1.7) and
SR its natural section (see Corollary 3.1)

TR : xk+1C {x}+ yC {x, y} −→ (hC {h})k

SR : (hC {h})k −→ xN {x, y} .

• M (Z) = (µ, P ) ⊕
(
ϕj , f j

)
j∈Z/kZ

is the complete analytic modulus
of Z. If Z = UGXR is the associated normal form then(

ϕj , f j
)
j∈Z/kZ

= TR (−xR)⊕ TR
(

1
UG
− 1
P

)
.

We introduce also some Banach spaces and norms.

Definition 1.8. — Let D ⊂ Cn be a domain containing 0 equipped
with the coordinates z = (z1, · · · , zn).

(1) We define the Banach space B (D) of functions bounded and holo-
morphic on D with values in C equipped with the norm:

||f ||D := sup
z∈D
|f (z)| .

(2) We define the Banach space B′ (D) of functions holomorphic on D,
vanishing along {zn = 0}, equipped with the norm

||f ||′D := sup
z∈D

|f (z)|
|zn|

.
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0

V 0

V 0,s 0 V 0V 1

V 0,s

V 1,s

2β

2β

Figure 2.1. Sectors near 0 in the case k = 1 (left) along with the case
k = 2 (right)

Notice that

||f ||′D 6

∣∣∣∣∣∣∣∣ ∂f∂zn
∣∣∣∣∣∣∣∣
D

when ∂f
∂zn
∈ B (D).

(3) For a finite collection D := (Dj)j ,let B (D)denote the Banach space∏
j B (Dj) equipped with the norm∣∣∣∣∣∣(fj)j∣∣∣∣∣∣D := max

j
||fj ||Dj .

The analogous definition is used for the space B′ (D).

In general we omit to indicate the dependence of the norm on the domain
when the context is not ambiguous.

2. Orbital normal forms

Recall that in the following section µ is a non-zero, non-negative complex
number.

2.1. Sectorial decomposition and first integrals

We fix once and for all a real number

0 < β <
π

2k .
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x

0

I0,+

I0,−

S0,+

S0,−

|y|
x

(0, 0)

Figure 2.2. The sector V 0 in the x-variable (top) and the absolute
value of a sectorial leaf of the formal model over it (bottom) for k = 3
and µ = − 1

10 (1 + i).

Definition 2.1. — This definition should be read with the Figures 2.1
and 2.2 in mind.
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(1) The sectorial decomposition of the x-variable is the collection of k
sector-like domains V j defined as the union of
• a standard sector of rD{
x :

∣∣arg x− θj
∣∣ < π

k + β and 0 < |x| < r
}

, j ∈ Z/kZ

where θj := j 2π
k

• a spiraling sector, bounded by two spirals

Sj,± := r exp
(
iθj ± iπk ± iβ

)
exp ((1 + iν)R>0) , j ∈ Z/kZ

where ν ∈ R is chosen (once and for all) in such a way that

< (µ) > ν= (µ) .(2.1)

In particular when < (µ) > 0 we can take ν := 0 and the sector
V j coincides with a standard sector of infinite radius.

Notice that
⋃
j∈Z/kZ V

j = C\ {0}.
(2) We denote by Γj,± the two connected components of ∂V j , consisting

of the concatenation of the segment Ij,± :=]0, r exp
(
iθj ± iπk ± iβ

)
]

and the spiral Sj,±.
(3) We define the saddle-part of V j as

V j,s := V j ∩ V j+1 .

(4) For any domain V ⊂ C2 containing {y = 0} we define the sectorial
decomposition of V by

Vj := V ∩
(
V j × C

)
, j ∈ Z/kZ

Vj,s := V ∩
(
V j,s × C

)
, j ∈ Z/kZ

Remark 2.2. — In the case k = 1 there is a slight problem in the defini-
tion of V 0. We make the convention that V 0, near 0, is a sector of aperture
greater than 2π which overlaps with itself above R<0 without gluing (see
Figure 2.1). Let V 0,s denote this overlap in the case k = 1.

Definition 2.3. — Let V ⊂ C2 be a domain containing {y = 0}.
For every collection N :=

(
N j
)
j∈Z/kZ

in B
((
Vj
)
j

)
we define the collection(

Hj
N

)
j∈Z/kZ

of k functions by

Hj
N (x, y) := y e2iπjµ/k exp

(
1
kxk
− µ log x+N j (x, y)

)
,

where we choose the determination of the logarithm such that | arg x−
j 2π
k | 6

π
k + β for small x ∈ V j and such that it is an analytic function in
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this spiraling sector. In this way, the value of Hj
N (x, y) indeed only depends

upon the class of j modulo k.
This collection is called the sectorial first integrals associated to N .

2.2. Admissible domains and the refined Cauchy-Heine
transform

Definition 2.4. — Let ρ ∈]0,+∞] be given.
(1) We define the domain

Vρ := C× ρD =
{

(x, y) ∈ C2 : |y| < ρ
}
,

which is a neighborhood of {y = 0}.
(2) A collection ∆ =

(
∆j
)
j∈Z/kZ

of k domains of C containing 0 will be
called admissible.

(3) We say that a couple (ρ,N) with N =
(
N j
)
∈ B

((
Vjρ
)
j∈Z/kZ

)
is

adapted to an admissible collection ∆ if Hj
N

(
Vj,sρ

)
⊂ ∆j for each

j ∈ Z/kZ.

The next result is the basis of our construction.

Theorem 2.5. — Consider some admissible collection ∆ and some
(ρ,N) adapted to ∆ with ρ < +∞. Take any collection f =

(
f j
)
j∈Z/kZ

∈
B′ (∆) and define the collection Σ =

(
Σj
)
j∈Z/kZ

by

Σj (x, y) := x

2iπ
∑
` 6=j+1

∫
Γ`−

f `
(
H`
N (z, y)

)
z (z − x) dz

+ x

2iπ

∫
Γj+

f j
(
Hj
N (z, y)

)
z (z − x) dz

, (x, y) ∈ Vjρ ,

where the paths were described in Definition 2.1. Here integrals over Γ`±
are more precisely integrals in V `over paths arbitrarily close to Γ`±. The
following properties hold.

(1) Σj ∈ B
(
Vj
)
.

(2) For all j ∈ Z/kZ we have

Σj+1 − Σj = f j ◦Hj
N

on Vj,sρ .
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(3) For every j ∈ Z/kZ

lim
x→0

Σj (x, y) = 0

locally uniformly in y ∈ ρD.
(4) Any other collection

(
Σ̃j
)
j∈Z/kZ

∈ B
((
Vjρ
)
j∈Z/kZ

)
satisfying (1) and

(2) differs from Σ by the component-wise addition of a single holo-
morphic function y 7→ F (y) in B (ρD).

(5) One has the estimates
(a)

∣∣∣∣∣∣∑∣∣∣∣∣∣ 6 ρK ||f ||′ e||N ||

(b)
∣∣∣∣∣∣∣∣y ∂Σ

∂y

∣∣∣∣∣∣∣∣ 6 ρK ||f ′|| e||N ||
(

1 +
∣∣∣∣∣∣∣∣y ∂N∂y

∣∣∣∣∣∣∣∣)

(c)
∣∣∣∣∣∣∣∣x∂Σ

∂x

∣∣∣∣∣∣∣∣ 6 ρK ||f ′|| e||N ||
(

1 +
∣∣∣∣∣∣∣∣x∂N∂x

∣∣∣∣∣∣∣∣)
with some constant K > 0 depending only on k, µ, ν, β and r.

Remark 2.6. — A value for K is given in the proof, but not very ex-
plicitly.

Definition 2.7. — Under the hypothesis of the theorem, we let the
refined Cauchy-Heine transform of f , associated to N , denote the collection
of functions Σ (N, f) :=

(
Σj
)
j∈Z/kZ

defined by the previous theorem. We
choose this set of functions satisfying (2) because they are “normalized” :
they tend to 0 as V j 3 x→ 0.

Let us now give a proof to Theorem 2.5.
Proof. — In order to prove the holomorphy of Σj and as a first step to

establish the estimates (5), we only consider the case of the integral along
Γj,+. For the sake of clarity we omit, wherever not confusing, to indicate
the indexes j, N and +.
By the above Definitions 1.8 and 2.3, one has∣∣∣∣xf (H (z, y))

z(z − x) dz
∣∣∣∣ 6 ||f ||′

∣∣∣∣xH (z, y) dz
z(z − x)

∣∣∣∣(2.2)

6 ρA ||f ||′ e||N ||q (x)
∣∣∣∣z−µ−1 exp z

−k

k

∣∣∣∣ |dz|(2.3)

where q (x) = sup
{
|x|
|z−x| : z ∈ Γ

}
and A = e2π|µ|. The first thing to estab-

lish is that the improper integrals in the construction of Σ are absolutely
convergent. Using the notation introduced in Definition 2.1, we have for
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z ∈ I

z = x∗t , t ∈ [0, 1]
|dz| = rdt

where

x∗ := r exp
(
iπ
k

(2j + 1) + iβ
)
,

while for z ∈ S

z = x∗ exp ((1 + iν) t) , t > 0
|dz| = |1 + iν| |z|dt .

For z ∈ I we have arg
(
zk
)

= π + kβ and therefore∣∣∣∣z−µ−1 exp
(
z−k

k

)
dz
∣∣∣∣ 6 ∣∣x−µ−1

∗
∣∣ t−<(µ)−1 exp

(
−r−k cos (kβ) t−k/k

)
dt

is integrable on [0, 1]. For z is S we have
∣∣z−µ−1

∣∣ =
∣∣∣x−µ−1
∗

∣∣∣ eαt with
α := −< ((µ+ 1) (1 + iν)) = −< (µ)− 1 + ν= (µ) < −1

(see Definition 2.1) and therefore∣∣∣∣z−µ−1 exp
(
z−k

k

)
dz
∣∣∣∣ 6 |1 + νi| exp r

−k

k

∣∣x−µ∗ ∣∣ e(α+1)tdt

is also integrable on [0,+∞[. Hence∣∣∣∣ x2iπ
∫

Γ

f (H (z, y))
z (z − x) dz

∣∣∣∣ 6 ρAL ||f ||′ e||N ||q (x) ,

where L = 1
2π
∫

Γ

∣∣∣z−µ−1 exp z−k

k

∣∣∣ |dz| . In the case of µ with negative real
part, it is crucial to use the spiral shape of the paths near ∞ as required
by (2.1) of Definition 2.1.
By choosing the paths of integration sufficiently close to the boundaries

of the sectors, we obtain that Σj is an analytic function on Vjρ . The bound-
edness of Σ will be shown later; only then the proof of (1) is complete.
Claim (2) is obtained by Cauchy’s formula. For ε > 0 small enough, we

define the contour Cε as in Figure 2.3. It is positively oriented and consists
of:

• the arc C0
ε of the circle {|z| = ε} between Γj,+ and Γj+1,−,

• the curve Γj+1,− ∩
{
ε 6 |z| 6 1

ε

}
,

• the arc C1
ε of the circle

{
|z| = 1

ε

}
between Γj,+ and Γj+1,−,

• the curve Γj,+ ∩
{
ε 6 |z| 6 1

ε

}
, .
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1
ε

ε

C1
ε

C0
ε

V j,s

Figure 2.3.

Therefore whenever x ∈ V j,s, ε < |x| < 1
ε , we have

1
2iπ

∫
Cε

f j
(
Hj
N (z, y)

)
z (z − x) dz =

f j
(
Hj
N (x, y)

)
x

.

Taking the limit as ε→ 0 yields that

x

2iπ

∫
Γj+1,−

f j
(
Hj
N (z, y)

)
z (z − x) dz − x

2iπ

∫
Γj+

f j
(
Hj
N (z, y)

)
z (z − x) dz

= f j
(
Hj
N (x, y)

)(2.4)

because the integrals on C0
ε and C1

ε tend to 0. Indeed, for values of ε less
than min

(
r, |x|2

)
, if z ∈ C0

ε , then we have
∣∣arg z − (2j + 1) πk

∣∣ < β and
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|z (z − x)| > ε
∣∣x

2
∣∣ . Therefore∫

C0
ε

∣∣∣∣xz−µ−1

z − x
exp

(
z−k

k

)
dz
∣∣∣∣ 6 4βε−<(µ)e2π|µ| exp

(
−ε
−k

k
cos (kβ)

)
.

If z ∈ C1
ε we still have |z − x| > |x| and therefore∫

C1
ε

∣∣∣∣xz−µ−1

z − x
exp

(
z−k

k

)
dz
∣∣∣∣ 6 2β r−ν=(µ)e2π|µ|ε−α−1 exp

(
εk

k

)
.

In a similar way, we show that

x

2iπ

∫
Γj+1,+

f j+1
(
Hj+1
N (z, y)

)
z (z − x) dz = x

2iπ

∫
Γj+2,−

f j+1
(
Hj+1
N (z, y)

)
z (z − x)

for (x, y) ∈ Vj+1,s. This completes the proof of (2).
Next we show (5)(a) (and at the same time the boundedness part of (1)).

For that purpose, we first consider the subset W j of V j containing all x
such that xeis ∈ V j for real s, 0 6 s 6 β/2. Then qj (x) 6 1/ sin (β/2)
if |x| is small whereas 1/qj (x) is bounded below by the distance of the
point eiβ/2 to the spiral exp ((1 + iν)R) for large |x| . As qj is a continuous
function, this implies that it is bounded on W j . Let Q denote some bound.
Thus we have shown that∣∣∣∣∣∣ x2iπ

∫
Γj,+

f j
(
Hj
N (z, y)

)
z (z − x) dz

∣∣∣∣∣∣ 6 ρALQ ||f ||′ e||N ||
for x ∈ W j and |y| 6 ρ. For x ∈ V j \W j , we use (2.4) and estimate the
integral over Γj+1,− in the same way. This yields∣∣∣∣∣∣ x2iπ

∫
Γj,+

f j
(
Hj
N (z, y)

)
z (z − x) dz

∣∣∣∣∣∣ 6 ρA(LQ+M) ||f ||′ e||N ||

for x ∈ V j , |y| 6 ρ, where M denotes the supremum of
∣∣∣x−µ−1 exp x−k

k

∣∣∣ on
V j . The remaining integrals in the definition of Σj are treated similarly.
This yields (5)(a).
From the above estimates, we can also deduce (5)(b): since

y
∂H

∂y
(x, y) = H (x, y)

(
1 + y

∂N

∂y
(x, y)

)
we use
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∣∣∣∣xf ′ (H (z, y))
z(z − x) y

∂H

∂y
(z, y) dz

∣∣∣∣
6 ρA ||f ′|| e||N ||

∣∣∣∣∣∣∣∣1 + y
∂N

∂y

∣∣∣∣∣∣∣∣ q (x)
∣∣∣∣z−µ−1 exp z

−k

k

∣∣∣∣ |dz|
instead of (2.2).
For (5)(c), observe that

x
∂Σj

∂x
(x, y) = Σj(x, y) + x2

2iπ
∑
` 6=j+1

∫
Γ`−

f `
(
H`
N (z, y)

)
z (z − x)2 dz

+ x2

2iπ

∫
Γj+

f j
(
Hj
N (z, y)

)
z (z − x)2 dz, (x, y) ∈ Vjρ .

We estimate the new integrals similarly to the beginning using∣∣∣∣x2 f (H (z, y))
z(z − x)2 dz

∣∣∣∣ 6 ρA ||f ||′ e||N ||q (x)2
∣∣∣∣z−µ−1 exp z

−k

k

∣∣∣∣ |dz|
instead of (2.2). For x close to Γj,+(or to Γj−1,−) we have to use Cauchy’s
formula similarly to (2.4), but obtain x2 ∂

∂x

(
1
xf

j
(
Hj
N (x, y)

))
on the right

hand side. This requires an estimate of

x
∂

∂x

(
f j
(
Hj
N (x, y, )

))
= df j

dh

(
Hj
N (x, y)

)
Hj
N (x, y)

(
−x−k − µ+ x

∂N

∂x

)
on V j . This is done analogously to the proof of (5)(a) and yields the desired
result.
For (3), we use instead of (2.2)∣∣∣∣f (H (z, y))

z(z − x) dz
∣∣∣∣ 6 ||f ||′ ∣∣∣∣H (z, y) dz

z(z − x)

∣∣∣∣
6 ρA ||f ||′ e||N || q̃ (x)

∣∣∣∣z−µ−2 exp z
−k

k

∣∣∣∣ |dz|
where q̃ (x) = sup

{
|z|
|z−x| | z ∈ Γ

}
. Hence

∣∣Σj (x, y)
∣∣ 6 |x| ρK̃ ||f ||′ e||N ||

with some constant K̃ determined in a way analogous to K. Therefore (3)
holds.
Point (4) is a consequence of the fact that the consecutive differences of

components of Σ̃ and Σ agree hence

Σ̃j (x, y)− Σj (x, y) =: δ (x, y)

TOME 65 (2015), FASCICULE 3



956 Reinhard SCHÄFKE & Loïc TEYSSIER

defines a bounded, holomorphic function on C 6=0×ρD. Riemann’s Theorem
on removable singularities tells us that δ can be extended holomorphically
to a bounded function on C × ρD, which must be a function of y only
according to Liouville’s theorem. �

2.3. Construction of a vector field with given sectorial
transition maps

Here we want to find a vector field XR with prescribed transition maps
between sectorial first integrals. This construction is the core of the proof
for the orbital normal form reduction.

Proposition 2.8. — Let an admissible collection ∆ and a collection
ϕ ∈ B′ (∆) be given. Then there exists (ρ,N) adapted to ∆ such that

(1)

Hj+1
N = Hj

N exp
(

2iπµ
k

+ ϕj
(
Hj
N

))
,

(2) ∣∣∣∣∣∣∣∣y ∂N∂y
∣∣∣∣∣∣∣∣ < 1 ,

∣∣∣∣∣∣∣∣x∂N∂x
∣∣∣∣∣∣∣∣ < 1.

Remark 2.9. — A value for ρ is given in the proof.

This proposition relies on a general convergence result for sequences in
the space B (∆), which we have not been able to find in the literature but
should come in handy in many problems where the most direct approach
is formal.

Lemma 2.10. — Let ∆ be a domain in Cm and consider a bounded se-
quence (fp)p∈N of B (∆) satisfying the additional property that there exists
some point z0 ∈ ∆ such that the corresponding sequence of Taylor series
(Tp)p∈N at z0 is convergent in C [[z− z0]] equipped with the projective
topology. Then (fp)p converges uniformly on compact sets of ∆ towards
some f∞ ∈ B (∆).
Remark 2.11.
(1) The convergence of the sequence of Taylor series (Tp)p∈N =(∑

n>0 a
(p)
n (z− z0)n

)
p∈N

for the projective topology is equivalent

to that of each sequence
(
a

(p)
n

)
p∈N

in C. This is particularly the

case when (Tp)p∈N converges for the Krull topology(7)

(7)The one based on the ideals generated by (z− z0)n, n ∈ Nm.
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(2) The convergence might not be uniform on ∆: as an example take
∆ := {z ∈ C : |z| < 1} and fp (z) := zp.

Proof. — Let O (∆) denote the space of functions holomorphic on ∆,
equipped with the topology of uniform convergence on compact subsets of
∆, which is a Montel space. If the sequence (fp)p is bounded in B (∆) it is
also bounded inO (∆). Consequently, there exists a convergent subsequence(
fpj
)
j∈N in O (∆); call f∞ its limiting value. Now Cauchy’s integral formula

and the uniform convergence
(
fpj
)
j
→ f∞ on a small compact polydisc

around z0 imply that the Taylor series of f∞ at z0 coincides with the
limiting power series limp Tp. This argument, together with the identity
theorem on the connected open set ∆, is sufficient to prove that any other
subsequence of (fp)p converges toward the same function f∞. This implies
the convergence (fp)p → f∞ in O (∆). The boundedness of the sequence
(fp)pin B (∆) implies that f∞ is bounded by the same constant on each
compact subset of ∆, i.e. it belongs to B (∆). �

We now give a proof of Proposition 2.8.
Proof. — We recursively define the sequence (Nn)n∈N: starting with

N0 := 0 we put

Nn+1 := Σ (Nn, ϕ) , n > 0(2.5)

using the refined Cauchy-Heine transform of Definition2.7 and Theorem2.5.
Then we show it converges in a convenient Banach space. For the sake of
clarity we omit the superscript j whenever not confusing, and write Hn

instead of HNn .
We can assume that all ϕj are holomorphic and have bounded derivatives

on some disc ηD ⊂
⋂
j∈Z/kZ ∆j . Then we choose

ρ 6
η

M
e
− η
MK||ϕ′||

ηD

where

M = M (k, µ, ν, β) := e2π|µ| sup
z∈V j,s

∣∣∣∣z−µ exp z
−k

k

∣∣∣∣
and K is the constant appearing in Theorem 2.5. We need to ensure that

(∀n ∈ N) (∀y ∈ ρD)
(
∀z ∈ V j,s

)
|Hn (z, y)| 6 η .(2.6)

By construction of Hn we have for (z, y) ∈ Vjρ

|Hn (z, y)| 6 ρe2π|µ|
∣∣∣∣z−µ exp z

−k

k

∣∣∣∣ e||Nn|| .
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Therefore if for some n ∈ N we have||Nn|| 6 2π
M ηK ||ϕ′||ηD then we first

find that

|Hn (z, y)| 6 ρM exp
( η
M
K ||ϕ′||ηD

)
= η,

i.e. (ρ,Nn) is adapted to ∆ and then, using Theorem 2.5 (5)(a), we obtain

||Nn+1|| 6 ρK ||ϕ||′ηD exp ||Nn||
6 ρK ||ϕ′||ηD exp ||Nn||

6
η

M
K ||ϕ′||ηD .

These estimates show by induction on n that, with the above choice of
ρ, the relation (2.5) defines a bounded sequence (Nn)n ⊂ B

(
Vjρ
)
. It is

then sufficient to show that the sequence (Nn)n converges for the Krull
topology on B

(
V j
)

[[y]] to obtain its convergence towards an element N
of the Banach space B

(
Vjρ
)
(use Lemma 2.10). By construction this limit

is a fixed point of the operator N 7→ Σ (N,ϕ) (as it is continuous for
the compact uniform convergence) and therefore N j+1 − N j = ϕj

(
Hj
N

)
,

according to Theorem 2.5. As an immediate consequence we obtain

Hj+1
N

Hj
N

= exp
(

2iπµ
k

+N j+1 −N j

)
= exp

(
2iπµ
k

+ ϕj
(
Hj
N

))
and thus we proved (1).
Now the estimate (5)(b) in Theorem 2.5 implies, for all n ∈ N,∣∣∣∣∣∣y ∂Nn+1

∂y

∣∣∣∣∣∣
1 +

∣∣∣∣∣∣y ∂Nn∂y ∣∣∣∣∣∣ 6 ρK ||ϕ′|| exp ||Nn|| 6 ρK ||ϕ′|| exp
( η
M
K ||ϕ′||

)
.

If we choose ρ so small that also ρK ||ϕ′|| exp
(
η
MK ||ϕ′||

)
=: α < 1

2 then we
have shown that

∣∣∣∣∣∣y ∂Nn+1
∂y

∣∣∣∣∣∣ 6 α
(

1 +
∣∣∣∣∣∣y ∂Nn∂y ∣∣∣∣∣∣) for all n and this implies

that the limit N satisfies
∣∣∣∣∣∣y ∂N∂y ∣∣∣∣∣∣ 6 α

1−α < 1. As the estimate for
∣∣∣∣x∂N∂x ∣∣∣∣

follows in the same way, this establishes (2).
To complete the proof let us show by recursion on n that N j

n+1 −N j
n =

O
(
yn+1) and hence that the sequence is convergent for the Krull topology.

By construction this is true for n = 0. Now let us assume the property is
true for some n. Since

Hn+1 = Hn exp (Nn+1 −Nn) = Hn

(
1 +O

(
yn+1))

and since Hn = O (y), we find

ϕ (Hn+1) = ϕ (Hn) +O
(
yn+2) .
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As the integral defining Σ (N,ϕ) is C {y}-linear, the result follows. �

Corollary 2.12. — Let ρ > 0 and N =
(
N j
)
j
∈ B

((
Vjρ
)
j

)
be given

by Proposition 2.8. Then:
(1) the vector fields

Xj := X0 − y
X0 ·N j

1 + y ∂N
j

∂y

∂

∂y

are holomorphic on Vjρ and admit Hj
N as first integrals,

(2) these vector fieldsXj , for j ∈ Z/kZ, are the restrictions to the sectors
Vjρ of a vector field X = XR holomorphic on Vρ with

R ∈ yO (C) {y} .

Proof. — Define

R̃j := − X0 ·N j

1 + y ∂N
j

∂y

so that Xj = X0 + yR̃j ∂∂y . Since
∣∣∣∣∣∣y ∂N∂y ∣∣∣∣∣∣ < 1 and

∣∣∣∣x∂N∂x ∣∣∣∣ < 1, we indeed
have R̃j ∈ B

(
Vjρ
)
. Because of Riemann’s Theorem on removable singulari-

ties, each R̃j is the restriction of a function R̃ ∈ yO (C) {y} if, and only if,
R̃j = R̃j+1 on Vj,sρ for all j. This condition is satisfied because of point (1)
of Proposition 2.8. Indeed on the one hand we have

Xj ·Hj+1
N = Xj ·

(
Hj
N exp

(
2iπµ
k

+ ϕ
(
Hj
N

)))
= 0,

because Xj ·Hj
N = 0, on the other hand a short calculation shows that

Xj ·Hj+1
N = Hj+1

N

(
X0 ·N j+1 +

(
1 + y

∂N j+1

∂y

)
R̃j
)
.

Hence X0 ·N j+1 +
(

1 + y ∂N
j+1

∂y

)
R̃j = 0 and thus R̃j = R̃j+1.

Since all N j (x, y) tend to 0 as V j 3 x → 0 (uniformly for small y) we
conclude that R̃ = xR with some R ∈ yO (C) {y}. �

Remark 2.13.
(1) The final formula is

R := − X0 ·N j

x
(

1 + y ∂N
j

∂y

) ,
which does not depend on j as stated in the above corollary.
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(2) X is simply obtained by performing the change of variables (x, y) 7→(
x, y expN j (x, y)

)
in X0. Thus H0 is naturally transformed into

HNj . Hence the relations

X ·N j = −xR

hold on the sectors and, by the definition of TR in subsection 1.2.4,
we obtain (

ϕj
)
j∈Z/kZ

= TR (−xR) .

(3) Point (1) of Proposition 2.8 states precisely that the Martinet-
Ramis modulus of X is

ψj (h) = h exp
(

2iπµ
k

+ ϕj (h)
)
.

We want to show that R belong to N {x, y} = yC [x]<k {y} but we have
only proved so far that R ∈ yO (C) {y}. We complete the construction of
our analytic orbital normal form by proving that claim.

Lemma 2.14. — The function R of Corollary 2.12 satisfies R ∈ N {x, y}.

Proof. — By Proposition 2.8, we have∣∣∣∣∣∣∣∣x∂N∂x
∣∣∣∣∣∣∣∣ < 1 and

∣∣∣∣∣∣∣∣y ∂N∂y
∣∣∣∣∣∣∣∣ < 1 .

and thus

1∣∣∣∣∣∣1 + y ∂N∂y

∣∣∣∣∣∣ 6
1

1−
∣∣∣∣∣∣y ∂N∂y ∣∣∣∣∣∣ <∞ .

Since ∣∣(X0 ·N j
)

(x, y)
∣∣ 6 |x|k

∣∣∣∣∣∣∣∣x∂N∂x
∣∣∣∣∣∣∣∣ +

(
1 +

∣∣µxk∣∣) ∣∣∣∣∣∣∣∣y ∂N∂y
∣∣∣∣∣∣∣∣

for (x, y) ∈ Vρ , j ∈ Z/kZ, we conclude from the definition of R that

xR = O
(
xk
)
.

As x 7→ R (x, y) is an entire function for every fixed |y| < ρ, it must be a
polynomial of degree at most k − 1. �
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2.4. Uniqueness

In order to complete the proof of the orbital part of the Main Theorem
we only need to address the uniqueness clause.

Proposition 2.15. — Let an orbital formal class be fixed. Two vector
fields XR and XR̃ with R, R̃ ∈ N {x, y} are analytically orbitally conjugate
by some Ψ in a neighborhood of 0 ∈ C2 if, and only if, there exists (θ, c) ∈
Autk such that

R̃ (x, y) = R
(
e

2iπθ/kx, cy
)
.

In that case there exists T ∈ C {x, y} such that

Ψ (x, y) =
(
ΦTXR

)
◦
(
e

2iπθ/kx, cy
)
,

where ΦtXR is the flow of XR at time t.

Proof. — We use a fact proved later in Corollary 4.3: the map R ∈
N {x, y} 7→

(
ϕjR

)
j∈Z/kZ

, sending R to the canonical orbital modulus

TR (−xR) of XR, is one-to-one. According to Martinet-Ramis’ theorem
there must exist (θ, c) ∈ Autk such that ϕj+θR (ch) = ϕj

R̃
(h). Up to right-

composition of Ψ by (x, y) 7→
(
e−2iπθ/kx, c−1y

)
we may therefore assume

that Ψ is tangent to the identity and ϕjR = ϕj
R̃
, so that R = R̃. We are

left with studying the tangent-to-the-identity symmetries of the foliation
induced by XR. We have Ψ∗XR = UXR for some holomorphic unit U and
there exists a holomorphic T such that T (0, 0) = 0 and XR · T = 1

U − 1
(see Section 1.2.4). Now up to composition of Ψ by the inverse of ΦTXR , we
are left with studying the tangent-to-the-identity symmetries of the vector
field XR. This can be carried out on a formal level, thereby for X0: it is
easy to show that such a formal symmetry of X0 must be of the form ΦtX0

for some t ∈ C, which ends the proof. �

3. The natural section of the period operator and
temporal normal forms

We start with some vector field XR constructed in the previous section
with prescribed orbital modulus, holomorphic on the domain Vρ = C× ρD
for some well-chosen ρ > 0, as described in Proposition 2.8. Consider the
admissible collection ∆ defined by ∆j := HN

(
Vjρ
)
, whose size shrinks as

ρ goes to 0. We refer to Section 1.2.4 for the construction of the period
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operator TR, and the justification that the Main Theorem is proved once
we have established the following result.

Proposition 3.1. — Let a collection f =
(
f j
)
∈ B (∆) be given. Then

there exists a unique SR (f) ∈ xN {x, y} such that

TR ◦ SR (f) = f .

Notice that in addition to the special form of SR this proposition en-
sures a control on the domain of definition of the normal form and, more
generally, on that of the sectorial solutions to a cohomological equation.
Proof. — Following Theorem 2.5 and Definition 2.7 we obtain sectorial

functions
(
Σj
)
j

:= Σ (N, f) such that

Σj+1 − Σj = f j ◦Hj
N .

Each function Σj is holomorphic and bounded on Vjρ and tends to 0 as
V j 3 x→ 0, uniformly on ρD. Define now

g := XR · Σj ,

which does not depend on j (becauseHj
N is a first integral ofXR) and tends

to 0 as x→ 0. Therefore it can be extended to a function holomorphic on
Vρ by Riemann’s Theorem on removable singularities. As in the proof of
Lemma 2.14 it follows that g ∈ xC [x]<k {y}. �

By extending the arguments of the proof of Proposition 2.15 we deduce
easily the

Corollary 3.2. — Let an orbital formal class be fixed. Two vector
fields UGXR and UG̃XR̃ with R, R̃, G, G̃ ∈ N {x, y}, having respective
formal temporal moduli P and P̃ , are analytically conjugate by some Ψ
in a neighborhood of 0 ∈ C2 if, and only if, there exists (θ, c) ∈ Autk
such that (P,R,G) is conjugate to

(
P̃ , G̃, R̃

)
by the right-composition by

(x, y) 7→
(
e2iπθ/kx, cy

)
. In that case there exists t ∈ C such that

Ψ (x, y) = ΦtXR
(
e

2iπθ/kx, cy
)
.

4. Explicit realization and algorithms

In the previous sections, we have already discussed the existence, unique-
ness and convergence of the normal forms and more generally of the natural
section of the period operator. Here, we are only concerned with the actual
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computation, numerical or symbolic, of these objects and no longer think
about convergence.
We present as precisely as possible the steps needed to compute explicitly,

trying to do as much symbolic computations as possible. Nevertheless, we
must allow iterated integrals of some class of transcendental functions as
elementary building blocks.

4.1. Symbolic approach for a convergent vector field

In this section, we use the sectors V j of all x with
∣∣arg x− j 2π

k

∣∣ < π
k +

β, |x| < r, for sufficiently small r > 0. Unless otherwise stated, R can be
any element of yC {x, y}.

In order to compute the period TR (xmyn) (h) =
(
T jR (xmyn) (h)

)
j∈Z/kZ

,

we have to integrate the differential form xm−k−1yndx over the asymptotic
cycle γj,s (h) included in the sectorial leaf

{
Hj
N = h

}
(see Definition 1.7),

where Hj
N denotes the sectorial first integrals associated to XR (see Defi-

nition 2.3).
We are particularly interested in inverting the relations

T jR

∑
n>1

Gn (x)xσn+1yn

 (h) =
∑
`>1

f j` h
`, j ∈ Z/kZ,(4.1)

with Gn (x) =
∑k−1
m=0Gm,nx

m ∈ C[x]<k, being given a k-tuple
(
f j
)
j∈Z/kZ

of
formal power series f j (h) =

∑
`>1 f

j
` h

`. It turns out that the correspond-
ing system, expressing the infinite vector

(
f j`

)
`,j

in terms of the vector
(Gm,n)m,n, is an invertible block-triangular system, if σ + µ 6∈ R60. This
condition will be assumed throughout the section.
This section is devoted to proving the

Proposition 4.1. — Let R (x, y) :=
∑
n>0Rn (x) yn ∈ yC {x, y}. The

coefficients of the periods T jR (xmyn) (h) =
∑
`>0 c

j
m,n,`h

`, j ∈ Z/kZ, m, n ∈
N satisfy the following properties.

(1) cjm,n,` = 0, if ` < n and cjm,n,n is independent of R.
(2) For ` > n, the coefficients cjm,n,` depend only on R1, . . . , R`−n and

vanish whenR= 0. The k×k matricesDn := diag
(
c0m,n,n : nσ+ 1 6
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m 6 nσ + k) and V := [exp (2iπmj/k)](m,j) are invertible. The rela-
tions (4.1) are satisfied if, and only if,

[
f jn
]
j∈Z/kZ

= V Dn [Gm,n]m<k +

 ∑
a<n,m<k

Gm,ac
j
nσ+m+1,a,n


j∈Z/kZ

.

If R ∈ N {x, xσy} and ` > n then cjm,n,` is a polynomial in the
k (`− n) variables given by the coefficients of R1, · · · , R`−n. Its co-
efficients can be symbolically computed.

Remark 4.2.
(1) As cjm,n,n do not depend on R, their values can be computed when

R = 0 (see [8, 13]). We recall this result in the next subsection.
(2) c0m,n,n can be computed as

∫
ηj
xm+nµe−

n
k x
−k
Q (x) dx, where Q is

a polynomial of some iterated integrals involving only powers of x
and exponentials and where ηj is the projection of some asymptotic
cycle γj,s (h) onto the x-plane.

Before giving the proof, we state two direct consequences of this proposi-
tion. The first statement has been used in the proof of Proposition 2.15.

Corollary 4.3. — Finding R(x, u) =
∑
n>1Rn (x)un, Rn (x) ∈

C [x]<k, such that XR realizes a given orbital invariant ϕ ∈ (hC {h})k

means solving

TR

∑
n>1

Rn (x)xσn+1yn

 = −ϕ .

This system is non-linear but again block-triangular and formally invertible.

In the next section, the subsequent corollary will enable our numerical
computations.

Corollary 4.4. — Let R =
∑
p>0Rp (x) yp ∈ C {x, y} and n, m, d ∈

N be given. We denote by R̃d the truncated function
∑
j6dRj (x) yj . Then

TR (xmyn) (h) = TR̃d (xmyn) (h) + o
(
hn+d) .

4.1.1. The case of the model

The leaf
{
h = Hj

0

}
is the graph of the function given by

y (x) = hxµ exp
(
−j 2iπµ

k
− 1
kxk

)
.
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Notice that, because of the determination of arg x in V j , the right-hand side
of the above relation depends only on the class of j in Z/kZ . For convenience
we define

δ := exp
(

2iπ
k

)
E (x) := xµ exp

(
− 1
kxk

)
.

Letting ηj denote the projection of γj,s (h) on the plane {y = 0} (which
does not depend on h) we compute

T j0 (xmyn) (h) = e−nj
2iπµ/khn

∫
ηj
xmE (x)n dx

xk+1

= δmj
2iπ (n/k)

m+nµ
k eiπ(m+nµ)/k

nΓ
(
m+nµ
k

) hn .

The value of the integral is computed using Hankel’s integral representation
of 1

Γ . This computation has been performed first by P. Elizarov in [8] to
compute Gteaux derivatives of the orbital modulus along the direction
R ∈ Cxnym. The coefficient

cjm,n := δmj
2iπ (n/k)

m+nµ
k eiπ(m+nµ)/k

nΓ
(
m+nµ
k

)(4.2)

= cjm,n,n

is zero if, and only if, m + nµ ∈ kZ60. Hence, the condition σ + µ /∈ R60
prevents cjnσ+m,n from vanishing (as long as m is nonnegative).

4.1.2. General case: proof of Proposition 4.1

Here the leaf
{
h = Hj

N

}
is the graph of the function x 7→ y (x) given by

y (x) = Θj

(
x, hxµ exp

(
−j 2iπµ

k
− 1
kxk

))
(4.3)

where

Θj :=
(

Ψj
O

)−1

denotes the inverse of the sectorial normalization introduced in subsection
1.2.2. Let us expand Θj with respect to y:

Θj (x, y) =

x,∑
`>0

θj` (x) y`
 , θj0 := 0 , θj1 := 1
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and denote by ηj the projection of γj,s (h) on the plane {y = 0} (which does
not depend on h nor on R). For given ξ ∈ B

(
V j
)
with ξ (x) = O

(
xk+1),

we set

T jm (ξ) :=
∫
ηj
xmξ (x) dx

xk+1 .

We have the formula

T jR (xmyn) (h) = cjm,nh
n(4.4)

+
∑
`>n

h`e−
2iπµj /̀kT jm

(
E`

∑
`1+···+`n=`

∏
p

θj`p

)
.

This implies statement (1) of Proposition 4.1 and, together with formula
(4.2) and the linearity of TR, also statement (3).
It remains to prove (2) and (4). We write

R (x, y) =
∑
n>0

Rn (x) yn ,

where Rn ∈ C {x} have a common disk of convergence. We can explicit the
normalizing functions themselves, because each coefficient of

N j(x, y) :=
∑
n>0

N j
n (x) yn , N j

n ∈ O
(
V j
)

is the unique solution bounded on V j of a first-order, linear and inhomo-
geneous differential equation we deduce from

XR ·N j = −xR

by identifying the coefficients of yn. Thus, we have

N j
n (x) = E−n (x)

∫
(0→x)

∆j
n (t)En (t) t−kdt(4.5)

where

∆j
n (x) := Rn (x)−

∑
p+q=n

q N j
q (x)Rp (x)

with N j
0 = Rj0 = 0. Here the integration is done on the projection (0→ x)

of an asymptotic path (see Figure 4.1). It follows that N j
n depends on Rp

for 0 < p 6 n. In the case of R ∈ N {x, xσy}, we can be more precise. For
simplicity, we state this only if k = 1.
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0

x

x

Figure 4.1. The path (0→ x) on which the integrations are performed
to compute N .

Lemma 4.5. — If k=1 and R(x, y) =
∑
n>0Rnx

nσyn with Rn ∈ C,
then there exist “universal” functions φn• , obtained as sums and products
of iterated integrals, such that each function N0

n can be written

N0
n (x) =

n∑
`=1

∑
1 6 j1 6 j2 6 · · · 6 j`
j1 + j2 + · · ·+ j` = n

[
φn(j1,··· ,j`) (x)

∏̀
m=1

Rjm

]
.

The degree of N0
n as a polynomial in the variables R1, R2, · · · , Rn is ex-

actly n.

Since

Θj (x, y) =
(
x, y +

∑
n>1

θjn (x) yn
)

=
(
x, y expN j (x, y)

)−1
,

the properties of the formal inversion imply that θjn is a polynomial with
integer coefficients of N j

1 , ..., N
j
n−1, hence it depends only on R1, ..., Rn−1.

By (4.4), cjm,n,` only involves θj1, ..., θ
j
`+1−n and hence depends only on

R1, ..., R`−n. This proves statement (2) of the proposition. In the case of
R ∈ N {x, xσy} , R =

∑
n>0

∑
m<k Rm,nx

m+σnyn , this also proves state-
ment (4), because T jm

(
E`
∑
`1+···+`n=`

∏
p θ`p

)
can then be expressed as a
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polynomial in the Rm,s,m < k, s 6 ` − n the coefficients of which are of
the desired form.

4.2. Computing the modulus and normal form: proof of the
Computation Theorem

In this section we deal with finding an algorithm to compute numerically
the modulus ϕj and f j , as well as the normal form. We do not intend to
give effective nor specially clever methods, but only a theoretical mean to
actually compute.
The proof of the Computation Theorem follows from the study conducted

here for vector fields written in Dulac’s prepared form, as putting Z into
this form is a computable process (the procedure can be found in H. Dulac’s
memoir [5]) once the orbital formal class (k, µ) is known(8) . We therefore
start from a vector field in the (not necessarily normal) form

Z (x, y) = U (x, y)X (x, y)

X (x, y) = xk+1 ∂

∂x
+ y

(
1 + µxk + xR (x, y)

) ∂
∂y

(4.6)

where U (0, 0) 6= 0. The formal orbital modulus is explicit in this form, and
the temporal modulus P simply coincides with the kth-jet of U (x, 0).

4.2.1. The period of a given convergent vector field

We want to compute numerically the power series

T jR (xmyn) =
∑
p>n

cjm,n,ph
p

corresponding to the period operator associated to XR.
• We begin with fixing a family of base points (xj)j∈Z/k in the saddle-
parts V j,s, for instance xj = −re2iπj/k where r > 0 is sufficiently
small so that X is defined, but not too small in order to avoid
numerical instabilities.

• We compute the values Hj (y) := Hj
N (xj , y) of the sectorial first

integrals by integrating numerically Rdx
xk

along an asymptotic path
γj (xj , y). One can think of a Kutta-Runge method to compute
x 7→ y (x).

(8)The integer k is not computable with halting, finite Turing machines as one must
test the equality to zero of diverse Taylor coefficients of the components of Z.
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• We compute the sectorial solutions F j to the equationX ·F = xmyn

in the same way.
• Hence by definition

T j (xmyn)
(
Hj (xj , y)

)
= F j+1 (xj , y)− F j (xj , y)

=
∑
p>n

cm,n,j,pH
j (xj , y)p

is a known function T j of y.
• We derive from this function the coefficients cjm,n,` by applying

Cauchy’s formula:

cjm,n,` = 1
2iπ

∫
C

T j (y)
Hj (y)`+1 dH

j (y)

where C is a circle in y-coordinates. Because Hj is a diffeomorphism
then Hj (C) is also a simple loop with unitary winding number
around

{
Hj = 0

}
.

4.2.2. Building the normal form

We only deal with the case k = 1, the general case being the same up to
solving a Vandermonde system. Because of Corollary 4.4 one can compute
R (x, y) =

∑
n>0Rnx

σnyn in much the same way as we did before.
• We fix some base point x0.
• From the knowledge of the given ϕ (h) =:

∑
n>0 αnh

n we compute
r1 = α1/cσ,1.

• We compute the period TR1xσy

(
xσ+1y

)
using the previous method,

in order to obtain the coefficient c1,1,2 for the vector field XR1xσy,
which is the same as the coefficient c1,1,2 for the complete vector
field X.

• We compute next R2 := (α2 − c1,1,2R1) /c2σ,2, and iterate the pro-
cess in the obvious way.

• Hence we obtain numerical values for Rn in finite time, up to any
order and with arbitrary precision.

4.3. Integrability by quadrature

These numerical computations actually yield a numerical criterion for in-
tegrability by quadrature of saddle-node equations or, more correctly, a nu-
merical test of non-integrability by quadrature for saddle-node convergent
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vector-fields. Indeed a result by M. Berthier and F. Touzet [1] states that
those foliations corresponding to first order differential equations which are
integrable by quadrature must have their orbital modulus of the form

ϕj (h) = 1
p

log (1− αjhp)

for some p ∈ N and some collection (αj)j∈Z/k ⊂ C. In [14] we already
proved that their normal forms must correspond to polynomial linear or
Bernoulli differential equations :

X = xk+1 ∂

∂x
+
[
y
(
1 + µxk

)
+ yp+1xpσ+1Rp (x)

] ∂
∂y
.

4.4. Explicit realization of a holonomy diffeomorphism

The manner J. Martinet and J.-P. Ramis identified completely the space
of invariants (i.e. proved the orbital modulus mapping is onto) is geometric.
They build an abstract almost-complex C∞-manifold resembling the sus-
pension of the modulus, and using Newlander-Niremberg’s theorem obtain
the complex integrability of this manifold and show it is biholomorphic to
a domain of C2. Although this construction is far from being explicit(9) it
nonetheless answers an important question:

Theorem 4.6 ([10]). — Any germ of a diffeomorphism ψ ∈ Diff (C, 0)
can be realized as the holonomy of some convergent saddle-node foliation
singular at (0, 0).

Indeed set µ := 1
2iπ logψ′ (0) and take a vector field X, in Dulac’s

form (4.6), whose orbital modulus is precisely ϕ : h 7→ log ψ(h)
h − 2iπµ.

Then the holonomy h computed by lifting a generator of {y = 0 , x 6= 0} in
the foliation through the projection (x, y) 7→ x is conjugate to ψ through
the first integral. More precisely, by taking x∗ ∈ V s sufficiently close to 0
and denoting by H∗ the local diffeomorphism y 7→ H0

0 (x∗, y) one obtains,
for all y sufficiently close to 0:

ψ (H∗ (y)) = H∗ (h (y)) .(4.7)

Therefore performing the local changes of coordinates (x, y) 7→ (x,H∗ (y))
within X produces a new vector field Z in Dulac’s form for which the
holonomy computed above {x = x∗} is precisely ψ.

(9)Even if Newlander-Niremberg’s theorem ultimately relies on some fixed-point method,
it appears difficult to translate the proof into a computable process (as in Definition 1.4)
to derive a particular representative of a given computable orbital class.
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R. Perez-Marco and J.-C. Yoccoz show in [11] a result of the same kind,
by using a quasi-conformal suspension of ψ and by solving the ∂-operator
equation to modify the foliated space, making it a domain of C2. Here again
the proof is not explicit.
The work conducted here allows one to build a somehow explicit realiza-

tion of some germ of a diffeomorphism ψ as the holonomy of a foliation of
a normal form. In particular if ψ is computable then so is Z. Besides it is
possible to control quite precisely the domain on which this diffeomorphism
is realized.

4.5. Numerical results

4.5.1. First example: modulus of an integrable vector field

This is the numerical computation we did for the orbital modulus ϕ (h) :=∑
n∈N αnh

n of

Xy := x2 ∂

∂x
+ y (1 + xy) ∂

∂y
.

As this equation is a Bernoulli equation its orbital modulus can be com-
puted explicitly ψ : h 7→ h

1−2iπh . Hence the expected value of TR (−xR)
is ϕ : h 7→ log (1− 2iπh). This is what was computed, using a Kutta-
Runge method of order 4 with a step of 0, 001 for the sectorial integrals,
implemented in C + +. The initial condition is x0 = −5 and the circle
C : t ∈ [0, 1] 7→ 0, 1 × exp (2iπt) has been discretized by 1000 points.
Cauchy integrals were computed using the rectangle rule, which is poten-
tially the best method when integrating an analytic and periodic function
over a period, and dH (y) was calculated with a 5-points centered method
(also of order 4).

n computed αn expected αn

0 −1× 10−17 − i 7× 10−18 0

1 −4× 10−17 − i 6, 28318530 −2iπ ' −i 6, 28318530

2 19, 73920883− i 8× 10−9 2π2 ' 19.73920880

3 −2× 10−7 − i 82, 68340412 − 8
3 iπ

3 ' −i82, 68340448

4 1× 10−6 + i389, 63636503 4π4 ' i 389, 63636414
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We can see that this method is fast and provides results with an error
of the order of 10−10+n for the coefficient αn. This shift in the precision is
due to the fact that one must divide by Hn+1 in Cauchy’s formula and |H|
is of the order of 0, 1.

4.5.2. Second example: modulus of a non-integrable vector field

This is the numerical computation we did for the orbital modulus ϕ (h) :=∑
n>0 αnh

n of

Xy+y2 := x2 ∂

∂x
+ y

(
1 + x

(
y + y2)) ∂

∂y
.

We know from the theory that this equation cannot be integrated by quad-
rature. The following result is obtained with the same numerical parameters
as previously, keeping the 10− n first digits:

n computed αn

1 −2iπ

2 −19, 73920883− i 6, 28318531

3 59, 2176264 + i 78, 3282319

4 −295, 429240 + i 447, 039460

If the equation were integrable by quadrature then its modulus would
be of the form ϕ (h) = log (1− αh) for some α ∈ C, which is not possible
(provided, of course, that the numerical errors are of the same magnitude
as in the previous example).

4.5.3. Third example: realization of a normal form

Here we compute the first terms of the normal form for the modulus
ϕ (h) = h with µ = 0, which is the simplest non-trivial example. This is
what was computed, using a Kutta-Runge method of order 4 with a step
of 0, 001 for the sectorial integrals. The initial condition is x0 = −5 and
the circle C : t ∈ [0, 1] 7→ 0, 01 × exp (2iπt) has been discretized by 5000
points. Cauchy integrals were computed using the rectangle rule. Only the
14− 2n first digits were kept.
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The modulus of this normal form has been conversely evaluated as h +∑5
n=2 εnh

n + o
(
h5) with |εn| < 10−9.

n computed Rn

1 i 0, 159154943092

2 −i 0, 0397887357

3 −2, 27086× 10−3 + i 1, 473657× 10−2

4 2, 223× 10−3 − i 6, 239× 10−3

5 −1, 7× 10−3 + i 2, 8× 10−3
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