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ON THE MEAN CURVATURE FLOW OF
GRAIN BOUNDARIES

by Lami KIM & Yoshihiro TONEGAWA (*)

Abstract. — Suppose that Γ0 ⊂ Rn+1 is a closed countably n-rectifiable set
whose complement Rn+1 \ Γ0 consists of more than one connected component.
Assume that the n-dimensional Hausdorff measure of Γ0 is finite or grows at most
exponentially near infinity. Under these assumptions, we prove a global-in-time
existence of mean curvature flow in the sense of Brakke starting from Γ0. There
exists a finite family of open sets which move continuously with respect to the
Lebesgue measure, and whose boundaries coincide with the space-time support of
the mean curvature flow.
Résumé. — Supposons que Γ0 ⊂ Rn+1 est un ensemble dénombrable fermé

n-rectifiable dont le complément Rn+1 \Γ0 n’est pas connexe. Nous assumons que
la mesure de Hausdorff n-dimensionnelle de Γ0 est finie ou sa croissance est au plus
exponentielle. Nous prouvons l’existence globale du flot de la courbure moyenne au
sens de Brakke au départ de Γ0. Il existe une famille finie d’ensembles ouverts qui
se déplacent d’une manière continue par rapport à la mesure de Lebesgue et dont
les bords coïncident avec le support du flot de la courbure moyenne.

1. Introduction

A family of n-dimensional surfaces {Γ(t)}t>0 in Rn+1 is called the mean
curvature flow (hereafter abbreviated by MCF) if the velocity is equal to its
mean curvature at each point and time. Since the 1970’s, the MCF has been
studied by numerous researchers as it is one of the fundamental geometric
evolution problems (see [5, 14, 15, 24, 37] for the overview and references re-
lated to the MCF) appearing in fields such as differential geometry, general
relativity, image processing and materials science. Given a smooth surface

Keywords: mean curvature flow, varifold, geometric measure theory.
Math. classification: 53C44, 49Q20.
(*) Both authors are partially supported by JSPS Grant-in-aid for scientific research
#25247008 and #26220702. They thank the anonymous referee for a number of valuable
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Γ0, one can find a smoothly moving MCF starting from Γ0 until some singu-
larities such as vanishing or pinching occur. The theory of MCF inclusive of
such occurrence of singularities started with the pioneering work of Brakke
in his seminal work [8]. He formulated a notion of MCF in the setting of
geometric measure theory and discovered a number of striking measure-
theoretic properties in this general setting. It is often called the Brakke
flow and we call the flow by this name hereafter. It is a family of varifolds
representing generalized surfaces which satisfy the motion law of MCF in
a distributional sense. His aim was to allow a broad class of singular sur-
faces to move by the MCF which can undergo topological changes. Quoting
from [8, p. 1]: “A physical system exhibiting this behavior is the motion
of grain boundaries in an annealing pure metal [...] It is experimentally
observed that these grain boundaries move with a velocity proportional to
their mean curvature.” One of Brakke’s major achievements is his general
existence theorem [8, Chapter 4]. Given a general integral varifold as an
initial data, he proved a global-in-time existence of Brakke flow with an
ingenious approximation scheme and delicate compactness-type theorems
on varifolds. One serious uncertainty on his existence theorem, however, is
that there is no guarantee that the MCF he obtained is nontrivial. That is,
since the definition of Brakke flow is flexible enough to allow sudden loss
of measure at any time, whatever the initial Γ0 is, setting Γ(t) = ∅ for all
t > 0, we obtain a Brakke flow satisfying the definition trivially. The proof
of existence in [8] does not preclude the unpleasant possibility of getting
this trivial flow when one takes the limit of approximate sequence. The
idea of such “instantaneous vanishing” may appear unlikely, but the very
presence of singularities of Γ0 may potentially cause such catastrophe in his
approximation scheme. For this reason, rigorous global-in-time existence of
MCF of grain boundaries has been considered completely open among the
specialists.
In this regard, we have two aims in this paper. The first aim is to refor-

mulate and modify the approximation scheme so that we always obtain a
nontrivial MCF even if Γ0 is singular. We prove for the first time a rigorous
global-in-time existence theorem of the MCF of grain boundaries which was
not known even for the 1-dimensional case. The main existence theorem of
the present paper may be stated roughly as follows.

Theorem 1.1. — Let n be a natural number and suppose that Γ0 ⊂
Rn+1 is a closed countably n-rectifiable set whose complement Rn+1 \ Γ0
is not connected. Assume that the n-dimensional Hausdorff measure of Γ0
is finite or grows at most exponentially near infinity. Let E0,1, . . . , E0,N ⊂
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ON THE MEAN CURVATURE FLOW OF GRAIN BOUNDARIES 45

Rn+1 be mutually disjoint non-empty open sets with N > 2 such that
Rn+1 \ Γ0 = ∪Ni=1E0,i. Then, for each i = 1, . . . , N , there exists a family
of open sets {Ei(t)}t>0 with Ei(0) = E0,i such that E1(t), . . . EN (t) are
mutually disjoint for each t > 0 and Γ(t) := Rn+1 \ ∪Ni=1Ei(t) is a MCF
with Γ(0) = Γ0, in the sense that Γ(t) coincides with the space-time support
of a Brakke flow starting from Γ0. Each Ei(t) moves continuously in time
with respect to the Lebesgue measure.

We may regard each Ei(t) ⊂ Rn+1 as a region of “i-th grain” at time t,
and Γ(t) as the “grain boundaries” which move by their mean curvature.
Some of Ei(t) shrink and vanish, and some may grow and may even occupy
the whole Rn+1 in finite time. We may also consider a periodic setting, and
in that case, a typical phenomenon is a grain coarsening. As a framework,
loosely speaking, instead of working only with varifolds as Brakke did,
we perceive the varifolds as boundaries of a finite number of open sets
Ei(t) at each time. The open sets are designed to move continuously with
respect to the Lebesgue measure, so that the boundaries do not vanish
instantaneously at t = 0. Sudden loss of measure may still occur when some
“interior boundaries” inside Ei(t) appear, but otherwise, one cannot vanish
certain portion of boundaries arbitrarily. The resulting MCF as boundaries
of open sets is more or less in accordance with the MCF of physical grain
boundaries originally envisioned by Brakke. If Rn+1 \ Γ0 consists of N
connected components, we naturally define them to be E0,1, . . . , E0,N . If
there are infinitely many connected components, we need to group them
to be finitely many mutually disjoint open sets E0,1, . . . , E0,N for some
arbitrary N > 2, hence there is already non-uniqueness of grouping at
this point in our scheme. Even if they are finitely many, simple examples
indicate that the flow is non-unique in general, even though it is not clear
how generically the non-uniqueness prevails.
The second aim of the paper is to clarify the content of [8] with a num-

ber of modifications and simplifications. Despite the potential importance
of the claim, there have been no review on the existence theory of [8] so
far. Also, we need to provide different definitions and proofs working in the
framework of sets of boundaries. Here, we present a mostly self-contained
proof which should be accessible to interested researchers versed in the
basics of geometric measure theory. A good working knowledge on rectifia-
bility [3, 18, 19] and basics on the theory of varifolds in [1, 41] are assumed.

Next, we briefly describe and compare the known results on the exis-
tence of Brakke flow to that of the present paper. Given a smooth compact
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46 Lami KIM & Yoshihiro TONEGAWA

embedded hypersurface in general dimension, one has a smooth MCF un-
til the first time singularities occur. For n = 1, it is well known that the
curves stay embedded until they become convex and shrink to a point by
the results due to Gage-Hamilton [22] and Grayson [25] (see also [4] for
the elegant and short proof). For general dimensions, one has the notion
of viscosity solution [13, 16] which gives a family of closed sets as a unique
weak solution of the MCF even after the occurrence of singularities. It is
possible that the closed set may develop nontrivial interior afterwords, a
phenomenon called fattening, and it is not clear if the set is Brakke flow
after singularities appear in general. On the other hand, Evans and Spruck
proved that almost all level sets of viscosity solution are unit density Brakke
flows [17]. As a different track, there are other methods such as elliptic reg-
ularization [29] and phase field approximation via the Allen–Cahn equa-
tion [28, 44] to obtain rigorous global-in-time existence results of Brakke
flow. All of the above results use the ansatz that the MCF is represented
as a boundary of a single time-parametrized set, so that it is not possible
to handle grain boundaries with more than two grains in general. For more
general cases such as triple junction figure on a plane and the higher dimen-
sional analogues, all known results up to this point are based more or less
on a certain parametrized framework and the existence results cannot be
extended past topological changes in general. For three regular curves meet-
ing at a triple junction of 120 degrees, Bronsard and Reitich [10] proved
short-time existence and uniqueness using a theory of system of parabolic
PDE [42]. There are numerous results studying existence, uniqueness (or
non-uniqueness) and stability under various boundary conditions as well
as studies on the self-similar shrinking/expanding solutions, and we men-
tion [6, 11, 12, 20, 21, 23, 27, 31, 33, 35, 36, 39, 40]. Compared to the above
known results, our existence theorem does not require any parametrization
and there is no restriction on the dimension or configuration. The regular-
ity assumption put on the closed set Γ0 is countable n-rectifiability, which
allows wide variety of singularities, and the solution can undergo past topo-
logical changes. In this sense, even the results for the 1-dimensional case
are new in an essential way.
On the computational side of the MCF of grain boundaries, there are

enormous number of works on the simulations and algorithms, which are
far beyond the scope of this paper. Here we simply mention for a point of
reference that Brakke developed an interactive software Surface Evolver [9]
which handles variety of geometric flow problems including the MCF. See
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video clips of 1-dimensional MCF of grain boundaries of as many as N =
10000 in Brakke’s home page [7].
We end the introduction by describing the organization of the paper. In

Section 2, we state our basic notation and present preliminary materials
from geometric measure theory. In Section 3, we state the main existence
results and give an overview of the proof. Section 4 introduces notions of
open partition and a certain class of admissible functions as well as some
preliminary materials concerning varifold smoothing. Section 5 contains a
number of estimates on the approximation of smoothed mean curvature
vector essential to the construction of approximate solutions. Section 6
gives the actual construction of approximate solutions with good estimates
derived in Section 5. Section 7 and 8 are mostly independent from the
previous sections and prove compactness-type theorems for rectifiability
and integrality, respectively, of the limit varifold. Gathering all the results
up to this point, Section 9 proves that the family of limit measures is a
Brakke flow. Section 10 proves a certain continuity property of domains
of “grains”. Section 11 gives additional comments on the property of the
solution.

2. Notation and preliminaries

2.1. Basic notation

N, Q, R are the sets of natural numbers, rational numbers, real numbers,
respectively. We set R+ := {x ∈ R : x > 0}. We reserve n ∈ N for the
dimension of hypersurface and Rn+1 is the n + 1-dimensional Euclidean
space. For r ∈ (0,∞) and a ∈ Rn+1 define

Br(a) := {x ∈ Rn+1 : |x− a| 6 r}, Bnr (a) := {x ∈ Rn : |x− a| 6 r},

Ur(a) := {x ∈ Rn+1 : |x− a| < r}, Unr (a) := {x ∈ Rn : |x− a| < r}

and when a = 0 define Br := Br(0), Bnr := Bnr (0), Ur := Ur(0) and
Unr := Unr (0). For a subset A ⊂ Rn+1, intA is the set of interior points of
A, and closA denotes the closure of A. diamA is the diameter of A. For two
subsets A,B ⊂ Rn+1, define A4B := (A\B)∪ (B \A). For an open subset
U ⊂ Rn+1 let Cc(U) be the set of all compactly supported continuous
functions defined on U and let Cc(U ;Rn+1) be the set of all compactly
supported continuous vector fields. Indices l of Clc(U) and Clc(U ;Rn+1)
indicate continuous l-th order differentiability. For g ∈ C1(U ;Rn+1), we
regard ∇g(x) as an element of Hom(Rn+1;Rn+1). Similarly for g ∈ C2(U),
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48 Lami KIM & Yoshihiro TONEGAWA

we regard the Hessian matrix ∇2g(x) as an element of Hom(Rn+1;Rn+1).
For a Lipschitz function f , Lip (f) is the Lipschitz constant.

2.2. Notation related to measures

Ln+1 denotes the Lebesgue measure on Rn+1 and Hn denotes the n-
dimensional Hausdorff measure on Rn+1.H0 denotes the counting measure.
We use ωn := Hn(Un1 ) and ωn+1 := Ln+1(U1). The restriction of Hn to
a set A is denoted by HnbA, and when f is a Hn measurable function
defined on Rn+1, Hnbf is the weighted Hn by f . Let Bn+1 be the constant
appearing in Besicovitch’s covering theorem (see [18, §1.5.2]) on Rn+1.

For a Radon measure µ on Rn+1 and φ ∈ Cc(Rn+1), we often write µ(φ)
for

∫
Rn+1 φdµ. Let sptµ be the support of µ, i.e., sptµ := {x ∈ Rn+1 :

µ(Br(x)) > 0 for all r > 0}. By definition, it is a closed set. Let θ∗n(µ, x)
be defined by lim supr→0+ µ(Br(x))/(ωnrn) and let θn(µ, x) be defined as
limr→0+ µ(Br(x))/(ωnrn) when the limit exists. The set of µ measurable
and (locally) square integrable functions as well as vector fields is denoted
by L2(µ) (L2

loc(µ)). For a set A ⊂ Rn+1, χA is the characteristic function
of A. If A is a set of finite perimeter, ‖∇χA‖ is the total variation measure
of the distributional derivative ∇χA.

2.3. The Grassmann manifold and varifold

Let G(n + 1, n) be the space of n-dimensional subspaces of Rn+1. For
S ∈ G(n+1, n), we identify S with the corresponding orthogonal projection
of Rn+1 onto S. Let S⊥ ∈ G(n+ 1, 1) be the orthogonal complement of S.
For two elements A and B of Hom (Rn+1;Rn+1), define a scalar product
A · B := trace (A> ◦ B) where A> is the transpose of A and ◦ indicates
the composition. The identity of Hom (Rn+1;Rn+1) is denoted by I. Let
a ⊗ b ∈ Hom (Rn+1;Rn+1) be the tensor product of a, b ∈ Rn+1, i.e., as
an (n + 1) × (n + 1) matrix, the (i, j)-component is given by aibj where
a = (a1, . . . , an+1) and similarly for b. For A ∈ Hom (Rn+1;Rn+1) define

|A| :=
√
A ·A, ‖A‖ := sup{|A(x)| : x ∈ Rn+1, |x| = 1}.

For A ∈ Hom (Rn+1;Rn+1) and S ∈ G(n + 1, n), let |Λn(A ◦ S)| be the
absolute value of the Jacobian of the map AbS . If S is spanned by a set of
orthonormal basis v1, . . . , vn, then |Λn(A ◦S)| is the n-dimensional volume
of the parallelepiped formed by A(v1), . . . , A(vn). If we form a (n+ 1)× n
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matrix B with these vectors as the columns, we may compute |Λn(A ◦ S)|
as the square root of the sum of the squares of the determinants of the
n× n submarices of B, or we may compute it as

√
det (B> ◦B).

We recall some notions related to varifolds and refer to [1, 41] for more
details. Define Gn(Rn+1) := Rn+1×G(n+1, n). For any subset C ⊂ Rn+1,
we similarly define Gn(C) := C×G(n+1, n). A general n-varifold in Rn+1

is a Radon measure on Gn(Rn+1). The set of all general n-varifolds in
Rn+1 is denoted by Vn(Rn+1). For V ∈ Vn(Rn+1), let ‖V ‖ be the weight
measure of V , namely, for all φ ∈ Cc(Rn+1),

‖V ‖(φ) :=
∫

Gn(Rn+1)
φ(x) dV (x, S).

For a proper map f ∈ C1(Rn+1;Rn+1) define f#V as the push-forward
of varifold V ∈ Vn(Rn+1) (see [1, §3.2] for the definition). Given any Hn
measurable countably n-rectifiable set Γ ⊂ Rn+1 with locally finite Hn
measure, there is a natural n-varifold |Γ| ∈ Vn(Rn+1) defined by

|Γ|(φ) :=
∫

Γ
φ(x,Tann(Γ, x)) dHn(x)

for all φ ∈ Cc(Gn(Rn+1)). Here, Tann(Γ, x) ∈ G(n + 1, n) is the approx-
imate tangent space which exists Hn a.e. on Γ (see [3, §2.2.11]). In this
case, ‖|Γ|‖ = HnbΓ.
We say V ∈ Vn(Rn+1) is rectifiable if for all φ ∈ Cc(Gn(Rn+1)),

V (φ) =
∫

Γ
φ(x,Tann(Γ, x))θ(x) dHn(x)

for some Hn measurable countably n-rectifiable set Γ ⊂ Rn+1 and locally
Hn integrable non-negative function θ defined on Γ. The set of all rec-
tifiable n-varifolds is denoted by RVn(Rn+1). Note that for such varifold,
θn(‖V ‖, x) = θ(x), approximate tangent space as varifold exists and is equal
to Tann(Γ, x), Hn a.e. on Γ. The approximate tangent space is denoted by
Tann(‖V ‖, x). In addition, if θ(x) ∈ N for Hn a.e. on Γ, we say V is inte-
gral. The set of all integral n-varifolds in Rn+1 is denoted by IVn(Rn+1).
We say V is a unit density n-varifold if V is integral and θ = 1 Hn a.e. on
Γ, i.e., V = |Γ|.

2.4. First variation and generalized mean curvature

For V ∈ Vn(Rn+1) let δV be the first variation of V , namely,

(2.1) δV (g) :=
∫

Gn(Rn+1)
∇g(x) · S dV (x, S)
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for g ∈ C1
c (Rn+1;Rn+1). Let ‖δV ‖ be the total variation measure when it

exists. If ‖δV ‖ is absolutely continuous with respect to ‖V ‖, by the Radon–
Nikodym theorem, we have for some ‖V ‖ measurable vector field h(·, V )

(2.2) δV (g) = −
∫
Rn+1

g(x) · h(x, V ) d‖V ‖(x).

The vector field h(·, V ) is called the generalized mean curvature of V . For
any V ∈ IVn(Rn+1) with bounded first variation (so in particular when
h(x, V ) exists), Brakke’s perpendicularity theorem of generalized mean cur-
vature [8, Chapter 5] says that we have for V a.e. (x, S) ∈ Gn(Rn+1)

(2.3) S⊥(h(x, V )) = h(x, V ).

One may also understand this property in connection with C2 rectifiability
of varifold established in [38].

2.5. The right-hand side of the MCF equation

For any V ∈ Vn(Rn+1), φ ∈ C1
c (Rn+1;R+) and g ∈ C1

c (Rn+1;Rn+1),
define

(2.4) δ(V, φ)(g)

:=
∫

Gn(Rn+1)
φ(x)∇g(x) ·S dV (x, S) +

∫
Rn+1

g(x) ·∇φ(x) d‖V ‖(x).

As explained in [8, §2.10], δ(V, φ)(g) may be considered as a φ-weighted
first variation of V in the direction of g. Using φ∇g = ∇(φg) − g ⊗ ∇φ
and (2.1), we have

δ(V, φ)(g) = δV (φg) +
∫

Gn(Rn+1)
g(x) · (I − S)(∇φ(x)) dV (x, S)(2.5)

= δV (φg) +
∫

Gn(Rn+1)
g(x) · S⊥(∇φ(x)) dV (x, S).

When ‖δV ‖ is locally finite and absolutely continuous with respect to ‖V ‖,
(2.2) and (2.5) show

(2.6) δ(V, φ)(g) = −
∫
Rn+1

φ(x)g(x) · h(x, V ) d‖V ‖(x)

+
∫

Gn(Rn+1)
g(x) · S⊥(∇φ(x)) dV (x, S).
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Furthermore, if V ∈ IVn(Rn+1) with h(·, V ) ∈ L2
loc(‖V ‖), by approximat-

ing each component of h(·, V ) by a sequence of smooth functions, we may
naturally define

(2.7) δ(V, φ)(h(·, V )) :=
∫
Rn+1

−φ(x)|h(x, V )|2 +h(x, V ) ·∇φ(x) d‖V ‖(x).

Here, we also used (2.3). It is convenient to define δ(V, φ)(h(·, V )) when
some of the conditions above are not satisfied. Thus, we define (even if
h(·, V ) does not exist)

(2.8) δ(V, φ)(h(·, V )) := −∞

unless ‖δV ‖ is locally finite, absolutely continuous with respect to ‖V ‖,
V ∈ IVn(Rn+1) and h(·, V ) ∈ L2

loc(‖V ‖). Formally, if a family of smooth
n-dimensional surfaces {Γ(t)}t∈R+ moves by the velocity equal to the mean
curvature, then one can check that Vt = |Γ(t)| satisfies

(2.9) d

dt
‖Vt‖(φ(·, t)) 6 δ(Vt, φ(·, t))(h(·, Vt)) + ‖Vt‖

(
∂φ

∂t
(·, t)

)
for all φ = φ(x, t) ∈ C1

c (Rn+1 ×R+;R+). In fact, (2.9) holds with equality.
Conversely, if (2.9) is satisfied for all such φ, then one can prove that the
velocity of motion is equal to the mean curvature. The inequality in (2.9)
allows the sudden loss of measure and it is the source of general non-
uniqueness of Brakke’s formulation.

3. Main results

3.1. Weight function Ω

To include unbounded sets which may have infinite measures in Rn+1,
we choose a weight function Ω ∈ C2(Rn+1) satisfying

(3.1) 0 < Ω(x) 6 1, |∇Ω(x)| 6 c1Ω(x), ‖∇2Ω(x)‖ 6 c1Ω(x)

for all x ∈ Rn+1 where c1 ∈ R+ is a constant depending on the choice of
Ω. If one is interested in sets of finite Hn measure, one may choose

Ω(x) = 1

and c1 = 0 in this case. Another example is

Ω(x) = e−
√

1+|x|2 .

Note that the second condition of (3.1) restricts the behavior of Ω at
infinity in the sense that e−c1|x|Ω(0) 6 Ω(x) with c1 as in (3.1). Thus we
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52 Lami KIM & Yoshihiro TONEGAWA

cannot choose arbitrarily fast decaying Ω. Depending on the choice of Ω, we
may have different solutions in the end. Note that we are not so concerned
with the uniqueness of the flow in this paper.
We often use the following

Lemma 3.1. — Let c1 be as in (3.1). Then for x, y ∈ Rn+1, we have

(3.2) Ω(x) 6 Ω(y) exp(c1|x− y|).

3.2. Main existence theorems

The first theorem states that there exists a Brakke flow starting from Γ0.
The nontriviality is described subsequently.

Theorem 3.2. — Suppose that Γ0 ⊂ Rn+1 is a closed countably n-
rectifiable set whose complement Rn+1 \Γ0 consists of more than one con-
nected component and suppose

(3.3) HnbΩ(Γ0)
(

=
∫

Γ0

Ω(x) dHn(x)
)
<∞.

For some N > 2, choose a finite collection of non-empty open sets {E0,i}Ni=1
such that they are disjoint and ∪Ni=1E0,i = Rn+1 \ Γ0. Then there exists a
family {Vt}t∈R+ ⊂ Vn(Rn+1) with the following property.

(1) V0 = |Γ0|.
(2) For L1 a.e. t ∈ R+, Vt ∈ IVn(Rn+1) and h(·, Vt) ∈ L2(‖Vt‖bΩ).
(3) For all t > 0, ‖Vt‖(Ω) 6 HnbΩ(Γ0) exp(c21t/2) and∫ t

0
∫
Rn+1 |h(·, Vs)|2Ω d‖Vs‖ds <∞.

(4) For any 0 6 t1 < t2 <∞ and φ ∈ C1
c (Rn+1 × R+;R+), we have

(3.4) ‖Vt‖(φ(·, t))
∣∣∣t2
t=t1
6
∫ t2

t1

δ(Vt, φ(·, t))(h(·, Vt)) + ‖Vt‖
(
∂φ

∂t
(·, t)

)
dt.

The choice of E0,1, . . . , E0,N appears irrelevant here but there are more
properties as explained in Theorem 3.5. The assumption (3.3) allows various
possibilities for the choice of Γ0. If Hn(Γ0) <∞, then, we may work with
Ω = 1 and c1 = 0 as stated before. If Hn(Γ0 ∩ Br) 6 cer for some c > 0
and for all r > 0, we may choose Ω(x) = e−2

√
1+|x|2 with a suitable c1 > 0

and we may satisfy (3.3). By (2), for a.e. t, δ(Vt, φ(·, t))(h(·, Vt)) in (3.4) is
expressed by (2.7). Note that (3.4) is an integral version of (2.9).
For above {Vt}t∈R+ , we define the corresponding space-time Radon mea-

sure µ:
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Definition 3.3. — Define a Radon measure µ on Rn+1 × R+ by dµ =
d‖Vt‖dt, i.e., for φ ∈ Cc(Rn+1 × R+),∫

Rn+1×R+
φ(x, t) dµ(x, t) =

∫
R+

∫
Rn+1

φ(x, t) d‖Vt‖(x)dt.

We have the following relations between ‖Vt‖ and µ as well as a finiteness
of the support.

Proposition 3.4. — For all t > 0 and r > 0,

(3.5) spt ‖Vt‖ ⊂ {x : (x, t) ∈ sptµ} and Hn(Br∩{x : (x, t) ∈ sptµ}) <∞.

We next state the existence of open complements, which may be con-
sidered as moving grains and which prevent arbitrary loss of measure of
‖Vt‖.

Theorem 3.5. — Under the same assumptions of Theorem 3.2, there
exists a family of open sets {Ei(t)}t∈R+ for each i = 1, . . . , N with the
following property. Define Γ(t) := ∪Ni=1∂Ei(t).

(1) Ei(0) = E0,i for i = 1, . . . , N and Γ0 = Γ(0).
(2) E1(t), . . . , EN (t) are disjoint for each t ∈ R+.
(3) {x : (x, t) ∈ sptµ} = Rn+1 \ ∪Ni=1Ei(t) = Γ(t) for each t > 0.
(4) ‖Vt‖ > ‖∇χEi(t)‖ for each t ∈ R+ and i = 1, . . . , N .
(5) S(i) := {(x, t) : x ∈ Ei(t), t ∈ R+} is open in Rn+1 × R+ for each

i = 1, . . . , N .
(6) Fix i = 1, . . . , N , t ∈ R+, x ∈ Rn+1 and r > 0, and define

g(s) := Ln+1((Ei(t)4Ei(s)) ∩Br(x))

for s ∈ [0,∞). Then g ∈ C0, 1
2 ((0,∞)) ∩ C([0,∞)).

Since the Lebesgue measure of Ei(t) changes locally continuously by (6),
and the boundary measure bounds ‖Vt‖ from below by (4), one may con-
clude that ‖Vt‖ remains non-zero at least for some positive time. If Γ0 is
compact, ‖Vt‖ will vanish in finite time. If unbounded, it may stay non-zero
for all time.

We say that {Vt}t∈R+ is a unit density flow if Vt is a unit density varifold
for a.e. t ∈ R+. Under this unit density assumption, the results of partial
regularity theory of [8, 32, 45] (see also [34]) apply to this flow.

Theorem 3.6. — Let {Vt}t∈R+ be as in Theorem 3.2 and additionally
assume that it is a unit density flow. Then, for a.e. t ∈ R+, there exists
a closed set St ⊂ Rn+1 with the following property. We have Hn(St) = 0,
and for any x ∈ Rn+1 \ St, there exists a space-time neighborhood O(x,t)
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of (x, t) such that, either sptµ ∩ O(x,t) = ∅ or sptµ is a C∞ embedded
n-dimensional MCF in O(x,t).

For further properties of {Vt}t∈R+ , see Section 11. In particular, under a
mild measure-theoretic condition on Γ0 (see Section 11.2), Theorem 3.6 is
always applicable for an initial short time interval. Such general short-time
existence of partially regular flow is also new in all dimensions.

3.3. Heuristic description of the proof

It is worthwhile to summarize the main steps to prove the existence
of Brakke flow at this point. The proof may be roughly divided into two
phases, the first is the construction of sequence of time-discrete approxi-
mate flows, and the second is to prove that the limit satisfies the desired
properties of Brakke flow.

3.3.1. Construction of approximate flows

Starting from {E0,i}Ni=1 where Γ0 = ∪Ni=1∂E0,i, time-discrete approxi-
mate flows are constructed by alternating two steps. Let ∆tj be a small
time grid size which goes to 0 as j → ∞. The very first step is to map
{E0,i}Ni=1 by a Lipschitz map so that the image under this map almost min-
imizes n-dimensional measure of boundaries in a small length scale of order
j−2 but at the same time, keeping the structure of “Ω- finite open parti-
tion” (Definition 4.1). We introduce a certain admissible class of Lipschitz
functions called E-admissible functions for this purpose (Definition 4.3).
This “Lipschitz deformation step” (1st step) has a regularization effect in a
small length scale, which is essential to prove the rectifiability and integral-
ity of the limit flow. The map should also have an effect of de-singularizing
certain unstable singularities, even though we do not know how to utilize
it so far. After this first step, we next move the open partition by a smooth
approximate mean curvature which is computed by smoothing the varifold.
The length scale of smoothing is much smaller than that of Lipschitz de-
formation, and the time step ∆tj is even much smaller than the smoothing
length scale, so that the motion of this step remains very small and the
map is a diffeomorphism. We need to estimate how close the approxima-
tions are for various quantities and this takes up all of Section 5. We obtain
a number of estimates which are expected to hold for the limit flow and this
is a general guideline to keep in mind. After this “mean curvature motion
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step” (2nd step), we go back and do the 1st step, and then the 2nd step and
we keep moving open partitions by repeating these two steps alternatingly.
We make sure that we have the right estimates by an inductive argument
(Proposition 6.1).

3.3.2. Proof of properties of Brakke flow

Once we have a sequence of approximate flows with proper estimates,
such as the time semi-decreasing property and approximate motion law, we
see that there exists a subsequence which converges as measures on Rn+1

(not as varifolds at this point) for all t ∈ R+ (Proposition 6.4). We then
proceed to prove that the limit measures are rectifiable first (Section 7), and
then integral next (Section 8), for a.e. t. Because of the way they are con-
structed, for a.e. t, we know that the approximate mean curvatures are L2

bounded and they are almost minimizing in a small length scale. The latter
gives a uniform lower density ratio bound for the limit measure (Proposi-
tion 7.2), and since the L2 norm of mean curvature is lower-semicontinuous
under measure convergence, we are in a setting where Allard’s rectifiability
theorem applies. This gives rectifiability of the limit measure. Once this is
done, we can focus on generic points where the approximate tangent space
exists. Since we only have a control of L2 norms of approximate mean cur-
vature, not the exact mean curvature, some extra information on a small
length scale has to come in. This is provided by small tilt excess and al-
most minimizing properties, which show that the hypersurfaces look like a
finite number of layered hyperplanes in term of measure in a small length
scale (Lemma 8.1). This combined with some argument of Allard’s com-
pactness theorem of integral varifold shows that the density of the limit
flow is integer-valued wherever the approximate tangent space exists. Since
an approximate motion law is available, we show the limit flow satisfies the
exact motion law of Brakke flow (Section 9). We in addition need to ana-
lyze the behavior of open partitions using Huisken’s monotonicity formula
and the relative isoperimetric inequality in the end to make sure that the
desired properties in Theorem 3.5 hold (Section 10).

4. Further preliminaries for construction of approximate
flows

4.1. Ω-finite open partition

Definition 4.1. — A finite and ordered collection of sets E = {Ei}Ni=1
in Rn+1 is called an Ω-finite open partition of N elements if
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(a) E1, . . . , EN are open and mutually disjoint,
(b) HnbΩ(Rn+1 \ ∪Ni=1Ei) <∞,
(c) ∪Ni=1∂Ei is countably n-rectifiable.

The set of all Ω-finite open partitions of N elements is denoted by OPNΩ .

Remark 4.2. — Since Ω(x) > e−c1|x|Ω(0), (b) implies that, for any com-
pact set K ⊂ Rn+1, we have HnbK(Rn+1 \∪Ni=1Ei) <∞. Also, this implies

(4.1) Rn+1 \ ∪Ni=1Ei = ∪Ni=1∂Ei.

Any open set E ⊂ Rn+1 with Hn(∂E) < ∞ has finite perimeter and
‖∇χE‖ 6 Hnb∂E (see [3, Proposition 3.62]). By De Giorgi’s theorem, the
reduced boundary of E is countably n-rectifiable. On the other hand, it may
differ from the topological boundary ∂E in general and the assumption (c)
is not redundant.
Given E = {Ei}Ni=1 ∈ OP

N
Ω , we define

(4.2) ∂E := |∪Ni=1∂Ei| ∈ IVn(Rn+1)

which is a unit density varifold induced naturally from the countably n-
rectifiable set ∪Ni=1∂Ei. By (b), (4.1) and (4.2), we have ‖∂E‖(Ω) <∞ for
E ∈ OPNΩ .

4.2. E-admissible function and its push-forward map f?

Definition 4.3. — For E = {Ei}Ni=1 ∈ OP
N
Ω , a function f : Rn+1 →

Rn+1 is called E-admissible if it is Lipschitz and satisfies the following.
Define Ẽi := int (f(Ei)) for each i. Then

(a) {Ẽi}Ni=1 are mutually disjoint,
(b) Rn+1 \ ∪Ni=1Ẽi ⊂ f(∪Ni=1∂Ei),
(c) supx∈Rn+1 |f(x)− x| <∞.

Lemma 4.4. — For E = {Ei}Ni=1 ∈ OP
N
Ω , suppose that f is E-admissible.

Define Ẽ := {Ẽi}Ni=1 with Ẽi := int (f(Ei)). Then we have Ẽ ∈ OPNΩ .

Proof. — We need to check that Ẽ satisfies Definition 4.1 (a)–(c). {Ẽi}Ni=1
are open and mutually disjoint by Definition 4.3(a). By Definition 4.3(b),
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we have

(4.3) HnbΩ(Rn+1 \ ∪Ni=1Ẽi)

6 HnbΩ(f(∪Ni=1∂Ei))

6 (Lip(f))n
∫
∪N
i=1∂Ei

Ω(f(y)) dHn(y)

6 (Lip(f))n exp(c1 sup
y∈Rn+1

|f(y)− y|)HnbΩ(∪Ni=1∂Ei),

where we used (3.2). The last quantity is finite due to Definition 4.1(b)
and (4.1) for E and Definition 4.3(c) for f . Since ∪Ni=1∂Ei is countably n-
rectifiable, so is the Lipschitz image f(∪Ni=1∂Ei). Any subset of countably
n-rectifiable set is again countably n-rectifiable, thus by Definition 4.3(b)
and (4.1) for Ẽ , Ẽ satisfies Definition 4.1(c) as well. This concludes the
proof. �

Definition 4.5. — For E = {Ei}Ni=1 ∈ OP
N
Ω and E-admissible function

f , let Ẽ be defined as in Lemma 4.4. We define Ẽ to be the push-forward
of E by f and define

f?E := Ẽ ∈ OPNΩ .

Under the definition of f?, the unit density varifold ∂f?E (cf. (4.2)) is
|∪Ni=1∂Ẽi| and is in general different from the usual push-forward of varifold
f]∂E = f]|∪Ni=1∂Ei| in that it does not count the multiplicity of image under
the map. Moreover, ∂f?E is not defined as the varifold induced from the set
f(∪Ni=1∂Ei) in general. For example, if (int f(Ei)) ∩ f(∂Ei) is non-empty
(whose possibility is not excluded by Definition 4.3), it does not belong to
∪Ni=1∂Ẽi and thus f(∪Ni=1∂Ei) 6= ∪Ni=1∂Ẽi in this case.

4.3. Examples of f?E

It is worthwhile to see some simple examples of E and E-admissible func-
tions to see what to expect. The choice of this particular admissible class
characterizes general tendencies of what would happen to singularities. As
we explain in Section 4.5, we are interested in maps which reduce Hn mea-
sure of boundaries.

4.3.1. Two lines crossing with four different open sets

Consider the following Figure 4.1, where two lines are intersecting, and
E consists of four open sectors as shown. To reduce length of boundaries,
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one may consider a Lipschitz map f which vertically crushes triangle areas
of E1 and E3 to a horizontal line segment, shrinks the neighboring areas
next to them, and stretches some portion of E2 and E4 so that the map is
Lipschitz. The map reduces the length of boundaries, and also E-admissible
since f(∪4

i=1∂Ei) = ∪4
i=1∂Ẽi. This example indicates that, if we choose

f which locally reduces boundary measure, junctions of more than three
curves are likely to break up into triple junctions.

E3

E4

E2

(a)

E1 E3

E4

E2

(b)

Ẽ1 Ẽ3

Ẽ4

Ẽ2

(c)

E1

Figure 4.1.

4.3.2. Interior boundary

Suppose that we have only E1 as shown in Figure 4.2, which is the
complement of x-axis. For f , we may take a smooth map such that the
dotted region of the second figure is stretched downwards to hang over the
lower half. Then the portion of x-axis covered by this map will be interior
points of the image of E1 under f , thus we have Ẽ1 as shown in the third
figure. By considering such “stretching map”, we may even eliminate the
whole x-axis with arbitrarily small deformation. This example indicates
that interior boundary is likely to be eliminated under measure reducing
f . For this reason, as illustrated in Figure 4.3, if (a) is the initial data, the
line segment connecting two circles is likely to vanish instantly.

(a) (b) (c)

E1

E1

E1

E1 Ẽ1

Figure 4.2.
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Ẽ2

Ẽ1

E1

E1

(a) (b)

Ẽ3E2 E3

Figure 4.3.

4.3.3. Two lines crossing with two different open sets

The next example is similar to 4.3.1, but labeling is different as shown in
Figure 4.4. By using a Lipschitz map of 4.3.1 and then composing a map
of 4.3.2 to eliminate the horizontal line segment appearing in Figure 4.1(c),
we can obtain Figure 4.4(b). Thus, depending on the combination of do-
mains, we expect to have different behaviors.

(a) (b)

E1 E1

E2

E2

Ẽ1 Ẽ1

Ẽ2

Figure 4.4.

4.3.4. Radial projection

As in Figure 4.5, consider a Lipschitz map which radially projects the
annular region bounded by two dotted circles to the larger circle, with the
trace of map being a radial line emanating from x0. f expands the smaller
disc to fill the larger disc one-to-one. Outside the larger disc, f is identity.
This map is E-admissible since the new boundary is in f(∂E1). Note that
some portion of f(∂E1) does not become part of ∂Ẽ1 because it is mapped
to the interior of Ẽ2. Depending on how much length there is inside the
disc, the map reduces the length. This type of projection map is used when
we prove the rectifiability and integrality of the limit flow.
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Ẽ2

Ẽ2

Ẽ1

E1

E1

E2
E2

x0

(a) (b)

Figure 4.5.

4.4. Families Aj and Bj of test functions and vector fields

We define sets of test functions Aj and vector fields Bj for j ∈ N as

(4.4) Aj := {φ ∈ C2(Rn+1;R+) : φ(x) 6 Ω(x), |∇φ(x)| 6 j φ(x),

‖∇2φ(x)‖ 6 j φ(x) for all x ∈ Rn+1},

(4.5) Bj := {g ∈ C2(Rn+1;Rn+1) : |g(x)| 6 jΩ(x), ‖∇g(x)‖ 6 jΩ(x),

‖∇2g(x)‖ 6 jΩ(x) for all x ∈ Rn+1 and ‖Ω−1g‖L2(Rn+1) 6 j}.

Note that Ω ∈ Aj if j > max{1, c1}. Elements of Aj are strictly positive on
Rn+1 unless identically equal to 0. For V ∈ Vn(Rn+1) with ‖V ‖(Ω) <∞,
we have ‖V ‖(φ) < ∞ for φ ∈ Aj since φ 6 Ω from (4.4). For g ∈ Bj , we
naturally define δV (g) as

δV (g) :=
∫

Gn(Rn+1)
S · ∇g(x) dV (x, S)

which is finite and well-defined due to ‖∇g‖ 6 jΩ of (4.5).
Using (4.4), (3.2) and (4.5), the following can be seen easily.

Lemma 4.6. — For all x, y ∈ Rn+1, j ∈ N and φ ∈ Aj , we have

φ(x) 6 φ(y) exp(j|x− y|),(4.6)
|φ(x)− φ(y)| 6 j|x− y|φ(x) exp(j|x− y|),(4.7)

|φ(x)− φ(y)−∇φ(y) · (x− y)| 6 j|x− y|2φ(y) exp(j|x− y|).(4.8)
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Lemma 4.7. — Let c1 be as in (3.1). Then for all x, y ∈ Rn+1, j ∈ N
and g ∈ Bj , we have

(4.9) |g(x)− g(y)| 6 j|x− y|Ω(x) exp(c1|x− y|).

As these inequalities indicate, within a small distance of order 1/j, min-
imum and maximum values of φ are compatible up to some fixed constant
and this fact is used quite heavily in the following.

4.5. Area reducing Lipschitz deformation

Definition 4.8. — For E = {Ei}Ni=1 ∈ OP
N
Ω and j ∈ N, define E(E , j)

to be the set of all E-admissible functions f : Rn+1 → Rn+1 such that
(a) |f(x)− x| 6 1/j2 for all x ∈ Rn+1,
(b) Ln+1(Ẽi4Ei) 6 1/j for all i = 1, . . . , N and where {Ẽi}Ni=1 = f?E ,
(c) ‖∂f?E‖(φ) 6 ‖∂E‖(φ) for all φ ∈ Aj .

E(E , j) includes the identity map f(x) = x, thus it is not empty. We are
interested in this class with large j, so that (a) and (b) restrict f to be a
very small deformation. Since Ω ∈ Aj for all j > max{1, c1}, if f ∈ E(E , j)
with j > max{1, c1}, then we have

(4.10) ‖∂f?E‖(Ω) 6 ‖∂E‖(Ω).

Definition 4.9. — For E ∈ OPNΩ and j ∈ N, we define

(4.11) ∆j‖∂E‖(Ω) := inf
f∈E(E,j)

(‖∂f?E‖(Ω)− ‖∂E‖(Ω)).

In addition, for localized deformations, we define for a compact set C ⊂
Rn+1

(4.12) E(E , C, j) := {f ∈E(E , j) : {x : f(x) 6= x}∪{f(x) : f(x) 6= x} ⊂ C}

and

(4.13) ∆j‖∂E‖(C) := inf
f∈E(E,C,j)

(‖∂f?E‖(C)− ‖∂E‖(C)).

Since the identity map is in E(E , j) and E(E , C, j), ∆j‖∂E‖(Ω) and
∆j‖∂E‖(C) are always non-positive. They measure the extent to which
‖∂E‖ can be reduced under the Lipschitz deformation in the E-admissible
class. For E ∈ OPNΩ and j ∈ N, we state their basic properties.
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Lemma 4.10. — For compact sets C ⊂ C̃, we have

(4.14) ∆j‖∂E‖(C̃) 6 ∆j‖∂E‖(C)

and

(4.15) ∆j‖∂E‖(Ω)
6 (max

C
Ω){∆j‖∂E‖(C) + (1− exp(−c1diamC))‖∂E‖(C)}.

Proof. — By (4.12), E(E , C, j) ⊂ E(E , C̃, j). For any f ∈ E(E , C, j),
‖∂f?E‖(C̃) − ‖∂E‖(C̃) = ‖∂f?E‖(C) − ‖∂E‖(C) since fbC̃\C is identity
and f(C) ⊂ C. Then (4.14) follows from (4.13). For (4.15), take arbitrary
f ∈ E(E , C, j) and since f ∈ E(E , j), (4.11) and (4.12) give

(4.16) ∆j‖∂E‖(Ω)
6 ‖∂f?E‖(Ω)−‖∂E‖(Ω) = ‖∂f?E‖bC(Ω)−‖∂E‖bC(Ω)
6 (max

C
Ω)‖∂f?E‖(C)−(min

C
Ω)‖∂E‖(C)

6 (max
C

Ω){‖∂f?E‖(C)−‖∂E‖(C)+(1−exp(−c1diamC))‖∂E‖(C)}

where we used (minC Ω)/(maxC Ω) > exp(−c1diamC) which follows
from (3.2). By taking inf over E(E , C, j), we obtain (4.15). �

Lemma 4.11. — Suppose that {Ci}∞i=1 is a sequence of compact sets
which are mutually disjoint and suppose that C is a compact set with
∪∞i=1Ci ⊂ C and Ln+1(C) < 1/j. Then

(4.17) ∆j‖∂E‖(C) 6
∞∑
i=1

∆j‖∂E‖(Ci).

Proof. — By Lemma 4.10, if ∆j‖∂E‖(C) > −∞, then ∆j‖∂E‖(Ci) >
−∞ for all i. Let m ∈ N and ε ∈ (0, 1) be arbitrary. For all i 6 m, choose
fi ∈ E(E , Ci, j) such that ∆j‖∂E‖(Ci) + ε > ‖∂(fi)?E‖(Ci) − ‖∂E‖(Ci).
We define a map f : Rn+1 → Rn+1 by setting fbCi(x) = (fi)bCi(x) and
fbRn+1\∪m

i=1Ci
(x) = x. Since {Ci}mi=1 are disjoint, f is well-defined, Lipschitz

and E-admissible. Using Ln+1(C) < 1/j, one checks that f ∈ E(E , C, j).
Thus we have

∆j‖∂E‖(C) 6 ‖∂f?E‖(C)− ‖∂E‖(C)(4.18)

=
m∑
i=1
‖∂(fi)?E‖(Ci)− ‖∂E‖(Ci)

6 mε+
m∑
i=1

∆j‖∂E‖(Ci).
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By letting ε→ 0 first and letting m→∞, we obtain (4.17). �

Lemma 4.12 ([8, §4.10]). — If E = {Ei}Ni=1 ∈ OP
N
Ω , j ∈ N, C is a

compact set of Rn+1, f : Rn+1 → Rn+1 is a E-admissible function such
that
(a) {x : f(x) 6= x} ∪ {f(x) : f(x) 6= x} ⊂ C,
(b) |f(x)− x| 6 1/j2 for all x ∈ Rn+1,
(c) Ln+1(Ẽi4Ei) 6 1/j for all i = 1, . . . , N and where {Ẽi}Ni=1 = f?E ,
(d) ‖∂f?E‖(C) 6 exp(−j diamC) ‖∂E‖(C).

Then we have f ∈ E(E , C, j).

Proof. — We only need to check Definition 4.8(c). By condition (a),
‖∂f?E‖bRn+1\C= ‖∂E‖bRn+1\C . Suppose φ ∈ Aj . Then by (4.6)

‖∂f?E‖(φ)− ‖∂E‖(φ) = ‖∂f?E‖bC(φ)− ‖∂E‖bC(φ)
6 max

C
φ ‖∂f?E‖(C)−min

C
φ ‖∂E‖(C)

6 min
C

φ (exp(j diamC)‖∂f?E‖(C)− ‖∂E‖(C)) 6 0

where (d) is used in the last line. �

4.6. Smoothing function Φε

Let ψ ∈ C∞(Rn+1) be a radially symmetric function such that

(4.19)
ψ(x) = 1 for |x| 6 1/2, ψ(x) = 0 for |x| > 1,

0 6 ψ(x) 6 1, |∇ψ(x)| 6 3, ‖∇2ψ(x)‖ 6 9 for all x ∈ Rn+1.

Define for each ε ∈ (0, 1)

(4.20) Φ̂ε(x) := 1
(2πε2)n+1

2
exp

(
−|x|

2

2ε2

)
, Φε(x) := c(ε)ψ(x)Φ̂ε(x),

where the constant c(ε) is chosen so that

(4.21)
∫
Rn+1

Φε(x) dx = 1.

Since
∫
Rn+1 Φ̂ε(x) dx = 1 for any ε > 0 and Φ̂ε converges to the delta

function as ε→ 0+, there exists a constant c(n) depending only on n such
that

(4.22) 1 < c(ε) 6 c(n) for ε ∈ (0, 1) and lim
ε→0+

c(ε) = 1.

From the definitions of ψ and Φε, we have the following estimates.
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Lemma 4.13. — There exists a constant c depending only on n such
that, for ε ∈ (0, 1), we have

|∇Φε(x)| 6 |x|
ε2 Φε(x) + cχB1\B1/2(x) exp(−ε−1),(4.23)

‖∇2Φε(x)‖ 6 |x|
2

ε4 Φε(x) + c

ε2 Φε(x) + cχB1\B1/2(x) exp(−ε−1).(4.24)

Lemma 4.14. — With c(ε) as in (4.20), we have

(4.25) xΦε(x) + ε2∇Φε(x) = ε2c(ε)∇ψ(x)Φ̂ε(x).

The exponential smallness of the right-hand side of (4.25) will be of
critical importance in Proposition 5.4.

4.7. Smoothing of varifold [8, §4.3]

In this subsection, we consider a smoothing of varifold and derive various
estimates. For general distribution T , there is a notion of smoothing of T
using a duality, i.e., Φε ∗ T (φ) = T (Φε ∗ φ) for any φ ∈ C∞c (Rn+1). Here,
given a varifold V ∈ Vn(Rn+1), we smooth out with respect to only the
space variables and not the Grassmannian part.

Definition 4.15. — For V ∈ Vn(Rn+1), we define Φε ∗V ∈ Vn(Rn+1)
through

(4.26) (Φε ∗ V )(φ) := V (Φε ∗ φ)

=
∫

Gn(Rn+1)

∫
Rn+1

φ(x− y, S)Φε(y) dy dV (x, S)

for φ ∈ Cc(Gn(Rn+1)).

If ‖V ‖(Ω) <∞, we have ‖Φε ∗ V ‖(Ω) <∞ since

(4.27) ‖Φε ∗ V ‖(Ω) 6
∫

Gn(Rn+1)

∫
Rn+1

ec1Ω(x)Φε(y) dy dV (x, S)

= ec1‖V ‖(Ω)

by (3.2) and (4.21). Thus we have ‖Φε ∗V ‖(φ) <∞ for φ ∈ Aj as well. For
a general Radon measure µ on Rn+1, we similarly define a Radon measure
Φε ∗ µ. Φε ∗ µ may be identified with a smooth function on Rn+1 via the
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L2 inner product, because, for φ ∈ Cc(Rn+1),

(Φε ∗ µ)(φ) =
∫
Rn+1

∫
Rn+1

φ(y)Φε(x− y) dy dµ(x)(4.28)

=
∫
Rn+1

φ(y)
∫
Rn+1

Φε(x− y) dµ(x) dy

= <Φε ∗ µ, φ>L2(Rn+1),

and we may identify Φε ∗ µ ∈ C∞(Rn+1) with

(4.29) (Φε ∗ µ)(x) =
∫
Rn+1

Φε(y − x) dµ(y).

In a similar way, for general V ∈ Vn(Rn+1), we may define Φε ∗ δV as
a C∞ vector field as follows. Note that V may not have a bounded first
variation in general. For g ∈ C1

c (Rn+1;Rn+1), Φε ∗ δV should be defined to
satisfy

(4.30)
∫
Rn+1

(Φε ∗ δV )(x) · g(x) dx

= δV (Φε ∗ g)

=
∫

Gn(Rn+1)
S · ((∇Φε ∗ g)(x)) dV (x, S)

=
∫
Rn+1

g(y) ·
∫

Gn(Rn+1)
S(∇Φε(x− y)) dV (x, S)dy.

The equality (4.30) motivates the definition of Φε ∗δV as a C∞ vector field

(4.31) (Φε ∗ δV )(x) :=
∫

Gn(Rn+1)
S(∇Φε(y − x)) dV (y, S).

Lemma 4.16. — For V ∈ Vn(Rn+1), we have

Φε ∗ ‖V ‖ = ‖Φε ∗ V ‖,(4.32)

Φε ∗ δV = δ(Φε ∗ V ).(4.33)
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Proof. — For φ ∈ Cc(Rn+1), we have∫
Rn+1

φd‖Φε ∗ V ‖ =
∫

Gn(Rn+1)
φ(x) d(Φε ∗ V )(x, S)(4.34)

=
∫

Gn(Rn+1)
(Φε ∗ φ)(x) dV (x, S) (by (4.26))

=
∫
Rn+1

φ(y)
∫
Rn+1

Φε(x− y) d‖V ‖(x) dy

=
∫
Rn+1

φd(Φε ∗ ‖V ‖) (by (4.28)).

Thus we proved (4.32). For g ∈ C1
c (Rn+1;Rn+1), by (4.30),

(4.35) (Φε ∗ δV )(g) = δV (Φε ∗ g) =
∫

Gn(Rn+1)
S · (Φε ∗ ∇g)(x) dV (x, S)

while by (4.26),

(4.36) δ(Φε ∗ V )(g) =
∫

Gn(Rn+1)
Φε ∗ (S · ∇g)(x) dV (x, S).

Since Φε∗ commutes with S ·, (4.35) and (4.36) prove (4.33). �

The following is used when we need to deal with error terms in the next
section.

Lemma 4.17. — For V ∈ Vn(Rn+1) with ‖V ‖(Ω) < ∞ and for all
x ∈ Rn+1 and r > 0, we have

Ω(x)‖V ‖(Br(x)) 6 ec1r‖V ‖(Ω),(4.37) ∫
Rn+1

Ω(x)‖V ‖(Br(x)) dx 6 ωn+1e
c1rrn+1‖V ‖(Ω).(4.38)

Proof. — By (3.2), for y ∈ Br(x), we have Ω(x) 6 Ω(y)ec1r, thus

Ω(x)‖V ‖(Br(x)) 6
∫
Br(x)

Ω(y)ec1r d‖V ‖(y) 6 ec1r‖V ‖(Ω),

proving (4.37). Similarly, since χBr(x)(y) = χBr(y)(x),∫
Rn+1

Ω(x)‖V ‖(Br(x)) dx =
∫
Rn+1

∫
Rn+1

Ω(x)χBr(x)(y) dx d‖V ‖(y)

=
∫
Rn+1

∫
Br(y)

Ω(x) dx d‖V ‖(y)

6 ωn+1e
c1rrn+1

∫
Rn+1

Ω(y) d‖V ‖(y)

= ωn+1e
c1rrn+1‖V ‖(Ω),

proving (4.38). �

ANNALES DE L’INSTITUT FOURIER



ON THE MEAN CURVATURE FLOW OF GRAIN BOUNDARIES 67

5. Smoothed mean curvature vector hε(·, V )

Given V ∈ Vn(Rn+1), if the first variation δV is bounded and absolutely
continuous with respect to ‖V ‖, the Radon–Nikodym derivative h(·, V ) =
−δV/‖V ‖ defines the generalized mean curvature vector of V as in (2.2).
Here, even for V with unbounded first variation, we want to have a smooth
analogue of h(·, V ) to construct an approximate mean curvature flow. Thus
we define a smoothed mean curvature vector hε(·, V ) for ε ∈ (0, 1) by

(5.1) hε(·, V ) := −Φε ∗
(

Φε ∗ δV
Φε ∗ ‖V ‖+ εΩ−1

)
.

We may often write hε(·, V ) as hε for simplicity. Note that this is a well-
defined smooth vector field; since Ω−1 > 1 by (3.1), the denominator is
strictly positive. Formally, as ε → 0+, hε will be more and more concen-
trated around spt ‖V ‖ and we expect that hε(·, V ) converges in a suit-
able sense to h(·, V ), as long as there are some suitable bounds. The term
“smoothed mean curvature vector” is used in [8], but we should warn the
reader that it may happen that the generalized mean curvature h(·, V ) may
not exist in general while hε(·, V ) is always well-defined. We also point out
that there is a difference from [8] that we have the extra εΩ−1 term to avoid
division by 0 (see [8, p. 39]). In [8], Φε ∗ ‖V ‖ (with a different and more
complicated Φε, see [8, p. 37]) is prepared so that it is everywhere positive
on Rn+1 unless ‖V ‖(Ω) = 0. Though it is a simple modification, various
computations are clearly tractable compared to [8]. After some reading, one
must admit that the corresponding computations in [8] are discouragingly
difficult to follow in the original form. In the following, we also use the
notation

(5.2) h̃ε := − Φε ∗ δV
Φε ∗ ‖V ‖+ εΩ−1

for simplicity and note that hε = Φε ∗ h̃ε.

5.1. Rough pointwise estimates on hε(·, V )

Lemma 5.1. — There exists a constant ε1 ∈ (0, 1) depending only on
n, c1 and M with the following property. Suppose V ∈ Vn(Rn+1) with
‖V ‖(Ω) 6M and ε ∈ (0, ε1). Then, for all x ∈ Rn+1, we have

|h̃ε(x, V )| 6 2ε−2, |hε(x, V )| 6 2ε−2,(5.3)

‖∇hε(x, V )‖ 6 2ε−4,(5.4)

‖∇2hε(x, V )‖ 6 2ε−6.(5.5)
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Proof. — First by (4.31) and (4.23), we have

|(Φε ∗ δV )(x)| 6
∫
B1(x)

|y − x|
ε2 Φε(y − x) + c(n) exp(−ε−1) d‖V ‖(y)(5.6)

6 ε−2(Φε ∗ ‖V ‖)(x) + c(n) exp(−ε−1)‖V ‖(B1(x)),

where c(n) is as in Lemma 4.13. Combining (5.6) and (4.37), we obtain

(5.7) |Φε ∗ δV |
Φε ∗ ‖V ‖+ εΩ−1 6 ε

−2 + c(n)Mε−1 exp(c1 − ε−1).

Choose ε1 so that c(n)Mε exp(c1−ε−1) 6 1 if ε ∈ (0, ε1). Now recalling Φε∗
1 = 1 and (5.1), we obtain (5.3) from (5.7). For (5.4), we note that |∇Φε| ∗
1 6 ε−2 + c(n) exp(−ε−1)ωn by (4.23). Thus using (5.7) and choosing an
appropriate ε1, we obtain (5.4). Using (4.24), we similarly obtain (5.5). �
The following quantity plays the role of Ω-weighted “approximate L2-

norm” of smoothed mean curvature vector. The reason is that, roughly
speaking, we expect that∫

|hε(·, V )|2 d‖V ‖ ≈
∫

|Φε ∗ δV |2

(Φε ∗ ‖V ‖+ εΩ−1)2 d(Φε ∗ ‖V ‖)

≈
∫

|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dx.

Lemma 5.2. — For V ∈ Vn(Rn+1) with ‖V ‖(Ω) <∞ and ε ∈ (0, ε1),∫
Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dx <∞.

Proof. — The claim follows from (5.7), (5.6), (4.38), (4.27) and (4.32).
�

5.2. L2 approximations

This subsection establishes various error estimates of approximations.

Proposition 5.3. — There exists a constant ε2 ∈ (0, 1) depending only
on n, c1 and M such that, for any g ∈ Bj , V ∈ Vn(Rn+1) with ‖V ‖(Ω) 6
M , j ∈ N, ε ∈ (0, ε2) with

(5.8) j 6
1
2ε
− 1

6 ,
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we have

(5.9)
∣∣∣∣∫

Rn+1
hε · g d‖V ‖+

∫
Rn+1

(Φε ∗ δV ) · g dy
∣∣∣∣

6 ε
1
4

(∫
Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dy

) 1
2

.

Note that one can draw an analogy between (5.9) and (2.2).

Proof. — By (5.1) and (5.2), we have∫
Rn+1

hε · g d‖V ‖ =
∫
Rn+1

(Φε ∗ h̃ε) · g d‖V ‖(5.10)

=
∫
Rn+1

h̃ε(y) ·
∫
Rn+1

Φε(· − y)g(·) d‖V ‖dy.

We may also rewrite using the notation (5.2)

(5.11)
∫
Rn+1

(Φε ∗ δV ) · g dy = −
∫
Rn+1

h̃ε(Φε ∗ ‖V ‖+ εΩ−1) · g dy.

Summing (5.10) and (5.11), we obtain

(5.12)
∣∣∣∣∫

Rn+1
hε · g d‖V ‖+

∫
Rn+1

(Φε ∗ δV ) · g dy
∣∣∣∣

6
∫
Rn+1
|g(y)||h̃ε(y, V )|εΩ−1(y) dy +

∫
Rn+1
|h̃ε(y, V )|

×
∣∣∣∣∫

Rn+1
Φε(x− y)g(x) d‖V ‖(x)− (Φε ∗ ‖V ‖)(y)g(y)

∣∣∣∣ dy
=: I1 + I2.

By Hölder’s inequality and (4.5),

(5.13) I1 6 ε
(∫

Rn+1
|g|2Ω−2 dy

)1
2
(∫

Rn+1
|h̃ε|2 dy

)1
2

6 jε

(∫
Rn+1
|h̃ε|2 dy

)1
2

.

Recalling (5.2), (5.13) in particular gives

(5.14) I1 6 jε
1
2

(∫
Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dy

) 1
2

.
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For I2, using (4.9) for g ∈ Bj ,

(5.15)
∣∣∣∣∫

Rn+1
Φε(· − y)g(·) d‖V ‖ − (Φε ∗ ‖V ‖)g

∣∣∣∣
=
∣∣∣∣∫

Rn+1
(g(x)− g(y))Φε(x− y) d‖V ‖(x)

∣∣∣∣
6 jec1Ω(y)

∫
B1(y)

|x− y|Φε(x− y) d‖V ‖(x).

Using the property of Φε being exponentially small away from the origin,
we have

(5.16) sup
x∈B1(y)\B√ε(y)

|x− y|Φε(x− y) 6 c(n)ε−n−1 exp(−(2ε)−1) =: cε.

Thus (5.15) and (5.16) give

(5.17) I2 6 je
c1ε

1
2

∫
Rn+1

Ω |h̃ε|(Φε ∗ ‖V ‖) dy

+ jec1cε

∫
Rn+1

Ω |h̃ε| ‖V ‖(B1(y)) dy =: I2,a + I2,b.

For I2,a, use Hölder’s inequality to obtain

(5.18) I2,a 6 je
c1ε

1
2

(∫
Rn+1
|h̃ε|2(Φε ∗ ‖V ‖)Ω dy

) 1
2

((Φε ∗ ‖V ‖)(Ω))
1
2 .

Substitution of (4.27) (with (4.32)) into (5.18) gives

(5.19) I2,a 6 je
2c1ε

1
2

(∫
Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dy

) 1
2

M
1
2 .

For I2,b, by Hölder’s inequality,
(5.20)

I2,b 6 je
c1cε

(∫
Rn+1

|Φε ∗δV |2Ω
Φε ∗‖V ‖+εΩ−1 dy

)1
2
(∫

Rn+1

‖V ‖(B1(y))2Ω
Φε ∗‖V ‖+εΩ−1 dy

)1
2

.

Using (4.37), we have

(5.21)
∫
Rn+1

‖V ‖(B1(y))2Ω
Φε ∗ ‖V ‖+ εΩ−1 dy 6 ε

−1ec1M

∫
Rn+1
‖V ‖(B1(y))Ω dy.

Then (5.20), (5.21) and (4.38) prove

(5.22) I2,b 6 je
2c1cεε

− 1
2ω

1
2
n+1M

(∫
Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dy

) 1
2

.

Combining (5.12), (5.14), (5.17), (5.19), (5.22), (5.8) and choosing ε2 ap-
propriately depending only on n, c1 and M , we obtain (5.9). �
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Proposition 5.4. — There exists a constant ε3 ∈ (0, 1) depending only
on n, c1 and M with the following property. For V ∈ Vn(Rn+1) with
‖V ‖(Ω) 6M , j ∈ N, φ ∈ Aj and ε ∈ (0, ε3) with (5.8), we have

(5.23) |δV (φhε) +
∫
Rn+1

φ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dx|

6 ε
1
4

(∫
Rn+1

φ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dx+ 1
)

and

(5.24)
∫
Rn+1
|hε|2φd‖V ‖ 6

∫
Rn+1

φ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 (1 + ε
1
4 ) dx+ ε

1
4 .

Note that (5.23) measures a deviation from δV (φh) = −
∫
φ|h|2 d‖V ‖,

which is (2.2) with g = φh if all quantities are well-defined. We use (5.24)
when we prove the lower semicontinuity of L2-norm of mean curvature
vector.
Proof. — From the definition of the first variation, we have

δV (φhε) =
∫

Gn(Rn+1)
∇(φhε) · S dV (·, S)

=
∫

Gn(Rn+1)
(φ∇hε +∇φ⊗ hε) · S dV (·, S)

=
∫

Gn(Rn+1)

∫
Rn+1

(φ(x)∇Φε(x− y)

+∇φ(x)Φε(x− y))⊗ h̃ε(y) · S dydV (x, S)

(5.25)

and by (4.31),∫
Rn+1

φ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dx(5.26)

= −
∫
Rn+1

φh̃ε · (Φε ∗ δV ) dy

= −
∫
Rn+1

∫
Gn(Rn+1)

φ(y)S(∇Φε(x− y)) · h̃ε(y) dV (x, S)dy.

By summing (5.25) and (5.26), we obtain

(5.27) δV (φhε) +
∫
Rn+1

φ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dx

=
∫
Rn+1

∫
Gn(Rn+1)

(
(φ(x)− φ(y))S(∇Φε(x− y))

+ Φε(x− y)S(∇φ(x))
)
dV (x, S) · h̃ε(y) dy.
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To continue, we carry out a second order approximation of φ and interpolate
the right-hand side of (5.27) by defining (all integrations are over Rn+1 ×
Gn(Rn+1))

I1 :=
∫∫

(φ(x)− φ(y)−∇φ(y) · (x− y))

S(∇Φε(x− y)) dV (x, S) · h̃ε(y) dy,

I2 :=
∫∫

Φε(x− y)S(∇φ(x)−∇φ(y)) dV (x, S) · h̃ε(y) dy,

I3 :=
∫∫
∇φ(y) · (x− y)S(∇Φε(x− y))

+ Φε(x− y)S(∇φ(y)) dV (x, S) · h̃ε(y) dy

(5.28)

so that I1 + I2 + I3 equals to (5.27). In addition, we define

(5.29) I4 := −ε2
∫∫

S[∇x(∇φ(y) · ∇Φε(x− y))] dV (x, S) · h̃ε(y) dy,

where ∇x indicates (for clarity) that the differentiation is with respect to
x variables. In the following, we estimate I1, I2, I3 − I4 and I4.

Estimate of I1. — We use (4.8) to squeeze out a |x−y|2 term to deal with
ε−2 term coming from ∇Φε. Then we separate the domain of integration
to B

ε
5
6

(y) and the complement. On the latter, Φε(· − y) is exponentially
small with respect to ε. With this in mind, we have by (4.8) and (4.23)
that

|I1| 6 j
∫

(|h̃ε|φ)(y)
∫
ej|·−y||· − y|2(5.30) (

|· − y|
ε2 Φε(· − y) + c(n)e−ε

−1
χB1(y)

)
d‖V ‖dy

6 jejε
5
6 ε

1
2

∫
(|h̃ε|φ)(y)

∫
Φε(· − y) d‖V ‖dy(
|x− y|3

ε2 6 ε
1
2 on B

ε
5
6

(y) is used
)

+ jejc(n)ε−n−3e−
ε
− 1

3
2

∫
Rn+1
‖V ‖(B1(y))|h̃ε(y)|Ω(y) dy

+ jejc(n)e−ε
−1
∫
Rn+1
‖V ‖(B1(y))|h̃ε(y)|Ω(y) dy.
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The integration of the first term of (5.30) may be estimated as

(5.31)
∫
|h̃ε|φ

∫
Φε(· − y) d‖V ‖dy

=
∫
Rn+1

(Φε ∗ ‖V ‖)|h̃ε|φdy

6 ((Φε ∗ ‖V ‖)(Ω))
1
2

(∫
Rn+1

(Φε ∗ ‖V ‖)|h̃ε|2φdy
) 1

2

6 (ec1M)
1
2

(∫
Rn+1

(Φε ∗ ‖V ‖)|h̃ε|2φdy
) 1

2

where we used (4.27) and (4.32). Use (5.3) and (4.38) for the second and
third terms of (5.30). Combined with (5.31), then, we have some c depend-
ing only on c1, M and n such that

|I1| 6 jejε
5
6 ε

1
2 (ec1M) 1

2

(∫
Rn+1

(Φε ∗ ‖V ‖)|h̃ε|2φdy
) 1

2

+ jcej−ε
− 1

6(5.32)

6 jε
1
2

∫
Rn+1

φ|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy + jcε
1
2 + jce−

1
2 ε
− 1

6 ,

where we also used (5.8).

Estimate of I2. — By the similar manner, we estimate I2. Note that
∇Φε is not present while we have only |∇φ(x)−∇φ(y)| 6 j|x−y|φ(x)ej|x−y|
this time. We separate the domain of integration to B

ε
1
2

(y) and the com-
plement, and estimate just like I1 to obtain (5.32) for I2 in place of I1. We
omit the detail since it is repetitive.

Estimate of I3−I4. — The first point is that the integrand with respect
to V of I3 can be expressed as

(5.33) ∇φ(y) · (x− y)S(∇Φε(x− y)) + Φε(x− y)S(∇φ(y))
= S[∇φ(y)Φε(x− y) +∇φ(y) · (x− y)∇Φε(x− y)]
= S[∇x((x− y) · ∇φ(y)Φε(x− y))].

The function (x−y)Φε(x−y) may be replaced by −ε2∇Φε(x−y) with expo-
nentially small error due to (4.25). So we first check that this replacement
produces small error indeed. By (5.33),

(5.34) I3 − I4 =
∫∫

S[∇x(∇φ(y) · c(ε)ε2∇ψ(x− y)Φ̂ε(x− y))]

dV (x, S) · h̃ε(y) dy.
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On the support of ∇ψ, Φ̂ε is of the order of e−ε−2 , thus estimating as in
the second and third terms of (5.30), we obtain from (5.34) and (4.4) that

(5.35) |I3 − I4| 6 jc(n, c1,M)e−ε
−1
.

Estimate of I4. — To be clear about the indices, the i-th component of
the integrand of I4 with respect to V is (the same indices imply summation
over 1 to n+ 1)

(5.36) Sij∇xj (∇ylφ(y)∇xlΦε(x− y)) = −∇ylφ(y)∇yl(Sij∇xjΦε(x− y)).

Recalling (4.31) and writing the i-th component of Φε ∗ δV as (Φε ∗ δV )i,
(5.36) shows

I4 = ε2
∫
Rn+1

∇φ · ∇(Φε ∗ δV )i(h̃ε)i dy(5.37)

= −ε
2

2

∫
Rn+1

∇φ · ∇|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy.

Here, we want to carry out one integration by parts for I4. Let ψr be a cut-
off function such that ψr(x) = 1 for x ∈ Br/2, ψr(x) = 0 for x ∈ Rn+1 \Br
and |∇ψr(x)| 6 3/r. For example, with ψ defined in (4.19), we may set
ψr(x) := ψ(x/r). Then we have

(5.38)
∫
Rn+1

∇φ · ∇|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy

= lim
r→∞

∫
Rn+1

ψr
∇φ · ∇|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy

= −
∫
Rn+1

∇ ·
(

∇φ
Φε ∗ ‖V ‖+ εΩ−1

)
|Φε ∗ δV |2 dy

− lim
r→∞

∫
Rn+1

(∇ψr · ∇φ)|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy.

For the second term of (5.38), we use (5.2), (5.3) and (4.4) to obtain

(5.39) |
∫
Rn+1

(∇ψr · ∇φ)|Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy| 6 2jε−2
∫
Rn+1
|∇ψr||Φε ∗ δV |Ω dy.

By (5.6) and also noticing (Φε ∗ ‖V ‖)(x) 6 c(n, ε)‖V ‖(B1(x)), with a suit-
able constant c(n, ε), we have

(5.40)
∫
Rn+1
|∇ψr||Φε ∗ δV |Ω dy 6

c(n, ε)
r

∫
Br\Br/2

‖V ‖(B1(x))Ω(x) dx.
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By (5.38)–(5.40) and (4.38), we may justify the integration by parts for I4
on Rn+1. Hence,

|I4| =
∣∣∣∣ε2

2

∫
Rn+1

∇ ·
(

∇φ
Φε ∗ ‖V ‖+ εΩ−1

)
|Φε ∗ δV |2 dy

∣∣∣∣
6
ε2

2

∫
Rn+1

(
((n+1)j+c1j)φ
Φε ∗‖V ‖+εΩ−1 + jφ|∇Φε ∗‖V ‖|

(Φε ∗‖V ‖+εΩ−1)2

)
|Φε ∗δV |2 dy,

(5.41)

where we also used |∆φ| 6 (n + 1)jφ and εΩ−2|∇φ · ∇Ω|(Φε ∗ ‖V ‖ +
εΩ−1)−1 6 c1jφ due to (3.1) and (4.4). To estimate the second term
of (5.41), we have

(5.42) |∇Φε ∗‖V ‖(y)|

6
∫
Rn+1
|∇Φε(x− y)| d‖V ‖(x)

6
∫
Rn+1

|x−y|
ε2 Φε(x−y) d‖V ‖(x)+ce−ε

−1
‖V ‖(B1(y))

6 ε−
3
2 Φε ∗ ‖V ‖(y) + ce−ε

− 1
2 ‖V ‖(B1(y))

where we split the integration of the first term into B
ε

1
2

(y) and the com-
plement as in the case of I1, and also used (4.23). By substituting (5.42)
into (5.41) and recalling estimates (4.38) and (5.7), with a suitable constant
c depending only on c1, M and n, we obtain

(5.43) |I4| 6 cjε
1
2

∫
Rn+1

φ |Φε ∗ δV |2

Φε ∗ ‖V ‖+ εΩ−1 dy + cje−ε
− 1

6 .

Combining (5.32), remark for the estimate of I2, (5.35), (5.43) and (5.8),
we obtain (5.23) by suitably restricting ε3.
For the proof of (5.24), by (5.2) and hε = Φε ∗ h̃ε, we have∫

Rn+1
|hε|2φd‖V ‖ =

∫
Rn+1
|Φε ∗ h̃ε|2φd‖V ‖(5.44)

6
∫
Rn+1

φ (Φε ∗ |h̃ε|2) d‖V ‖

=
∫
Rn+1
|h̃ε(y)|2

∫
Rn+1

φ(x)Φε(x−y) d‖V ‖(x)dy.
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We then use (4.7) to conclude

(5.45)
∫
Rn+1

φ(x)Φε(x− y) d‖V ‖(x)

6 φ(y)(Φε ∗‖V ‖)(y)+jφ(y)
∫
Rn+1

ej|x−y||x−y|Φε(x−y) d‖V ‖(x)

while the last term of (5.45) may be estimated by separating the integration
over B

ε
1
2

(y) and the complement as

(5.46)
∫
Rn+1

ej|x−y||x− y|Φε(x− y) d‖V ‖(x)

6 ε
1
2 ejε

1
2 (Φε ∗ ‖V ‖)(y) + c(n)ej−ε

− 1
2 ‖V ‖(B1(y)).

Substitutions of (5.45) and (5.46) into (5.44) (and use (4.4) and (5.8)) give

(5.47)
∫
Rn+1
|hε|2φd‖V ‖ 6

∫
Rn+1
|h̃ε|2

{
(Φε ∗ ‖V ‖)φ(1 + jeε

1
2 )

+ jc(n)e− 1
2 ε
− 1

2 Ω(y)‖V ‖(B1(y))
}
dy.

Since |h̃ε|2 6 4ε−4 by (5.3), the last term of (5.47) may be bounded by
jc(n, c1,M)ε−4e−

1
2 ε
− 1

2 , also using (4.38). By choosing an appropriate ε3
depending only on n, c1 andM , and again using (5.8), we obtain (5.24). �

Proposition 5.5. — There exists ε4 ∈ (0, 1) depending only on n, c1
andM with the following property. Suppose V ∈ Vn(Rn+1) with ‖V ‖(Ω) 6
M , ε ∈ (0, ε4), g ∈ Bj and j ∈ N satisfying (5.8). Then we have

(5.48)
∣∣∣∣∫

Rn+1
hε ·g d‖V ‖+δV (g)

∣∣∣∣ 6 ε 1
4+ε 1

4

(∫
Rn+1

|Φε ∗δV |2Ω
Φε ∗‖V ‖+εΩ−1 dx

)1
2

.

Proof. — By (4.30) and a similar estimate as (4.9) for ∇g, we have

(5.49)
∣∣∣∣∫

Rn+1
(Φε ∗ δV ) · g dy − δV (g)

∣∣∣∣
= |δV (Φε ∗ g)− δV (g)|

6
∫
Rn+1
|∇(Φε ∗ g)−∇g| d‖V ‖

6 cj
∫
Rn+1

∫
Rn+1
|x− y|Φε(x− y)Ω(x) d‖V ‖(x)dy

6 cjε
1
2 ‖V ‖(Ω),
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where we estimated as in (5.17) and c is a constant depending only on n
and c1. Combining (5.9), (5.49), (5.8) and restricting ε4 6 ε2 depending
only on n, c1 and M further, we obtain (5.48). �

5.3. Curvature of limit

By the estimates in the previous subsection, we obtain the following

Proposition 5.6. — Suppose that we have {Vj}∞j=1 ⊂ Vn(Rn+1) with

(1) supj‖Vj‖(Ω) <∞,

(2) lim infj→∞
∫
Rn+1

|Φεj ∗δVj |
2Ω

Φεj ∗‖Vj‖+εjΩ−1 dx <∞,
(3) limj→∞ εj = 0.

Then there exists a converging subsequence {Vjl}∞l=1, and the limit V ∈
Vn(Rn+1) has a generalized mean curvature h(·, V ) with

(5.50)
∫
Rn+1
|h(·, V )|2φd‖V ‖ 6 lim inf

l→∞

∫
Rn+1

|Φεjl ∗ δVjl |
2φ

Φεjl ∗ ‖Vjl‖+ εjlΩ−1 dx

for any φ ∈ ∪i∈NAi.

Proof. — By (1), we may choose a subsequence {Vjl}∞l=1 converging to a
limit V ∈ Vn(Rn+1) and so that the integrals in (2) are uniformly bounded
for this subsequence as well. Fix φ ∈ Ai and consider a Hilbert space

Xφ :=
{
g = (g1, . . . , gn+1); g ∈ L2

loc(‖V ‖),
∫
Rn+1
|g|2φ−1 d‖V ‖ <∞

}
equipped with inner product (f, g)Xφ :=

∫
Rn+1 f · g φ−1 d‖V ‖. Recall that

φ > 0 on Rn+1, and C∞c (Rn+1;Rn+1) is a dense subspace in Xφ. Fix
arbitrary g ∈ C∞c (Rn+1;Rn+1). Corresponding to g, there exists j′ ∈ N
such that g ∈ Bj′ . By Proposition 5.5 with j = j′ and combined with (1)
and (2), we have

(5.51) lim
l→∞

δVjl(g) = − lim
l→∞

∫
Rn+1

hεjl (·, Vjl) · g d‖Vjl‖.
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The left-hand side is equal to δV (g) by the varifold convergence. For φ ∈ Ai,
we have by (5.24) (with j = i) and (2) that, writing hεjl = hεjl (·, Vjl),

− lim
l→∞

∫
Rn+1

hεjl · g d‖Vjl‖(5.52)

6 lim inf
l→∞

(∫
Rn+1
|hεjl |

2φd‖Vjl‖
)1

2
(∫

Rn+1
|g|2φ−1 d‖Vjl‖

)1
2

6

(
lim inf
l→∞

∫
Rn+1

φ|Φεjl ∗δVjl |
2

Φεjl ∗‖Vjl‖+εjlΩ−1 dx

)1
2(∫

Rn+1
|g|2φ−1 d‖V ‖

)1
2

.

Writing the first term on the right-hand side of (5.52) as C0, (5.51)
and (5.52) show

(5.53) δV (g) 6 C0‖g‖Xφ
for any g ∈ C∞c (Rn+1;Rn+1). By a density argument, δV may be uniquely
extended as a bounded linear functional onXφ. By the Riesz representation
theorem, there exists a unique f ∈ Xφ with ‖f‖Xφ 6 C0 such that δV (g) =
(f, g)Xφ for all g ∈ Xφ. Then, note that −fφ−1 is the generalized mean
curvature h(·, V ), and (5.50) is equivalent to ‖f‖Xφ 6 C0. �

5.4. Motion by smoothed mean curvature

This subsection establishes an approximate motion law when a varifold
is moved by the smoothed mean curvature vector.

Proposition 5.7. — There exists ε5 ∈ (0, 1) depending only on n, c1
and M with the following. Suppose V ∈ Vn(Rn+1) with ‖V ‖(Ω) 6 M ,
j ∈ N, φ ∈ Aj , ε ∈ (0, ε5) with (5.8), ∆t ∈ (2−1εc2 , εc2 ], where we set

(5.54) c2 := 3n+ 20.

Define
f(x) := x+ hε(x, V ) ∆t.

Then we have

(5.55) | ‖f]V ‖(φ)− ‖V ‖(φ)
∆t − δ(V, φ)(hε(·, V ))| 6 εc2−10,

(5.56) ‖f]V ‖(Ω)− ‖V ‖(Ω)
∆t + 1

4

∫
Rn+1

|Φε ∗ δV |2 Ω
Φε ∗ ‖V ‖+ εΩ−1 dx

6 3ε 1
4 + c21

2 ‖V ‖(Ω).
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Moreover, if ‖f]V ‖(Ω) 6M , then we have

(5.57) |δ(V, φ)(hε(·, V ))− δ(f]V, φ)(hε(·, f]V ))| 6 εc2−2n−19,

(5.58)
∣∣∣∣∫

Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dx−

∫
Rn+1

|Φε ∗ δ(f]V )|2Ω
Φε ∗ ‖f]V ‖+ εΩ−1 dx

∣∣∣∣
6 εc2−3n−18.

Proof. — For simplicity, write F (x) := f(x)− x = hε(x, V )∆t. We have

(5.59) |F (x)| = |hε(x, V )|∆t 6 2εc2−2

by (5.3),

(5.60) ‖∇F (x)‖ = ∆t‖∇hε(x, V )‖ 6 2εc2−4

by (5.4),

(5.61) |φ(f(x))− φ(x)| 6 jΩ(x) exp(j|F (x)|)|F (x)| 6 εc2−3Ω(x)

by (4.7), (4.4), (5.59), (5.8) and restricting ε,

(5.62) ||Λn∇f(x) ◦ S| − 1| 6 c(n)‖∇F (x)‖ 6 1
2ε

c2−5 6 ε−5∆t

by (5.60) and restricting ε depending only on n,

|φ(f(x))− φ(x)− F (x) · ∇φ(x)| 6 j|F (x)|2Ω(x) exp(j|F (x)|)(5.63)

6
1
2ε

2c2−5Ω(x) 6 εc2−5Ω(x)∆t

by (4.8), (5.59), (5.8) and by restricting ε,

(5.64) ||Λn∇f(x) ◦ S| − 1−∇F (x) · S|

6 c(n)‖∇F (x)‖2 6 4c(n)ε2c2−8 6 εc2−9∆t

by (5.60) and restricting ε depending only on n. Now recalling the definition
of push-forward of varifold and (2.4), we have

(5.65) ‖f]V ‖(φ)− ‖V ‖(φ)− δ(V, φ)(hε(·, V ))∆t
= ‖f]V ‖(φ)− ‖V ‖(φ)− δ(V, φ)(F )

=
∫

Gn(Rn+1)
(φ(f(x))|Λn∇f(x) ◦ S| − φ(x)) dV (x, S)

−
∫

Gn(Rn+1)
(∇F (x) · S φ(x) + F (x) · ∇φ(x)) dV (x, S).
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We then interpolate (5.65) and use (5.61)–(5.64) as

|(5.65)|

6
∫

Gn(Rn+1)

∣∣(φ(f(x))− φ(x))|Λn∇f(x) ◦ S|+ (|Λn∇f(x) ◦ S| − 1)φ(x)

−∇F (x) · S φ(x)− F (x) · ∇φ(x)
∣∣ dV (x, S)

=
∫

Gn(Rn+1)

∣∣(φ(f(x))− φ(x))(|Λn∇f(x) ◦ S| − 1) + (φ(f(x))− φ(x)

− F (x) · ∇φ(x)) + (|Λn∇f(x) ◦ S| − 1−∇F (x) · S)φ(x)
∣∣ dV (x, S)

6 (εc2−8 + εc2−5 + εc2−9)‖V ‖(Ω)∆t

where we also used φ 6 Ω for the last step. By restricting ε so that
3εM 6 1, we obtain (5.55). For (5.56), using (5.23) and (5.24) with φ = Ω,
j ∈ [c1 + 1, c1 + 2) and restricting ε depending on c1, we have

(5.66) δ(V,Ω)(hε)

= δV (Ωhε) +
∫

Gn(Rn+1)
hε · S⊥(∇Ω) dV (·, S)

6 δV (Ωhε) + 1
2

∫
Rn+1
|hε|2Ω + |∇Ω|2Ω−1 d‖V ‖

6 −1
2(1− 3ε 1

4 )
∫
Rn+1

|Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1 dx+ 2ε 1

4 + c21
2 ‖V ‖(Ω)

where we also used (3.1). Restrict ε5 so that 1 − 3ε 1
4 > 1

2 . Then (5.66)
and (5.55) give (5.56).
For (5.57) and (5.58), for short, write V̂ := f]V . Due to the assumption

that ‖f]V ‖(Ω) = ‖V̂ ‖(Ω) 6M , we have (5.3)–(5.5) for hε(·, V̂ ) as well. We
first estimate Φε ∗ ‖V̂ ‖ − Φε ∗ ‖V ‖ and Φε ∗ δV̂ − Φε ∗ δV , which lead to
estimates of hε(·, V )− hε(·, V̂ ). We have

(5.67) |Φε ∗ ‖V̂ ‖(x)− Φε ∗ ‖V ‖(x)|

=
∣∣∣∣∫ Φε(z − x) d‖V̂ ‖(z)−

∫
Φε(y − x) d‖V ‖(y)

∣∣∣∣
=
∣∣∣∣∫ Φε(f(y)− x)|Λn∇f(y) ◦ S| − Φε(y − x) dV (y, S)

∣∣∣∣
6
∫
|Φε(f(y)− x)− Φε(y − x)||Λn∇f(y) ◦ S| dV (y, S)

+
∫

Φε(y − x)||Λn∇f(y) ◦ S| − 1| dV (y, S).

ANNALES DE L’INSTITUT FOURIER



ON THE MEAN CURVATURE FLOW OF GRAIN BOUNDARIES 81

By (5.59) and (4.23), for some ŷ lying on the line segment connecting y−x
and f(y)− x,

|Φε(f(y)− x)− Φε(y − x)| 6 |F (y)||∇Φε(ŷ)|(5.68)

6 c(n)εc2−n−5χB2(x)(y).

By (5.62),

(5.69) Φε(y − x)||Λn∇f(y) ◦ S| − 1| 6 εc2−n−6χB1(x)(y).

Combining (5.67)–(5.69), we obtain

(5.70) |Φε ∗ ‖V̂ ‖(x)− Φε ∗ ‖V ‖(x)| 6 εc2−n−7‖V ‖(B2(x)).

Next, by (4.31),

(5.71) |Φε ∗ δV̂ (x)− Φε ∗ δV (x)|

=
∣∣∣∣∫ T (∇Φε(z − x)) dV̂ (z, T )−

∫
S (∇Φε(y − x)) dV (y, S)

∣∣∣∣
=
∣∣∣∣∫ {(∇f(y) ◦ S)(∇Φε(f(y)− x))|Λn∇f(y) ◦ S|

− S(∇Φε(y − x))
}
dV (y, S)

∣∣∣∣ .
By estimating∇f(y)−I using (5.60) and using similar estimates as in (5.68)
and (5.69) (where Φε is replaced by ∇Φε, causing a multiplication by ε−2),
we obtain

(5.72) |Φε ∗ δV̂ (x)− Φε ∗ δV (x)| 6 εc2−n−9‖V ‖(B2(x))

from (5.71) by the similar interpolations. We also have rough estimates of

(5.73) |Φε ∗ δV (x)|, |Φε ∗ δV̂ (x)| 6 ε−n−4‖V ‖(B2(x)).

Using (5.70), (5.72) and (5.73), we have

(5.74)

∣∣∣∣∣ Φε ∗ δV̂
Φε ∗ ‖V̂ ‖+ εΩ−1

− Φε ∗ δV
Φε ∗ ‖V ‖+ εΩ−1

∣∣∣∣∣
6
|Φε ∗ δV̂ − Φε ∗ δV |

εΩ−1 + |Φε ∗ δV ||Φε ∗ ‖V̂ ‖ − Φε ∗ ‖V ‖|
ε2Ω−2

6 εc2−n−10Ω(x)‖V ‖(B2(x)) + εc2−2n−13Ω(x)2‖V ‖(B2(x))2
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and similarly

(5.75)

∣∣∣∣∣ |Φε ∗ δV̂ |2Ω
Φε ∗ ‖V̂ ‖+ εΩ−1

− |Φε ∗ δV |2Ω
Φε ∗ ‖V ‖+ εΩ−1

∣∣∣∣∣
6 εc2−2n−15Ω(x)2‖V ‖(B2(x))2 + εc2−3n−17Ω(x)3‖V ‖(B2(x))3.

By Lemma 4.17 with r = 2, we obtain (5.58) from (5.75). Recalling the
definition (5.1), from (5.74) and with (4.37), we obtain (writing hε(·, V ) as
hε(V ))

|hε(V )− hε(V̂ )| 6 εc2−2n−14(M +M2),

‖∇lhε(V )−∇lhε(V̂ )‖ 6 εc2−2n−14−2l(M +M2)
(5.76)

for l = 1, 2. Finally, we have

(5.77) |δ(V, φ)(hε(V ))− δ(V̂ , φ)(hε(V̂ ))|

=
∣∣∣∣ ∫ (∇hε(V ) · Sφ+ hε(V ) · ∇φ) dV

−
∫ {

(∇hε(V̂ ) ◦ f) · (∇f ◦ S)(φ ◦ f)

+ (hε(V̂ ) ◦ f) · (∇φ ◦ f)
}
|Λn∇f ◦ S| dV

∣∣∣∣.
Using (5.76) as well as (5.59)–(5.62) and (4.4), estimates by interpolations
on (5.77) give (5.57). �

6. Existence of limit measures

Proposition 6.1. — Given any E0 ∈ OPNΩ and j ∈ N with j >
max{1, c1}, there exist εj ∈ (0, j−6), pj ∈ N, a family Ej,l ∈ OPNΩ (l =
0, 1, 2, . . . , j 2pj ) with the following property.

(6.1) Ej,0 = E0 for all j ∈ N

and with the notation of

(6.2) ∆tj := 1
2pj ,

we have

(6.3) ‖∂Ej,l‖(Ω) 6 ‖∂E0‖(Ω) exp
(
c21l

2 ∆tj
)

+
2ε

1
8
j

c21

(
exp

(
c21l

2 ∆tj
)
− 1
)
,
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(6.4) ‖∂Ej,l‖(Ω)− ‖∂Ej,l−1‖(Ω)
∆tj

+ 1
4

∫
Rn+1

|Φεj ∗ δ(∂Ej,l)|2Ω
Φεj ∗ ‖∂Ej,l‖+ εjΩ−1 dx

− (1− j−5)
∆tj

∆j‖∂Ej,l−1‖(Ω) 6 ε
1
8
j + c21

2 ‖∂Ej,l−1‖(Ω),

(6.5) ‖∂Ej,l‖(φ)− ‖∂Ej,l−1‖(φ)
∆tj

6 δ(∂Ej,l, φ)(hεj (·, ∂Ej,l)) + ε
1
8
j

for l = 1, 2, . . . , j 2pj and φ ∈ Aj . When c1 = 0, the right-hand side of (6.3)
should be understood as the limit c1 → 0+.

Proof. — Given E0 ∈ OPNΩ and j ∈ N with j > max{1, c1}, define

(6.6) Mj := ‖∂E0‖(Ω) exp
(
c21j

2

)
+ 1.

Let ε1, . . . , ε5 be chosen in the previous section corresponding to Mj as M ,
then we choose εj so that εj 6 min{ε1, . . . , ε5},

(6.7)
2ε

1
8
j

c21

(
exp

(
c21j

2

)
− 1
)
< 1, 3ε

1
4
j + εc2−3n−18

j < ε
1
8
j

and (5.8) hold. Let c2 be as in (5.54), and choose pj ∈ N so that

(6.8) 1
2pj ∈ (2−1εc2

j , ε
c2
j ].

Define ∆tj as in (6.2). We proceed with inductive argument. Set Ej,0 = E0.
Assume that up to k = l ∈ {0, 1, . . . , j 2pj − 1}, Ej,k is determined with the
estimates (6.3)–(6.5). We will define Ej,l+1 satisfying the estimates. Choose
f1 ∈ E(Ej,l, j) (cf. Definition 4.8) such that

(6.9) ‖∂(f1)?Ej,l‖(Ω)− ‖∂Ej,l‖(Ω) 6 (1− j−5)∆j‖∂Ej,l‖(Ω)

and define

(6.10) E∗j,l+1 := (f1)?Ej,l ∈ OPNΩ .

We note that

(6.11) ‖∂E∗j,l+1‖(Ω) 6 ‖∂Ej,l‖(Ω) 6Mj

by (6.9), (6.3), (6.7) and (6.6). We next define a smooth function f2 :
Rn+1 → Rn+1 by

(6.12) f2(x) := x+ ∆tj hεj (x, ∂E∗j,l+1).

By the choice of εj and ∆tj , and by (5.3) and (5.4), we have

(6.13) |∆tj hεj (x, ∂E∗j,l+1)| 6 2εc2−2
j , ‖∇(∆tj hεj (x, ∂E∗j,l+1))‖ 6 2εc2−4

j ,
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thus f2 is a diffeomorphism and E∗j,l+1-admissible in particular. We then
define

(6.14) Ej,l+1 := (f2)?E∗j,l+1 ∈ OP
N
Ω .

Note that, since f2 is a diffeomorphism, if we write E∗j,l+1 = {Ei}Ni=1,
then we have Ej,l+1 = {f2(Ei)}Ni=1. Furthermore, we have

(6.15) (f2)]∂E∗j,l+1 = (f2)]|∪Ni=1∂Ei| = |∪Ni=1∂(f2(Ei))| = ∂Ej,l+1.

To close the inductive argument, we need to check (6.3)–(6.5) with l re-
placed by l + 1. To prove (6.3), we use (5.56) with M = Mj , V = ∂E∗j,l+1

as well as 3ε
1
4
j < ε

1
8
j of (6.7) to obtain

‖(f2)]∂E∗j,l+1‖(Ω) 6 ‖∂E∗j,l+1‖(Ω) + ∆tj(ε
1
8
j + c21

2 ‖∂E
∗
j,l+1‖(Ω))(6.16)

6 ‖∂Ej,l‖(Ω) + ∆tj(ε
1
8
j + c21

2 ‖∂Ej,l‖(Ω)),

the last inequality due to (6.11). By (6.16) and (6.3), a direct computation
using e(x+s) > (1 + s)ex for s > 0 proves (6.3) with l replaced by l + 1. In
particular, this proves that ‖∂Ej,l+1‖(Ω) 6Mj , giving the validity of (5.57)
and (5.58) for the pair V = ∂E∗j,l+1 and f]V = ∂Ej,l+1. From (5.56), (6.11),
(5.58), (6.9) and (6.7), we obtain (6.4) for l + 1 in place of l. From (5.55),
(5.57), (6.7) and f1 ∈ E(Ej,l, j), we obtain (6.5) for l+ 1 in place of l. This
closes the inductive step, showing (6.3)–(6.5) up to l = j 2pj . �

Remark 6.2. — Due to the choice of εj , each ∂Ej,l satisfies various esti-
mates obtained in Section 5 with V = ∂Ej,l, ε = εj .

Remark 6.3. — It is convenient to define approximate solutions for all
t > 0 instead of discrete times. For each j ∈ N with j > max{1, c1}, define
a family Ej(t) ∈ OPNΩ for t ∈ [0, j] by

(6.17) Ej(t) := Ej,l if t ∈ ((l − 1)∆tj , l∆tj ].

Proposition 6.4. — Under the assumptions of Proposition 6.1, there
exist a subsequence {jl}∞l=1 and a family of Radon measures {µt}t∈R+ on
Rn+1 such that

(6.18) lim
l→∞
‖∂Ejl(t)‖(φ) = µt(φ)
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for all φ ∈ Cc(Rn+1) and for all t ∈ R+. For all T <∞, we have

(6.19) lim sup
l→∞

∫ T

0

(∫
Rn+1

|Φεjl ∗ δ(∂Ejl(t))|
2Ω

Φεjl ∗ ‖∂Ejl(t)‖+ εjlΩ−1 dx

− 1
∆tjl

∆jl‖∂Ejl(t)‖(Ω)
)
dt <∞,

and for a.e. t ∈ R+, we have

(6.20) lim
l→∞

j
2(n+1)
l ∆jl‖∂Ejl(t)‖(Ω) = 0.

Proof. — Let 2Q be the set of all non-negative numbers of the form i
2j

for some i, j ∈ N ∪ {0}. 2Q is dense in R+ and countable. For each fixed
J ∈ N, lim supj→∞(supt∈[0,J]‖∂Ej(t)‖(Ω)) 6 ‖∂E0‖(Ω) exp(c21J/2) by (6.3).
Thus, by diagonal argument, we may choose a subsequence and a family
of Radon measures {µt}t∈2Q on Rn+1 such that

(6.21) lim
l→∞
‖∂Ejl(t)‖(φ) = µt(φ)

for all φ ∈ Cc(Rn+1) and t ∈ 2Q. We also have

(6.22) µt(Ω) 6 ‖∂E0‖(Ω) exp(c21t/2)

for all t ∈ 2Q. Next, let Z := {φq}q∈N be a countable subset of C2
c (Rn+1;R+)

which is dense in Cc(Rn+1;R+) with respect to the supremum norm. We
claim that, for any given J ∈ N,

(6.23) gq,J(t) := µt(φq)−2t‖∇2φq‖∞
(

min
x∈sptφq

Ω(x)
)−1‖∂E0‖(Ω) exp(c21J/2)

is a monotone decreasing function of t ∈ [0, J ] ∩ 2Q. Since φq has a com-
pact support and due to the linear dependence of (6.23) on φq, we may
assume φq < Ω without loss of generality. To prove (6.23), just like (5.66),
using (5.23) and (5.24), we have

(6.24) δ(∂Ej(t), φ)(hεj (·, ∂Ej(t))) 6 2ε
1
4
j + 1

2

∫
Rn+1

|∇φ|2

φ
d‖∂Ej(t)‖

for φ ∈ Aj and t ∈ [0, j]. For any φq ∈ Z with φq < Ω and sufficiently large
i ∈ N, choose j0 ∈ N so that φq + i−1Ω ∈ Aj0 holds and j0 > J . For any
t1, t2 ∈ [0, J ] ∩ 2Q with t2 > t1 fixed, choose a larger j0 so that t1 and t2
are integer-multiples of 1/2j0 . Then, by (6.5) and (6.24), we have

‖∂Ejl(t2)‖(φq + i−1Ω)− ‖∂Ejl(t1)‖(φq + i−1Ω)(6.25)

6 (ε
1
8
jl

+ 2ε
1
4
jl

)(t2 − t1) + 1
2

∫ t2

t1

∫
Rn+1

|∇(φq + i−1Ω)|2

φq + i−1Ω d‖∂Ejl(t)‖dt
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for all jl > j0. As l→∞, the left-hand side of (6.25) may be bounded from
below using (6.21) and (6.3) as

(6.26) > µt2(φq)− µt1(φq)− i−1‖∂E0‖(Ω) exp(c21J/2).

To estimate the right-hand side of (6.25), note that
|∇(φq + i−1Ω)|2

φq + i−1Ω 6 2 |∇φq|
2

φq
+ 2i−1 |∇Ω|2

Ω(6.27)

6 4‖∇2φq‖∞( min
x∈sptφq

Ω(x))−1Ω + 2i−1c21Ω.

Now, using (6.25)–(6.27), and then letting i→∞, we obtain

(6.28) µt2(φq)− µt1(φq)

6 2‖∇2φq‖∞( min
x∈sptφq

Ω(x))−1‖∂E0‖(Ω) exp(c21J/2)(t2 − t1).

Then (6.28) proves that gq,J(t) defined in (6.23) is monotone decreasing.
Define

(6.29) D := ∪J∈N{t ∈ (0, J) : for some q ∈ N, lim
s→t−

gq,J(s) > lim
s→t+

gq,J(s)}.

By the monotone property of gq,J , D is a countable set on R+, and µt(φq)
may be defined continuously on the complement of D uniquely from the
values on 2Q. For any t ∈ R+ \ (D ∪ 2Q) and φq ∈ Z, we claim that

(6.30) lim
l→∞
‖∂Ejl(t)‖(φq) = µt(φq).

Due to the definition of ∂Ejl(t), there exists a sequence {tl ∈ 2Q}∞l=1 such
that ∂Ejl(tl) = ∂Ejl(t) and that liml→∞ tl = t+. For any s > t with s ∈ 2Q
and for all sufficiently large l, (6.25) shows

(6.31) ‖∂Ejl(s)‖(φq + i−1Ω) 6 ‖∂Ejl(tl)‖(φq + i−1Ω) +O(s− t).

Taking lim inf l→∞ and taking i→∞ on both sides of (6.31), we have

(6.32) µs(φq) 6 lim inf
l→∞

‖∂Ejl(tl)‖(φq) +O(s− t).

By letting s → t+, ∂Ejl(tl) = ∂Ejl(t), (6.32) and the continuity of µs(φq)
at s = t imply

(6.33) µt(φq) 6 lim inf
l→∞

‖∂Ejl(t)‖(φq).

For any s < t with s ∈ 2Q, we also have

(6.34) ‖∂Ejl(tl)‖(φq + i−1Ω) 6 ‖∂Ejl(s)‖(φq + i−1Ω) +O(tl − s).

Take lim supl→∞, then let i→∞ to obtain from (6.34)

(6.35) lim sup
l→∞

‖∂Ejl(t)‖(φq) 6 µs(φq) +O(t− s).
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By letting s→ t− and by the continuity of µs(φq), we have

(6.36) lim sup
l→∞

‖∂Ejl(t)‖(φq) 6 µt(φq).

(6.33) and (6.36) prove (6.30) for all φq ∈ Z. Since Z is dense in
Cc(Rn+1;R+), (6.30) determines the limit measure uniquely and the con-
vergence also holds in general for φ ∈ Cc(Rn+1). For t ∈ D, sinceD is count-
able, we may choose a further subsequence by a diagonal argument so that
a further subsequence of {‖∂Ejl(t)‖}∞l=1 converges for all t ∈ R+ to a Radon
measure µt. Finally (6.19) follows from (6.4). Since ∆tjl 6 ε

c2
jl
� j

−2(n+1)
l

by (6.8), (5.54) and (5.8), we have liml→∞
∫ T

0 −j
2(n+1)
l ∆jl‖∂Ejl(t)‖(Ω) dt 6

liml→∞∆tjlj
2(n+1)
l = 0. Thus there exists a further subsequence such that

the integrand converges pointwise to 0 for a.e. on [0, T ]. As T →∞ and car-
rying out a diagonal argument, we may conclude (6.20) holds for a.e. t ∈ R+

for a subsequence. �

Remark 6.5. — In (6.9), we choose f1 ∈ E(Ej,l, j) so that f1 nearly
achieves inf among E(Ej,l, j). The choice of factor 1− j−5 can be different,
on the other hand. In fact, all we need is (6.20) (which is needed to obtain
integrality later) and we may replace 1− j−5 by any fixed number in (0, 1),
or even a sequence of numbers αj as long as limj→∞ j2(n+1)α−1

j ∆tj = 0 is
satisfied. Such choice would give a different estimate in (6.4) with different
factor instead of 1−j−5 but otherwise, the proof is identical. Since ∆tj goes
to 0 very fast (∆tj 6 εc2

j = ε3n+20
j and εj < j−6), we may make a choice

so that αj goes to 0 very fast. This means that, if we wish, we may choose
f1 ∈ E(Ej,l, j) which only achieves a “tiny fraction” of inf in ∆j‖∂Ej,l‖(Ω),
and asymptotically doing almost no apparent area reducing as j →∞. The
choice should be reflected upon the singularities of the limiting Vt but we
do not know how to characterize this aspect.

7. Rectifiability theorem

The main result of this section is Theorem 7.3, which is analogous to Al-
lard’s rectifiability theorem [1, §5.5(1)] but with an added difficulty of hav-
ing only a control of smoothed mean curvature vector up to the length scale
of O(1/j2) and a certain area minimizing property in a smaller length scale.
Except for using the notions introduced in Section 4 such as E-admissible
functions and ∆j‖∂E‖(Ω), the content of Section 7 and 8 are more or less
independent of Section 5 and 6, and they can be of independent interests.
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We first recall a formula usually referred to as the monotonicity formula
from [1, §5.1(3)]:

Lemma 7.1. — Suppose V ∈ Vn(Rn+1), 0 < r1 < r2 < ∞, x ∈ Rn+1,
and for 0 6 s <∞,

(7.1) ‖δV ‖(Br(x)) 6 s‖V ‖(Br(x))

whenever r1 < r < r2. Then

(7.2) (exp(sr))r−n‖V ‖(Br(x))

is nondecreasing in r for r1 < r < r2.

The following Proposition 7.2 is essential to prove the rectifiability of
the limit measure. For the similar purpose in [8], Brakke cites a result
in [2] of Almgren. The proof by Almgren requires extensive tools involving
varifold slicing and piecewise smooth Lipschitz deformation to cubical com-
plexes. On the other hand, his proof does not provide a deformation with
E-admissibility or volume estimate (Proposition 7.2(4)) which are essential
in our proof. For codimension 1 case, we provide a more direct proof using
radial projection as follows.

Proposition 7.2. — There exist c3, c4 ∈ (0,∞) depending only on n

with the following property. For E = {Ei}Ni=1 ∈ OP
N
Ω , suppose 0 ∈ spt ‖∂E‖

and ‖∂E‖(BR) 6 c3R
n. Then there exist a E-admissible function f and

r ∈ [R2 , R] such that
(1) f(x) = x for x ∈ Rn+1 \ Ur,
(2) f(x) ∈ Br for x ∈ Br,
(3) ‖∂f?E‖(Br) 6 1

2‖∂E‖(Br),
(4) Ln+1(Ei4Ẽi) 6 c4(‖∂E‖(Br))

n+1
n for all i, where {Ẽi}Ni=1 = f?E .

Proof. — For r > 0 let ν(r) := ‖∂E‖(Br) = Hn(Br ∩ ∪Ni=1∂Ei). Since
0 ∈ spt ‖∂E‖, we have ν(r) > 0 for r > 0 and ν(r) is a monotone increasing
function which is differentiable a.e.. We also have

(7.3) Hn−1(∂Br ∩ ∪Ni=1∂Ei) 6 ν′(r) <∞

whenever ν is differentiable. By the relative isoperimetric inequality [3,
p. 152], there exists c4 depending only on n such that

(7.4) min{Ln+1(UR ∩ Ei),Ln+1(UR \ Ei)} 6 c4(Hn(UR ∩ ∂Ei))
n+1
n .

We assume

(7.5) ν(R) 6
(
Ln+1(UR)

2n+2c4

) n
n+1

,
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and we further restrict ν(R) in the following. Since Hn(UR ∩ ∂Ei) 6 ν(R),
(7.4) and (7.5) imply that there is a unique i0 ∈ {1, . . . , N} such that

(7.6) Ln+1(UR \ Ei0) 6 c4(ν(R))
n+1
n 6

1
2n+2L

n+1(UR),

i.e., Ei0 takes up a major part of UR. The reason for the existence of
such i0 is as follows. Otherwise, all Ei would have a small measure in
UR. Since UR ∩ ∪Ni=1Ei is a full measure set, there exists a combina-
tion Ei1 , . . . , EiJ such that (Ln+1(UR))−1Ln+1(∪Jk=1Eik) ∈ (1/4, 3/4). The
relative isoperimetric inequality applied to Ê := ∪Jk=1Eik gives a lower
bound c4(‖∇χÊ‖(UR))n+1

n > Ln+1(UR)/4 while we have ‖∇χÊ‖(UR) 6
Hn(UR ∩ ∪Ni=1∂Ei). This gives a contradiction to (7.5).

For all r ∈ [R2 , R], (7.6) also gives Ln+1(Ur\Ei0) 6 1
2L

n+1(Ur), thus (7.4)
with R replaced by r shows

(7.7) Ln+1(Ur \ Ei0) 6 c4(Hn(Ur ∩ ∂Ei0))
n+1
n

for all r ∈ [R2 , R]. Next, let Ã := {r ∈ [R2 , R] : Hn(∂Br \Ei0) > 1
2H

n(∂Br)}
and A := [R2 , R] \ Ã. Since

(7.8) Ln+1((UR \BR
2

)\Ei0) =
∫ R

R
2

Hn(∂Br \Ei0) dr > 1
2L

1(Ã)Hn(∂BR
2

),

(7.6) and (7.8) show

(7.9) L1(Ã) 6 R

2(n+ 1) and L1(A) > (1
2 −

1
2(n+ 1))R > R

4 .

In particular, (7.9) proves that

(7.10) Hn(∂Br \ Ei0) 6 1
2H

n(∂Br) for r ∈ A ⊂ [R2 , R] with L1(A) > R

4 .

Next, fix arbitrary r ∈ A which also satisfies (7.3), and letGi := Ei∩∂Br.
Each Gi is open with respect to the topology on ∂Br and ∂Gi ⊂ ∂Br∩∂Ei.
Note also that ∂Br \Ei = ∂Br \Gi. By the relative isoperimetric inequality
on ∂Br and (7.10), there exists c5 depending only on n such that

Hn(∂Br \Gi0) = min{Hn(Gi0),Hn(∂Br \Gi0)}(7.11)

6 c5(Hn−1(∂Gi0))
n
n−1 .

Now we choose B2r0(x0) ⊂ Ur ∩ Ei0 and choose a Lipschitz map f as
follows. f(x) = x if x ∈ Rn+1 \ Ur, f maps Br0(x0) to Br bijectively, and
Br \ Ur0(x0) onto ∂Br by radial projection centered at x0. See Figure 4.5
for a general idea of the map. We claim that such f is E-admissible. Let
Ẽi := int(f(Ei)). For i 6= i0, Ẽi = Ei \ Br, because f is identity on
Rn+1 \Br and f(Ei ∩Br) ⊂ ∂Br. On the other hand, Ẽi0 = Ei0 ∪Ur since
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Ur = f(Ur0(x0)) and Ur0(x0) ⊂ Ei0 , and any x ∈ ∂Br ∩Ei0 is in Ei0 ∪Ur.
For two open sets A and B, we have ∂(A ∩B) ⊂ (∂A ∩ closB) ∪ (∂B ∩A)
and ∂(A ∪B) ⊂ (∂A \ closB) ∪ (∂B \A). So

∂Ẽi = ∂(Ei ∩ (Rn+1 \Br))(7.12)

⊂ (∂Ei ∩ clos (Rn+1 \Br)) ∪ (∂Br ∩ Ei)
= (∂Ei \ Ur) ∪Gi

for i 6= i0 while

∂Ẽi0 = ∂(Ei0 ∪ Ur) ⊂ (∂Ei0 \Br) ∪ (∂Br \ Ei0)(7.13)
= (∂Ei0 \Br) ∪ (∂Br \Gi0).

We need to check Rn+1 \ ∪Ni=1Ẽi ⊂ f(∪Ni=1∂Ei). Since Rn+1 \ ∪Ni=1Ẽi does
not have any interior point, it is enough to prove ∪Ni=1∂Ẽi ⊂ f(∪Ni=1∂Ei).
For i 6= i0, ∂Ei \ Ur ⊂ f(∂Ei) since f is identity on Rn+1 \ Ur. For any
x ∈ Gi, consider a line segment I with two ends, x0 and x. Since x ∈
Gi = ∂Br ∩ Ei, there is some neighborhood of x of I belonging to Ei.
On the other hand, we have Br0(x0) ⊂ Ei0 , thus there must be some point
x̂ ∈ I∩∂Ei0 . Since f on Br\Br0(x0) is a radial projection to ∂Br, f(x̂) = x.
This proves that Gi ⊂ f(∂Ei0). Then (7.12) shows ∂Ẽi ⊂ f(∂Ei∪∂Ei0) for
i 6= i0. For i = i0, ∂Ei0 \Br = f(∂Ei0 \Br) since f is identity there. For any
x ∈ ∂Br \Gi0 = ∂Br \Ei0 , either x ∈ ∂Ei for some i (including i = i0), or
x ∈ Ei for some i 6= i0. In the former case, since f is identity on ∂Br, x ∈
f(∂Ei). In the latter case, the line segment connecting x0 and x contains
x̂ ∈ ∂Ei0 just as before, hence x ∈ f(∂Ei0). Thus by (7.13), we have
∂Ẽi0 ⊂ f(∪Ni=1∂Ei). In all, we have proved that ∪Ni=1∂Ẽi ⊂ f(∪Ni=1∂Ei),
and this proves that f is E-admissible. With Ẽ = f?E = {Ẽi}Ni=1, we have
from (7.12), (7.13) and ∪i 6=i0Gi ⊂ ∂Br \Gi0 that

‖∂Ẽ‖(Br) = Hn(∪Ni=1∂Ẽi ∩Br)(7.14)

6 Hn(∂Br \Gi0) +
∑
i 6=i0

Hn(∂Ei ∩ ∂Br)

= Hn(∂Br \Gi0),

the last equality due to (7.3). We next note that Ei4Ẽi = Ei ∩ Br for
i 6= i0 and = Ur \ Ei0 for i = i0. Since both are included in Br \ Ei0 , (7.7)
shows that the condition (4) is satisfied with this c4. Thus we conclude that
E-admissible function f satisfies conditions (1), (2), (4) so far.

If the conclusion were not true, then, we must have

‖∂Ẽ‖(Br) >
1
2‖∂E‖(Br) = 1

2ν(r)
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if r ∈ A with (7.3). Combining (7.14), (7.11) and (7.3), we obtain

(7.15) 1
2ν(r) 6 c5(ν′(r))

n
n−1 .

Since we have L1(A) > R
4 by (7.10),

(7.16) ν
1
n (R) >

∫
A

(ν 1
n (r))′ dr > n−1(2c5)

1−n
n
R

4 .

We would obtain a contradiction to ‖∂E‖(BR) = ν(R) 6 c3Rn by choosing
an appropriately small c3 depending only on n. �

Theorem 7.3 (cf. [8, p. 78]). — Suppose that {Ej}∞j=1 ⊂ OP
N
Ω and

{εj}∞j=1 ⊂ (0, 1) satisfy
(1) limj→∞ j4εj = 0,
(2) supj‖∂Ej‖(Ω) <∞,

(3) lim infj→∞
∫
Rn+1

|Φεj ∗δ(∂Ej)|
2Ω

Φεj ∗‖∂Ej‖+εjΩ−1 dx <∞,
(4) limj→∞∆j‖∂Ej‖(Ω) = 0.

Then there exists a converging subsequence {∂Ejl}∞l=1 whose limit V ∈
Vn(Rn+1) satisfies

(7.17) θ∗n(‖V ‖, x) > c3
16ωn

for ‖V ‖ a.e. x.

Furthermore, V ∈ RVn(Rn+1).

Proof. — The existence of converging subsequence {∂Ejl}∞l=1 and the
limit V with

(7.18) ‖V ‖(Ω) 6 sup
l
‖∂Ejl‖(Ω) 6M

for some M ∈ (0,∞) follows from the compactness of Radon measures. We
may also assume that the quantities in (3) are uniformly bounded also by
M for this subsequence. Fix R ∈ (0, 1) and x0 ∈ Rn+1 and define

(7.19) FR := {x ∈ B1(x0) : R−n‖V ‖(BR(x)) < c3/16},

where c3 is the constant given by Proposition 7.2. We will prove that
limR→0‖V ‖(FR) = 0 which proves (7.17) in B1(x0). Since x0 is arbitrary,
we have (7.17) on Rn+1.

For x ∈ FR, we may choose φ ∈ C∞c (Rn+1) approximating χBR(x)
such that φ = 1 on BR(x), φ = 0 outside B2R(x) and 0 6 φ 6 1 with
R−n‖V ‖(φ) < c3/16. Since liml→∞‖∂Ejl‖ = ‖V ‖, for all sufficiently large l
depending on x, we have

(7.20) R−n‖∂Ejl‖(φ) < c3/16.
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Since Φεjl ∗φ converges uniformly to φ on B2R+1(x) by (1) and is equal to
0 outside,

|‖Φεjl ∗ ∂Ejl‖(φ)− ‖∂Ejl‖(φ)| = |‖∂Ejl‖(Φεjl ∗ φ− φ)|(7.21)

6 sup
B2R+1(x)

(|Φεjl ∗ φ− φ|Ω
−1)M

converges to 0. Thus, by (7.20) and (7.21), for x ∈ FR there exists mx ∈ N
such that R−n‖Φεjl ∗ ∂Ejl‖(BR(x)) < c3/16 for all l > mx. Thus, if we
define
(7.22)

FR,m := {x ∈ FR : R−n‖Φεjl ∗ ∂Ejl‖(BR(x)) < c3/16 for all l > m},

FR,m ⊂ FR,m+1 for all m ∈ N with ∪m∈NFR,m = FR. Hence we may choose
m1 ∈ N with

(7.23) ‖V ‖bΩ(FR,m1) > 1
2‖V ‖bΩ(FR).

Next, define

(7.24) GR := {x ∈ Rn+1 : dist (x, FR,m1) < (1− 2− 1
n )R}.

By definition, GR is open, and for any x ∈ GR, there exists y ∈ FR,m1 with
|x− y| < (1− 2− 1

n )R. By (7.22),

(7.25) (2− 1
nR)−n‖Φεjl ∗ ∂Ejl‖(B2−

1
nR

(x))

6 2R−n‖Φεjl ∗ ∂Ejl‖(BR(y)) < c3/8

for all l > m1 and x ∈ GR. Since GR is open, we may choose m2 ∈ N with
m2 > m1 such that

(7.26) ‖∂Ejl‖bΩ(GR) > 1
2‖V ‖bΩ(GR)

for all l > m2. Since FR,m1 ⊂ GR, (7.26) and (7.23) show

(7.27) ‖∂Ejl‖bΩ(GR) > 1
4‖V ‖bΩ(FR)

for all l > m2. Choose m3 ∈ N such that m3 > m2 and

(7.28) 1
2j2
m3

<
R

2 .

Define

(7.29) GR,jl,1 := {x ∈ GR : θn(‖∂Ejl‖, x) = 1

and (2j2
l )n‖Φεjl ∗ ∂Ejl‖(B 1

2j2
l

(x)) > c3/4}
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and

(7.30) GR,jl,2 := {x ∈ GR : θn(‖∂Ejl‖, x) = 1

and (2j2
l )n‖Φεjl ∗ ∂Ejl‖(B 1

2j2
l

(x)) 6 c3/4}.

Since θn(‖∂Ejl‖, x) = 1 for ‖∂Ejl‖ a.e. x, we have

(7.31) ‖∂Ejl‖bΩ(GR,jl,1 ∪GR,jl,2) = ‖∂Ejl‖bΩ(GR).

First we consider the case x ∈ GR,jl,1 with l > m3. We use r1 = 1
2j2
l

<

2− 1
nR = r2 in Lemma 7.1. Here, the inequality follows from (7.28). If (7.1)

holds with s := (2− 1
nR− 1

2j2
l

)−1(ln 2), then we would have a contradiction
to (7.25) and (7.29). Thus there exists 1

2j2
l

< rx < 2− 1
nR such that (7.1)

does not hold, i.e.,

‖δ(Φεjl ∗ ∂Ejl)‖(Brx(x)) > s‖Φεjl ∗ ∂Ejl‖(Brx(x))(7.32)

>
1

2R‖Φεjl ∗ ∂Ejl‖(Brx(x)),

where the last inequality holds from the definition of s. Since εjl 6 j−4
l <

j−2
l < 2rx by (1) for all large l, Φεjl ∗χBrx (x) >

1
4 on Brx(x). Thus we have

(7.33) ‖Φεjl ∗ ∂Ejl‖(Brx(x)) = ‖∂Ejl‖(Φεjl ∗ χBrx (x)) >
1
4‖∂Ejl‖(Brx(x)).

By (4.33), (3.2), (7.32) and (7.33), we have

(7.34) ‖Φεjl ∗ δ(∂Ejl)‖bΩ(Brx(x))
= ‖δ(Φεjl ∗ ∂Ejl)‖bΩ(Brx(x))
> Ω(x) exp(−2c1R)‖δ(Φεjl ∗ ∂Ejl)‖(Brx(x))

>
1

8RΩ(x) exp(−2c1R)‖∂Ejl‖(Brx(x))

>
1

8R exp(−4c1R)‖∂Ejl‖bΩ(Brx(x)).

Let C := {Brx(x) : x ∈ GR,jl,1}, where rx is as above. By the Besicovitch
covering theorem, there exists a collection of subfamilies C1, . . . , CBn+1 , each
of them consisting of mutually disjoint balls and such that

(7.35) GR,jl,1 ⊂ ∪
Bn+1
i=1 ∪Brx (x)∈Ci Brx(x).
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Then for some i0 ∈ {1, . . . ,Bn+1}, we have

(7.36) ‖∂Ejl‖bΩ(GR,jl,1)

6 Bn+1
∑

Brx (x)∈Ci0

‖∂Ejl‖bΩ(Brx(x))

6 8R exp(4c1R)Bn+1
∑

Brx (x)∈Ci0

‖Φεjl ∗ δ(∂Ejl)‖bΩ(Brx(x))

6 8R exp(4c1R)Bn+1‖Φεjl ∗ δ(∂Ejl)‖bΩ(B1+2R(x0))

by (7.34) and GR ⊂ B1+R(x0). In addition, by (4.31) and the Cauchy–
Schwarz inequality, we obtain

(7.37) ‖Φεjl ∗ δ(∂Ejl)‖bΩ(B1+2R(x0))

=
∫
B1+2R(x0)

Ω|Φεjl ∗ δ(∂Ejl)| dx

6

(∫
Rn+1

Ω|Φεjl ∗ δ(∂Ejl)|
2

Φεjl ∗ ‖∂Ejl‖+ εjlΩ−1

) 1
2

×

(∫
B1+2R(x0)

Ω(Φεjl ∗ ‖∂Ejl‖+ εjlΩ−1)
) 1

2

6M
1
2 (M + c(n)εjl)

1
2 .

(7.36) and (7.37) prove that, for all fixed 0 < R < 1,

(7.38) lim sup
l→∞

‖∂Ejl‖bΩ(GR,jl,1) 6 8R exp(4c1R)Bn+1M.

Next, suppose that x ∈ GR,jl,2. From (7.30) and (7.33) (where rx may be
replaced by (2j2

l )−1 for the same reason), we have

(7.39) (2j2
l )n‖∂Ejl‖(B 1

2j2
l

(x)) 6 c3.

Note that x ∈ spt ‖∂Ejl‖. Then, Proposition 7.2 shows the existence of
rx ∈ [ 1

4j2
l

, 1
2j2
l

] and a Ejl -admissible function fx such that

(i) fx(y) = y for y ∈ Rn+1 \ Urx(x),
(ii) fx(y) ∈ Brx(x) for y ∈ Brx(x),
(iii) ‖∂(fx)?Ejl‖(Brx(x)) 6 1

2‖∂Ejl‖(Brx(x)),
(iv) Ln+1(Ei4Ẽx,i) 6 c4(‖∂Ejl‖(Brx(x)))n+1

n for all i = 1, . . . , N ,
where {Ei}Ni=1 = Ejl and {Ẽx,i}Ni=1 = (fx)?Ejl . By (3.2), (iii) may be
replaced by

(7.40) ‖∂(fx)?Ejl‖bΩ(Brx(x)) 6 2− 1
2 ‖∂Ejl‖bΩ(Brx(x))
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for all sufficiently large l depending only on c1. Applying the Besicov-
itch covering theorem to the family {Brx(x)}x∈GR,jl,2 , we have a finite
set {xk}Λk=1 such that {Brxk (xk)}Λk=1 is mutually disjoint and (writing
Brxk (xk) as B(k))

(7.41) ‖∂Ejl‖bΩ(∪Λ
k=1B(k)) > B−1

n+1‖∂Ejl‖bΩ(GR,jl,2).

Note that the finiteness of Λ follows from rx > 1
4j2
l

and GR ⊂ B1+R(x0).
With this choice, define f : Rn+1 → Rn+1 by

(7.42) f(x) :=
{
fxk(x) if x ∈ B(k) for some k ∈ {1, . . . ,Λ},
x otherwise.

Since fxk is Ejl -admissible, due to the disjointness of {B(k)}Λk=1, so is f .
In addition, f belongs to E(Ejl , jl). For this, we need to check the con-
ditions of Definition 4.8 (a)-(c). (a) is satisfied since max|f(x) − x| 6
max(diamB(k)) 6 1

j2
l

. For (b), write f?Ejl =: {Ẽi}Ni=1. Then we have
Ei4Ẽi = ∪Λ

k=1Ei4Ẽxk,i and (iv) and (7.39) give

Ln+1(Ei4Ẽi) 6 c4
Λ∑
k=1

(‖∂Ejl‖(B(k)))
n+1
n(7.43)

6
c4c

1
n
3

2j2
l

‖∂Ejl‖(∪Λ
k=1B(k))

6 c(n)( min
B3(x0)

Ω)−1M

j2
l

.

Thus, for all sufficiently large l, we have (b). For (c), using diamB(k) 6
1/j2

l and arguing as in the proof of Lemma 4.12 with (iii), we may prove

(7.44) ‖∂f?Ejl‖(φ)− ‖∂Ejl‖(φ)

=
Λ∑
k=1

(‖∂(fxk)?Ejl‖bφ(B(k))− ‖∂Ejl‖bφ(B(k))) 6 0
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for φ ∈ Ajl for all sufficiently large l. Thus we proved f ∈ E(Ejl , jl).
By (4.11), (7.40) and (7.41), then, we have

∆jl‖∂Ejl‖(Ω) 6 ‖∂f?Ejl‖(Ω)− ‖∂Ejl‖(Ω)(7.45)

=
Λ∑
k=1

(‖∂(fxk)?Ejl‖bΩ(B(k))− ‖∂Ejl‖bΩ(B(k)))

6 (2− 1
2 − 1)

Λ∑
k=1
‖∂Ejl‖bΩ(B(k))

6 (2− 1
2 − 1)B−1

n+1‖∂Ejl‖bΩ(GR,jl,2).

(7.45) and (4) prove

(7.46) lim
l→∞
‖∂Ejl‖bΩ(GR,jl,2) = 0,

and (7.31), (7.38) and (7.46) prove

(7.47) lim sup
l→∞

‖∂Ejl‖bΩ(GR) 6 8R exp(4c1R)Bn+1M.

Recalling (7.27), (7.47) proves limR→0‖V ‖bΩ(FR) = 0, which proves (7.17).
From Proposition 5.6, ‖δV ‖ is a Radon measure and applying Allard’s
rectifiability theorem [1, §5.5(1)], V is rectifiable. �

8. Integrality theorem

In the following, we write T ∈ G(n+1, n) as the subspace corresponding
to {xn+1 = 0} and T⊥ ∈ G(n+ 1, 1) as the orthogonal complement {x1 =
· · · = xn = 0}. As usual, they are identified with the (n + 1) × (n + 1)
matrices representing the orthogonal projections to these subspaces. Given
a set Y ⊂ T⊥ and r1, r2 ∈ (0,∞), define a closed set

(8.1) E(r1, r2) := {x ∈ Rn+1 : |T (x)| 6 r1, dist (T⊥(x), Y ) 6 r2}.

Lemma 8.1 ([8, §4.20]). — Corresponding to n, ν ∈ N, α ∈ (0, 1) and
ζ ∈ (0, 1), there exist γ ∈ (0, 1) and j0 ∈ N with the following property.
Assume

(1) E = {Ei}Ni=1 ∈ OP
N
Ω , j ∈ N with j > j0, R ∈ (0, 1

2j
−2), ρ ∈

(0, 1
2j
−2),

(2) ρ > αR,
(3) Y ⊂ T⊥ has no more than ν elements, diamY < j−2 and

θn(‖∂E‖, y)=1 for all y ∈ Y , and writing E∗(r) :=E(r, (1+R−1r)ρ)
for short, assume further that
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(4)
∫

Gn(E∗(r))‖S − T‖ d(∂E)(x, S) 6 γ‖∂E‖(E∗(r)) for all r ∈ (0, R),
(5) ∆j‖∂E‖(E∗(r)) > −γ‖∂E‖(E∗(r)) for all r ∈ (0, R).

Then we have

(8.2) ‖∂E‖(E(R, 2ρ)) > (H0(Y )− ζ)ωnRn.

Remark 8.2. — We note that conditions (3), (4) and (5) are different
from Brakke’s. The differences are essential to complete the proof of inte-
grality.

Proof. — We may assume that

(8.3) H0(Y ) = ν

since the lesser cases H0(Y ) ∈ {1, . . . , ν − 1} can be equally proved and
we may simply choose the smallest γ and the largest j0 among them. We
choose and fix a large j0 ∈ N so that

(8.4)
(
ν − 2−1(1 + ζ)

)
(ν − ζ)−1 < exp(−4j−1

0 )

which depends only on ν and ζ. In the following, we assume that E , j, R,
ρ and Y satisfy (1)–(5). Next we set

(8.5) r1 := inf{λ > 0 : ‖∂E‖(E(λ, (1 +R−1λ)ρ)) 6 (ν − ζ)ωnλn}.

Since ∪y∈Y Uλ(y) ⊂ E(λ, (1 +R−1λ)ρ) for λ < ρ,

(8.6) lim inf
λ→0

(ωnλn)−1‖∂E‖(E(λ, (1 +R−1λ)ρ)) >
∑
y∈Y

θn(‖∂E‖, y) = ν

by (3) and (8.3). Thus, (8.6) shows r1 > 0. If r1 > R, then, we would
have the opposite inequality in (8.5) for all λ < R. By letting λ ↗ R, we
would obtain (8.2). In the following, we assume that r1 < R, and look for
a contradiction to (5), with an appropriate choice of γ. For the repeated
use, we define

(8.7) ρ1 := (1 +R−1r1)ρ

and note that

(8.8) ‖∂E‖(E(r1, ρ1)) = (ν − ζ)ωnrn1 .

This is because, considering the inequality for λ < r1 and letting λ ↗ r1,
we have >. On the other hand, there exists a sequence λi > r1 satisfying
the inequality in (8.5) and letting i→∞, we obtain 6. Combined with (4)
and (5), (8.8) gives

(8.9)
∫

Gn(E(r1,ρ1))
‖S − T‖ d(∂E)(x, S) 6 γ(ν − ζ)ωnrn1
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and

(8.10) ∆j‖∂E‖(E(r1, ρ1)) > −γ(ν − ζ)ωnrn1 .

Next, define

(8.11) V := ∂EbGn(E(r1,ρ1))(= |E(r1, ρ1) ∩ ∪Ni=1∂Ei|)

and consider T]V , the usual push-forward of varifold counting multiplicities.
One notes that

(8.12) T]V (φ) =
∫
T

φ(x, T )H0(T−1(x) ∩
(
∪Ni=1∂Ei

)
∩ E(r1, ρ1)) dHn(x)

for φ ∈ Cc(Gn(Rn+1)) and θn(‖T]V ‖, x) = H0(T−1(x) ∩
(
∪Ni=1∂Ei

)
∩

E(r1, ρ1)) for Hn a.e. x ∈ T . Define

(8.13) A0 := {x ∈ Unr1
, θn(‖T]V ‖, x) 6 ν − 1}.

For Hn a.e. x ∈ Unr1
\A0, we have θn(‖T]V ‖, x) > ν. Thus,

ν(ωnrn1 −Hn(A0)) 6 ‖T]V ‖(Unr1
) =
∫

Gn(E(r1,ρ1))
|ΛnT ◦S| dV (x, S)(8.14)

6 ‖V ‖(E(r1, ρ1)) = (ν − ζ)ωnrn1 ,

where we used (8.8) and (8.11) in the last line. By (8.14) we obtain

(8.15) Hn(A0) > ν−1ζωnr
n
1 .

We next set

(8.16) η := 1− ζ
8

in the following. We then choose s ∈ (0, 1/2) depending only on ν, ζ and n
so that Hn(Un1 \ Un1−2s) 6 η(2ν)−1ζωn. This implies from (8.15) that

(8.17) Hn(A0 ∩ Unr1(1−2s)) > (1− 2−1η)ν−1ζωnr
n
1 .

We then claim that there exist

(8.18) δ ∈ (0, sr1) and A ⊂ A0

such that

(8.19) A ⊂ Unr1(1−2s) and Hn(A) > (1− η)ν−1ζωnr
n
1 ,

and for each a ∈ A, we have

(8.20)
∫

Gn(C(T,a,δ))
|ΛnT ◦ S| dV (x, S) 6 (ν − 1 + η)ωnδn

and

(8.21) ‖V ‖(C(T, a, δ)) 6 ηωnδn−1r1.
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Here, C(T, a, δ) := {x ∈ Rn+1 : |T (x)−a| 6 δ}. The reason for the existence
of A and δ is as follows. Since θn(‖T]V ‖, ·) 6 ν − 1 on A0, we have

(8.22) lim
r→0

1
ωnrn

∫
Bnr (x)

θn(‖T]V ‖, y) dHn(y) 6 ν − 1

for a.e. x ∈ A0 by the Lebesgue theorem. On the other hand,∫
Bnr (x)

θn(‖T]V ‖, y) dHn(y) = ‖T]V ‖(Bnr (x))(8.23)

=
∫

Gn(C(T,x,r))
|ΛnT ◦ S| dV (y, S).

Combining (8.22) and (8.23), one may argue that for sufficiently small δ,
(8.20) is satisfied for a set in A0 whose complement can be arbitrarily
small in measure. For (8.21), define A0,δ := {a ∈ A0 : ‖V ‖(C(T, a, δ)) >
ηωnδ

n−1r1}. By the Besicovitch covering theorem, there exists a disjoint
family {Bnδ (xi)}mi=1 such that

Hn(A0,δ) 6 Bnmωnδ
n 6 Bnδ(ηr1)−1

m∑
i=1
‖V ‖(C(T, xi, δ))(8.24)

6 Bnδ(ηr1)−1(ν − ζ)ωnrn1 ,

where we also used (8.8) and (8.11). Thus (8.24) shows that we may choose
δ sufficiently small so that the measure of A0,δ is small. On the comple-
ment of A0,δ, we have (8.21). Comparing (8.15), (8.17) and (8.19), we may
thus choose δ and A ⊂ A0 so that (8.19)–(8.21) are satisfied. We should
emphasize that the choice of s is solely determined by ζ, ν and n while δ
may depend additionally on other quantities.
Let ξ ∈ (0, ρ1r1

R ) be arbitrary and for each a ∈ A, define

(8.25) a∗ := r1a

r1 − δ
,

(8.26) E1(a) := {x∈C(T, a, δ) : |T (x)−a∗|6 2δξ−1(ρ1−dist (T⊥(x), Y ))},

(8.27) E2(a) := {x∈C(T, 0, r1) \E1(a) : |T (x)− a∗|

6 2r1ξ
−1(ρ1− dist (T⊥(x), Y ))}.

We give a few remarks on the definitions (8.25)–(8.27). We have

(8.28) |a− a∗| = δ

r1 − δ
|a| < δr1

r1 − δ
(1− 2s) < δ < r1s

by a ∈ A, (8.18) and (8.19), so in particular

(8.29) a∗ ∈ Unr1(1−s) ∩ U
n
δ (a).
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The choice of a∗ is made so that the radial expansion centered at T−1(a∗) by
the factor of r1/δ maps E1(a) to E1(a)∪E2(a) one-to-one. More precisely,
let Fa : Rn+1 → Rn+1 be defined by

(8.30) Fa(x) := T⊥(x) + r1

δ
(T (x)− a∗) + a∗.

Then, one can check that |T (x)− a| 6 δ if and only if |T (Fa(x))| 6 r1 us-
ing (8.25). The latter conditions involving |T (x)− a∗| on E1(a) and E2(a)
are also equivalent for x and Fa(x). Thus we have a one-to-one correspon-
dence between E1(a) and E1(a) ∪ E2(a) by Fa, i.e.,

(8.31) Fa(E1(a)) = E1(a) ∪ E2(a).

By the definition of E(r1, ρ1), one can check that Ei(a) ⊂ E(r1, ρ1) for
i = 1, 2.

With these sets defined, let fa : Rn+1 → Rn+1 be a Lipschitz map such
that fa(x) = x on Rn+1 \ (E1(a) ∪ E2(a)), fabE1(a)= FabE1(a), and fa
radially projects E2(a) onto ∂(E1(a) ∪ E2(a)) from T−1(a∗). By (8.31),
fa expands E1(a) to E1(a) ∪ E2(a) and “crushes” E2(a) to the boundary
∂(E1(a) ∪E2(a)). It is not difficult to check that fa is E-admissible. Write
Ẽi := int (fa(Ei)). We need to check (a)–(c) of Definition 4.3. (c) is trivial.
(a) follows from the bijective nature between E1(a) and E1(a) ∪ E2(a).
For (b), suppose x ∈ ∂(E1(a) ∪ E2(a)) \ ∪Ni=1Ẽi. If x ∈ ∂Ei for some i,
then x ∈ fa(∂Ei) since fa is identity there. If x /∈ ∂Ei for all i, then
there exists some i such that x ∈ Ei due to (4.1). f−1

a (x) is a closed line
segment or a point. If this set is all included in Ei, then, we would have
x ∈ int(fa(Ei)) = Ẽi, a contradiction. Thus there is some y ∈ ∂Ei∩f−1

a (x)
and this shows x ∈ fa(∂Ei). Other case when x /∈ ∂(E1(a)∪E2(a)) is easily
handled to conclude that (b) holds. Thus fa is E-admissible.
To separate E2(a) into two parts, we next define

E3(a) := {x ∈ E2(a) : fa(x) ∈ ∂C(T, 0, r1)},(8.32)
E4(a) := E2(a) \ E3(a).(8.33)

Note that ∂(E1(a) ∪ E2(a)) consists of the sets in a cylinder ∂C(T, 0, r1)
and cones of type {x : |T (x) − a∗| = 2r1ξ

−1(ρ1 − dist (T⊥(x), Y ))} (see
Figure 8.1 for n = 1). The set E3(a) thus is the one mapped to the cylinder
by fa and E4(a) is the one to the cones.

We note that

(8.34) E4(a) ⊂ {x ∈ E2(a) : dist (T⊥(x), Y ) > ρ1 − ξ}

and

(8.35) E(r1, ρ1 − ξ) ⊂ E1(a) ∪ E2(a).
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−r1 a− δ a+ δa a∗ r1

E1(a)
E3(a)
E4(a)

E2(a) = E3(a) ∪ E4(a)

ρ1

ρ1

ξ

ξ

slope = (2δ)−1ξ

slope = (2r1)−1ξ

Figure 8.1.

To see these, for x ∈ E4(a), since fa(x) is a point on the cone, we
have |T (fa(x))− a∗| = 2r1ξ

−1(ρ1 − dist (T⊥(fa(x)), Y )). Since fa(x), a∗ ∈
C(T, 0, r1), |T (fa(x))−a∗| 6 2r1. By the definition of fa, we have T⊥(fa(x))
= T⊥(x). These considerations show (8.34). If x ∈ E(r1, ρ1 − ξ), by (8.1),
|T (x)| 6 r1 and dist (T⊥(x), Y ) 6 ρ1−ξ. Then we have |T (x)−a∗| 6 2r1 6
2r1ξ

−1(ρ1 − dist (T⊥(x), Y )) and (8.35) follows.
For a given x ∈ E1(a) ∪ E2(a), let v1, . . . , vn+1 be a set of orthonormal

vectors such that v1 = T (x)−a∗
|T (x)−a∗| , v2, . . . , vn ∈ T and vn+1 ∈ T⊥. Direct

computations show

∇vifa(x) = r1

δ
vi if 1 6 i 6 n and ∇vn+1fa(x) = vn+1 on E1(a),(8.36)

∇v1fa(x) = 0 on E2(a),(8.37)

∇vn+1fa(x) = vn+1 on E3(a),(8.38)

(8.39) ∇vifa(x) ∈ T and |∇vifa(x)| 6 4r1

|T (x)− a∗|
√
s

if 2 6 i 6 n on E3(a),

∇vn+1fa(x) = vn+1 ± 2r1ξ
−1v1 on E4(a),(8.40)

∇vifa(x) ‖ vi and |∇vifa(x)| 6 2r1

|T (x)− a∗| if 2 6 i 6 n on E4(a).(8.41)

Above computations are all valid whenever ∇vifa(x) is defined. On E1(a),
(8.30) gives (8.36). On E2(a), since fa is a radial projection in the direction
of v1 to ∂(E1(a) ∪ E2(a)), we have (8.37).

For x ∈ E3(a) more precisely, fa is a radial projection from T−1(a∗) of
C(T, 0, r1) \C(T, a, δ) to ∂C(T, 0, r1). Thus, it is clear that we have (8.38).
One may express the formula of fa implicitly by introducing a “stretching
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factor” t = t(x) > 0 as

(8.42) fa(x) = T⊥(x) + t(T (x)− a∗) + a∗, |t(T (x)− a∗) + a∗|2 = r2
1.

Differentiating both identities of (8.42) with respect to vi (i = 2, . . . , n),
we obtain

∇vifa(x) = ∇vit(T (x)− a∗) + tvi, fa(x) · (∇vit(T (x)− a∗) + tvi) = 0

and

(8.43) ∇vifa(x) = tvi− t
fa(x)·vi

fa(x)·(T (x)−a∗) (T (x)−a∗) = tvi− t
fa(x) ·vi
fa(x) ·v1

v1.

We need a lower bound of |fa(x) · v1| to estimate (8.43). From (8.42) and
by the definition of v2, . . . , vn, we have fa(x) · vi = a∗ · vi for i = 2, . . . , n.
Then, we have

(8.44) |fa(x) · v1|2 = |T (fa(x))|2 −
n∑
i=2
|T (fa(x)) · vi|2 = r2

1 − |a∗|2

> r2
1 − (1− s)2r2

1

where we used |T (fa(x))| = r1 and |a∗| < r1(1 − s) from (8.29). Thus we
have from (8.43) and (8.44) that

(8.45) |∇vifa(x)| 6 t
(

1 + 1√
2s− s2

)
6

4r1

|T (x)− a∗|
√
s
.

The last inequality is due to |t(T (x)−a∗)| 6 |t(T (x)−a∗)+a∗|+ |a∗| 6 2r1
and s < 1/2. Combined with the expression of (8.43), this proves (8.39).

For x ∈ E4(a), one can check that

(8.46) fa(x) = T⊥(x) + T (x)− a∗

|T (x)− a∗|2r1ξ
−1(ρ1 − dist (T⊥(x), Y )) + a∗.

We have ∇vn+1fa(x) = vn+1± T (x)−a∗
|T (x)−a∗|2r1ξ

−1, which gives (8.40). For i =

2, . . . , n, we have ∇vifa(x) = 2r1ξ
−1(ρ1−dist (T⊥(x),Y ))
|T (x)−a∗| vi since T (x)−a∗ ‖ v1

and v1 ⊥ vi. Using (8.34), we obtain (8.41).
We next need to compute the Jacobian |Λn∇fa(x) ◦ S| for arbitrary

S ∈ G(n+ 1, n) to compute ‖(fa)]V ‖. As we will check, we may estimate
as

|Λn∇fa(x) ◦ S| 6
(r1

δ

)n
|ΛnT ◦ S|+

(r1

δ

)n−1
on E1(a),(8.47)

|Λn∇fa(x) ◦ S| 6 ‖S − T‖
(

4r1

|T (x)− a∗|
√
s

)n−1
on E3(a),(8.48)

|Λn∇fa(x) ◦ S| 6 ‖S − T‖
√

4r2
1 + ξ2

ξ

(
2r1

|T (x)− a∗|

)n−1
on E4(a).(8.49)
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To see (8.47)–(8.49), after an orthogonal rotation, we may consider that
v1, . . . , vn+1 are parallel to coordinate axis of x1, . . . , xn+1, respectively,
and let u1 = (u1,1, . . . , un+1,1)>, . . ., un+1 = (u1,n+1, . . . , un+1,n+1)> be
a set of orthonormal vectors such that u1, . . . , un span S and un+1 ∈ S⊥.
Then, |Λn∇fa(x)◦S| is the volume of n-dimensional parallelepiped formed
by ∇fa(x) ◦ u1, . . . ,∇fa(x) ◦ un ∈ Rn+1. Let L = (Li,j) be the (n+ 1)× n
matrix whose column vectors are formed by ∇fa(x) ◦ u1, . . . ,∇fa(x) ◦ un.
Then we have by the Binet–Cauchy formula ([18, Theorem 3.7])

(8.50) |Λn∇fa(x) ◦ S|2 = det(L> ◦ L) =
n+1∑
l=1

(det[(Li,j)i 6=l,16j6n])2.

Computation for (8.47). — On E1(a), due to (8.36), ∇fa(x) is the
(n + 1) × (n + 1) diagonal matrix whose first n diagonal elements are all
r1/δ and whose last diagonal element is 1. Then, the minor formed by elim-
inating the last row of L is (ui,j)16i,j6n times r1/δ, and its determinant
is (r1/δ)n times determinant of (ui,j)16i,j6n. Note that the determinant of
(ui,j)16i,j6n is precisely |ΛnT ◦S| since T now is the diagonal matrix whose
first n diagonal elements are all 1 and whose n + 1-th diagonal element is
0. For a minor formed by eliminating the l-th row of L, 1 6 l 6 n, the
determinant is (r1/δ)n−1 times the determinant of (ui,j)i 6=l,16j6n. Con-
sidering the orthogonality of the matrix (ui,j)16i,j6n+1 and the formula
for the inverse matrix, the determinant is given by (−1)l+n+1ul,n+1. Thus,
from (8.50), we have

(8.51) |Λn∇fa(x) ◦ S|2 =
(r1

δ

)2n
|ΛnT ◦ S|2 +

(r1

δ

)2(n−1) n∑
l=1

(ul,n+1)2.

Since |un+1| = 1, (8.51) gives (8.47).

Computation for (8.48) and (8.49). — Here let us write ∇fa(x) as ∇f
for short and the (i, j)-element of∇f as∇fi,j . From (8.37), we have∇fi,1 =
0 for all 1 6 i 6 n+ 1. Then, from (8.50), we have

(8.52) |Λn∇f ◦ S|2

= det [(u1, . . . , un)> ◦ (∇f)> ◦ ∇f ◦ (u1, . . . , un)]

= (det [(ui,j)26i6n+1,16j6n])2det [((∇f)> ◦ ∇f)26i,j6n+1].

By the orthogonality again, we have det [(ui,j)26i6n+1,16j6n] =
(−1)nu1,n+1. Note that |u1,n+1| 6

(∑n
i=1(ui,n+1)2) 1

2 6 |(T − S) ◦ un+1|,
so that |u1,n+1| 6 ‖T − S‖. Also, considering the fact that det [((∇f)> ◦
∇f)26i,j6n+1] is the square of n-dimensional volume of parallelepiped
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formed by vectors (∇f1,j , . . . ,∇fn+1,j)>, j = 2, . . . , n+1, it is bounded by∏n+1
j=2 |∇vjf |2. These considerations combined with (8.52), (8.38) and (8.39)

give (8.48). Similarly using (8.40), (8.41) and (8.52), we obtain (8.49).
We next calculate the mass of (fa)]V . For later use, we note the following.

Since ∪Ni=1∂Ẽi ⊂ f(∪Ni=1∂Ei) and the varifold push-forward counts the
multiplicities of the image, we have

(8.53) ‖∂(fa)?E‖(E(r1, ρ1)) = Hn(∪Ni=1∂Ẽi ∩ E(r1, ρ1))
6 ‖(fa)]V ‖(E(r1, ρ1)).

Now, using (8.47)–(8.49), we have

(8.54) ‖(fa)]V ‖(E(r1, ρ1))

=
∫

Gn(E(r1,ρ1))
|Λn∇fa(x) ◦ S| dV (x, S)

6
∫

Gn(E1(a))
rn1 δ
−n|ΛnT ◦ S|+ rn−1

1 δ1−n dV (x, S)

+
∫

Gn(E3(a))
‖S−T‖

(
4r1

|T (x)− a∗|
√
s

)n−1
dV (x, S)

+
∫

Gn(E4(a))
‖S−T‖ξ−1

√
4r2

1 +ξ2
(

2r1

|T (x)−a∗|

)n−1
dV (x, S)

+ ‖V ‖(E(r1, ρ1) \ (E1(a) ∪ E2(a)))
=: I1 + . . .+ I4.

Since E1(a) ⊂ C(T, a, δ), and by (8.20) and (8.21), we have

(8.55) I1 6 (ν − 1 + η)ωnrn1 + ηωnr
n
1 = (ν − 1 + 2η)ωnrn1 .

By defining

(8.56) c(r1ξ
−1) := max{4ns

1−n
2 , 2n(2r1ξ

−1 + 1)},

we have

(8.57) I2 +I3 6 c(r1ξ
−1)

∫
Gn(E(r1,ρ1))

‖S−T‖
(

r1

|T (x)−a∗|

)n−1
dV (x, S).

By (8.35), we have

(8.58) I4 6 ‖V ‖(E(r1, ρ1) \ E(r1, ρ1 − ξ))
= ‖V ‖(E(r1, ρ1))− ‖V ‖(E(r1, ρ1 − ξ)).
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On the other hand, due to (8.5), we have ‖V ‖(E(λ, (1 + λR−1)ρ)) > (ν −
ζ)ωnλn for λ < r1. Hence, for λ∗ := r1 − Rξρ−1 which solves ρ1 − ξ =
(1 + λ∗R

−1)ρ, we have

(8.59) ‖V ‖(E(r1, ρ1 − ξ)) > ‖V ‖(E(λ∗, (1 + λ∗/R)ρ)) > (ν − ζ)ωnλn∗ .

By Bernoulli’s inequality, we have λn∗ = (r1−Rξρ−1)n > rn1 −nrn−1
1 Rξρ−1,

and (8.58), (8.59) and (8.8) show

(8.60) I4 6 (ν − ζ)ωnnrn−1
1 Rξρ−1 6 νnωnα

−1(ξr−1
1 )rn1 ,

where we used (2) (ρ > αR) in the last inequality. The estimates so far
hold for any a ∈ A. To estimate I2 + I3, we integrate the right-hand side
of (8.57) with respect to a. For any fixed x ∈ E(r1, ρ1), by (8.25),

(8.61)
∫
A

(
r1

|T (x)− a∗|

)n−1
dHn(a)

=
(
r1 − δ
r1

)n−1 ∫
A

(
r1

| r1−δ
r1

T (x)− a|

)n−1

dHn(a)

6
∫
Bn2r1

(
r1

|y|

)n−1
dHn(y) = 2nωnrn1

after a change of variable y = r1−δ
r1

T (x)− a and using {y : r1−δ
r1

T (x)− y ∈
A} ⊂ Bn2r1

. Then, by Fubini’s theorem and (8.61),

(8.62)
∫
A

dHn(a)
∫

Gn(E(r1,ρ1))
‖S − T‖

(
r1

|T (x)− a∗|

)n−1
dV (x, S)

6 2nωnrn1
∫

Gn(E(r1,ρ1))
‖S − T‖ dV (x, S) 6 2nω2

nνr
2n
1 γ

where (8.9) is used. By (8.19) and (8.62), there exists a ∈ A such that we
have

(8.63)
∫

Gn(E(r1,ρ1))
‖S − T‖

(
r1

|T (x)− a∗|

)n−1
dV (x, S)

6 2n(1− η)−1ν2ζ−1ωnγr
n
1 .

With this choice of a, (8.54), (8.55), (8.57), (8.60) and (8.63) show

(8.64) ‖(fa)]V ‖(E(r1, ρ1))

6 {ν− 1 + 2η+ c(r1ξ
−1)2n(1− η)−1ν2ζ−1γ+ νnα−1ξr−1

1 }ωnrn1 .

Up to this point, ξ ∈ (0, ρ1r1
R ) is arbitrary. Fix ξ so that νnα−1ξr−1

1 = η.
Since ρ1 > ρ and ρ > αR, one can check that ξ ∈ (0, ρ1r1/R). The choice of
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ξr−1
1 depends only on ν, ζ, n, α. This fixes c(r1ξ

−1) in (8.56), and c(r1ξ
−1)

depends only on ν, ζ, n, α. We then restrict γ so that

c(r1ξ
−1)2n(1− η)−1ν2ζ−1γ 6 η,

which again depends only on the same constants. Then we have from (8.64)
and (8.16) that

(8.65) ‖(fa)]V ‖(E(r1, ρ1)) 6 (ν − 1 + 4η)ωnrn1
=
(
ν − 1 + 2−1(1− ζ)

)
ωnr

n
1 .

We next check that fa ∈ E(E , E(r1, ρ1), j) by using Lemma 4.12. We
have already seen that fa is E-admissible. We may take C = E(r1, ρ1)
in Lemma 4.12 and (a) is satisfied. Since T⊥(fa(x) − x) = 0, fa(x) ∈
C(T, 0, r1) for x ∈ E(r1, ρ1) and r1 < R < 1

2j
−2 (by (1)), we have

|fa(x)−x| 6 2r1 < j−2 so we have (b) satisfied. For (c), we have Ẽi4Ei ⊂
E(r1, ρ1) and due to (1) and (3), diamE(r1, ρ1) < 4j−2 (note (8.7)). Thus
for suitably restricted j depending on n, we have (c). For (d), by (8.53),
(8.65), (8.8) and (8.4) we have

(8.66) ‖∂(fa)?E‖(E(r1, ρ1)) 6 exp(−4j−1
0 )‖∂E‖(E(r1, ρ1)).

Since diamE(r1, ρ1) < 4j−2, we have (d), and fa ∈ E(E , E(r1, ρ1), j).
Finally, consider ∆j‖∂E‖(E(r1, ρ1)). By (8.10), (4.13), (8.8) and (8.65), we
have

−γ(ν − ζ)ωnrn1 6 ∆j‖∂E‖(E(r1, ρ1))(8.67)
6 ‖∂(fa)?E‖(E(r1, ρ1))− ‖∂E‖(E(r1, ρ1))

6 −2−1(1− ζ)ωnrn1 .

By restricting γ further depending only on ζ and ν, (8.67) is a contradiction.
This concludes the proof. �

For large length scale (> j−2), we use the following.

Lemma 8.3 ([8, §4.21]). — Suppose
(1) ν ∈ N, ξ ∈ (0, 1), M ∈ (1,∞), 0 < r0 < R < ∞, T ∈ G(n + 1, n)

and V ∈ Vn(Rn+1),
(2) Y ⊂ T⊥ has no more than ν + 1 elements,
(3) (M + 1)diam Y 6 R,
(4) r0 < (3ν)−1diamY ,
(5) R‖δV ‖(Br(y)) 6 ξ‖V ‖(Br(y)) for all y ∈ Y and r ∈ (r0, R),
(6)

∫
Gn(Br(y))‖S − T‖ dV (x, S) 6 ξ‖V ‖(Br(y)) for all y ∈ Y and r ∈

(r0, R).
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Then there are V1, V2 ∈ Vn(Rn+1) and a partition of Y into subsets
Y0, Y1, Y2 such that

V > V1 + V2,(8.68)
neither Y1 nor Y2 has more than ν elements,(8.69)

(8.70) (M diamY )‖δVj‖(Br(y))

6 2M(ν + 1)(3νM)n+1(exp ξ)ξ‖Vj‖(Br(y))
for all y ∈ Yj , r ∈ (r0,M diamY ) and j = 1, 2,

(8.71)
∫

Gn(Br(y))
‖S − T‖ dVj(x, S) 6M(3νM)n(exp ξ)ξ‖Vj‖(Br(y))

for all y ∈ Yj , r ∈ (r0,M diamY ) and j = 1, 2,

(8.72) Vj > V b{x ∈ Rn+1 : dist (T⊥(x), Yj) 6 r0} ×G(n+ 1, n)
for j = 1, 2,

(8.73) {(1 + 1/M)n + (ν + 1)/M}(exp ξ)‖V ‖({x : dist (x, Y ) 6 R})
ωnRn

>
∑
y∈Y0

‖V ‖(Br0(y))
ωnrn0

+
∑
j=1,2

‖Vj‖({x : dist (x, Yj) 6M diamY })
ωn(M diamY )n .

The proof of Lemma 8.3 is the same as [1, Lemma 6.1] except that r0 → 0
in [1] while it is stopped at a positive radius r0 here.

Lemma 8.4. — Corresponding to n, ν ∈ N and λ ∈ (1, 2), there exist
γ ∈ (0, 1) and M̃ ∈ (1,∞) with the following property. Suppose

(1) 0 < r0 < R <∞, T ∈ G(n+ 1, n), V ∈ Vn(Rn+1),
(2) Y ⊂ T⊥ has no more than ν + 1 elements,
(3) {(1 + 3ν)2 + M̃2} 1

2 r0 < R,
(4) diamY 6 γR,
(5) R‖δV ‖(Br(y)) 6 γ‖V ‖(Br(y)) for all y ∈ Y and r ∈ (r0, R),
(6)

∫
Gn(Br(y))‖S − T‖ dV (x, S) 6 γ‖V ‖(Br(y)) for all y ∈ Y and r ∈

(r0, R).
Then there exists a partition of Y into subsets Y0, Y1, . . . , YJ such that

(8.74) diamYj 6 3νr0 for all j ∈ {1, . . . , J},

(8.75) λ
‖V ‖({x : dist (x, Y ) 6 R})

ωnRn
>
∑
y∈Y0

‖V ‖(Br0(y))
ωnrn0

+
J∑
j=1

‖V ‖({x : dist (T⊥(x), Yj) 6 r0, |T (x)| 6 M̃r0})
ωn(M̃r0)n

.
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Proof. — We use Lemma 8.3 to partition Y into subsets whose diameters
are all smaller than 3νr0. In the case Y consists of only one element, we may
take Y0 := Y and Lemma 7.1 shows (8.75) by choosing an appropriately
small γ in (5) depending only on λ. We do not need M̃ in this case. If Y
consists of more than one element, we apply Lemma 8.3. We separate into
two cases first.
First inductive step: Case 1. — Suppose (4) of Lemma 8.3 is not satis-

fied, i.e.,

(8.76) diamY 6 3νr0.

In this case, we set J = 1, Y1 := Y and Y0 = ∅. For any y ∈ Y , we have
by (8.76)

(8.77) {x : dist (T⊥(x), Y1) 6 r0, |T (x)| 6 M̃r0} ⊂ B
r0((1+3ν)2+M̃2)

1
2

(y).

We have

(8.78)
‖V ‖(B

r0((1+3ν)2+M̃2)
1
2

(y))

ωn(r0M̃)n

=
‖V ‖(B

r0((1+3ν)2+M̃2)
1
2

(y))

ωn(r0((1 + 3ν)2 + M̃2) 1
2 )n

(
1 + (1 + 3ν)2

M̃2

)n
2

.

By Lemma 7.1 with (5), (8.76), (3) and (8.78), we have

(8.79)
‖V ‖(B

r0((1+3ν)2+M̃2)
1
2

(y))

ωn(r0M̃)n

6 (exp γ)
(

1 + (1 + 3ν)2

M̃2

)n
2 ‖V ‖(BR(y))

ωnRn
.

Since BR(y) ⊂ {x : dist (x, Y ) 6 R}, combining (8.77), (8.79), we choose
large M̃ and small γ depending only on n, ν and λ so that (8.75) is satisfied.

First inductive step : Case 2. — . Suppose (4) of Lemma 8.3 is satisfied.
WithM satisfying (3) of Lemma 8.3 and ξ = γ, we apply Lemma 8.3. Thus
we have a partition of Y into Y0, Y1, Y2 with (8.68)–(8.73).
Second inductive step for Y1 and Y2. — We next proceed just like before

for Y1 and Y2. That is, for each j = 1, 2, if Yj = {y}, we use Lemma 7.1
with (8.70) to derive

(8.80) ‖V ‖(Br0(y))
ωnrn0

6 exp{2M(ν + 1)(3νM)n+1(exp γ)γ}‖Vj‖(BMdiamY (y))
ωn(MdiamY )n
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where we have also used (8.72). Note that the right-hand side of (8.80) is
bounded from above via (8.73). We add this Yj to Y0. Suppose Yj consists
of more than one point, and furthermore, (8.76) is satisfied with Yj in place
of Y . Note that (8.72) shows

(8.81) ‖V ‖({x : dist (T⊥(x), Yj) 6 r0, |T (x)| 6 M̃r0})

6 ‖Vj‖({x : dist (T⊥(x), Yj) 6 r0, |T (x)| 6 M̃r0}).

We then go through the same argument (8.77)–(8.79) for Vj in place of V
and for MdiamY in place of R there. Note that we may apply Lemma 7.1
for Vj due to (8.70). For doing so, we may achieve r0((1 + 3ν)2 + M̃2) 1

2 <

M diamY since diamY > 3νr0 holds and since we may choose M greater
than M̃ by a factor depending only on ν. If Yj does not satisfy (8.76), then
we again apply Lemma 8.3 to Yj to obtain a partition. Since the number of
elements of Yj is strictly decreasing in each step, the process ends at most
after ν times. Depending only on n, ν and λ, choose large M̃ and M , and
then small γ. Note that we need not take the same M in this inductive
step. If we takeM in the first step, we may takeM −1 asM in Lemma 8.3
in the next step so that (3) of Lemma 8.3 is automatically satisfied (since
((M − 1) + 1)diam Y1 6M diamY , for example). �

Lemma 8.5. — Corresponding to n, ν ∈ N and λ ∈ (1, 2), there exist
γ, η ∈ (0, 1), M̃ ∈ (1,∞) and j0 ∈ N with the following property. Suppose

(1) E ∈ OPNΩ , j ∈ N with j > j0,
(2) ε 6 γj−4,
(3) ηj−2 < R,
(4) Y ⊂ T⊥ has no more than ν elements and θn(‖∂E‖, y) = 1 for each

y ∈ Y ,
(5) diamY 6 γR,
(6) R‖δ(Φε ∗ ∂E)‖(Br(y)) 6 γ‖Φε ∗ ∂E‖(Br(y)) for all y ∈ Y and r ∈

(η2j−2, R),
(7)

∫
Gn(Br(y))‖S−T‖ d(Φε∗∂E)(x, S) 6 γ‖Φε∗∂E‖(Br(y)) for all y ∈ Y
and r ∈ (η2j−2, R), and writing
(a) R̃1 := η2j−2λ−

1
4n ,

(b) R̃2 := M̃η2j−2λ−
1

4n ,
(c) ρ := 1

2η
2j−2(1− λ− 1

4n ),
and for any subset Y ′ ⊂ Y , define
(d) E∗1 (r, Y ′) := {x ∈ Rn+1 : |T (x)| 6 r, dist(Y ′, T⊥(x)) 6 (1 +

R̃−1
1 r)ρ},

(e) E∗2 (r, Y ′) := {x ∈ Rn+1 : |T (x)| 6 r, dist(Y ′, T⊥(x)) 6 (1 +
R̃−1

2 r)ρ},
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and assume for all Y ′ ⊂ Y with diamY ′ < j−2, i = 1, 2 and r ∈ (0, j−2)
that

(8)
∫

Gn(E∗
i

(r,Y ′))‖S − T‖ d(∂E)(x, S) 6 γ‖∂E‖(E∗i (r, Y ′)),
(9) ∆j‖∂E‖(E∗i (r, Y ′)) > −γ‖∂E‖(E∗i (r, Y ′)).

Then we have

(8.82) λ‖Φε ∗ ∂E‖({x : dist (x, Y ) 6 R}) > ωnRnH0(Y ).

Proof. — Given λ ∈ (1, 2), we first use Lemma 8.4 with λ there replaced
by λ 1

4 to obtain γ1 ∈ (0, 1) and M̃ ∈ (1,∞) depending only on n, ν and λ
with the stated property. Choose η ∈ (0, 1) depending only on n, ν and λ
so that

(8.83) (2M̃ + 3ν)η < 1.

By setting

(8.84) α := 1
2M̃

λ
1

4n (1− λ− 1
4n ) ∈ (0, 1)

and fixing

(8.85) ζ := 1− λ− 1
4 ∈ (0, 1),

we use Lemma 8.1 to obtain γ2 ∈ (0, 1) and j0 ∈ N depending only on
n, ν and λ with the stated property. We assume that γ 6 min{γ1, γ2} and
assume that we have (1)–(9). We set

(8.86) r0 := η2j−2

in Lemma 8.4. We first check that the assumptions of Lemma 8.4 are sat-
isfied, where V is replaced by Φε ∗ ∂E . By (3), we have r0 < R. By (8.86),
(8.83) and (3), we have {(1+3ν)2+M̃2} 1

2 r0 6 (2M̃+3ν)η2j−2 < ηj−2 < R.
Thus we have (3) of Lemma 8.4. Note that (2), (4)–(6) of Lemma 8.4 fol-
low from (4)–(7) of Lemma 8.5. Thus all the assumptions of Lemma 8.4
are satisfied, and there exists a partition of Y into Y0, Y1, . . . , YJ such that

(8.87) diamYl 6 3νη2j−2 < j−2 for all l ∈ {1, . . . , J},

λ
1
4
‖Φε ∗ ∂E‖({x : dist (x, Y ) 6 R})

ωnRn
(8.88)

>
∑
y∈Y0

‖Φε ∗ ∂E‖(Bη2j−2(y))
ωn(η2j−2)n

+
J∑
l=1

‖Φε ∗∂E‖({x : dist (T⊥(x), Yl)6 η2j−2, |T (x)|6 M̃η2j−2})
ωn(M̃η2j−2)n

.
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Depending only on n, ν and λ, there exists γ3 ∈ (0, η8) such that, if ε <
γ3j
−4,

λ
1
4 Φε ∗ χBη2j−2 (y) > 1(8.89)

on S0(y) :={x : |T⊥(x)−y|6 η2j−2(1−λ− 1
4n ), |T (x)|6 η2j−2λ−

1
4n },

λ
1
4 Φε ∗ χ{x : dist (T⊥(x),Yl)6η2j−2,|T (x)|6M̃η2j−2} > 1(8.90)

on Sl := {x : dist (T⊥(x), Yl) 6 η2j−2(1− λ− 1
4n ),

|T (x)| 6 M̃η2j−2λ−
1

4n }.

Since ‖Φε ∗ ∂E‖(Bη2j−2(y)) = ‖∂E‖(Φε ∗ χBη2j−2 (y)) and similarly for the
other cases, (8.88)–(8.90) show

(8.91) λ
3
4
‖Φε ∗ ∂E‖({x : dist (x, Y ) 6 R})

ωnRn

>
∑
y∈Y0

‖∂E‖(S0(y))
ωn(η2j−2λ−

1
4n )n

+
J∑
l=1

‖∂E‖(Sl)
ωn(M̃η2j−2λ−

1
4n )n

.

We now use Lemma 8.1. For elements in Y0, we let R = η2j−2λ−
1

4n

(the reader should not confuse this R with R in the statement of the
present Lemma) and ρ = 1

2η
2j−2(1 − λ−

1
4n ), and for Y1, . . . , YJ , we let

R = M̃η2j−2λ−
1

4n and the same ρ. Since they are similar, we only give the
detail for Yl, l ∈ {1, . . . , J}. We check that the assumptions of Lemma 8.1
are satisfied first. We have already assumed j > j0, and M̃η2j−2λ−

1
4n <

ηj−2 < 1
2j
−2 by (8.83). We also have 1

2η
2j−2(1 − λ−

1
4n ) < 1

2j
−2, thus

(1) is satisfied. For (2), note that 1
2η

2j−2(1 − λ− 1
4n )/(M̃η2j−2λ−

1
4n ) = α

by (8.84), thus we have (2). (3) is satisfied due to (8.87). (4) and (5) are sat-
isfied respectively due to (8) and (9) of Lemma 8.5. Thus the assumptions
of Lemma 8.1 are all satisfied for Yl, and we have

(8.92) ‖∂E‖(Sl)
ωn(M̃η2j−2λ−

1
4n )n

> H0(Yl)− ζ > λ−
1
4H0(Yl)

where we used (8.85). The similar formula holds for y ∈ Y0, and (8.91)
and (8.92) show (8.82). Finally we let γ be re-defined as min{γ1, γ2, γ3} if
necessary. �

Theorem 8.6 ([8, §4.24]). — Suppose that {Ej}∞j=1⊂OP
N
Ω and {εj}∞j=1

⊂ (0, 1) satisfy
(1) limj→∞ j4εj = 0,
(2) supj‖∂Ej‖(Ω) <∞,
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(3) lim infj→∞
∫
Rn+1

|Φεj ∗δ(∂Ej)|
2Ω

Φεj ∗‖∂Ej‖+εjΩ−1 dx <∞,
(4) limj→∞ j2(n+1)∆j‖∂Ej‖(Ω) = 0.

Then there exists a converging subsequence {∂Ejl}∞l=1 whose limit satisfies
V ∈ IVn(Rn+1).

Proof. — We may choose a subsequence {jl}∞l=1 such that the quantities
in (2) and (3) are uniformly bounded by M and the sequence {∂Ejl}∞l=1
converges to V ∈ RVn(Rn+1) by Theorem 7.3. Without loss of generality,
it is enough to prove that V is integral in U1. For each pair of positive
integers j and q, let Aj,q be a set consisting of all x ∈ B1 such that

(8.93) ‖δ(Φεj ∗ ∂Ej)‖(Br(x)) 6 q‖Φεj ∗ ∂Ej‖(Br(x))

for all r ∈ (j−2, 1). For any x ∈ B1 \Aj,q, we have

(8.94) ‖δ(Φεj ∗ ∂Ej)‖(Br(x)) > q‖Φεj ∗ ∂Ej‖(Br(x))

for some r ∈ (j−2, 1). Since Φεj ∗ χBr(x) >
1
4χBr(x) as long as εj � r2, we

have

(8.95) ‖δ(Φεj ∗ ∂Ej)‖(Br(x)) > q

4‖∂Ej‖(Br(x)).

For sufficiently large j, (1) and r ∈ (j−2, 1) guarantee that εj � r2. Apply-
ing the Besicovitch covering theorem to a collection of such balls covering
B1 \Aj,q, there exists a family C of disjoint balls such that

(8.96) ‖∂Ej‖(B1 \Aj,q) 6 Bn+1
∑

Br(x)∈C

‖∂Ej‖(Br(x)).

Thus, with (8.96) and (8.95), we obtain

(8.97) ‖∂Ej‖(B1 \Aj,q) 6
4Bn+1

q
‖δ(Φεj ∗ ∂Ej)‖(B2).

By the Cauchy–Schwarz inequality and (4.33),

(8.98) ‖δ(Φεj ∗ ∂Ej)‖(B2) 6
(∫

B2

|Φεj ∗ δ(∂Ej)|2

Φεj ∗ ‖∂Ej‖+ εjΩ−1 dx

) 1
2

×
(∫

B2

Φεj ∗ ‖∂Ej‖+ εjΩ−1 dx

) 1
2

.

The right-hand side of (8.98) for jl is bounded by (minB3 Ω)−1M
1
2 (M 1

2 +
2n+1ωn+1) for all l. Then (8.97) and (8.98) show

(8.99) ‖∂Ejl‖(B1 \Ajl,q) 6
c(n,Ω,M)

q
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for all l, q ∈ N. Now for each q ∈ N, set
(8.100)
Aq := {x∈B1 : there exist xl ∈Ajl,q for infinitely many l with xl→ x}

and define

(8.101) A := ∪∞q=1Aq.

Then we have

(8.102) ‖V ‖(U1 \A) = 0.

This can be seen as follows. Take arbitrary compact setK ⊂ U1\A. For any
q ∈ N we have K ⊂ U1 \ Aq by (8.101). For each point x ∈ K, by (8.100),
there exists a neighborhood of x which does not intersect with Ajl,q for all
sufficiently large l. Due to the compactness of K, there exist l0 ∈ N and an
open set Oq ⊂ U1 such that K ⊂ Oq and Oq ∩ Ajl,q = ∅ for all l > l0. Let
φq ∈ Cc(Oq;R+) be such that 0 6 φq 6 1 and φq = 1 on K. Then

‖V ‖(K) 6 ‖V ‖(φq) = lim
l→∞
‖∂Ejl‖(φq) = lim

l→∞
‖∂Ejl‖bB1\Ajl,q (φq)(8.103)

6 lim inf
l→∞

‖∂Ejl‖(B1 \Ajl,q) 6
c(n,Ω,M)

q

where we used (8.99). Since q is arbitrary, (8.103) gives ‖V ‖(K) = 0, prov-
ing (8.102).
Let A∗ be a set of points in U1 such that the approximate tangent space

of V exists, i.e.,

A∗ := {x ∈ U1 : θn(‖V ‖, x) ∈ (0,∞),Tann(‖V ‖, x) ∈G(n+ 1, n),(8.104)
lim
r→0+

(f(r) ◦ τ(−x))]V = θn(‖V ‖, x)|Tann(‖V ‖, x)|}.

Here, f(r)(y) := r−1y and τ(−x)(y) = y − x for y ∈ Rn+1. Since V ∈
RVn(Rn+1), we have ‖V ‖(U1 \ A∗) = 0. Thus, for ‖V ‖ a.e. x ∈ U1, we
have x ∈ A∗ ∩A. In the following, we fix x and prove that θn(‖V ‖, x) ∈ N
for such x, which proves that V ∈ IVn(Rn+1). For simplicity, we write

(8.105) d := θn(‖V ‖, x), T := Tann(‖V ‖, x).

By an appropriate change of variables, we may assume that x = 0 and
T = {xn+1 = 0}, with the understanding that all the relevant quanti-
ties are re-defined accordingly with no loss of generality. By (8.101), there
exists q ∈ N such that x = 0 ∈ A∗ ∩Aq, hence there exists a further subse-
quence of {jl}∞l=1 (denoted by the same index) such that xjl ∈ Ajl,q with
liml→∞ xjl = 0. Set rl := l−1, and choose a further subsequence so that

(8.106) lim
l→∞

(f(rl))]∂Ejl = lim
l→∞

(f(rl))](Φεjl ∗ ∂Ejl) = d|T |,
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(8.107) lim
l→∞

xjl
rl

= 0

and

(8.108) lim
l→∞

j−1
l

rl
= lim
l→∞

l

jl
= 0.

We define

(8.109) Vjl := (f(rl))]∂Ejl , Ṽjl := (f(rl))](Φεjl ∗ ∂Ejl)

for simplicity in the following.
Suppose that ν is the smallest positive integer strictly greater than d,

i.e.,

(8.110) ν ∈ N and ν ∈ (d, d+ 1].

Choose λ ∈ (1, 2) such that

(8.111) λn+1d < ν.

Corresponding to such λ and ν, we choose γ, η ∈ (0, 1), M̃ ∈ (1,∞) and
j0 ∈ N using Lemma 8.5. We use Lemma 8.5 with R = rl in the following.
To do so, as a first step, we prove that the first variations of Ṽjl converge
to 0, i.e.,

(8.112) lim
l→∞
‖δṼjl‖(Bs) = lim

l→∞
r1−n
l ‖δ(Φεjl ∗ ∂Ejl)‖(Bsrl) = 0

for all s > 0. To see this, note that we have xjl ∈ Ajl,q, so that

(8.113) ‖δ(Φεjl ∗ ∂Ejl)‖(Bsrl(xjl)) 6 q‖Φεjl ∗ ∂Ejl‖(Bsrl(xjl))

by (8.93), where we note that srl ∈ (j−2
l , 1) for all sufficiently large l due

to (8.108). One can check that (8.113) is equivalent to

(8.114) ‖δṼjl‖(Bs(r−1
l xjl)) 6 rlq‖Ṽjl‖(Bs(r−1

l xjl)).

By (8.107), r−1
l xjl → 0, and by (8.106), ‖Ṽjl‖ → ‖d|T |‖. Since rl = l−1, by

letting l→∞, (8.114) proves (8.112). We also need
(8.115)

lim
l→∞

∫
Gn(Bs)

‖S−T‖ dṼjl = lim
l→∞

r−nl

∫
Gn(Bsrl )

‖S−T‖ d(Φεjl ∗∂Ejl) = 0

and

(8.116) lim
l→∞

∫
Gn(Bs)

‖S−T‖ dVjl = lim
l→∞

r−nl

∫
Gn(Bsrl )

‖S−T‖ d(∂Ejl) = 0

for all s > 0, but these follow directly from the varifold convergence
of (8.106) to d|T |.
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For each l ∈ N define

Gl :=
{
x ∈ B(λ−1)rl : rl‖δ(Φεjl ∗ ∂Ejl)‖(Bs(x)) 6 γ‖Φεjl ∗ ∂Ejl‖(Bs(x))

(8.117)

and
∫

Gn(Bs(x))
‖S − T‖ d(Φεjl ∗ ∂Ejl) 6 γ‖Φεjl ∗ ∂Ejl‖(Bs(x))

for all s ∈ (η2j−2
l , rl)

}
.

By exactly the same line of argument as in (8.93)–(8.97), we have

(8.118) ‖∂Ejl‖(B(λ−1)rl \Gl) 6 4Bn+1γ
−1
(
rl‖δ(Φεjl ∗ ∂Ejl)‖(Bλrl)

+
∫

Gn(Bλrl )
‖S − T‖ d(Φεjl ∗ ∂Ejl)

)
.

Then, (8.112), (8.115) and (8.118) show that

(8.119) lim
l→∞

r−nl ‖∂Ejl‖(B(λ−1)rl \Gl) = 0.

Define

(8.120) G∗l := {x ∈ Gl : θn(‖∂Ejl‖, x) = 1}.

Since ∂Ejl is a unit density varifold,

(8.121) ‖∂Ejl‖(Gl \G∗l ) = 0.

We next define, as in Lemma 8.5 (a)–(c),
(8.122)
R̃1,l := η2j−2

l λ−
1

4n , R̃2,l := M̃η2j−2
l λ−

1
4n , ρl := 1

2η
2j−2
l (1− λ− 1

4n ).

We wish to apply Lemma 8.5 and define G∗∗l ⊂ G∗l as follows. For x ∈
G∗l , take any arbitrary finite set Y ′ = {y1, . . . , ym} ⊂ G∗l with y1 = x,
T (x − yi) = 0 for i ∈ {2, . . . ,m} and diamY ′ < j−2

l . We do not exclude
the possibility that Y ′ = {y1} = {x}. Define

(8.123) E∗i,l(r, Y ′) := {z ∈ Rn+1 : |T (z − x)| 6 r, dist (T⊥(Y ′),

T⊥(z)) 6 (1 + R̃−1
i,l r)ρl}

for i = 1, 2. We define G∗∗l as a set of point x ∈ G∗l such that, for arbitrary
such Y ′ described above and for all r ∈ (0, j−2

l ) and i = 1, 2, we have∫
Gn(E∗

i,l
(r,Y ′))

‖S − T‖ d(∂Ejl) 6 γ‖∂Ejl‖(E∗i,l(r, Y ′)) and

∆jl‖∂Ejl‖(E∗i,l(r, Y ′)) > −γ‖∂Ejl‖(E∗i,l(r, Y ′)).
(8.124)
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We wish to show that ‖∂Ejl‖(G∗l \G∗∗l ), which is a missed mass we cannot
apply Lemma 8.5, is small. Whenever x ∈ G∗l \G∗∗l , there exist a finite set
Y ′x = {y1, . . . , ym} ⊂ G∗l with

(8.125) y1 = x, T (x− yi) = 0 for i ∈ {2, . . . ,m},diamY ′x < j−2
l ,

and rx ∈ (0, j−2
l ) such that∫
Gn(E∗

i,l
(rx,Y ′x))

‖S − T‖ d(∂Ejl) > γ‖∂Ejl‖(E∗i,l(rx, Y ′x))

for i = 1 or i = 2 or
∆jl‖∂Ejl‖(E∗i,l(rx, Y ′x)) < −γ‖∂Ejl‖(E∗i,l(rx, Y ′x))

for i = 1 or i = 2.

(8.126)

We separate G∗l \G∗∗l into four sets depending on the conditions in (8.126),

(8.127) Wi,l := {x ∈ G∗l \G∗∗l :
∫

Gn(E∗
i,l

(rx,Y ′x))
‖S − T‖ d(∂Ejl)

> γ‖∂Ejl‖(E∗i,l(rx, Y ′x))}

for i = 1, 2 and

(8.128) W̃i,l := {x ∈ G∗l \G∗∗l : ∆jl‖∂Ejl‖(E∗i,l(rx, Y ′x))
< −γ‖∂Ejl‖(E∗i,l(rx, Y ′x))}

for i = 1, 2 so that

(8.129) G∗l \G∗∗l = ∪2
i=1(Wi,l ∪ W̃i,l).

Typically, we would use the Besicovitch covering theorem to estimate the
missed mass, but here, the elements of covering of G∗l \G∗∗l are E∗i,l(rx, Y ′x),
which are not closed balls. Thus, direct use of the Besicovitch is not possible.
On the other hand, note that at any point in Wi,l, the covering E∗i,l(rx, Y ′x)
has always “height” bigger than ρl in T⊥ direction, and ρl is O(j−2

l ). We
take advantage of this property in the following. We estimate ‖∂Ejl‖(Wi,l)
for i = 1, 2 first. We choose a finite set of points {wl,k}Klk=1 in B(λ−1)rl so
that

(8.130) B(λ−1)rl ⊂ ∪
Kl
k=1Bj−2

l
(wl,k)

and the number of intersection {k′ : B4j−2
l

(wl,k′) ∩ B4j−2
l

(wl,k) 6= ∅} for
each k is less than a constant c(n) depending only on n. Such a set of
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points can be lattice points with width j−2
l in B(λ−1)rl , for example. We

then have

(8.131)
Kl∑
k=1

∫
Gn(B

4j−2
l

(wl,k))
‖S − T‖ d(∂Ejl)(x, S)

6 c(n)
∫

Gn(Bλrl )
‖S − T‖ d(∂Ejl)(x, S).

If we set for k ∈ {1, . . . ,Kl}

(8.132) Wi,l,k := Wi,l ∩Bj−2
l

(wl,k),

by (8.130), we have

(8.133) ∪Klk=1 Wi,l,k = Wi,l.

We next separate each Wi,l,k into a stacked regions of width ρl in T⊥

direction. Define for m ∈ Z with |m| < j−2
l ρ−1

l + 1

(8.134) Wi,l,k,m := Wi,l,k∩{x ∈ Rn+1 : mρl < T⊥(x−wl,k) 6 (m+1)ρl}.

Since Wi,l,k ⊂ Bj−2
l

(wl,k), we have

(8.135) Wi,l,k = ∪|m|<j−2
l
ρ−1
l

+1Wi,l,k,m

and it is important to note that j−2
l ρ−1

l + 1 is a constant depending only
on η and λ, so ultimately only on n, ν and λ. For each x ∈ Wi,l,k,m, there
exist Yx ⊂ G∗l and rx ∈ (0, j−2

l ) with the inequality of (8.127). Define

(8.136) Ci,l,k,m := {Bnrx(T (x)) ⊂ Rn : x ∈Wi,l,k,m}

which is a covering of T (Wi,l,k,m). Observe that, if there is a subfamily
Ĉi,l,k,m ⊂ Ci,l,k,m such that T (Wi,l,k,m) ⊂ ∪C∈Ĉi,l,k,mC, we have

(8.137) Wi,l,k,m ⊂ ∪Bnrx (T (x))∈Ĉi,l,k,m{y : |T (x−y)|6 rx, |T⊥(x−y)|6 ρl}.

This is because, for any x′ ∈ Wi,l,k,m, we have some Bnrx(T (x)) ∈ Ĉi,l,k,m
with T (x′) ∈ Bnrx(T (x)). Since x′, x ∈ Wi,l,k,m, |T⊥(x′ − x)| < ρl, so
x′ ∈ {y : |T (x−y)| 6 rx, |T⊥(x−y)| 6 ρl}, which proves (8.137). We apply
the Besicovitch covering theorem to Ci,l,k,m and obtain a set of subfamilies
C(1)
i,l,k,m, . . . , C

(Li,l,k,m)
i,l,k,m ⊂ Ci,l,k,m such that

(8.138) Li,l,k,m 6 Bn,
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each C(h) (h = 1, . . . , Li,l,k,m) consists of disjoint sets and T (Wi,l,k,m) ⊂
∪Li,l,k,mh=1 ∪

C∈C(h)
i,l,k,m

C. Then (8.137) shows that we have
(8.139)
Wi,l,k,m ⊂ ∪

Li,l,k,m
h=1 ∪

Bnrx (x)∈C(h)
i,l,k,m

{y : |T (x− y)| 6 rx, |T⊥(x− y)| 6 ρl}.

For x ∈Wi,l,k,m,

(8.140) {y : |T (x− y)| 6 rx, |T⊥(x− y)| 6 ρl} ⊂ E∗i,l(rx, Y ′x).

We note that if Bnrx(x) ∩Bnrx′ (x
′) = ∅, then E∗i,l(rx, Y ′x) ∩E∗i,l(rx′ , Y ′x′) = ∅

since their projections to T is Bnrx(x) ∩Bnrx′ (x
′). Also we note that

(8.141) E∗i,l(rx, Y ′x) ⊂ B4j−2
l

(wl,k)

since x ∈ Bj−2
l

(wl,k), Y ′x ∈ T⊥(Bj−2
l

(x)) (by (8.125)), rx ∈ (0, j−2
l ), (1 +

R̃−1
i,l rx)ρl 6 ρl + rx

2 < j−2
l (by (8.122) and (8.123)). We have by (8.139),

(8.140), (8.127), (8.138) and (8.141) that

(8.142) ‖∂Ejl‖(Wi,l,k,m)

6
Li,l,k,m∑
h=1

∑
Bnrx (x)∈C(h)

i,l,k,m

‖∂Ejl‖(E∗i,l(rx, Y ′x))

6
Li,l,k,m∑
h=1

∑
Bnrx (x)∈C(h)

i,l,k,m

γ−1
∫

Gn(E∗
i,l

(rx,Y ′x))
‖S−T‖ d(∂Ejl)(x, S)

6 γ−1Bn

∫
Gn(B

4j−2
l

(wl,k))
‖S − T‖ d(∂Ejl)(x, S).

Now summing (8.142) over |m| < j−2
l ρ−1

l +1 (note (8.135) and the following
remark), we have

(8.143) ‖∂Ejl‖(Wi,l,k) 6 γ−1c(n, ν, λ)
∫

Gn(B
4j−2
l

(wl,k))
‖S−T‖ d(∂Ejl)(x, S).

Summing (8.143) over k = 1, . . . ,Kl and by (8.133) and (8.131), we obtain

(8.144) ‖∂Ejl‖(Wi,l) 6 γ−1c(n, ν, λ)
∫

Gn(Bλrl )
‖S − T‖ d(∂Ejl)(x, S).

By (8.116) and (8.144), we obtain

(8.145) lim
l→∞

r−nl ‖∂Ejl‖(Wi,l) = 0.

Next we estimate ‖∂Ejl‖(W̃i,l) for i = 1, 2. The argument is identical up
to the second line of (8.142) except that we use the covering satisfying the
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inequality of (8.128) in place of (8.127). By using the same notation, we
obtain

(8.146)‖∂Ejl‖(W̃i,l,k,m) 6 −
Li,l,k,m∑
h=1

∑
Bnrx (x)∈C(h)

i,l,k,m

γ−1∆jl‖∂Ejl‖(E∗i,l(rx, Y ′x)).

Recall that {E∗i,l(rx, Y ′x)}
Bnrx (x)∈C(h)

i,l,k,m

is disjoint and we have (8.141). Since

Ln+1(B4j−2
l

(wl,k)) < j−1
l for large l, Lemma 4.11 shows

(8.147) ∆jl‖∂Ejl‖(B4j−2
l

(wl,k)) 6
∑

Bnrx (x)∈C(h)
i,l,k,m

∆jl‖∂Ejl‖(E∗i,l(rx, Y ′x))

for each h. Hence (8.146), (8.147) and (8.138) show

(8.148) ‖∂Ejl‖(W̃i,l,k,m) 6 −Bnγ
−1∆jl‖∂Ejl‖(B4j−2

l
(wl,k))

and summation over |m| < j−2
l ρ−1

l + 1 gives

(8.149) ‖∂Ejl‖(W̃i,l,k) 6 −γ−1c(n, ν, λ)∆jl‖∂Ejl‖(B4j−2
l

(wl,k)).

By Lemma 4.10, we have

−∆jl‖∂Ejl‖(B4j−2
l

(wl,k)) 6 −( max
B

4j−2
l

(wl,k)
Ω)−1∆jl‖∂Ejl‖(Ω)(8.150)

+ (1− e−4c1j
−2
l )‖∂Ejl‖(B4j−2

l
(wl,k)).

Noticing that Kl in (8.130) satisfies Kl 6 c(n)(rlj2
l )n+1, summation over k

of (8.149) combined with (8.150) gives

(8.151) ‖∂Ejl‖(W̃i,l) 6 γ−1c(n, ν, λ,Ω){−(rlj2
l )n+1∆jl‖∂Ejl‖(Ω)

+ (1− e−4c1j
−2
l )‖∂Ejl‖(Bλrl)}.

With (4), (8.106) and (8.151), we conclude that

(8.152) lim
l→∞

r−nl ‖∂Ejl‖(W̃i,l) = 0.

Now, by (8.129), (8.145) and (8.152) we have

(8.153) lim
l→∞

r−nl ‖∂Ejl‖(G
∗
l \G∗∗l ) = 0.

Combining (8.119), (8.121) and (8.153), we have

(8.154) lim
l→∞

r−nl ‖∂Ejl‖(B(λ−1)rl \G
∗∗
l ) = 0.

Since G∗∗l ⊂ G∗l ⊂ Gl, x ∈ G∗∗l satisfies (8.117), (8.120) and (8.124). Given
any s ∈ (0, 1

4 ) and x ∈ G∗∗l , we use Lemma 8.5 with R = rls for Y =
{T⊥(x)}, a single element case. For all sufficiently large jl, assumptions of
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Lemma 8.5 are all satisfied: (1) is fine for large jl, (2) from Theorem 8.6(1)
for large jl, (3) from (8.108) for large jl, (4) from Y having single element
and x ∈ G∗l , (5) from diamY = 0, (6) and (7) from (8.117), (8) and (9)
from (8.124). Thus we have (8.82), or

(8.155) λ‖Φεjl ∗ ∂Ejl‖(Brls(x)) > ωn(rls)n

for all large jl. (8.155) implies

(8.156) G∗∗l ⊂ B(λ−1)rl ∩ {x : |T⊥(x)| 6 3rls}

for all sufficiently large jl. This is because, if (8.156) were not true, then
there would exist a subsequence (denoted by the same index) xjl ∈ G∗∗l
with |T⊥(xjl)| > 3rls and we may assume that r−1

l xjl ∈ Bλ−1 converges
to x̄ ∈ Bλ−1 ∩ {x : |T⊥(x)| > 3s}. By (8.106), since B2s(x̄) ∩ T = ∅, we
have

0 = lim
l→∞
‖(f(rl))](Φεjl ∗ ∂Ejl)‖(B2s(x̄))(8.157)

= lim
l→∞

r−nl ‖Φεjl ∗ ∂Ejl‖(B2rls(rlx̄)).

Since liml→∞ r−1
l |rlx̄−xjl | = 0, for sufficiently large jl, we have Brls(xjl) ⊂

B2rls(rlx̄). Hence, continuing from (8.157), we have

(8.158) > lim sup
l→∞

r−nl ‖Φεjl ∗ ∂Ejl‖(Brls(xjl)) > λ
−1ωns

n

where (8.155) is used in the last step, and we have a contradiction. This
proves (8.156). We next show that, for all sufficiently large jl,

(8.159) H0({x ∈ G∗∗l : T (x) = a}) 6 ν − 1

for all a ∈ B(λ−1)rl ∩ T . For a contradiction, suppose we had some al ∈
B(λ−1)rl ∩T such that (8.159) fails. Then there exists Yl ⊂ T−1({x ∈ G∗∗l :
T (x) = al}) with H0(Yl) = ν. We use Lemma 8.5 to Yl and R = rl. One can
check that the assumptions are all satisfied just as for the single element
case, except for (5), which was trivial before. This time, on the other hand,
due to (8.156), we have diamYl 6 γrl by choosing s = γ/6, so (5) is also
satisfied. Thus we have

(8.160) λ‖Φεjl ∗ ∂Ejl‖({x : dist (x, Yl) 6 rl}) > ωnrnl ν.

We may assume after choosing a subsequence that r−1
l al converges to ā ∈

Bλ−1 ∩ T . By (8.106),

λnωnd = lim
l→∞
‖(f(rl))](Φεjl ∗ ∂Ejl)‖(Bλ(ā))(8.161)

= lim
l→∞

r−nl ‖Φεjl ∗ ∂Ejl‖(Bλrl(rlā)).
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For large jl, by (8.156) taking s = (
√
λ − 1)/6, {x : dist (x, Yl) 6 rl} ⊂

B√λrl(al) ⊂ Bλrl(rlā). Hence (8.160) and (8.161) show λn+1d > ν which
is a contradiction to (8.111). This proves (8.159). Finally, we note that
(8.162)

lim
l→∞

r−nl ‖T]∂Ejl‖(B(λ−1)rl \G
∗∗
l ) 6 lim

l→∞
r−nl ‖∂Ejl‖(B(λ−1)rl \G

∗∗
l ) = 0

due to (8.154) while

‖T]∂Ejl‖(G∗∗l ) =
∫
B(λ−1)rl∩T

∑
{x∈G∗∗

l
:T (x)=a}

θn(‖∂Ejl‖, x) dHn(a)

6 ωn((λ− 1)rl)n(ν − 1)

(8.163)

by (8.159) for all large jl. By (8.106),

lim
l→∞

r−nl ‖T]∂Ejl‖(B(λ−1)rl) = lim
l→∞
‖T]Vjl‖(Bλ−1)(8.164)

= ‖T]d|T |‖(Bλ−1)

= ωn(λ− 1)nd

and (8.162)–(8.164) show d 6 ν − 1. By (8.110), this proves d = ν − 1. �

9. Proof of Brakke’s inequality

Here, the main objective is to prove the inequality (3.4) usually referred
to as Brakke’s inequality. We are interested in proving integral form instead
of differential form as in [8]. The proof is different from [8] and we adopt
the proof of [43] which we believe is more transparent.

Lemma 9.1. — Let {∂Ejl(t)}t∈R+ (l ∈ N) and {µt}t∈R+ be as in Propo-
sition 6.4 satisfying (6.18), (6.19) and (6.20). Then we have the following.

(a) For a.e. t ∈ R+, µt is integral, i.e., there exists Vt ∈ IVn(Rn+1)
such that µt = ‖Vt‖.

(b) For a.e. t ∈ R+, if a subsequence {j′l}∞l=1 ⊂ {jl}∞l=1 satisfies

(9.1) sup
l∈N

∫
Rn+1

|Φεj′
l

∗ δ(∂Ej′
l
(t))|2Ω

Φεj′
l

∗ ‖∂Ej′
l
(t)‖+ εj′

l
Ω−1 dx <∞,

then we have liml→∞ ∂Ej′
l
(t) = Vt ∈ IVn(Rn+1) as varifolds and

µt = ‖Vt‖.
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(c) Furthermore, for a.e. t ∈ R+, Vt has a generalized mean curvature
h(·, Vt) which satisfies

(9.2)∫
Rn+1
|h(·, Vt)|2φd‖Vt‖ 6 lim inf

l→∞

∫
Rn+1

|Φεj′
l

∗ δ(∂Ej′
l
(t))|2φ

Φεj′
l

∗ ‖∂Ej′
l
(t)‖+ εj′

l
Ω−1 dx <∞

for any φ ∈ ∪i∈NAi.

Proof. — Due to (6.19) and Fatou’s Lemma, we have

(9.3) lim inf
l→∞

∫
Rn+1

|Φεjl ∗ δ(∂Ejl(t))|
2Ω

Φεjl ∗ ‖∂Ejl(t)‖+ εjlΩ−1 dx <∞

for a.e. t ∈ R+ and for any T < ∞, supl∈N, t∈[0,T ]‖∂Ejl(t)‖(Ω) < ∞ due
to (6.3). Suppose we have (9.3) and (6.20) at t. We check that the assump-
tions of Theorem 8.6 are all satisfied for {Ejl(t)}∞l=1: (1) from (5.8), (2)
from above, (3) by (9.3) , and (4) from (6.20). Thus, there exists a fur-
ther converging subsequence of {∂Ej′

l
(t)}∞l=1 and a limit Vt ∈ IVn(Rn+1),

where {j′l}∞l=1 ⊂ {jl}∞l=1. This convergence is in the sense of varifold, so
in particular, we have liml→∞‖∂Ej′

l
(t)‖ = ‖Vt‖. Note that the left-hand

side is µt by (6.18), so µt = ‖Vt‖. This proves (a). Note that rectifiable
(thus integral) varifolds are determined by the weight measure, thus Vt
is uniquely determined by µt independent of the subsequence {j′l}∞l=1. Let
{∂Ej′

l
(t)}∞l=1 be any subsequence with (9.1), then we have already seen that

any converging further subsequence converges to Vt. Since it is unique, the
full sequence {∂Ej′

l
(t)}∞l=1 converges to Vt. This proves (b). The claim (c)

follows from Proposition 5.6. �

Remark 9.2. — Note that we are NOT claiming that liml→∞ ∂Ejl(t) =
Vt ∈ IVn(Rn+1) for a.e. t ∈ R+, but only the one with uniform bound
of (9.1).

Up to this point, we defined Vt ∈ IVn(Rn+1) for a.e. t ∈ R+. On the com-
plement of such set of time which is L1 measure 0, we still have µt. For such
t, we define an arbitrary varifold with the weight measure µt. For example,
let T ∈ G(n + 1, n) be fixed, and define Vt(φ) :=

∫
Gn(Rn+1) φ(x, T ) dµt

for φ ∈ Cc(Gn(Rn+1)). Then we have ‖Vt‖ = µt. By doing this, we now
have a family of varifolds {Vt}t∈R+ such that ‖Vt‖ = µt for all t ∈ R+ and
Vt ∈ IVn(Rn+1) for a.e. t ∈ R+.

Theorem 9.3. — For all T > 0, we have

(9.4)
∫ T

0

∫
Rn+1
|h(·, Vt)|2Ω d‖Vt‖dt <∞
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and for any φ ∈ C1
c (Rn+1 × R+;R+) and 0 6 t1 < t2 <∞, we have

(9.5) ‖Vt‖(φ(·, t))
∣∣∣t2
t=t1
6
∫ t2

t1

(
δ(Vt, φ(·, t))(h(·, Vt))+‖Vt‖(

∂φ

∂t
(·, t))

)
dt.

Proof. — (9.4) follows from (9.2), Fatou’s Lemma and (6.19). We
prove (9.5) for time independent φ first and let φ ∈ C∞c (Rn+1;R+) be
arbitrary. Since it has a compact support, there exists c > 0 such that
cφ(x) < Ω(x) for all x ∈ Rn+1. Due to the linear dependence on φ of (9.5),
it suffices to prove (9.5) for cφ for C∞c case, and by suitable density argu-
ment for C1

c case. Re-writing cφ as φ, we may as well assume that φ < Ω.
Then for all sufficiently large i ∈ N, we have φ̂ := φ + i−1Ω < Ω. After
fixing i, there exists m ∈ N such that φ̂ ∈ Am. Fix 0 6 t1 < t2 and suppose
that l is large enough so that jl > m and jl > t2. We use (6.5) with φ̂.
With the notation of (6.2), we obtain

(9.6) ‖∂Ejl(t)‖(φ̂)− ‖∂Ejl(t−∆tjl)‖(φ̂)

6 ∆tjl
(
δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t)) + ε

1
8
jl

)
for t = ∆tjl , 2∆tjl , . . . , jl2pjl∆tjl . There exist k1, k2 ∈ N such that t2 ∈
((k2 − 1)∆tjl , k2∆tjl ] and t1 ∈ ((k1 − 2)∆tjl , (k1 − 1)∆tjl ], where we are
assuming that ∆tjl < t2 − t1. Summing (9.6) over t = k1∆tjl , . . . , k2∆tjl ,
we obtain

(9.7) ‖∂Ejl(t)‖(φ̂)
∣∣∣k2∆tjl

t=(k1−1)∆tjl

6
k2∑
k=k1

∆tjl
(
δ(∂Ejl(k∆tjl), φ̂)(hεjl (·, ∂Ejl(k∆tjl))) + ε

1
8
jl

)
.

Due to the definition of φ̂ = φ+ i−1Ω, we have

(9.8) ‖∂Ejl(t)‖(φ̂)
∣∣∣k2∆tjl

t=(k1−1)∆tjl

> ‖∂Ejl(t2)‖(φ)− ‖∂Ejl(t1)‖(φ)− i−1‖∂Ejl(t1)‖(Ω).

As l→∞, with (6.3), we obtain

(9.9) lim sup
l→∞

‖∂Ejl(t)‖(φ̂)
∣∣∣k2∆tjl

t=(k1−1)∆tjl

> ‖Vt‖(φ)
∣∣∣t2
t=t1
− i−1‖∂E0‖(Ω) exp(c

2
1t1
2 ).
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For the right-hand side of (9.7), by (2.5) and writing hεjl = hεjl (·, ∂Ejl(t))
and ∂Ejl = ∂Ejl(t),

(9.10) δ(∂Ejl , φ̂)(hεjl ) = δ(∂Ejl)(φ̂hεjl ) +
∫

Gn(Rn+1)
S⊥(∇φ̂) · hεjl d(∂Ejl).

By (5.23) for all sufficiently large l and all evaluated at t = k∆tjl and if
we write

(9.11) bjl :=
∫
Rn+1

φ̂|Φεjl ∗ δ(∂Ejl)|
2

Φεjl ∗ ‖∂Ejl‖+ εjlΩ−1 dx

for simplicity,

|δ(∂Ejl)(φ̂hεjl ) + bjl | 6 ε
1
4
jl

(bjl + 1)(9.12)

and by the Cauchy–Schwarz inequality and (5.24), we have

(9.13) |
∫

Gn(Rn+1)
S⊥(∇φ̂) · hεjl d(∂Ejl)|

6

(∫
Rn+1

φ̂−1|∇φ̂|2 d‖∂Ejl‖
) 1

2
(∫

Rn+1
φ̂|hεjl |

2 d‖∂Ejl‖
) 1

2

6 c ‖∂Ejl‖(Ω) 1
2

(
(1 + ε

1
4
jl

)bjl + ε
1
4
jl

) 1
2
,

where we estimated as in (6.27) and c depends only on ‖φ‖C2 , minx∈sptφ Ω
and c1 and independent of i. Since supt∈[0,t2]‖∂Ejl(t)‖(Ω) is bounded uni-
formly, (9.10)–(9.13) show that for all sufficiently large l, we have

(9.14) sup
t∈[t1,t2]

δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t))) 6 c

where c depends only on ‖∂E0‖(Ω), t2, ‖φ‖C2 , minx∈sptφ Ω and c1. Thus
we have

(9.15) lim sup
l→∞

k2∑
k=k1

∆tjlδ(∂Ejl(k∆tjl), φ̂)(hεjl (·, ∂Ejl(k∆tjl)))

= lim sup
l→∞

∫ t2

t1

δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t))) dt

= − lim inf
l→∞

∫ t2

t1

(
c−δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t)))

)
dt+c(t2− t1)

6 −
∫ t2

t1

lim inf
l→∞

(
c−δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t)))

)
dt+c(t2− t1)

=
∫ t2

t1

lim sup
l→∞

δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t))) dt
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where we used (9.14) and Fatou’s Lemma. We estimate the integrand
of (9.15) from above. Fix t. Let {j′l}∞l=1 ⊂ {jl}∞l=1 be a subsequence such
that the lim sup is achieved, i.e.,

(9.16) lim sup
l→∞

δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t)))

= lim
l→∞

δ(∂Ej′
l
(t), φ̂)(hεj′

l

(·, ∂Ej′
l
(t))).

The right-hand side of (9.10) then have the same property for this subse-
quence and

(9.17) lim
l→∞

(
−δ(∂Ej′

l
)(φ̂hεj′

l

)−
∫
S⊥(∇φ̂) · hεj′

l

d(∂Ej′
l
)
)

= lim inf
l→∞

(
−δ(∂Ejl)(φ̂hεjl )−

∫
S⊥(∇φ̂) · hεjld(∂Ejl)

)
.

Using (9.12) and (9.13), the right-hand side of (9.17) may be bounded by
lim inf l→∞ 2bjl + c from above. The left-hand side of (9.17) is similarly
estimated from below by lim supl→∞ 1

2bj′l − c. Thus, for any subsequence
satisfying (9.16), we have (evaluation at t)

(9.18) lim sup
l→∞

∫
Rn+1

φ̂|Φεj′
l

∗ δ(∂Ej′
l
)|2

Φεj′
l

∗ ‖∂Ej′
l
‖+ εj′

l
Ω−1 dx

6 4 lim inf
l→∞

∫
Rn+1

φ̂|Φεjl ∗ δ(∂Ejl)|
2

Φεjl ∗ ‖∂Ejl‖+ εjlΩ−1 dx+ c

where c is a constant estimated from above in terms of ‖∂E0‖(Ω), t2, ‖φ‖C2 ,
minx∈sptφ Ω and c1. Define the right-hand side of (9.18) as M̃(t) in the
following.
For any t with M̃(t) < ∞, by Lemma 9.1(b) (note φ̂ > i−1Ω), the full

sequence {∂Ej′
l
}∞l=1 converges to Vt ∈ IVn(Rn+1) with µt = ‖Vt‖. From

Ω 6 iφ̂, we also have

(9.19) lim sup
l→∞

∫
Rn+1

Ω|Φεj′
l

∗ δ(∂Ej′
l
(t))|2

Φεj′
l

∗ ‖∂Ej′
l
(t)‖+ εj′

l
Ω−1 dx 6 iM̃(t).

Set M := ‖∂E0‖(Ω) exp(c21t2/2) so that we have

(9.20) lim sup
l→∞

sup
t∈[0,t2]

‖∂Ejl(t)‖(Ω) 6M.
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By (9.16), (9.10), (9.12) and Lemma 9.1 (c), we have

(9.21) lim sup
l→∞

δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t)))

= lim
l→∞

δ(∂Ej′
l
(t), φ̂)(hεj′

l

(·, ∂Ej′
l
(t)))

6 −
∫
Rn+1
|h(·, Vt)|2φ̂ d‖Vt‖

+ lim sup
l→∞

∫
Gn(Rn+1)

S⊥(∇φ̂) · hεj′
l

(·, ∂Ej′
l
(t)) d(∂Ej′

l
(t)).

Let ε > 0 be arbitrary. Since Vt ∈ IVn(Rn+1), there exists ‖Vt‖measurable,
countably n-rectifiable set C ⊂ Rn+1 such that
(9.22)∫

Gn(Rn+1)
S⊥(∇φ(x)) dVt(x, S) =

∫
Rn+1

(Tann(C, x))⊥(∇φ(x)) d‖Vt‖(x)

and x 7−→ (Tann(C, x))⊥(∇φ(x))Ω(x)− 1
2 is a ‖Vt‖ measurable function on

Rn+1. Hence, corresponding to ε > 0, there exist g ∈ C∞c (Rn+1;Rn+1) and
m′ ∈ N such that g ∈ Bm′ and

(9.23)
∫
Rn+1
|(Tann(C, x))⊥(∇φ(x))− g(x)|2Ω(x)−1 d‖Vt‖(x) < ε2.

Now we compute as (omitting t dependence for simplicity)

(9.24)
∫

Gn(Rn+1)
S⊥(∇φ̂) · hεj′

l

d(∂Ej′
l
)

=
∫

Gn(Rn+1)
(S⊥(∇φ̂)− g) · hεj′

l

d(∂Ej′
l
)

+
(∫

Rn+1
g · hεj′

l

d(∂Ej′
l
) + δ(∂Ej′

l
)(g)

)
− δ(∂Ej′

l
)(g) + δVt(g)

+
∫
Rn+1

h(·, Vt) · (g − (Tann(C, x))⊥(∇φ̂)) d‖Vt‖

+
∫

Gn(Rn+1)
h(·, Vt) · S⊥(∇φ̂) dVt(·, S).
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We estimate each term of (9.24). We have

(9.25)

∣∣∣∣∣
∫

Gn(Rn+1)
(S⊥(∇φ̂)− g) · hεj′

l

d(∂Ej′
l
)

∣∣∣∣∣
6 i−1

∫
Rn+1
|∇Ω||hεj′

l

| d‖∂Ej′
l
‖

+
(∫

Gn(Rn+1)
|S⊥(∇φ)−g|2Ω−1 d(∂Ej′

l
)
)1

2(∫
Rn+1
|hεj′

l

|2Ω d‖∂Ej′
l
‖
)1

2

6 i−1c1(‖∂Ej′
l
‖(Ω)) 1

2

(∫
Rn+1
|hεj′

l

|2Ω d‖∂Ej′
l
‖
) 1

2

+
(∫

Gn(Rn+1)
|S⊥(∇φ)−g|2Ω−1 d(∂Ej′

l
)
)1

2(∫
Rn+1
|hεj′

l

|2Ω d‖∂Ej′
l
‖
)1

2

.

Since ∂Ej′
l
converges to Vt as varifold,

(9.26) lim
l→∞

∫
Gn(Rn+1)

|S⊥(∇φ)− g|2Ω−1 d(∂Ej′
l
)

=
∫

Gn(Rn+1)
|S⊥(∇φ)− g|2Ω−1 dVt

=
∫
Rn+1
|(Tann(C, x))⊥(∇φ)− g|2Ω−1 d‖Vt‖ < ε2

where we used (9.23). Using (5.24) and (9.19), (9.20), (9.25) and (9.26), we
have

(9.27) lim sup
l→∞

∣∣∣∣∣
∫

Gn(Rn+1)
(S⊥(∇φ̂)− g) · hεj′

l

d(∂Ej′
l
)

∣∣∣∣∣
6 c1M

1
2 (M̃(t)) 1

2 i−
1
2 + (iM̃(t)) 1

2 ε.

By Proposition 5.5 and (9.19), we have

(9.28) lim
l→∞

∣∣∣∣∫
Rn+1

g · hεj′
l

d(∂Ej′
l
) + δ(∂Ej′

l
)(g)

∣∣∣∣ = 0

and the varifold convergence shows

(9.29) lim
l→∞
|−δ(∂Ej′

l
)(g) + δVt(g)| = 0.
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For the second last term of (9.24),

(9.30)
∣∣∣∣∫

Rn+1
h(·, Vt) · (g − (Tann(C, x))⊥(∇φ̂)) d‖Vt‖

∣∣∣∣
6 i−1

∫
Rn+1
|h(·, Vt)||∇Ω| d‖Vt‖

+
∫
Rn+1
|h(·, Vt)||g − (Tann(C, x))⊥(∇φ)| d‖Vt‖

6 i−
1
2 c1M

1
2 (M̃(t)) 1

2 + (iM̃(t)) 1
2 ε

where we used the Cauchy–Schwarz inequality, (9.19), (9.20) (which also
hold for the limiting quantities) and (9.23). For the last term of (9.24),
estimating as in (9.30),

(9.31)
∫

Gn(Rn+1)
h(·, Vt) · S⊥(∇φ̂) dVt

6
∫

Gn(Rn+1)
h(·, Vt) · S⊥(∇φ) dVt + i−

1
2 c1M

1
2 (M̃(t)) 1

2

=
∫
Rn+1

h(·, Vt) · ∇φd‖Vt‖+ i−
1
2 c1M

1
2 (M̃(t)) 1

2

where we used (2.3). Finally, combining (9.24), (9.27)–(9.31) and letting
ε→ 0, we obtain

(9.32) lim sup
l→∞

∫
Gn(Rn+1)

S⊥(∇φ̂) · hεj′
l

d(∂Ej′
l
)

6 3c1i−
1
2M

1
2 (M̃(t)) 1

2 +
∫
Rn+1

h(·, Vt) · ∇φd‖Vt‖.

From (9.21) and (9.32), we obtain

(9.33) lim sup
l→∞

δ(∂Ejl(t), φ̂)(hεjl (·, ∂Ejl(t)))

6 δ(Vt, φ)(h(·, Vt)) + 3c1i−
1
2 (M + M̃(t)).

Since φ̂ 6 Ω, we have by Fatou’s Lemma that

(9.34)
∫ t2

t1

M̃(t) dt

6 4 lim inf
l→∞

∫ t2

t1

∫
Rn+1

Ω|Φεjl ∗ δ(∂Ejl(t))|
2

Φεjl ∗ ‖∂Ejl(t)‖+ εjlΩ−1 dxdt+ c <∞

by (6.19). Thus, by (9.7), (9.9), (9.15), (9.33), (9.34) and letting i→∞, we
obtain (9.5) for time-independent φ ∈ C∞c (Rn+1;R+). For time dependent
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φ ∈ C∞c (Rn+1×R+;R+), we repeat the same argument. We similarly define
φ̂ and use (6.5) with φ̂(·, t). Instead of (9.6), we obtain a formula with one
extra term, namely,

(9.35) ‖∂Ejl(s)‖(φ̂(·, s))
∣∣∣t
s=t−∆tjl

6 ∆tjl
{
δ(∂Ejl(t), φ̂(·, t))(hεjl (·, ∂Ejl(t))) + ε

1
8
jl

}
+ ‖∂Ejl(t−∆tjl)‖(φ(·, t)− φ(·, t−∆tjl)).

Note that the last term has φ instead of φ̂. A similar inequality to (9.7) will
have the summation of the last term of (9.35). It is not difficult to check
using (6.18) and Lemma 9.1 (a) that we have

(9.36) lim
l→∞

k2∑
k=k1

‖∂Ejl((k − 1)∆tjl)‖(φ(·, k∆tjl)− φ(·, (k − 1)∆tjl)

= lim
l→∞

k2∑
k=k1

‖∂Ejl(k∆tjl)‖
(
∂φ

∂t
(·, k∆tjl)

)
∆tjl

= lim
l→∞

∫ t2

t1

‖∂Ejl(t)‖
(
∂φ

∂t
(·, t)

)
dt

=
∫ t2

t1

‖Vt‖
(
∂φ

∂t
(·, t)

)
dt,

where we also used the dominated convergence theorem in the last step.
The rest proceeds by the same argument with error estimates coming from
the time-dependency of φ̂. For example, in (9.15), we need to regard φ̂(·, t)
as a piecewise constant function with respect to time variable on [t1, t2],
namely, in place of φ̂, we need to have

(9.37) φ̂jl(·, t) := φ̂(·, k∆tjl) if t ∈ ((k − 1)∆tjl , k∆tjl ].

For δ(∂Ejl(t), φ̂jl(·, t))(hεjl (·, ∂Ejl(t))) in the last line of (9.15), if we replace
φ̂jl(·, t) by φ̂(·, t), it only results in errors of order ∆tjl times certain neg-
ative power of εjl which remains small and goes to 0 uniformly as l →∞.
Thus we may subsequently proceed just like the time independent case and
we have (9.5) for C∞c case, and by approximation for C1

c case. �

Now, the proof of Theorem 3.2 is complete: (1) is clear from the con-
struction using E0 = {E0,i}Ni=1, (2) is by Lemma 9.1(a) and (c), (3) and (4)
follow from Theorem 9.3. We note that the claim of Theorem 3.6 is slightly
different from [32, 45] in that it is stated for (x, t) ∈ Rn+1 \St here instead
of spt ‖Vt‖ \ St, allowing a possibility of O(x,t) ∩ sptµ being empty. But
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exactly the same proof of [32] gives this slightly stronger claim of partial
regularity and we write the result in this form.

10. Proof of Theorem 3.5

Let µ be a measure on Rn+1 × R+ defined as in Definition 3.3.

Lemma 10.1. — We have the following properties for µ and {Vt}t∈R+ .
(1) spt ‖Vt‖ ⊂ {x ∈ Rn+1 : (x, t) ∈ sptµ} for all t > 0.
(2) clos {(x, t) : x ∈ spt ‖Vt‖, Vt ∈ IVn(Rn+1)} ∩ {(x, t) : t > 0} =

sptµ ∩ {(x, t) : t > 0}.

Proof. — Suppose x ∈ spt ‖Vt‖ and t > 0. Then for any r > 0, there
exists some φ ∈ C2

c (U2r(x);R+) with ‖Vt‖(φ) > 0. For any t′ ∈ [0, t),
by (9.5) and the Cauchy–Schwarz inequality, we have

(10.1) ‖Vt‖(φ)− ‖Vt′‖(φ)

6
∫ t

t′

∫
U2r(x)

−|h(·, Vs)|2φ+∇φ · h(·, Vs) d‖Vs‖ds

6
∫ t

t′

∫
U2r(x)

|∇φ|2

2φ d‖Vs‖ds

6 (t− t′)‖φ‖C2 sup
s∈[t′,t]

‖Vs‖(U2r(x)).

Choosing t′ sufficiently close to t, (10.1) shows that there exists some t′ < t

such that 1
2‖Vt‖(φ) 6 ‖Vs‖(φ) for all s ∈ [t′, t). Thus,

∫
U2r(x)×[t′,t) φdµ >

1
2 (t − t′)‖Vt‖(φ) > 0. If (x, t) /∈ sptµ, there must be some open set U in
Rn+1 × R+ with µ(U) = 0, but this is a contradiction to the preceding
sentence. Thus we have (1).
Suppose (x, t) ∈ clos {(x, t) : x ∈ spt ‖Vt‖, Vt ∈ IVn(Rn+1)}∩{(x, t) : t >

0}. Then there exists a sequence {(xi, ti)}∞i=1 such that xi ∈ spt ‖Vti‖, ti > 0
and limi→∞(xi, ti) = (x, t). By (1), (xi, ti) ∈ sptµ. Since sptµ is a closed set
by definition, we have (x, t) ∈ sptµ, proving ⊂ of (2). Given (x, t) ∈ sptµ
with t > 0 and ε > 0, we have µ(Bε(x)×(t−ε, t+ε)) > 0. Then, there must
be some t′ ∈ (t−ε, t+ε) such that ‖Vt′‖(Bε(x)) > 0 and Vt′ ∈ IVn(Rn+1). If
spt ‖Vt′‖∩Bε(x) = ∅, then we would have ‖Vt′‖(Bε(x)) = 0, a contradiction.
Thus we have some x′ ∈ spt ‖Vt′‖ ∩ Bε(x) with Vt′ ∈ IVn(Rn+1) and
|t′ − t| < ε. Since ε > 0 is arbitrary, this proves ⊃ of (2). �

Remark 10.2. — In (1), it may happen that the left-hand side is strictly
smaller than the right-hand side. For example, consider a shrinking sphere.
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At the moment of vanishing, we have ‖Vt‖ = 0 since it is a point and has
zero measure, thus spt ‖Vt‖ = ∅. On the other hand, the vanishing point
is in sptµ, and the right-hand side is not the empty set. We may also
encounter a situation where some portion of measure vanishes, thus the
difference between the left- and right-hand sides of (1) may be of positive
Hn measure. We also point out that, in general, (1) and (2) are not true if
t = 0 is included. We may have some portion of measure ‖∂E0‖ vanishing
instantly at t = 0. For example, consider on R2 a line segment with two
end points which is surrounded by one of open partitions. For the first
Lipschitz deformation step, such line segment may be eliminated as we
indicated in 4.3.2. Thus, even though we have some positive measure at
t = 0, sptµ may be empty nearby.

Let η ∈ C∞c (U2;R+) be a radially symmetric function such that η = 1
on B1, |∇η| 6 2 and ‖∇2η‖ 6 4. Then define for x, y ∈ Rn+1, s, t ∈ R with
s > t and R > 0

ρ(y,s)(x, t) := 1
(4π(s− t))n2

exp
(
−|x− y|

2

4(s− t)

)
,

ρ̂(y,s)(x, t) := η(x− y)ρ(y,s)(x, t),

ρ̂R(y,s)(x, t) := η

(
x− y
R

)
ρ(y,s)(x, t).

(10.2)

We often write ρ(y,s) or ρ for ρ(y,s)(x, t) when the meaning is clear from
the context and the same for ρ̂(y,s) and ρ̂R(y,s). The following is a variant of
well-known Huisken’s monotonicity formula [26]. We include the outline of
proof and the reader is advised to see [32, Lemma 6.1] for more details.

Lemma 10.3. — There exists c6 depending only on n with the following
property. For 0 6 t1 < t2 < s <∞, y ∈ Rn+1 and R > 0, we have

(10.3) ‖Vt‖(ρ̂R(y,s)(·, t))
∣∣∣t2
t=t1
6 c6R

−2(t2 − t1) sup
t′∈[t1,t2]

R−n‖Vt′‖(B2R(y)).

Proof. — After change of variables by x̃ = (x−y)/R and t̃ = (t−s)/R2,
we may regard R = 1 and (y, s) = (0, 0). A direct computation shows that
for any S ∈ G(n+ 1, n), we have

∂ρ

∂t
+ S · ∇2

xρ+ |S
⊥(∇xρ)|2

ρ
= 0

for all t < 0 and x ∈ Rn+1. The same computation for ρ̂ has some extra
terms coming from differentiations of η, and such terms are bounded by
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c(n)(−t)−n2 exp(1/4t) since spt |∇η| ⊂ B2 \ U1. Thus we have

(10.4)
∣∣∣∣∂ρ̂∂t + S · ∇2

xρ̂+ |S
⊥(∇xρ̂)|2

ρ̂

∣∣∣∣ 6 c6χB2\U1 .

Use ρ̂ in (9.5) as well as (10.4) to find that

(10.5) ‖Vt‖(ρ̂(0,0)(·, t))
∣∣∣t2
t=t1
6 c6

∫ t2

t1

‖Vt′‖(B2 \ U1) dt′.

Then (10.5) gives (10.3). �

Lemma 10.4. — For any λ > 1, there exists c7 ∈ (1,∞) depending only
on n, λ, Ω and ‖∂E0‖(Ω) such that

(10.6) sup
x∈Bλ,r∈(0,1],t∈[λ−1,λ]

r−n‖Vt‖(Br(x)) 6 c7.

Proof. — We use (10.3) with s = t+ r2, t2 = t ∈ [λ−1, λ], t1 = 0, R = 1
and y ∈ Bλ. Then we obtain also using ηbB1(y)= 1 that

(10.7) e−
1
4

(4πr2)n2
‖Vt‖(Br(y))

6
1

(4πt)n2
‖V0‖(B2(y)) + c6t sup

t′∈[0,t]
‖Vt′‖(B2(y)).

The quantities on the right-hand side of (10.7) are all controlled by the
stated quantities thus we obtain (10.6). �

Remark 10.5. — If ‖∂E0‖ satisfies the density ratio upper bound

(10.8) sup
x∈Rn+1,r∈(0,1]

r−n‖∂E0‖(Br(x)) <∞,

then we may obtain up to the initial time estimate for (10.6).

The following is essentially Brakke’s clearing out lemma [8, §6.3] proved
using Huisken’s monotonicity formula.

Lemma 10.6. — For any λ > 1, there exist positive constants c8, c9 ∈
(0, 1) depending only on n, λ, Ω and ‖∂E0‖(Ω) such that the following holds.
For (x, t) ∈ sptµ ∩ (Bλ × [λ−1, λ]) and r ∈ (0, 1

2 ] with t − c9r2 > (2λ)−1,
we have

(10.9) ‖Vt−c9r2‖(Br(x)) > c8rn.

Proof. — By Lemma 10.1(2), there exists a sequence (xi, ti) ∈ spt ‖Vti‖
with limi→∞(xi, ti) = (x, t). We may also have Vti ∈ IVn(Rn+1), thus any
neighborhood of xi contains some point of integer density of ‖Vti‖. Thus
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we may as well assume that θn(‖Vti‖, xi) > 1. One uses (10.3) with R = r,
t1 = t− c9r2 (c9 to be decided), t2 = ti, y = xi and s = ti + ε to obtain

(10.10) ‖Vs‖(ρ̂r(xi,ti+ε)(·, s))
∣∣∣ti
s=t−c9r2

6 c6r
−2(ti − t+ c9r

2) sup
s∈[t−c9r2,ti]

r−n‖Vs‖(U2r(xi)).

By letting ε→ 0+, θn(‖Vti‖, xi) > 1 and (10.10) give

(10.11) 1 6 ‖Vt−c9r2‖(ρ̂r(xi,ti)(·, t− c9r
2))

+ c6r
−2(ti − t+ c9r

2) sup
s∈[t−c9r2,ti]

r−n‖Vs‖(U2r(xi)).

Let i→∞ for (10.11) to obtain

(10.12) 1 6 ‖Vt−c9r2‖(ρ̂r(x,t)(·, t−c9r2))+c6c9 sup
s∈[t−c9r2,t]

r−n‖Vs‖(U2r(x)).

We also have ‖Vt−c9r2‖(ρ̂r(x,t)(·, t−c9r2)) 6 (4πc9)−n2 r−n‖Vt−c9r2‖(U2r(x)).
Now, given λ, let c7 be a constant obtained in Lemma 10.4 corresponding
to λ there equals to 2λ. Suppose we choose c9 < (2λ)−1 and t > λ−1 so
that t− c9r2 > (2λ)−1. Then by (10.6) and (10.12), we have

(10.13) 1 6 (4πc9)−n2 r−n‖Vt−c9r2‖(U2r(x)) + c6c92nc7.

Choose c9 sufficiently small so that the last term is less than 1/2. Then
we have a lower bound for r−n‖Vt−c9r2‖(B2r(x)). By adjusting constants
again, we obtain (10.9). �

Remark 10.7. — If we have (10.8), then we may also obtain (10.9) up
to t = 0, namely, we may replace [λ−1, λ] in the statement to (0, λ] and for
r ∈ (0, 1

2 ] with t− c9r2 > 0.

Corollary 10.8. — For any open set U ⊂ Bλ and t ∈ (λ−1, λ], we
have

(10.14) Hn({x ∈ U : (x, t) ∈ sptµ}) 6 lim sup
s→t−

Bn+1c
−1
8 ωn‖Vs‖(U).

Proof. — It is enough to prove the estimate for Kt := {x ∈ K : (x, t) ∈
sptµ} where K ⊂ U is compact and arbitrary. For each x ∈ Kt, for all
sufficiently small r, Br(x) ⊂ U and by Lemma 10.6, ‖Vt−c9r2‖(Br(x)) >
c8r

n. Applying the Besicovitch covering theorem to such family of balls,
and recalling the definition of the Hausdorff measure, we have a disjoint
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family of balls {Br(x1), . . . , Br(xJ)} such that (Hn2r is as defined in [18,
Definition 2.1(i)])

B−1
n+1Hn2r(Kt) 6 Jωnrn 6 c−1

8 ωn

J∑
i=1
‖Vt−c9r2‖(Br(xi))

6 c−1
8 ωn‖Vt−c9r2‖(U).

(10.15)

By letting r → 0 for (10.15), we obtain (10.14). �

Remark 10.9. — Lemma 10.1(1) and Corollary 10.8 prove (3.5) of
Proposition 3.4.

Lemma 10.10. — Let {Ejl(t)}∞l=1 be a sequence obtained in Proposi-
tion 6.4 and denote the open partitions by {Ejl,k(t)}Nk=1 for each jl and
t ∈ R+, i.e., Ejl(t) = {Ejl,k(t)}Nk=1. For fixed k ∈ {1, . . . , N}, 0 < r < ∞,
x ∈ Rn+1 and t > 0 with t− r2 > 0, suppose

(10.16) lim
l→∞

Ln+1(B2r(x) \ Ejl,k(t)) = 0

and

(10.17) µ(B2r(x)× [t− r2, t+ r2]) = 0.

Then for all t′ ∈ (t− r2, t+ r2], we have

(10.18) lim
l→∞

Ln+1(Br(x) \ Ejl,k(t′)) = 0.

Proof. — For a contradiction, if (10.18) were not true for some t′ ∈
(t − r2, t + r2], by compactness of BV functions, there exists a subse-
quence {j′l}∞l=1 such that χEj′

l
,k(t′) converges to χEk(t′) in L1(B2r(x)) and

Ln+1(Br(x) \ Ek(t′)) > 0. By the lower semicontinuity property, we have
‖∇χEk(t′)‖ 6 ‖Vt′‖. By Lemma 10.1(1) and (10.17), we have
‖∇χEk(t′)‖(B2r(x)) = 0. Then, χEk(t′) is a constant function on B2r(x) and
is identically 1 or 0. Since Ln+1(Br(x)\Ek(t′)) > 0, χEk(t′) = 0 on B2r(x).
Repeating the same argument, we may conclude that there exist some
k′ ∈ {1, . . . , N}, k′ 6= k, and a subsequence (denoted again by {j′l}∞l=1) such
that χEj′

l
,k′ (t′) converges to χEk′ (t′) and Ln+1(B2r(x) \ Ek′(t′)) = 0. Thus,

we have a situation where, at time t, Ej′
l
,k(t) occupies most of B2r(x) while

at time t′, Ej′
l
,k′(t′) occupies most of B2r(x) for all large l. In particular, for

all sufficiently large l, we have Ln+1(B2r(x) \Ej′
l
,k(t)) < ωn+1r

n+1/10 and
Ln+1(B2r(x) \Ej′

l
,k′(t′)) < ωn+1r

n+1/10. The maps f1 and f2 for the con-
struction of {Ej,l} in Proposition 6.1 change volume of each open partitions
very little at each step (note Definition 4.8(b) for f1, and f2 is diffeomor-
phism which is close to identity, see (5.59) and (5.60)), there exists some
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tl ∈ (t, t′) (or (t′, t)) such that 1
4ωn+1r

n+1 6 Ln+1(Br(x) ∩ Ej′
l
,k(tl)) 6

3
4ωn+1r

n+1. By the relative isoperimetric inequality, there exists a positive
constant c depending only on n such that

(10.19) ‖∂Ej′
l
(tl)‖(Br(x)) > ‖∇χEj′

l
,k(tl)‖(Br(x)) > crn.

We may assume without loss of generality that tl ∈ 2Q. Fix an arbitrary
t̂ ∈ 2Q ∩ (t − r2,min{t, t′}). Choose φ ∈ C2

c (U2r(x);R+) such that φ = 1
on Br(x) and 0 6 φ 6 1 on U2r(x). Now, we repeat the same argument
leading to (6.25) with t2 = tl and t1 = t̂ to obtain

(10.20) lim inf
l→∞

(
‖∂Ej′

l
(tl)‖(φ)− ‖∂Ej′

l
(t̂)‖(φ+ i−1Ω)

)
6 lim inf

l→∞

1
2

∫ tl

t̂

∫
Rn+1

|∇(φ+ i−1Ω)|2

φ+ i−1Ω d‖∂Ej′
l
(t)‖dt

6 lim inf
l→∞

∫ tl

t̂

∫
Rn+1

|∇φ|2

φ
+ i−1c21Ω d‖∂Ej′

l
(t)‖dt

6 i−1c21

∫ t+r2

t̂

‖Vt‖(Ω) dt,

where we used the dominated convergence theorem and ‖Vt‖(U2r(x)) = 0
which follows from (10.17). Since ‖∂Ej′

l
(t̂)‖(φ) → ‖Vt̂‖(φ) = 0, (10.20)

proves after letting i → ∞ that lim inf l→∞‖∂Ej′
l
(tl)‖(φ) = 0. But this

would be a contradiction to (10.19). �

Lemma 10.11. — Let {Ejl(t)}∞l=1 and {Ejl,k(t)}Nk=1 be the same as
Lemma 10.10. For fixed k ∈ {1, . . . , N}, 0 < r <∞, x ∈ Rn+1, suppose

(10.21) B2r(x) ⊂ Ejl,k(0)

for all l ∈ N and

(10.22) µ(B2r(x)× [0, r2]) = 0.

Then, for all t′ ∈ (0, r2], we have

(10.23) lim
l→∞

Ln+1(Br(x) \ Ejl,k(t′)) = 0.

Proof. — By (10.21), we have ‖V0‖(B2r(x)) = 0 and Proposition 10.1(1)
and (10.22) show ‖Vt‖(U2r(x)) = 0 for t ∈ (0, r2]. Then, we may argue just
like the proof of Lemma 10.10, where we take t̂ there by t̂ = 0. We omit
the proof since it is similar. �
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The following Lemma 10.12 is from [8, §3.7, “Sphere barrier to external
varifolds”].

Lemma 10.12. — For some t ∈ R+, x ∈ Rn+1 and r > 0, suppose
‖Vt‖(Ur(x))=0. Then for t′∈ [t, t+ r2

2n ], we have ‖Vt′‖(U√r2−2n(t′−t)(x))=0.

Finally, we give a proof of Theorem 3.5.

Proof. — We may choose a subsequence so that for all t ∈ 2Q, each
χEjl,k(t) converges in L1

loc(Rn+1) to χEk(t) as l → ∞. This is due to the
mass bound and L1 compactness of BV functions. Consider the complement
of sptµ∪(spt ‖V0‖×{0}) in Rn+1×R+ which is open in Rn+1×R+, and let
S be a connected component. For any point (x, t) ∈ S, there exists r > 0
such that B2r(x) × [t − r2, t + r2] ⊂ S if t > 0, and B2r(x) × [0, r2] ⊂ S

if t = 0. First consider the case t = 0. Since B2r(x) is in the complement
of spt ‖V0‖ = Γ0, for some small enough 0 < t′ 6 r2, Lemma 10.12 shows
that sptµ ∩ (Br(x) × [0, t′]) = ∅. Since B2r(x) ⊂ Rn \ Γ0, there exists
some i(x, 0) ∈ {1, . . . , N} such that B2r(x) ⊂ E0,i(x,0), thus B2r(x) ⊂
Ejl,i(x,0)(0) for all l. Then, by Lemma 10.11, for some r′ ∈ (0, r/2), we
have liml→∞ Ln+1(Br′(x) \Ejl,i(x,0)(t̃)) = 0 for all t̃ ∈ (0, (r′)2). Similarly,
for t > 0, using Lemma 10.10, there exist i(x, t) ∈ {1, . . . , N} and r′ ∈
(0, r/2) such that liml→∞ Ln+1(Br′(x) \ Ejl,i(x,t)(t̃)) = 0 for all t̃ ∈ (t −
(r′)2, t + (r′)2). By the connectedness of S, i(x, t) has to be all equal to
some i ∈ {1, . . . , N} on S. This also shows that χEjl,i(t) converges to 1
in L1 locally on {x : (x, t) ∈ S} for all t. Now, for each i ∈ {1, . . . , N},
define S(i) to be the union of all connected component with this property.
Since E0,i = {x : (x, 0) ∈ S(i)}, each S(i) is nonempty. They are open
disjoint sets and ∪Ni=1S(i) = (Rn+1×R+)\(sptµ∪(spt ‖V0‖×{0})). Define
Ei(t) := {x : (x, t) ∈ S(i)}. Then it is clear that χEjl,i(t) locally converges to
χEi(t) in L1. Up to this point, the claims (1)–(5) of Theorem 3.5 are proved,
in particular, (4) follows from the lower semicontinuity of BV norm.
To prove (6), let i = {1, . . . , N} and R > 0 be fixed. Without loss of

generality, we may assume x = 0. Consider UR ∩ Ei(t) which is open. For
r > 0, set Ar := {x ∈ UR−r ∩Ei(t) : dist (∂(UR ∩Ei(t)), x) < r}. Consider
a family of closed balls {B2r(x) : x ∈ Ar}. By Vitali’s covering theorem, we
may choose points x1, . . . , xm ∈ Ar such that {B2r(xj)}mj=1 are mutually
disjoint and Ar ⊂ ∪mj=1B10r(xj). By the definition of Ar, there exist x̃j ∈
Ur(xj) ∩ ∂(Ei(t)) for each j = 1, . . . ,m. Since (∂(Ei(t))× {t}) ⊂ sptµ, by
Lemma 10.6, ‖Vt−c9r2‖(Br(x̃j)) > c8r

n for 0 < r < r0 (with a suitable λ
chosen). Since Br(x̃j) ⊂ B2r(xj), {Br(x̃j)}mj=1 are mutually disjoint. Thus
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we have

c8mr
n 6

m∑
j=1
‖Vt−c9r2‖(Br(x̃j)) = ‖Vt−c9r2‖(∪mj=1Br(x̃j))(10.24)

6 ‖Vt−c9r2‖(UR+r).

On the other hand,

Ln+1(Ar) 6 mωn+1(10r)n+1(10.25)

6 (c−1
8 ωn+110n+1‖Vt−c9r2‖(UR+r))r.

For any x ∈ (UR−r ∩ Ei(t)) \ Ar, Ur(x) ⊂ Ei(t) and ‖Vt‖(Ur(x)) = 0.
Thus by Lemma 10.12, there exists c10 > 0 depending only on n such that
Br/2(x) ⊂ Ei(t̃) for all t̃ ∈ [t, t+ c10r

2]. This means (UR−r ∩Ei(t)) \Ar ⊂
Ei(t̃) for all t̃ ∈ [t, t+ c10r

2]. Thus, for such t̃,

(10.26) Ln+1(UR ∩ Ei(t) \ Ei(t̃))

6 Ln+1((UR \ UR−r) ∪Ar)

6 ((n+ 1)ωn+1R
n + c−1

8 ωn+110n+1‖Vt−c9r2‖(UR+r))r
=: c11(r)r,

where c11 is uniformly bounded for small r. The estimate (10.26) holds for
any i with the same c11. {Ei(t)∩UR}Ni=1 is mutually disjoint and the union
has full Ln+1 measure of UR, and so is {Ei(t̃)∩UR}Ni=1. Thus, except for a
Ln+1 zero measure set, we have Ei(t̃)∩UR\Ei(t) ⊂ UR∩∪i′ 6=iEi′(t)\Ei′(t̃).
Thus

(10.27) Ln+1(UR ∩ Ei(t̃) \ Ei(t))

6
∑
i′ 6=i
Ln+1(UR ∩ Ei′(t) \ Ei′(t̃)) 6 (N − 1)c11r.

(10.26) and (10.27) prove that

(10.28) Ln+1(UR ∩ (Ei(t)4Ei(t̃))) 6 Nc11r

for t̃ ∈ [t, t + c10r
2] and r < r0. We may exchange the role of t and t̃ to

obtain the similar estimate for t̃ < t. Once this is obtained, local 1
2 -Hölder

continuity for g as defined in (6) follows for t > 0 using (A4B)4(A4C) =
B4C for any sets A,B,C. For t = 0, we cannot estimate as above, but
we may still prove continuity using Lemma 10.12. If we assume an extra
property on E0 = {E0,i}Ni=1, such as, for each i = 1, . . . , N and R > 0,
Ln+1({x ∈ BR−r ∩ E0,i : dist (x, ∂E0,i) < r) 6 c(R)r for all sufficiently
small r, then we can proceed just like above and prove 1

2 -Hölder continuity
of g up to t = 0. �
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11. Additional comments

11.1. Tangent flow

For Brakke flow {Vt}t∈R+ , at each point (x, t) in space-time, t > 0, there
exists a tangent flow (see [30, 47] for the definition and proofs) which is
again a Brakke flow and which tells the local behavior of the flow at that
point. Just like tangent cones of minimal surfaces, tangent flows have a cer-
tain homogeneous property and one can stratify the singularity depending
on the dimensions of the homogeneity. In this regard, due to the minimizing
step in the construction of approximate solutions, one may wonder if some
extra property of tangent flow may be derived. As far as the approximate
solutions are concerned, as indicated in Section 4.3, unstable singularities
are likely to break up into more stable ones by Lipschitz deformation. There
should be some aspects on tangent flow which are affected by the choice
of f1 ∈ E(Ej,l, j) in (6.9) as elaborated in Remark 6.5. It is a challeng-
ing problem to analyze this finer point of the Brakke flow obtained in this
paper.

11.2. A short-time regularity

Suppose in addition that Γ0 satisfies the following density ratio upper
bound condition. There exist some ν ∈ (0, 1) and r0 ∈ (0,∞) such that
Hn(Γ0 ∩Br(x)) 6 (2− ν)ωnrn for all r ∈ (0, r0) and x ∈ Rn+1. Nontrivial
examples with singularities satisfying such condition are suitably regular
1-dimensional networks with finite number of triple junctions, since such
junctions have density 3

2 . Others are suitably regular 2-dimensional “soap
bubble clusters” with singularities of three surfaces with boundaries meet-
ing along a curve, or 6 surfaces with boundaries meeting at a point and
4 curves. They can have densities strictly less than 2. These are inter-
esting classes of examples which are also physically relevant. Under this
condition, by using Lemma 10.3, one can prove that there exists T > 0
such that θn(‖Vt‖, x) = 1 for ‖Vt‖ almost all x ∈ Rn+1 and for almost
all t ∈ (0, T ). In other words, there cannot be any points of integer den-
sity greater than or equal to 2. Thus the solution of the present paper is
guaranteed to remain unit density flow for t ∈ (0, T ). Then Theorem 3.6
applies and sptµ is partially regular as described there for (0, T ). In the
case of n = 1, this implies further that any nontrivial static tangent flow
within the time interval (0, T ) is either a line, or a regular triple junction,
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both of single-multiplicity. This is precisely the situation that we may ap-
ply [46, Theorem 2.2]. The result concludes that there exists a closed set
S ⊂ R2 × [0, T ) of parabolic Hausdorff dimension at most 1 such that,
outside of S, spt ‖Vt‖ is locally a smooth curve or a regular triple junction
of 120 degree angle moving smoothly by the mean curvature. We mention
that the short-time existence of one-dimensional network flow is recently
obtained in [31]. We allow more general Γ0 than [31] but our flow may have
singularities of small dimension in general. Due to the minimizing step of
the approximate solution, it is likely in the one-dimensional case that any
static tangent flow constructed in this paper is either a line or a regular
triple junction even for later time. This should require a finer look into
the singularities and pose an interesting open question. In any case, away
from space-time region with higher integer multiplicities (> 2), Brakke flow
constructed in this paper is partially regular as in Theorem 3.6. Higher inte-
ger multiplicities pose outstanding regularity questions even for stationary
integral varifolds.
We also mention that there is an initial time regularity property for

regular points of Γ0 for any n in the following sense. If Γ0 is locally a
C1 hypersurface at a point x which is not an interior boundary point of
some E0,i (i.e., there exist i, i′ ∈ {1, . . . , N}, i 6= i′, such that x ∈ ∂E0,i ∩
∂E0,i′), then there exists a space-time neighborhood of (x, 0) in which the
constructed flow is C1 in the parabolic sense up to t = 0 and C∞ for
t > 0. This can be proved by using a C1,α regularity theorem in [32] as
demonstrated in [43, Theorem 2.3(4)] for a phase field setting.

11.3. Other settings

If we replace Rn+1 by the flat torus Tn+1, we may simply change every-
thing by setting quantities periodic on Rn+1 with period 1. We would have
finite open partitions defined on Tn+1 and all convergence takes place ac-
cordingly. For general Riemannian manifolds, by adapting definitions and
assumptions, similar results should follow with little change. All the key
points of the paper such as the proofs of rectifiability and integrality are
local estimates. On the other hand, if one is interested in the MCF with
“Dirichlet condition” or “Neumann condition” in a suitable sense, the pres-
ence of such boundary condition may pose a nontrivial problem near the
boundary and further studies are expected. From a geometric point of view
in connection with the Plateau problem, such problem is natural and inter-
esting. As a related matter, one aspect that may puzzle the reader is the
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finiteness of open partition, i.e., we always fix N of OPNΩ even though we
do not see any quantitative statement in the main results concerning N .
One may naturally wonder if countably infinite open partition OP∞Ω can be
allowed. In fact, N =∞ can be dealt with all the way just before the last
step of taking jl →∞. For example, in Lemma 10.10, we want to conclude
that a subsequence of χEjl,k(t) converges in L1

loc(Rn+1) to some χEk(t) and∑N
k=1 χEk(t) ≡ 1 a.e. on Rn+1. However, if N = ∞, we need to exclude a

possibility that
∑∞
k=1 χEk(t) < 1 on a positive measure set. This is because,

even though
∑∞
k=1 χEjl,k(t) ≡ 1 for all jl, if there are infinite number of

sets, the fear is that all of them become finer and finer as jl increases and
the limit may all vanish. This scenario seems unlikely to happen for a.e.
t, but there has to be some extra argument to eliminate such possibility.
Since the finite N case is interesting enough, we did not pursue N = ∞
for the technicality. It is also possible to first find Brakke flow for each N
and take a limit N → ∞. One can argue that there exists a converging
subsequence whose limit is also a Brakke flow as described in the present
paper and that the limit is nontrivial using the continuity property of the
“grains”.
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